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Abstract

Tropical freshwater lakes are well known for their high biodiversity, and particularly 
the East African Great Lakes are renowned for their adaptive radiation of cichlid fishes. 
While comparative phylogenetic analyses of extant species flocks have revealed pat-
terns and processes of their diversification, little is known about evolutionary trajec-
tories within lineages, the impacts of environmental drivers, or the scope and nature 
of now-extinct diversity. Time-structured palaeodata from geologically young fossil 
records, such as fossil counts and particularly ancient DNA (aDNA) data, would help 
fill this large knowledge gap. High ambient temperatures can be detrimental to the 
preservation of DNA, but refined methodology now allows data generation even from 
very poorly preserved samples. Here, we show for the first time that fish fossils from 
tropical lake sediments yield endogenous aDNA. Despite generally low endogenous 
content and high sample dropout, the application of high-throughput sequencing and, 
in some cases, sequence capture allowed taxonomic assignment and phylogenetic 
placement of 17% of analysed fish fossils to family or tribe level, including remains 
which are up to 2700 years old or weigh less than 1 mg. The relationship between 
aDNA degradation and the thermal age of samples is similar to that described for 
terrestrial samples from cold environments when adjusted for elevated temperature. 
Success rates and aDNA preservation differed between the investigated lakes Chala, 
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1  |  INTRODUC TION

The analysis of ancient DNA (aDNA) has revolutionized our un-
derstanding of evolution and has provided unique insights into 
past biodiversity and its geographic distribution through time, 
including species extinctions (e.g., Leonardi et al., 2016; Murray 

et al., 2017; Orlando & Cooper, 2014; Shapiro & Hofreiter, 2014; 

Thomas et al., 2019; Willerslev et al., 2014). While advances in 
aDNA extraction, sequencing and analysis have enabled genetic 
investigation of the remains of ancient humans and other large 
vertebrates from cold or temperate regions, this technology has 
yet to be applied to prominent study systems in speciation and 
evolutionary radiation research. In many of these study systems, 
such as Darwin's finches, Heliconius butterflies, Hawaiian silver-
swords or Anolis lizards, a challenge for palaeogenetics is the scar-
city of well-preserved fossil remains. An exception to this general 
paucity of fossils from geologically young and extant radiations 
are the cichlid fishes of East Africa, which can leave chronolog-
ically highly resolved records of bones, bone fragments, teeth 
and scales in the sediments of lakes (Ngoepe et al., 2023; Cohen 
et al., 2016; Dieleman et al., 2015, 2019; Muschick et al., 2018; 

Reinthal et al., 2010). Yet, whether such remains contain apprecia-
ble amounts of endogenous aDNA is unknown. The high ambient 
temperature (~20°C–26°C) in the lower water column (hypolim-
nion) of these tropical lakes may be detrimental for aDNA pres-
ervation (Hofreiter et al., 2015), and other parameters of the 
depositional micro-environment, such as bottom-water pH or 
oxygenation, may affect the potential of long-term preservation 
(Allentoft et al., 2012; Kistler et al., 2017).

1.1  |  The promise of tropical fish palaeogenetics

The Great Lakes of East Africa host globally unique communi-
ties of endemic fish species, which are of great scientific, eco-
nomic and conservation interest. The adaptive radiations of 
cichlid fishes in these lakes have been investigated for their stun-
ning arrays of morphologies, behaviours, nuptial colourations 
and ecological adaptations, their large species richness and, in 
some cases, their exceptional rate of evolutionary diversifica-
tion (Muschick et al., 2012; Ronco et al., 2021; Salzburger, 2018; 

Seehausen, 2006). Highly resolved time series of genetic and phe-
notypic community-level data, alongside data on past environ-
mental changes, are needed to better understand the dynamics 

of diversification in these adaptive radiations, including the role 
of extinctions and the effect of environmental changes (Cuenca-
Cambronero et al., 2022). Some skeletal elements, such as cer-
tain teeth or cranial bones, can be identified to genus or even 
species level in some clades, but neither may this be possible in 
other clades, nor can it be achieved with the large majority of 
postcranial bones. While time series of phenotypic data on fos-
sil remains can be informative about major ecosystem changes 
(Ngoepe et al., 2023), genetic data from these fish fossils may pro-
vide higher taxonomic resolution and allow many more aspects of 
long-term ecosystem dynamics and organismal evolution to be in-
vestigated. Depending on the study system and length of the time 
series, such data could reveal changes in community composition 
resulting from environmental perturbations or longer term evolu-
tion, both within individual lineages and across successive specia-
tion events. Additionally, knowledge about the genetic diversity 
of ancient fish populations and their responses to past environ-
mental changes can have important implications for the conser-
vation and management of modern-day fish populations (Dietl 
& Flessa, 2011; Hofman et al., 2015; Nielsen & Hansen, 2008). 
Like lacustrine fish diversity elsewhere, the East African cichlid 
radiations are threatened by a range of factors. Introductions of 
non-native species, eutrophication due to nutrient pollution and 
global warming have all caused extinctions and the loss of genetic 
diversity (Kishe-Machumu et al., 2018; Seehausen et al., 1997). It 
is generally difficult to estimate the likely future impact of these 
factors on fish population sizes and species diversity. Therefore, 
palaeogenetic data from geologically young fossil records would 
help to appraise past functional and genetic diversity, establish 
baselines against which to compare current genetic diversity 
and possibly guide conservation measures (Atmore et al., 2022; 

Cohen, 2017; Dietl et al., 2015; Jensen et al., 2022; Kidwell, 2015).

1.2  |  Exploring the feasibility of palaeogenetic 
analysis of tropical fish populations

Several studies have demonstrated the preservation of aDNA in 
fish remains, primarily from archaeological sites in temperate envi-
ronments with samples that are hundreds to thousands of years old 
(Alonso et al., 2017; Atmore et al., 2022, 2023; Butler & Bowers, 1998; 

Ferrari et al., 2021; Kirch et al., 2021; Martínez-García et al., 2021; 

Oosting et al., 2019). Although poor preservation in tropical deposi-
tional contexts has been viewed as almost prohibitive to palaeogenetic 

Kivu and Victoria, possibly caused by differences in bottom water oxygenation. Our 
study demonstrates that the sediment records of tropical lakes can preserve genetic 
information on rapidly diversifying fish taxa over time scales of millennia.

K E Y W O R D S

adaptive radiation, cichlid fish, conservation, diversification, evolution, palaeogenetics
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studies (Wade, 2015), Mergeay et al. (2006, 2007) successfully am-
plified nuclear microsatellites and mitochondrial DNA from up to 
450-year-old resting eggs of Daphnia water fleas preserved in the 
sediment record of Lake Naivasha in Kenya. Further success with ter-
restrial and/or archaeological samples from tropical locations demon-
strates that genome-level analysis is also feasible in some cases (Grealy 
et al., 2016; Gutiérrez-García et al., 2014; Kehlmaier et al., 2017; 

Woods et al., 2018). However, the burial environment in archaeologi-
cal contexts is likely to be different from that in lake sediments, and 
aDNA preservation and successful retrieval in one context do not 
necessarily predict the same for the other. Fish remains from archaeo-
logical sites have revealed past trading routes (Star et al., 2017) and 
details about fishing practices or preferences in consumption (Häberle 
& Plogmann, 2019), but precisely because of these processes, those 
remains have become less informative about past community com-
position or population genetic structure. Additionally, archaeological 
deposits are often chronologically discontinuous, and the number 
of animal remains, including fish, available for destructive sampling 
can be limited (Alonso et al., 2017; Ferrari et al., 2021; Pálsdóttir 
et al., 2019). In contrast, fish remains from long, depositionally continu-
ous lake records are often available in appreciable quantities (Ngoepe 
et al., 2023; Dieleman et al., 2015, 2019; Monchamp et al., 2021; 

Muschick et al., 2018). If the last few thousand years are of interest 
– to establish natural baselines of past taxon or genetic diversity prior 
to recent human impact, for example – samples can be accessed rela-
tively simply through gravity or piston coring, and sample availability 
is mostly limited by the effort it takes to manually isolate them from 
the sediment matrix. Older samples, however, are often only accessible 
with major investment in deep drilling of ancient lakes (Cohen, 2012; 

Russell et al., 2020; Scholz et al., 2010; Verschuren et al., 2013). 
Inferring sample age from the position in the sediment column relies 
on age-depth models based on radiocarbon (14C) or lead-210 (210Pb) 
dates from the same sediment cores or cores from the same location in 
the lake. If such an age-depth model is not available and must be gener-
ated specifically for the purpose of dating the aDNA samples, this can 
substantially add to the costs and need for expertise. In principle, some 
effort could be saved by using bulk sediment as a source for aDNA, and 
such sedimentary ancient DNA (sedaDNA) has indeed been success-
fully extracted from tropical lake sediments (Boessenkool et al., 2013; 

Dommain et al., 2020; Epp et al., 2009, 2011). However, the downside 
to this approach is that it does not allow an individual-level assessment 
of past genetic diversity.

The degradation of endogenous DNA and the presence of large 
amounts of exogenous DNA make it difficult to assemble genomes 
de novo from typical aDNA sequence data. Hence, palaeogenomic 
approaches vitally depend on modern genomic reference data to 
identify and interpret endogenous sequence reads. As more and 
more whole-genome sequences of extant organisms are published, 
these can be leveraged for the analysis of aDNA. Joint efforts by the 
cichlid fish research community produced a small set of reference 
genomes that, given the close phylogenetic relationships within cer-
tain speciose adaptive radiations, provide an excellent resource for 
the study of most extant cichlid fish diversity (Brawand et al., 2014). 

Ongoing efforts by individual research groups have now re-se-
quenced additional hundreds of extant species from the East 
African Great Lakes Victoria (McGee et al., 2020), Malawi (Malinsky 
et al., 2018) and Tanganyika (Ronco et al., 2021), and such datasets 
will help to precisely map the genetic variation in cichlid aDNA data.

In this study, we evaluated whether fish remains from trop-
ical African lake sediments yield endogenous aDNA. Following 
Kowalewski (2017), we use the term ‘fossil’ to include both fossils and 
subfossils, irrespective of their age and irrespective of the degree 
of diagenesis they have undergone. We extracted and sequenced 
DNA from fish bones, scales and teeth from the sediments of three 
East African lakes, with ages of deposition ranging from within the 
last decade (i.e., surficial bottom sediments) to ~20,000 years old. To 
increase the sensitivity of aDNA detection, we enriched a subset of 
sequencing libraries with target sequences using hybridization se-
quence capture. We then analysed read lengths and post-mortem 
damage and estimated the size of the endogenous fraction to eval-
uate the quantity and quality of aDNA in these samples. Finally, we 
attempted to taxonomically assign samples and place them in the 
phylogenetic context of modern relatives.

2  |  MATERIAL S AND METHODS

2.1  |  Samples and sample preparation

Fish remains were collected from the sediments of three East African 
lakes: the two Great Lakes Victoria and Kivu, and Lake Chala, a cra-
ter lake at the foot of Mt. Kilimanjaro (Figure 1a). Core KIVU12-10A 
was accessed at the LacCore facility of the University of Minnesota 
(Minneapolis, USA). It had been collected by Robert E. Hecky and co-
workers in Lake Kivu in 2012 from 210 m water depth in the Rwandan 
part of Lake Kivu (2°04′08.4″S, 29°18′42.1″E). We sampled this core 
for fish remains at 229.5–231 and 301–302 cm composite depths, 
and at 227–228.5, 232.5–233.5, 242.5–244.5 and 266–267 cm to ob-
tain insect and terrestrial plant macrofossils for 14C dating (Table S3). 
One additional fish fossil from Lake Kivu (Kivu 4) was collected from 
38 to 40 cm depth in a gravity core of sub-recent sediment taken 
by Pascal Isumbisho Mwapu in 2006 in the Ishungu basin on the D. 
R. Congo side of the lake. Material from Lake Chala was extracted 
from three depth intervals of composite core CHA03/05, collected 
by the Challacea project from 94 m water depth near the centre of 
the lake (Verschuren et al., 2009). Material from Lake Victoria was 
extracted from two sets of cores: one set (LV95-1, LV95-2 and LV96-
6) taken in Uganda in 1995 and 1996 by the IDEAL consortium and 
stored at LacCore, and the other (LVC18-1 and LVC18-2) taken in 
Tanzania in 2018 by a team from the University of Bern and EAWAG 
(Switzerland) and the Tanzania Fisheries Research Institute (TAFIRI). 
The fossils were extracted in the laboratory, either directly from the 
surface of split core sections using forceps or by screening wet-sieved 
fractions of bulk sediment retained on a 100 μm mesh. In total, 77 
samples were analysed: four from Lake Kivu, 10 from Lake Chala and 
63 from Lake Victoria; see Tables 1 and Table S1 for details.
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2.2  |  Age estimation of fish fossils

The age of fish fossils was inferred from age-depth models of their 
sedimentary context. No published age-depth model is available 
for core KIVU12-10A from Lake Kivu, and abundant evidence of 

depositional disturbance likely by turbidity flows (Robert E. Hecky, 
pers. comm.) precludes extrapolation of average sedimentation 
rates established for other deep-water coring sites in Lake Kivu to 
this location. We therefore 14C-dated insect and terrestrial plant 
macrofossils from the core section bearing the extracted fish fossils 

F I G U R E  1  Distribution of lake sediment collection sites and examples of sedimentary fish remains (a) Map of equatorial eastern Africa 
with locations of analysed samples. For the large lakes Kivu and Victoria, the specific coring sites are indicated. Lake Chala is 2.5 km in 
diameter, too small to be visible at this scale. (b) Sediment core split surface of core KIVU12-10A section 3 showing a deposit of fish remains 
(white arrows, sample Kivu 1). Scale in mm. (c) Matched cranial fish bones of sample Kivu 1. Scale in mm.

TA B L E  1  Age, weight and aspect data on taxonomically assigned fish fossils.

Sample Type

Age [cal year BP] 
(95% CI) Weight [mg] Colour Assigned taxon p

Lake Chala

Chala 1 Bones 770 (725–819) NA Light Oreochromini <.001

Chala 2 Bones 2628 (2588–2671) NA Light Oreochromini <.001

Lake Kivu

Kivu 1 Bones 894 (787–1044) 100 Light Haplochromini <.001

Kivu 2 Bone 638 (579–685) NA Light amber Haplochromini <.001

Kivu 3 Bone 638 (579–685) 5 Light Oreochromini <.001

Kivu 4 Tooth ~240 NA Light Clariidae .014

Lake Victoria

Victoria 1 Bone 252 (−2–666) 1.5 Amber Haplochromini <.001

Victoria 2 Bone 15 (−68–182) 0.3 Amber Haplochromini <.001

Victoria 3 Bone 149 (−38–555) 2.3 Dark amber Haplochromini <.001

Victoria 4 Bone 149 (−38–555) 1.6 Dark amber Haplochromini <.001

Victoria 5 Bone 149 (−38–555) 1.2 Dark amber Haplochromini <.001

Victoria 6 Bone 149 (−38–555) 0.7 Dark amber Haplochromini <.001

Victoria 7 Scale 149 (−38–555) 0.3 Light amber Haplochromini <.001

Note: Sample ages are given in years before 1950 CE. The sample colour was assessed visually and qualitatively. Fossil weight indicated as NA refers 
to samples that had not been weighed before DNA extraction. Taxonomic assignment is based on a significantly higher number of reads mapping to a 
given reference as determined by both generalized linear models and adjustment of p-values for multiple comparisons (p values provided here) and a 
re-sampling test (results provided in Table S1).
Abbreviation: NA, not available.
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(Kivu 1–3) and constructed an age-depth model for that core sec-
tion using first-order polynomial regression in Clam (Blaauw, 2010) 
with Intcal13 14C calibration (Reimer et al., 2013) on the measure-
ments from six plant matter samples, omitting the insect sample as 
an outlier (Tables S4 and S5; Figure S2). We approximated the age 
of sample Kivu 4 by extrapolating a linear model of the 210Pb-based 
age data on a gravity core collected nearby (also from the Ishungu 
basin; Pasche et al. (2010)). For Lake Victoria, we used published 
14C-based age models referenced in Berke et al. (2012) and Muschick 
et al. (2018) for the IDEAL cores from 1995 to 1996, or in Temoltzin-
Loranca et al. (2023) for cores from 2018. The ages of fish fossils 
recovered from Lake Chala sediments are based on the age model of 
Blaauw et al. (2011).

2.3  |  Ancient DNA extraction

Sediment samples were consistently handled in laboratory envi-
ronments physically separated from facilities working with modern 
DNA. Extractions of aDNA and library preparations were performed 
in specialized aDNA facilities at the University of Oslo and ETH 
Zürich, which used high-efficiency particulate-absorbing (HEPA) fil-
ters, positive air pressure ventilation and overnight UV-C irradiation. 
Contamination with exogenous DNA was reduced by using standard 
aDNA laboratory procedures (Gilbert et al., 2006), such as wearing 
full body suits, face masks, gloves and frequent cleaning of surfaces 
and instruments using bleach and DNA Exitus Plus (Applichem). 
Cross-contamination between sediment samples was reduced by 
using single-use sterile forceps and containers. Before wet-sieving 
sediment samples, sieves were thoroughly rinsed and soaked in 2% 
sodium hypochlorite bleach. Wet-sieving was performed using dem-
ineralized water. In order to increase endogenous sequence yield per 
sequencing effort, we exposed subsets of samples to diluted bleach 
(0.5% NaOCl) or 10× diluted DNA Exitus Plus for 10–30 min, or to 
lysis buffer for 1 h (see Table S1 for details). Bleach and lysis buffer 
pre-treatment have been tested in previous studies (Boessenkool 
et al., 2016; Korlevic et al., 2015), but the use of diluted DNA Exitus 
Plus for the purpose of decontaminating sample surfaces is reported 
here for the first time to our knowledge. Possible advantages of 
DNA Exitus Plus over a treatment with diluted bleach are a milder 
effect on DNA (Fischer et al., 2016) and inactivation by ethylenedi-
aminetetraacetic acid (EDTA), an ingredient in lysis buffer. We used 
established extraction protocols that first dissolve the sample in 
lysis buffer containing EDTA, Proteinase-K and n-Laurylsarcosine, 
and then reversibly bind DNA to a silica solid phase, provided either 
as silica powder dispersed in binding buffer (Brotherton et al., 2013) 
or as membrane in Minelute columns (Qiagen) (Gamba et al., 2015). 
For most samples, a molecular sieve (Amicon-4, 30 kDa, Millipore 
Inc.) was used to remove EDTA and salts from the lysate before 
binding to silica (Yang et al., 1998). DNA was eluted into TET buffer 
(10 mM Tris–HCl, 1 mM EDTA, 0.05% Tween-20 final concentration). 
We added two blank extraction controls to each batch of 12 sam-
ples. Details for each sample and control are provided in Table S1.

2.4  |  Library construction, sequence capture, size 
selection and sequencing

We used both double-stranded DNA (dsDNA) library preparation 
after Meyer and Kircher (2010) and single-stranded DNA (ssDNA) li-
brary preparation following Gansauge et al. (2017, 2020) as described 
in Muschick et al. (2022). To sequence several pooled libraries on the 
same flow cell or lane, we labelled libraries with unique 7-bp indexed 
primers, either on the P7 side of fragments only (single-indexing) or 
on both the P7 and P5 sides (double-indexing; both indices unique 
for each library on a sequencing run) (Kircher et al., 2012; van der 

Valk et al., 2019). To each batch of 12 samples plus two extraction 
controls, we added one library negative control and one library posi-
tive control with an insert of a known sequence (CL104; Gansauge 
et al. (2017)). Details for each library are provided in Table S1. To in-
crease the number of hits to the mitochondrial genome, we enriched 
a subset of libraries (Table S1) using one round of hybridization se-
quence capture following Gonzalez-Fortes and Paijmans (2019). 
Baits were created from the whole mitochondrial genome amplicons 
of Pundamilia nyererei, a member of the Lake Victoria region super-
flock of haplochromine cichlids. Libraries were captured either in-
dividually or as part of pooled reactions with 3–5 libraries per pool 
(Table S1). Prior to sequencing, we size-selected pools of amplified 
libraries to reduce both short-insert artefacts and long-insert mod-
ern contamination. Pools were size-selected by electrophoresis in 
2% agarose gels, manual excision from the gel between the clearly 
visible adapter-artefact band and a 250-bp size marker, and subse-
quent DNA extraction from the gel slice using the QiaQuick Gel ex-
traction kit (Qiagen). Alternatively, we used a BluePippin instrument 
(Sage Science Inc.) with a 3% gel cassette with internal markers, se-
lecting for the size range 160–250 bp. We sequenced individual or 
pooled libraries on Illumina Miseq, NextSeq500 or Hiseq3000 plat-
forms, either single-end or paired-end, with cycle numbers of 1 × 50, 
1 × 75, 2 × 75 or 1 × 100 (see Table S1 for details). As is required 
for the single-stranded library builds with custom-shortened P7 
adaptors, we used the custom sequencing primer CL72 (Gansauge 
& Meyer, 2013) and the custom index 2 read primer Gesaffelstein 
(Paijmans et al., 2017).

2.5  |  Read filtering and mapping to 
reference genomes

Reads were demultiplexed using bcl2fastq v.2.19.1 (Illumina Inc.) 
with an allowed maximum combined distance of 1 when assigning 
barcode reads to samples. Even though sequencing was conducted 
for low cycle numbers only, the short insert sizes of aDNA librar-
ies would lead to frequent reading into adapters. Therefore, we de-
tected and removed partial adapter sequences from the reads using 
AdapterRemoval v2.0 (Schubert et al., 2016) and discarded reads 
shorter than 20 nucleotides in length after removal of adapter se-
quences. We then used the palaeomix pipeline (Schubert et al., 2014) 
to map reads to the individual reference genomes (Table S2), 
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choosing BWA v.0.7.17 (Li & Durbin, 2010) as the mapping engine 
with backtrack as the mapping algorithm (equivalent to setting ‘bwa-
aln’), and a Phred mapping quality threshold of 25. First, we mapped 
a selection of mitochondrial reference genomes to taxonomically as-
sign samples. Mitochondrial references included one species from 
each of the 15 extant, native fish families inhabiting one or more 
of the study lakes, with Cichlidae being represented by two tribes, 
Haplochromini and Oreochromini (Table S2). Mitochondrial refer-
ence genomes varied in length, with most being close to the average 
of 16,600 bp, except for Protopterus aethiopicus having a shortened 
and Nothobranchius furzeri having an extended control region. In 
order to directly compare the number of unique hits across refer-
ences, we shortened sequences to the first 15,000 bp for taxonomic 
assignment (see Section 2.6), omitting the control region while re-
taining protein-coding genes. For phylogenetic analyses, reads were 
mapped to full-length sequences. Taxonomically assigned samples 
were further mapped to the nuclear genomes of a representative 
species from the assigned taxon to estimate the fraction of endog-
enous DNA present and to assess post-mortem damage patterns. To 
decrease spurious read mappings, low-complexity stretches in the 
nuclear reference genomes were hard-masked using Dustmasker 
(Morgulis et al., 2006) at level 15.

2.6  |  Taxonomic assignment

Samples were assigned to the taxon that produced the highest 
number of hits if the difference in hit counts compared to other 
references was statistically significant. To assess the significance 
of read count differences, we used two methods: (1) generalized 
linear models with Poisson error distribution and log link function 
followed by adjustment of p-values for multiple comparisons using 
the Benjamini-Hochberg method (Benjamini & Hochberg, 1995); and 
(2) a resampling test, where for samples with more than 100 total 
hits, the hits across references were joined and re-sampled with re-
placement 1000 times. In the resampling test, the number of times 
a taxon is returned as most abundant across the 1000 resamplings 
is then used to calculate the p-value for the assignment. The use of 
two methods allowed to gauge the robustness of the assignment. 
So-called index-hopping (van der Valk et al., 2019) can lead to se-
quences from one sample being associated with another sample or 
control on the same sequencing run. This can be problematic, es-
pecially in aDNA studies, if samples vary widely in their read num-
bers and endogenous content. We therefore removed hits that were 
shared between libraries within sequencing runs before taxonomi-
cally assigning samples and disregarded libraries that shared ≥10% 
of their hits with other libraries, as this indicates that they had likely 
received a large fraction of their total hits from other libraries. Only 
samples for which taxon assignment was successful were analysed 
further; all other samples were designated as ‘empty’. Statistical 
evaluation of read counts and adjustment for shared reads was per-
formed in R v4.2.2 (R Core Team, 2022) using the package Rsamtools 
v2.14 (Morgan et al., 2022) and custom scripts.

2.7  |  Read length and post-mortem damage 
pattern assessment

To investigate the relative preservation of aDNA in different lakes, 
we determined the distributions of lengths of unique hits against 
reference genomes for taxonomically assigned samples. Counts of 
unique hits by read length were smoothed by fitting a Gaussian loess 
curve using the ‘loess’ function with ‘span’ parameter set to 0.5 (R 
Core Team, 2022). The correlation of the medians of these distri-
butions with sample age was then investigated with second-order 
polynomial regression. We assessed post-mortem damage patterns 
stemming from cytosine deamination by calculating the relative 
prevalence of apparent C to T and G to A changes from reference to 
sample by nucleotide position in reads, both from the 3′-end and the 
5′-end, using mapDamage v2.0.8 (Jónsson et al., 2013). We also es-
timated both the distribution of single-stranded molecule ends (i.e., 
overhangs) and the proportion of deaminated cytosines within them 
(δs) using mapDamage following Kistler et al. (2017), and compared 
our estimates to a model of Kistler et al. (2017). That model is based 
on 185 palaeogenomic datasets from mammal bones and describes 
a relationship between δs and sample age for a given mean ambi-
ent temperature. We adapted this model for 24°C, the approximate 
average temperature at the water depths of coring sites in lakes 
Victoria (Hecky et al., 1994) and Kivu (Katsev et al., 2014); in Lake 
Chala, the deep-water bottom temperature is slightly cooler, about 
22°C (Buckles et al., 2014; van Bree et al., 2020).

2.8  |  Phylogenetic analyses

We placed fossil samples containing endogenous aDNA in the 
context of extant species to reveal their phylogenetic association 
and potentially their species identity. Taxonomically assigned sam-
ples were mapped to a representative mitochondrial genome of 
their taxon: Oreochromis tanganicae for Oreochromini, Pundamilia 

nyererei for Haplochromini and Clarias gariepinus for Clariidae 
(see Table S2 for details). We used an iterative mapping strategy 
(as has been used elsewhere, e.g., Hahn et al., 2013; Westbury & 
Lorenzen, 2022) with the following steps: adapter sequences were 
eliminated from sequencing reads, and paired-end reads were 
merged using AdapterRemoval v2.0 (Schubert et al., 2016). Output 
from an initial mapping using BWA (settings aln -t 2 -n 0.05, seed-
ing disabled) was deduplicated using Samtools (Li et al., 2009), 
then called with ANGSD v.0.933 (Korneliussen et al., 2014) with 
a minimum depth of 3. Those calls were pasted into the initial ref-
erence, and this chimeric sequence was used as a new reference. 
The iterative part of the mapping consisted of two-part iterations 
and also used BWA, but with relaxed settings (−n 0.01 -o 3). The 
first part of each iteration called using GATK's (v.4.1.2.0, McKenna 
et al., 2010) HaplotypeCaller, then produced a new reference using 
GATK's FastaAlternateReferenceMaker, while the second part used 
again ANGSD for calling and merged the calls with the previous 
reference using R. The process continued until no additional reads 
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could be mapped. The final bam file was then called using ANGSD, 
but without merging with a reference, therefore retaining only calls 
supported by the sample's sequence reads. The extant species 
chosen to provide phylogenetic context are representative of the 
diversity within the clades of interest, i.e., to which fossil samples 
have been taxonomically assigned, and inhabit the respective study 
lakes or nearby water bodies. For Lake Chala, we included the na-
tive and endemic Oreochromis hunteri, its putative sister species 
O. jipe, which occurs in the nearby Pangani River drainage, and O. sp. 
‘bandia’, which was recently introduced into Lake Chala and has also 
been called O. sp. ‘blue head’ (Moser et al., 2018) or O. cf. korogwe 

(Dieleman et al., 2018). The three species were represented by se-
quences of two mitochondrial loci (1486 bp combined, from Dieleman 
et al., 2018), not the whole mitochondrial genome. For Lake Kivu, the 
native O. niloticus was represented with several specimens from dif-
ferent localities throughout its range of distribution; however, none 
were available from Lake Kivu itself; and Haplochromis paucidens 

and H. vittatus represented the native haplochromine radiation that 
is part of the Lake Victoria region superflock. Lake Victoria's hap-
lochromine adaptive radiation was represented by one species each 
from seven genera. Whole mitochondrial genomes were available on 
GenBank (www. ncbi. nlm. nih. gov/ genba nk/ ) or were reconstructed 
using the iterative mapping approach described above using avail-
able short reads (details are given in Table S2). Sequences of mod-
ern representatives and fossil samples with more than 500 called 
sites were aligned in mafft v.7.273 (Katoh & Standley, 2013) using 
default settings. Phylogenies were calculated using RAxML v.8.2.4 
(Stamatakis, 2014) with GTRGAMMA as a substitution model.

3  |  RESULTS

3.1  |  Sequencing results and taxonomic assignment

Out of 77 analysed fish fossils, 13 yielded endogenous aDNA se-
quences and could be assigned to family or tribe level (Table 1). The 
two methods used for testing the significance of taxon assignments 
based on hit counts were in agreement, with only minor differences 
in the probability of assignment (Table S1). Of these 13 taxonomi-
cally assigned fish fossils, at least 11 represented individuals with 
distinct mitochondrial haplotypes. The other two, Victoria 6 and 
7, had only a few sites called, none of which defined an additional 
haplotype, but leaving open the possibility that their sequences dif-
fered at non-called sites. These 13 successful assignments include 
samples from each of the three study lakes, and their ages range 
from a few decades to ~2700 years. Three different taxa were iden-
tified: oreochromine and haplochromine cichlids, and a clariid cat-
fish (Table 1). Mapping against reference genomes of extant taxa 
inhabiting the respective lakes or their close relatives revealed an 
endogenous content of up to 11.8% (Table 2), while 64 samples 
produced either too few hits or, inconclusively, a similar number of 
hits to several phylogenetically distant reference genomes and thus 
could not be assigned unequivocally (Table S1). The ratio of assigned 

to unassigned samples differed between lakes Chala (2/10, or 20%), 
Kivu (4/4, or 100%) and Victoria (7/63, or 11%) (Figure 2). Sequence 
capture increased the fraction of non-deduplicated reads mapping 
to the respective mitochondrial genome up to 8143-fold (Table 2 and 

Table S1). The enrichment of four samples (Victoria 1 to 4) taxonomi-
cally assigned to Haplochromini and sequenced both with and with-
out sequence capture ranged from 999-fold to 8143-fold, median 
1076-fold. Kivu 3, assigned to Oreochromini, was enriched 233-fold 
by sequence capture using baits created from a haplochromine mi-
tochondrial genome. The endogenous content of assigned samples 
ranged between 0.01% and 12.6% for sequence-captured libraries 
and between 0.05% and 11.8% without capture. Samples from Lake 
Victoria had markedly lower endogenous content on average than 
samples from the other two lakes (median, no capture: Lake Victoria 
0.05%, Lakes Kivu and Chala 7.6%). The four different sample pre-
treatments prior to extraction (i.e., no pre-treatment, incubation in 
lysis buffer, diluted bleach or diluted DNA Exitus Plus) all produced 
positive samples. Lake Victoria samples treated with DNA Exitus 
Plus yielded more positive samples (6 out of 12) than bleach and 
lysis buffer pre-treatments combined (1 out of 51), but this is highly 
conflated with sample age (Table S1).

3.2  |  Age of fish fossils

The absolute mean age of the 63 samples from Lake Victoria ana-
lysed in this study ranges from 15 to 19,540 cal year BP (see Tables 1 

and Table S1 for 95% confidence intervals, CI). However, the samples' 
ages are bimodally distributed, with 46 being older than 10,000 years 
old and 17 younger than 1000 years (Figure 2). New 14C dates on core 
KIVU12-10A place the mean ages of samples Kivu 1–3 between 638 
and 894 cal year BP, with a 95% CI ranging from 579 to 1044 cal year 
BP. The age of sample Kivu 4 is estimated as ~240 cal year BP. The 
Lake Chala samples have mean ages ranging from 770 to 7924 cal year 
BP (see Tables 1 and Table S1 for 95% CIs). The age of the 13 fish 
fossils that contained endogenous DNA and could be taxonomically 
assigned was on average the youngest in Lake Victoria (mean ages up 
to 252 cal year BP, or ~ 320 years old), intermediate in Lake Kivu (up 
to 894 cal year BP, or ~ 960 years old) and oldest in Lake Chala (up to 
2628 cal year BP, or ~2700 years old; Figure 2).

3.3  |  Post-mortem damage

When summarizing differences between mapped reads and refer-
ences by position within reads from either end, the typical post-mor-
tem damage pattern caused by the deamination of cytosine emerges. 
Apparent changes of C to T and G to A are particularly prevalent in 
the ends of aDNA molecules (Figure 3a) and can indicate their authen-
ticity. All taxonomically assigned fossil samples show this pattern, al-
though to varying degrees. Taxonomically assigned samples from lakes 
Chala and Kivu are older and, accordingly, show more pronounced 
deamination than those from Lake Victoria. Comparing deamination in 
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TA B L E  2  Summary statistics of aDNA sequencing and mapping results.

Sample Library Seq. Run
Sequence 
capture Assigned taxon Retained reads

Avg. hit 

length

Fraction 

shared hits

Endogenous 

fraction [%]
Mito. Genome 

coverage Sites called

Weight 

[mg]

Lake Chala

Chala 1 2 No Oreochromini 7,349,755 58.2 0.055 11.75 0.63 2243 NA

Chala 2 2 No Oreochromini 7,766,237 47.9 0.064 10.73 0.28 780 NA

Lake Kivu

Kivu 1 1 No Haplochromini 15,088,024 41.0 0 1.23 4.73 13,308 100

Kivu 2 2 No Haplochromini 56,005,290 48.7 0.038 0.19 1.76 5898 NA

Kivu 3 1 6 Yes Oreochromini 6,436,533 48.8 0.001 12.59 34.96 16,565 5

Kivu 3 2 3 No Oreochromini 383,506 0 5.34 0.22

Kivu 4 7 No Clariidae 967,253 66.4 NA 9.96 0.12 5 NA

Lake Victoria

Victoria 1 5 Yes Haplochromini 12,126,691 60.2 0.063 0.24 22.49 16,747 1.5

Victoria 1 4 No Haplochromini 947,560 0 0.05 0.14

Victoria 1 3 No Haplochromini 172,658 0 0.05 0.02

Victoria 2 5 Yes Haplochromini 399,218 64.8 0.006 0.29 6.9 16,083 0.3

Victoria 2 6 No Haplochromini 3,769,375 0 0.05 0.04

Victoria 3 5 Yes Haplochromini 1,297,369 64.1 0.01 0.79 4.35 12,838 2.3

Victoria 3 6 No Haplochromini 4,916,489 0 0.18 0.04

Victoria 4 5 Yes Haplochromini 1,455,924 63.1 0.024 1.15 2.91 8822 1.6

Victoria 4 6 No Haplochromini 4,772,194 0 0.20 0.02

Victoria 5 5 Yes Haplochromini 390,329 57.3 0.004 0.07 0.92 1304 1.2

Victoria 6 5 Yes Haplochromini 558,692 59.6 0.026 0.01 0.49 397 0.7

Victoria 7 5 Yes Haplochromini 414,006 52.6 0.024 0.02 0.31 90 0.3

Note: One library was built per sample, except for Kivu 3, for which two libraries were built. Several samples were sequenced multiple times, often once with and once without target enrichment by 
sequence capture. The fraction of shared hits denotes the fraction of hits with identical sequences shared with other libraries on the same sequencing run, likely a consequence of index-switching. The 
endogenous fraction is the percentage of reads mapping to the respective nuclear reference genome before filtering duplicates.

 1365294x, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/mec.17159 by Test, Wiley Online Library on [23/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
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single-stranded overhangs of fragments (δs) to a model based on a large 
amount of mammal-bone data from terrestrial sampling sites shows 
that the amount of damage in our samples falls largely within the wide 
95% CI of the prediction (Figure 3b) but tends to be elevated within that 
range, especially those from Lake Victoria. Read lengths were short, 
as expected for aDNA, with a mean length between 47.9 and 79.5 bp 
for the 13 assigned samples (Figure 3c). Interestingly, while modes of 
read lengths ranged between 25 and 69 bp for all assigned samples, 
and most samples' read counts decrease steeply with increasing read 
length, Kivu 4 shows an extended tail in its read length distributions, 
reaching appreciably beyond 100 bp. Samples from Lake Victoria show 
no clear peak in their distributions, but rather an extended plateau. 
Median fragment lengths are negatively correlated with sample age 
(F(2,10) = 6.78, p = .02, adj. R-squared = .49), with the fragment size de-
clining steeply with age in samples younger than 1000 years and appar-
ently remaining constant beyond that age (Figure S1).

3.4  |  Phylogenetic analyses

Among the 13 taxonomically assigned fish fossils, 10 yielded suffi-
cient data to place them in the phylogenetic context of extant spe-
cies (Figure 4). Victoria 6 and 7 and Kivu 4 had respectively 90, 397 
and 5 mitochondrial genome positions called and were excluded from 
phylogenetic analysis. Kivu 1 and 2 were identified as members of 
the tribe Haplochromini, which is represented by 15 described and 
some closely related undescribed species in Lake Kivu today (Snoeks 
et al., 2012). Both samples cluster with the two extant Lake Kivu rep-
resentatives of the Lake Victoria Region haplochromine superflock, 

which are closely related to superflock species from Lake Victoria 
itself. Kivu 3 was assigned to the cichlid tribe Oreochromini. It ro-
bustly associates with Oreochromis niloticus (bootstrap support value: 
97; see Figure 4), which is thought to be native to Lake Kivu, while 
the three other Lake Kivu Oreochromis species used here for context 
(O. mweruensis, O. macrochir and O. leucostictus) are introduced. The 
situation is similar for the two assigned fossils from Lake Chala, which 
cluster with both O. hunteri, the only Lake Chala endemic, and O. jipe, 
the sister species to O. hunteri inhabiting the nearby Pangani River 
drainage. Modern reference data for O. hunteri and O. jipe was avail-
able from two mitochondrial loci only (1486 bp combined (Dieleman 
et al., 2018)); hence, there is limited sequence overlap between the 
fossils and modern specimens. Given the shallow divergence between 
these two extant species, fossils could therefore not be assigned de-
cisively to either species. Another Oreochromis species found in Lake 
Chala, O. sp. ‘bandia’, is likely a recent introduction (Dadzie et al., 1988). 
Fossil samples from Lake Chala do not cluster with either of the two 
divergent haplotype groups in that population. The five samples from 
Lake Victoria suitable for phylogenetic analysis clustered with rep-
resentatives of the Lake Victoria radiation of haplochromines. Thus, 
despite the shallow divergence between haplochromine cichlids from 
Lake Kivu and Lake Victoria (Meier et al., 2017), fossils clustered 
with the fauna of their respective lakes. Within Lake Victoria, hap-
lochromine species are only weakly genealogically sorted in their 
mitochondrial haplotypes, a result of both the young age of this radia-
tion and more recent interbreeding caused by habitat deterioration 
(Seehausen et al., 1997), preventing an assignment of haplochromine 
fossils to genus or species level based on mitochondrial data alone.

4  |  DISCUSSION

4.1  |  Taxonomic assignment and phylogenetic 
placement of fish fossils

Overall, 17% (n = 13) of the analysed fish fossils were found to con-
tain endogenous DNA and could be taxonomically assigned to the 
tribe or family level. Of these, we included those 10 samples that 
had at least 500 mitochondrial genome positions called in our phy-
logenetic analysis (Figure 4), where they clustered conclusively with 
species native to their respective lakes (Figure 4), even in the case 
of the haplochromines from Lake Kivu and Lake Victoria, which are 
closely related to one another (Meier et al., 2017). The association of 
fossils from Lake Chala with Oreochromis jipe and O. hunteri confirms 
previous assessments based on fishery surveys (Dadzie et al., 1988; 

Lowe, 1955; Trewavas, 1966, 1983) reports by local fishermen 
and morphological analysis of modern and fossil teeth (Dieleman 
et al., 2015) that only O. hunteri is native to Lake Chala and O. sp. 
‘bandia’ introduced. These phylogenetic associations are not surpris-
ing and do not yield new insights into fish phylogeography, but they 
do serve as evidence that the genetic data we retrieved from the 
fossils is endogenous and not the result of exogenous contamination 
or cross-contamination between samples.

F I G U R E  2  Success of taxonomic assignment against fish fossil 
age. Filled circles represent taxonomically assigned samples, and 
empty circles represent non-assigned samples. Note the logarithmic 
age scale; cal year BP, calibrated years before 1950; noise was 
added to age estimates of samples older than 10,000 cal year BP for 
illustrative purposes.
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4.2  |  Taphonomic considerations

Lake sediments often contain an abundance of fish remains 
(Ngoepe et al., 2023; Dieleman et al., 2015; Muschick et al., 2018), 
which have most often been buried as dispersed individual ele-
ments, namely scales or teeth shed over an individual's lifetime, 
or parts of decomposing carcasses following their fragmentation 
by bottom currents and bioturbation. Occasionally, whole car-
casses can be embedded in situ, with the skeletal parts staying 
articulated or in close contact. Our collection of analysed fish 

fossils contained both types. The different bones comprising sam-
ple Kivu 1 most likely belonged to the same individual (Figure 1c), 
as indicated by laterally matching cranial elements. We also did 
not find any variable sites in this sample's mitochondrial genome 
sequence that could not be explained by post-mortem damage. If 
found, such sequence variation would indicate the presence of dif-
ferent haplotypes among the bones, which would most likely stem 
from multiple individuals. Other remains found together within a 
single sediment core interval did clearly belong to different indi-
viduals: samples Kivu 2 (a nondescript rib bone) and Kivu 3 (a left 

F I G U R E  3  Post-mortem damage in mapped reads of taxonomically assigned fish fossils. (a) Post-mortem damage from cytosine 
deamination is distributed unevenly along mapped sequencing reads. The combined fraction of T in reads where the reference is C, and 
A where the reference is G, is plotted against the position in mapped reads either counted from the 3′-end or the 5′-end. As this chemical 
alteration is especially prevalent in single-stranded overhangs, the relative abundance of apparent C > T and G > A changes at reads' ends 
is indicative of authentic ancient DNA. Dotted lines connecting the left and right parts of each plot are for illustration purposes only. 
(b) Proportion of deaminated cytosines in single-stranded overhangs (δs) in individual samples, and model of expected δs by sample age for 
24°C ambient temperature in a terrestrial context. (c) Read length distributions of mappings of taxonomically assigned samples against their 
respective nuclear reference genomes. Artefactual peaks from inserts exceeding the maximum read length were omitted by disregarding 
counts in the last 3 bp bins. Read lengths are short, as is typical for aDNA. The legend in panel b applies to all panels. CI, confidence interval; 
nt, nucleotides.
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premaxilla) were identified as Haplochromini and Oreochromini, 
respectively (Table 1). Samples Victoria 3–7 were all found at the 
same sediment depth (22.2 cm) in the same core (Table S1), and 
yet Victoria 3, 4 and 5 have different mitochondrial haplotypes 
(Figure 4). Samples Victoria 6 and 7 had too low mitochondrial ge-
nome coverage to make this assessment. For the analyses of fish 
fossils from sediment cores, this result is enlightening, as it sug-
gests that fish remains buried within a short time interval across 
a sediment surface area of 28–31 cm2 (60–63 mm core diameter) 
may include many individuals and, at least in Lake Victoria, are 
not derived from a single carcass. In many cases, it is impossible 
to confidently determine by their morphology whether teeth, 
scales, bones or bone fragments found together belonged to one 
individual or several, especially in the case of very closely related 
cichlid fishes of similar size. Our findings suggest that raw counts 
of disarticulated fish fossils may be used as an approximation of 
the number of contributing individuals, whereas laterally matching 
cranial bones or an abundance of similarly sized vertebrae indicate 
the local burial of an intact carcass.

4.3  |  Degradation state of endogenous aDNA and 
potential determinants of its preservation

4.3.1  |  Differences in DNA degradation

Sequence reads mapping to reference genomes were short and 
showed a distinct pattern of post-mortem cytosine deamination 

(Figure 3), both suggesting that the DNA we recovered from the 
analysed fish fossils is authentically ancient. Moreover, the length 
of mapped reads from the taxonomically assigned samples is in-
versely correlated with sample age (Figure S1). This result is ex-
pected, given that DNA breaks down into smaller fragments after 
the organism's death. However, other studies found no correlation 
of this sort and interpreted this as the result of initially rapid, then 
slowing fragmentation (Kistler et al., 2017; Pääbo, 1989; Sawyer 
et al., 2012). Our results indicate that DNA degradation in tropi-
cal lake sediments may slow down after about 1000 years, albeit 
this inference hinges on a single data point older than this pos-
sible threshold age (Figure S1). In any case, it is possible that the 
age range of our samples encompasses the early period of rapid 
DNA fragmentation. In terrestrial contexts, the degree of cytosine 
deamination in single-stranded overhangs (δs) appears strongly re-
lated to age and ambient mean temperature, jointly considered as 
the thermal age (Kistler et al., 2017). This model is generally sup-
ported by our data. However, when accounting for sample age, 
the δs values of our Chala samples are close to the model mean, 
whereas most Victoria and Kivu samples have more elevated δs 

values situated near the fringes of the model's 95% CI (Figure 3b).
Further, taxonomically assigned samples from Lake Victoria have 

a lower endogenous DNA content than samples from the other two 
lakes (Table 2), to the degree that the Victoria sample with the high-
est endogenous content (Victoria 4: 0.2% for measurement without 
sequence capture) is on par with the lowest among the Kivu and 
Chala samples (Kivu 2: 0.19%). This is in line with the ratios of as-
signed to unassigned (i.e., dropped-out) samples across lakes, which 

F I G U R E  4  Phylogenies of ancient fish fossils in the context of modern fish diversity in the three East African study lakes. 
(a) Oreochromine fossils from lakes Kivu and Chala in the context of East African Oreochromis species. (b) Haplochromine fossils from 
lakes Kivu and Victoria among modern representatives of Tropheini and Haplochromini from lakes Tanganyika, Malawi, Victoria and Kivu. 
Phylogenies are based on whole mitochondrial genome sequences for modern specimens, except for O. sp. ‘bandia’, O. hunteri and O. jipe, for 
which ND2 and D-loop sequences were used. The number of called sites for fossils is given in Table 2. Nodes are labelled according to their 
support from 100 bootstrap replicates. Scale bars indicate estimated substitutions per site.
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are lower for Victoria (0.11) than for Chala (0.2) and Kivu (1.0). All 
four measures – sample dropout, endogenous content, deamination 
and fragmentation – are indicators of the severity of DNA degrada-
tion. Except for fragmentation, these suggest that the DNA in the 
Lake Victoria samples is more strongly degraded than that from the 
other two lakes. This could be due to a number of reasons, including 
both genuine sample- or environmental-related factors and biases 
due to variation in experimental procedures, as discussed below.

4.3.2  |  Experimental factors

Size-selective steps in DNA extraction, library preparation or se-
quence capture may have affected the length distributions of 
mapped sequences in different ways. Thus, one explanation for the 
plateau-shaped read length distribution of the seven taxonomically 
assigned samples from Lake Victoria (Figure 3c) could be an effect 
of hybridization sequence capture, which proved particularly effec-
tive for these samples. In that case, a bias in sequence capture to 
retain longer fragments would shift the mean and median mapped 
read length of these (relatively young) samples compared to those 
of less efficiently captured samples and those that did not undergo 
sequence capture. Another possibility is that because taxonomically 
assigned Victoria samples had been isolated from the sediment soon 
after core collection (all originate from the 2018 cores; Table S1), less 
DNA fragmentation might have occurred ex situ than in other sam-
ples. We consider the latter scenario less likely, as it is contradicted 
by the other measures of DNA degradation. In contrast to Victoria 
samples, the mapped read lengths of taxonomically assigned sam-
ples from lakes Chala and Kivu show more narrow unimodal distri-
butions (Figure 3c). In most cases, the maximum read length appears 
to be related to the number of cycles in sequencing, with longer 
fragments in Kivu 4 being revealed as such by the greater number 
of cycles used for this sample (Table S1). However, fragments ex-
ceeding ~150 bp are rare even in this young and comparatively well-
preserved sample. Storage times and conditions after excavation 
can be important factors for DNA preservation in fossils (Pruvost 
et al., 2007). While most fish fossils for this study were extracted 
from the sediment multiple years after core collection (up to 22 years 
in the case of Lake Victoria cores from the IDEAL project), fish fossils 
from Lake Victoria cores collected in 2018 had been ex situ for the 
least amount of time (1 year) and were continuously stored under re-
frigerated conditions, yet they exhibit worse preservation than sam-
ples from the other lakes. Thus, it appears that differences in storage 
conditions do not explain much of the variation in DNA preservation 
among our samples.

Prior to DNA extraction, we pre-treated subsets of samples al-
ternatively with bleach (47 samples), lysis buffer (13 samples) or a 
diluted DNA Exitus Plus solution (12 samples) (Table S1), with the 
intention of increasing the fraction of endogenous DNA by remov-
ing exogenous DNA from the sample surface. However, when DNA 
is destroyed indiscriminately, it can also cause a low yield overall 
(Basler et al., 2017; Boessenkool et al., 2016; Korlevic et al., 2015). 

The available data presented here precludes an assessment of which 
treatments proved most effective and whether they may have led to 
a low yield or increased sample dropout because the sample treat-
ment scheme did not specifically aim for a comparative evaluation 
of the different treatments. As all treatments produced positive 
samples, we suspect that the differences between them may not be 
large. Further tests are needed to establish the relative effective-
ness of these treatments for small fish remains from tropical lake 
sediments.

4.3.3  |  Environmental and sample-specific factors

Humic and fulvic acids, and/or mineral compounds such as iron or 
manganese oxides, are known to invade fossil bones buried in soils 
(Kendall et al., 2018) and sediments (Stathopoulou et al., 2013), and, 
when co-extracted with the aDNA, can decrease the efficiency of 
library preparation. The type and degree of this alteration are vis-
ible as a staining of the bone material from light shades of brown 
or amber to progressively deeper shades of brown to black. The 
fish fossils analysed in this study appear to differ between the lakes 
in the degree of staining, with most Victoria fossils being a shade 
of amber or dark brown, while most Kivu and Chala fossils are less 
stained (Table S1). Differences in the degree of inhibition of enzy-
matic steps during library preparation may explain variation in the 
ratio of assigned to unassigned samples across lakes but would not 
readily account for the large range in the endogenous fraction of 
positive samples (Table 2: 0.01%–12.6%).

The average mass of fossils for which the weight was measured 
was lower for samples from Lake Victoria than for lakes Kivu and 
Chala (1.8 mg; versus 4.6 and 52.5 mg). In the case of northern 
European herring bones from archaeological settings, weighing from 
<10 to 70 mg, Atmore et al. (2023) found no clear correlation be-
tween aDNA preservation and fossil weight except for a drop in the 
fraction of samples yielding endogenous DNA for samples weigh-
ing <10 mg. As the weight range of fossils in our study is fairly large 
(0.3–100 mg), sample weight may conceivably have been a factor in 
aDNA preservation in the smallest samples; however, the volume of 
our data does not allow us to evaluate this effect statistically.

Water temperature differs between lakes, with Kivu and Victoria 
averaging about 24°C at the depths of the respective coring sites 
(Hecky et al., 1994; Katsev et al., 2014), whereas the bottom of Lake 
Chala is ~2°C cooler (Wolff et al., 2014). Temperature is an important 
determinant of DNA degradation (Bollongino et al., 2008; Dabney 

et al., 2013), and a positive relationship has been shown with the rate 
of cytosine deamination (Kistler et al., 2017). However, a difference 
of 2°C is unlikely to account for the poorer aDNA preservation in 
samples from Lake Victoria.

Oxygenation of the sediment surface at the location of sample 
deposition and burial does differ between the three study lakes 
in a way that may explain differences in DNA preservation. Lake 
Chala is permanently stratified (meromictic) with its water column 
anoxic below 15 and 45 m depth depending on the season (Wolff 
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et al., 2014), and the Challacea coring site from which analysed 
fossils were recovered is located at 94 m depth. Lake Kivu is also 
meromictic and anoxic below 30–65 m water depth depending on 
the season (Pasche et al., 2012), with coring sites located at ~170 m 
(Kivu 4) and 210 m depth (Kivu 1–3). In contrast, with a maximum 
water depth of 68 m, Lake Victoria is relatively shallow for its large 
surface area, and prior to the development of hypolimnetic anoxia 
associated with cultural eutrophication, its lower water column 
used to be oxygenated year-round (Hecky et al., 1994). Once they 
are covered by a few centimetres of sediment, fossils are shielded 
from oxygen when bottom waters are oxygenated. But depending 
on the sedimentation rate, the time until a fossil is buried sufficiently 
deeply can be substantial. Bioturbation can extend this period fur-
ther as it transports oxygen into the sediment. It may then take many 
decades until samples experience anoxic conditions. The presence 
of oxygen may be detrimental to aDNA preservation in fish fossils 
in two ways. Firstly, organic matter decomposition in an oxygenated 
environment typically lowers the pH, directly increasing DNA deg-
radation by hydrolysis (Bollongino et al., 2008; Mitchell et al., 2005). 
Secondly, both mineral and protein components of fish remains pre-
served better when embedded under suboxic, reducing conditions, 
as was shown for marine environments (Aguilera et al., 2016; Díaz-
Ochoa & Pantoja, 2014; Schenau & Lange, 2000). Protection of the 
DNA against chemical or microbial decay provided by the matrix of 
bones or teeth is then maintained for longer (Campos et al., 2012).

4.4  |  Conclusions and outlook

The results of this study represent the first demonstration of ancient 
DNA preservation in sediment-embedded fish remains from tropi-
cal lakes. To the extent possible, we also assessed potential causes 
of variation in the samples' endogenous DNA content and its state 
of degradation. Although the results of this study may have been 
affected by differences in sample pre-treatment and processing, 
the overall picture that emerges is that fish fossils from lakes Chala 
and Kivu preserved ancient fish DNA better than those from Lake 
Victoria. The long-term oxygenation of Lake Victoria bottom waters, 
contrasting with permanently anoxic conditions in Chala and Kivu, 
may provide the most plausible explanation for this difference in 
aDNA preservation. Further, given the high sample dropout in Lake 
Victoria and, to some degree, Lake Chala, future studies may need to 
process a large number of samples to accumulate a sufficient num-
ber that yield endogenous aDNA. Methods predicting aDNA preser-
vation from a sample's characteristics (Collins et al., 2009; Scorrano 
et al., 2015) or that detect endogenous DNA as early as possible in 
the process from DNA extraction to sequencing (Enk et al., 2013; 

Wales et al., 2012) may help to focus efforts on the most promising 
samples. Given the often-low endogenous content of samples, the 
application of hybridization sequence capture can significantly im-
prove data yield and may be a necessary but powerful step for sam-
ples from poorly-preserving sites such as Lake Victoria, especially 
when targeting nuclear loci. Co-extraction of inhibitory substances 

like humic acids or metal oxides can hamper enzymatic steps dur-
ing library preparation. Further purification of extracts or the use of 
enzymes that are more resilient to such inhibition could be potential 
remedies (King et al., 2009).

The aDNA preserved in fossil material from tropical regions is 
of particular interest to evolutionary biologists because the trop-
ics harbour more biodiversity than temperate or arctic regions 
(Jablonski et al., 2006; Rolland et al., 2014) and are home to some 
textbook examples of adaptive radiation, such as lacustrine cich-
lid fishes. Our study demonstrates that it is possible to generate 
ancient DNA data from fish fossils found in the bottom sediments 
of tropical lakes, which can be used for taxonomic assignment and 
phylogenetic analysis. Future studies could use such data to reveal 
temporal changes in community composition, genetic diversity and 
population connectivity and continuity and deliver fundamental 
new insights into evolutionary and ecological processes in these 
ecosystems. Baselines of past genetic diversity may also help to 
define conservation goals. Freshwater diversity is under pressure 
worldwide (Reid et al., 2019), including the cichlid fishes of the East 
African lakes (Kishe-Machumu et al., 2018). Over the last century, 
and especially since the 1950s, Oreochromis species, and other 
fish taxa likely unintentionally with them, have been translocated 
to many natural and artificial water bodies across Africa for aqua-
culture and fisheries purposes (Pullin & Lowe-McConnell, 1982; 

Shechonge et al., 2019; Tibihika et al., 2020), and have often intro-
gressed into native populations and species (Blackwell et al., 2021; 

Ndiwa et al., 2014; Shechonge, 2018). This makes it increasingly 
challenging to document the natural distribution of species and the 
natural genetic diversity and uniqueness of populations. Threats to 
this diversity can potentially be better understood and addressed 
by conservation efforts if they are guided by information on distri-
bution ranges and genetic diversity predating the Anthropocene 
(Izzo et al., 2016; Kemp & Hadly, 2016).

Tropical lake sediments have already provided a plethora of in-
formation on past climate conditions, changes in the composition of 
terrestrial vegetation and long-term aquatic ecosystem dynamics, 
using a multitude of macroscopic, microscopic, isotopic and molecu-
lar proxies. The successful generation of genetic data from lake sed-
iment-embedded fish remains opens up many new possibilities to 
investigate evolutionary processes and tropical ecosystem dynamics 
(Cohen, 2012; Cuenca-Cambronero et al., 2022).
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