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Abstract

Reasoning weakening because of dementia degrades the performance in activities of daily living (ADL). Present research

work distinguishes care needs, dangers and monitors the effect of dementia on an individual. This research contrasts in

ADL design execution between dementia-affected people and other healthy elderly with heterogeneous sensors. More than

300,000 sensors associated activation data were collected from the dementia patients and healthy controls with wellness

sensors networks. Generated ADLs were envisioned and understood through the activity maps, diversity and other wellness

parameters to categorize wellness healthy, and dementia affected the elderly. Diversity was significant between diseased

and healthy subjects. Heterogeneous unobtrusive sensor data evaluate behavioral patterns associated with ADL, helpful to

reveal the impact of cognitive degradation, to measure ADL variation throughout dementia. The primary focus of activity

recognition in the current research is to transfer dementia subject occupied homes models to generalized age-matched

healthy subject data models to utilize new services, label classified datasets and produce limited datasets due to less

training. Current research proposes a novel Smart Aging Monitoring and Early Dementia Recognition system that provides

the exchange of data models between dementia subject occupied homes (DSOH) to healthy subject occupied homes

(HSOH) in a move to resolve the deficiency of training data. At that point, the key attributes are mapped onto each other

utilizing a sensor data fusion that assures to retain the diversities between various HSOH & DSOH by diminishing the

divergence between them. Moreover, additional tests have been conducted to quantify the excellence of the offered

framework: primary, in contradiction of the precision of feature mapping techniques; next, computing the merit of

categorizing data at DSOH; and, the last, the aptitude of the projected structure to function thriving due to noise data. The

outcomes show encouraging pointers and highlight the boundaries of the projected approach.

Keywords Transfer learning � Pre-trained deep learning model � Cognitive impairment � Preventive healthcare diagnose �
The activity of daily living � Smart home monitoring

1 Introduction and necessity of the work

Cognitive impairment because of Alzheimer’s disorder and

different types of dementia impacts the patient’s capacity

to keep up daily living exercises by day living (ADL).

Impeded ADL work is also the primary determination

behind the expanded requirement for healthcare consider-

ation or standardization. ADL alludes to self-care assign-

ments, including exercises performed every day that an

individual wish to perform independently. Cognitive

impairment has life-threatening ramifications on the
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patient’s autonomy and quality of life. ADL is character-

ized in two clusters; those including center assignments of

regular daily existence, for example, eating, dressing, and

washing, named as essential ADL, and those including

convoluted higher-level task, as well as usage and inter-

action with instruments, for example, planning suppers,

overseeing funds and utilizing the phone, named as

Instrumental ADL (IADL) [1–3].

To live protected and individualistically at home, an

individual needs to consistently perform ADL from the two

gatherings and self-sufficiently. Even though both funda-

mental ADL and IADL are imperative for protected and

independent living, fitness in IADL is an essential criterion

for living autonomously in the community-dwelling

arrangement [4]. The present research article uses ADL, for

the most part, to allude to both the cluster. ADLs are

critical indicators of personal satisfaction and are surveyed

by clinicians to benchmark patients’ physical and subjec-

tive capacities, decide care needs, distinguish hazards in

everyday living, screen sickness movement, or the impact

of hostile to dementia treatment. Generally, ADL is sur-

veyed utilizing self-evaluated patient polls or witness-

based polls [5] by directly perceiving the patient while

completing an undertaking. Undertaking perceptions are

tedious and inclined to exchange mistakes from the labo-

ratory to the real world. A drawback of polls lies in their

dependence on abstract evaluations of members or relatives

and, consequently, subject to inclination and mistakes

connected to intellectual weakness or absence of knowl-

edge into hindrances. Additionally, several patients live

alone and are supported for a couple of hours weekly; it is

hard to get a consistent and exhaustive clinical image of the

patient’s ADL status [3, 6]. Sensor-based advancements for

measuring ADL can add new measurements to existing

clinical evaluation.

With the application of regular ADLs monitoring, it can

help in preceding ailment and hazard recognition. Addi-

tionally, it reduces hospital admission by modifying care to

the patient’s requirements and bringing down the expen-

diture of therapeutic consideration. Such sensor-based

acknowledgment frameworks refer to assistive technology

for drawing out autonomous living in one’s own home. The

essential parts of sensor-based acknowledgment frame-

works are the sensors that gather the patient’s indoor

environment information [2]. In contrast, wireless tech-

nology and IoT are in charge of exchanging gathered

information to the receptor unit and the central processing

unit with necessary information translation and investiga-

tion calculations. Perceiving ADL in-home settings utiliz-

ing sensor frameworks has been very much announced in

writing, grouping them into five primary sorts of moni-

toring advancements: passive infrared movement sensors

(PIR), body-mounted sensors, force sensors, video

observing, and multi-component sensors. Of these,

encompassing sensor frameworks and body-mounted

frameworks are broadly revealed for perceiving ADL.

Simultaneously, just a couple of studies have attempted to

consolidate information from both or different sensors.

Encompassing sensors, for example, PIR sensors, are sen-

sitive to body-radiated infrared light and identify the

nearness of occupants in rooms, therefore permitting

acknowledgment of trends in the day-by-day movement

[2–4].

In contrast, body-mounted sensors frameworks can

quantify action and versatility, specifically on the patient’s

body. A few creators propose that the ease of use and

acknowledgment of surrounding sensors is better con-

trasted with body-mounted frameworks since patients do

not directly contact the sensors. The utilization of sensor-

based estimation creates much information, which requires

acknowledgment strategies to deduce an action. ADL

detection from ambient information is customarily done

utilizing training datasets or early learning-based method-

ologies, for example, probabilistic based, rule based, Naı̈ve

Bayes, K-Means grouping, and Random Forest [6].

Another general way to deal with action acknowledgment

is to plan and utilize machine learning techniques to outline

sensor occasions’ succession to compare movement names

[7].

Smart home innovation gives a broad scope of well-

being services, particularly for the older and individuals

with incapacities. It gives personal satisfaction benefits

through what is known as ADLs pattern generation and

trend forecasting—perceiving an occupant’s exercises for

creating AAL services by anticipating inhabitants’ prac-

tices and behavior. This is attained by ADL modeling

utilizing a training dataset of the indoor home environment

[8–11]. A contest encountered in this field is the capability

of such frameworks to transfer DSOH models to HSOH.

For example, a smart home’s conventional organization

requires sensor data acquisition, data mining-handling, and

the design of a behavioral pattern recognition model for

every activity. From a logical and economic point, devel-

oping new homes for AAL system deployment is costly

and disappointing, as most elderly subjects live in their

existing homes. For the present research, the wireless

sensor networks are deployed in the elderly subjects’

existing houses.

2 Related work

ADL recognition, the way toward anticipating the home’s

inhabitants’ action through the succession of activities they

perform. ADL has pulled in numerous analysts keen on

creating strategies and methods to upgrade the procedure’s
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accuracy and create general models appropriate for various

conditions and settings. Building the models has been

founded on numerous methodologies, including the Naive

Bayes classifier, support vector machine (SVM), hidden

Markov model (HMM), Conditional Random Field (CRF),

and K-nearest neighbor [3, 11–14]. Different endeavors

concentrated on extracting further semantic data from the

ambient to advance the feature space, for example, pattern

attributes and privacy attributes. Past research has con-

centrated on the data acquisition strategies, annotations,

and how to segment the data stream that is received from

the sensing units to model significant activities with clear

distinguishers for the sub-activities performed for every

activity.

In [2], the author proposed a system that plans to

characterize a flag for every action. The action flag is an

impression of the reflection of activities performed for

every movement. Action recognition faces a primary issue

in the presence of blemishes in the sensory datasets and is

dimensioned by the labeled datasets’ accessibility for

model building. This issue has been tended for all three

supervised, semi-supervised, and unsupervised models in

[3] by accepting a similar circulation for the labeled and

unlabeled datasets. However, these procedures did not

address the diversity standing between the HSOH and the

DSOH. Moreover, it neglects to confirm its unwavering

quality and deliver invariant dissemination of data models.

In this unique situation, transfer learning, as a technique

for enhancing the learning procedure for one area utilizing

the information gained from various areas, has been

enormously utilized for ADL recognition. Transfer learn-

ing [15] enables the exchange between ambient with

diverse areas, allocations, and objectives. Transfer learning

systems for ADL recognition have been differing, as

indicated by the source and target situations’ setting. In

[16, 17], the authors accepted divergences in the activity’s

timestamp between the source and target datasets, while in

[7, 12], the researchers expected differences in conducting

the activities individual’s habits. As a procedure for

transfer learning, feature mapping has been generally uti-

lized for activity discovery in smart homes that used

heterogeneous ambient sensing units [13, 15, 17]. The

method depends on mapping the objective space’s attri-

butes onto the source space’s attributes or the other way

around. The mapping is also performed by fitting both the

source and the objective spaces into a typical feature space

[15, 18].

The primary feature space, also known as meta-feature

space, is presented and structured dependent on the data

accessible about the two areas. The features of the sources

and target areas are mapped into the meta-feature space. As

displayed in [19, 20], the procedure begins with source

annotated data from which the action formats are

recovered. The activity layouts show that timestamp,

location, and context. The equivalent is performed for the

target home; the unlabeled datasets and data mining

methods create activity layouts. The subsequent stage is to

outline source action formats onto the target formats. With

the ongoing advances in cloud design, smart homes

dependent on distributed computing are presently appro-

priate for execution [12]. There are several existing transfer

learning-based dementia research uses focused on medical

image processing, not the unobtrusive ambient assistive

sensor technology that we are proposing in SAMEDR

[21–27].

The majority of smart aging home arrangements are

laboratory or the controlled trial setup. Additionally, these

existing smart home systems aim to monitor the ADL; they

did not emphasize cognitive impairment and correlation

with the risk of potential illness [12–15]. The primary issue

is the inadequate dataset for training the model for cogni-

tive impairment recognition and prediction. Transfer

learning is the method toward learning a mapping (display)

between source spaces and objective circumstances, where

just a little or NO labeled training datasets presently exist

[28–30]. Annotating home movements is a fundamental

undertaking for modeling the ADL. In the present work,

transfer learning has been linked to actuate modeling

parameters of target ambient. This research plans to

exchange information from trained models into a domain

with absenteeism of prepared ones. The present research

paper discovers the issue of exchanging an ADL recogni-

tion model from a source DSOH into an objective one

HSOH to develop healthcare data services to the objective

ambient environment. Our concept expresses that if the

system has metadata depicting the objective space, the

system can alter source models to a customized model for

the objective indoor ambient. So, the pledge of this work is

to recommend a practice that underpins our theory. Our

proposed philosophy depends on breaking down the source

area’s attributes for planning them into a standard shape.

The following stage includes proposing a solution for

determination varieties in data distribution since source

homes have distinctive sensors’ conveyances as designated

by their plan. Such dispersal results in data dissimilarity

that should be settled before associating chosen attributes

in the feature mapping stage between the source and the

target domain. Accordingly, the preferred features are

exploited to build up a classification model based on the

target home’s metadata. The proposed research philoso-

phy’s significance is its capacity to profit from the metadata

to transfer a source model into a target model.

Current work utilized unobtrusive heterogeneous wire-

less sensors networks (WSN) to capture the indoor move-

ments and interactions with household objects in the daily

routine from twelve DSOH and twenty HSOH age-matched
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elderly individuals. Home setups and living laboratories

use a controlled environment with healthy living subjects.

Simultaneously, the present research scope is committed to

conducting trials with moderate to severe dementia patients

living alone in their existing premises. Implicit color

ambulatograms view the recognized ADLs for the collec-

tive measurement period to obtain activity maps. The

present research used a recurrence plot to quantify ADLs

modeling performance. Moreover, it quantitatively cate-

gorizes and distinguishes the ADL.

3 ADL model transfer framework

This segment demonstrates the investigation for bringing

models at DSOH using models generated at HSOH. We

determine to achieve the optimum accuracy of produced

datasets. Additionally, the produced datasets must charac-

terize the DSOH setting so that zero ambiguity happens

with its native metadata. The proposed model starts with

the metadata feature selection and analysis (MFSA) [31].

MFSA has the accountability to conduct meta-feature

space analysis for straddling the source datasets. This

straddling is done in such a way so that datasets consider

the diversity in feature spaces among various sources of the

data.

Moreover, the later phase research study applies

dimensionality reduction as there are several cohesive

features from various sources. Overlapping and grouping

of related features are done to shorten the feature lengths.

These reduced features are then applied for divergence

analysis among source and target. They were followed by

feature mapping to produce novel feature space that could

be supplied to HSOH ambient. The target domain charac-

teristics further influence this recently received novel fea-

ture space to consider all modalities of the target. Finally,

activity recognition and anomaly forecasting models have

been utilized for ADL monitoring-based preventive

healthcare. We use our previously designed Wellness

Sensors Network protocol for sensor deployment, data

collection, and ADL recognition [31–33].

System stretches out the fundamental calculation to

build the number of turns between the source and target by

considering the Jensen–Shannon disparity (JSD) between

the annotation distributions recorded over the areas. The

current work additionally talks about the outcomes of the

tests on HSOH. The proposed system incorporates into our

correlation of cutting-edge calculations heterogeneous

feature augmentation (HFA) [18, 34] a proposed method-

ology as of late. Moreover, the research study explores

whether re-preparing in the source/target area is beneficial

over reusing the source model (Sect. 3.1). Aside from

related work area, results, and discourse segment, the other

remarkable commitments incorporate learning an increas-

ingly robust mapping by using the conditions between the

target features (Sect. 3.2) and measuring the designed

mapping (Sect. 3.3).

3.1 Wellness metadata feature selection
and analysis:

This approach is based on the selection of critical features

locally inside the feature space of each class. Let M is the

set of models, ¼ m1;m2; . . .. . .::mnf g, so each given model

is presented by feature space with the associated

environment

mi ¼ FXE: ð1Þ

The activity set A ¼ A1;A2; . . .. . .::AKf g of K activity

classes and the set of feature F ¼ F1;F2; . . .. . .::FJKf g
represents the parameters of activities of AAL environment

E. The environment E is represented

by,E ¼ E1;E2; . . .. . .::Eef g. Each activity class AK contains

J activity instances, I ¼ I1K ; I2K ; . . .. . .::IJKf g. Activities

instances IJK are observed by sensors ¼ S1; S2; . . .. . .::SLf g,
IJK is defined by features set FJK of L sensors,

FJK ¼
X

L

l¼1

Fl
JK

( )

ð2Þ

The experimental deployment sensing units have similar

design characteristics and configurations for activity

recognition, so they have more or less the same feature

space linked to each of them. There are slightly fewer

chances of getting different feature spaces of a sensor used

for similar purposes in more than one smart home, though

present MFSA considers these distinctive spaces.

In the current smart home deployment approach, all the

sensors installed at a different home and premises locations

have the same manufacturer, configuration, specification,

and produces the same formats of data. However, when the

system imports data from a third-party smart home and

apply previously designed models, it fails. So it is MFSA,

which consolidated datasets and transformed into an

understandable format of different frameworks. The num-

ber of features in the feature space is proportional to the

deployed sensing units. Characterizing conceptual and

significant data at an abstract and high level of data pro-

cessing and learning encourages settling this issue.

Mining meta-feature space (MFS) of features from the

given training data is the fundamental commitment of this

examination. The customary procedure of separating MFS

is focused on area specialists to label them or utilizing a

philosophy to characterize at an abstract level. The present

framework is targeting self-MFS mining with a character-

ized hypothesis. On the other hand, cosmology requires
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field information that is not accessible to different smart

home environments.

Sensing unit characterization is the best way to under-

stand and unify one sensor unit’s feature space deployed in

two different home environments. For example, in one

smart home, they have listed all activities as kitchen

activities. In contrast, in another one, they differentiate

between dishwashing activity (as both are implemented in

the kitchen). By sensing unit characterization proposed

work links that sensor to particular localization and activity

usage. Usually, the feature that appears the most number of

times in AK is considered a key feature. The feature con-

tains the information on the frequency of sensor unit acti-

vation frequency for the inactivity of a sensor unit (which

corresponds to a particular sub-activity) Fl
JK ¼ 1: So the

feature value is better presented by 0�Fl
JK � 1. The fea-

ture set FJK for IJK instances is shown by,

FJK ¼
X

L

l¼1

Fl
JK

( )

¼
X

L

l¼1

Fl
JK � Sl

Sl � sl

( )

ð3Þ

where Sl ¼ maximum value of FJK for all instances noted

by lth sensor in K activity classes.

sl ¼ Minimum value of FJK for all instances noted by

lth sensor in K activity classes.

Let us assume IDK is a set of identification numbers of

the defined features. At time t ¼ 0; IDK ¼ ; emptyð Þ: To

locate key features, research checks the occurrence of

activity events, which have nonzero values for the lth

feature.

/l
K¼ FJK ¼

X

L

l¼1

Fl
JK

( )

[ 0� luser ð4Þ

where /¼ frequency of occurrence of feature in the

instances of AK .

l ¼ The minimum number of event instances to cal-

culate key features in that environment (it may vary from

one smart home to another).

Each key feature of AK is allotted to a defined weight

value W l
aK . W

l
aK is a set of values that shows the weight of

key features linked to the sensor SL appears in the activity

set AK such that,

W l
aK ¼

1

IDKj j
ð5Þ

The weight value of one feature can be changed when its

activity class changes. Moreover, it also depends on the

number of key features in that activity class. Finally,

Fl
JK ¼ Fl

JK �W l
aK ; if l 2 IDK ; 0

� �

ð6Þ

Else, Eq. (6) updates the features set, for instance; IJK ,

which generates features space for ADL detection. The

characterization of sensor and defining the profile ease the

job, so the sensor profiling is represented by,

CS ¼ d; g;Fr
JK

� �

ð7Þ

where d is the dimensionality of the sensor SL.

g is a group to which sensor SL is associated in order to

record key features space of activity as well as sub-activity

linked to sensor profile, and the proposed system needs to

know the common section of their events given by,

SKT ¼ S:CSð Þp S:AKTð Þ ð8Þ

where AKT is the activity class set of target environment

HSOH:

3.2 Wellness feature mapping algorithm
(WFMA):

The essential objective of any heterogeneous transforma-

tion learning approach is to connect the contrasts between

the areas by utilizing those under concern. The errand of

summing up common data point features over two areas

with various modalities like text and pictures may not be

helpful for exchange among heterogeneous component

spaces. Our novel arrangement of the wellness feature

mapping algorithm connects the heterogeneous element

spaces by utilizing the common label data between the

source and target areas. The proposed calculation decides

the mapping between source and target features depending

on the gauge of features’ commitment to making infor-

mation segmentations with comparative label dispersions.

A visual portrayal of the calculation is delineated in Fig. 1

[34]. There are three stages in the proposed calculation.

The first step decides the information segments with

comparative label circulations over the spaces; the next

step records the commitment of features toward producing

a data partition and classification. The final step includes

the measurement of transformation from the learned

features.

The feature transfer issue is practically tested by the

inaccessibility of correspondences between the source and

target spaces’ information purposes. If sufficient corre-

spondences are accessible, one can become familiar with a

mapping Z [ Rd
SC
9 d

T by limiting the transformation error

as appeared in Eq. (9). Here, æ is the regularization

parameter, and g is the number of correspondences.

Let Xsc;Ysc
�p

b¼1

�

, and XT ;
YT

�q

C¼1

n

show the set of

annotated instances I in the source domain sc and target

domain T , where p � q. Xsc 2 Rdsc is a source data point of

corresponding class annotation Xsc 2 Y . Same as, XT 2 RdT

is a target data point of associated class annotation XT 2 Y .

The key features of data points are from multiple sensor

modalities and dsc 6¼ dT ; to guarantee transfer between
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heterogeneous feature spaces of two domains; features

must be related and share common label space. The num-

ber of standard labels is given as v. The ultimate aim is to

understand and generate a mapping across source domain

to target domain as follows:

T ¼ min
1

n
þ XT � XSZSk k22þ ZSk k22 ð9Þ

In uncontrolled heterogeneous domain adaptation

(HAD) situations, these common feature space correspon-

dences are missing. As an outcome, some common data

between the spaces that can be utilized to connect them

should be identified. Our methodology does not assume

any intersecting feature or area-related data that can be

explored to connect the domain-specific features. Though

the proposed calculation depends on a common annotation

label space between the HSOH and DSOH areas, they have

a standard set of labels. Our feature mapping approach

explores the most significant shared space to create relating

feature vectors for the two spaces. In the least complicated

situation, each common name is a rotate. Suppose the

quantity of standard labels between the areas is small. In

that case, recognizing shared features becomes problematic

as the system needs a sufficient number of cross-area data

points. The proposed novel feature transformation algo-

rithm defeats this impediment by depending on normally

happening label distributions in the intricate label space

rather than individual labels. The mutual label dispersions

are the axis that connects the HSOH and DSOH. Since the

quantity of common labels over the areas is finite, the

system extricates information partitions over the areas that

show comparable labeling annotation dissemination. The

HSOH feature and DSOH feature’s assessed commitment

toward a common label circulation are considered cross-

space shared data elements.

The following stage in the calculation processes the

weight relationship matrices WHSOH and WDSOH between

the area-dependent features and the mutual transmissions

in the DSOH and HSOH spaces individually. This strategy

supports feature guarantees for the accumulated vectors.

Because of the shortage of label information in the HSOH

space and a modest number of common labels, the system

has just a couple of indistinguishable labeling conveyances

over the areas. In this way, the research study likewise

considers comparative label circulations to lift transfer

learning, where the comparability of two name dissemi-

nations is processed utilizing Jensen Shannon divergence

(JSD) [5, 18, 35, 36].

Our goal is to recognize each HSOH feature as a linear

distribution of a small DSOH feature arrangement. So the

target project matrix for the mapping is given by PHSOH

pHSOH ¼ min pHSOH
1

UL

X

UL

j¼1

WHSOH �WDSOHPDSOH

�

�

�

�

�

�

�

�

�

�

þ
X

dT

i

PDSOHi
k k1

ð10Þ

There must be an evaluation of the wellness feature

mapping algorithm, how accurately it mapped the features

of DSOH to the HSOH. It is better given by deviation of

actually measured mapping (11) to ideal modeled mapping

(12):

Actual mapping,

PA 2 RdHSOH�dDSOH ð11Þ

PIdeal 2 RdHSOH�dDSOH ð12Þ

Evaluation parameter ¼ ðEparaÞ

¼
1

2� dDSOH

X

dDSOH

i¼1

X

dDSOH

k¼1

WHSOH �WDSOHk k
2

2

ð13Þ

Fig. 1 Feature mapping from the source domain to target domain [34]
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3.3 Modeling ADL activity recognition learning,
mapping, and transferring

Our proposed approach of activity detection is based on

separate classifiers for HSOH and DSOH. Let us assume

that d dataset depicts A activity set if the AAL. The

above-defined A ¼ A1;A2;A3;A4; . . .:Akf g: these activi-

ties are formed by sensor activations, so the sub-activity

is given by u ¼ u1;u2;u3;u4; . . .:uuf g:u[ k: The sys-

tem needs to find co-relation between to be modeled set

of activities of DSOH and be tested activities of HSOH.

Each activity of DSOH is processed to recognize its

relation with HSOH. For activity recognition, the system

used a previously defined wellness model to build the

relationship research deep learning model. The deep

learning model recognizes whether the particular activity

is transformed into the HSOH or discarded. This depends

on the performance of the learning parameters of the

transfer learning model.

The best solution is to implement a probabilistic model

on the data received from the transfer learning model. So at

the time instance, t, the transfer learning belief figure (F t )

is defined by the distance (D t ) between the modeled value

(M t ) to the calculated practical value (C t ) on the standard

deviation (r) and the confidence level (0:95Þ:

Mt ¼
1

N
�
X

N

n¼0

m tð Þ ð14Þ

F t ¼
r

D t

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ð15Þ

When Dt[ r

Ft ¼ 0:99whenFt � r ð16Þ

4 Results and experimental analysis

To investigate the transfer learning system’s proposed

approach, the current research study selected five HSOH

datasets, of which four were not annotated, and one was

fully annotated, as shown in Table 1. Our evaluation

approach is based on the offered transfer learning

methodology of activities labeling from source DSOH

domain to target HSOH domain.

4.1 a. Accuracy of mapped features
between HSOH and DSOH age-matched
control

To measure the accuracy of the proposed WFMA

approach, the datasets are grouped into three categories,

group one with four DSOH datasets completely labeled,

group two with only one HSOH datasets completely

labeled, and group three with 4 HSOH datasets not labeled.

Table 2 shows the accuracy of the mapped feature space in

brief. This arrangement aims to record the performance of

target annotation figures based on transformation by a

labeled source. The labeled datasets were processed to

mine the features and evidence for each event or activity.

This evidence is the pattern of sensor activations that are

essential to produce a single activity or sub-activity. Once

the set of evidence from the labeled datasets is received,

the system starts scanning the unlabeled datasets, searching

for likelihood. As the likelihood of evidence sequence is

matched, the particular portion of the target dataset is

allotted an annotation, which is similar to the source-la-

beled dataset. To calculate the similarity between HSOH

and DSOH proposed system features, Mahalanobis dis-

tance [5, 20], the distance value tells about fractional

matching, no-matching, thorough matching, and complete

matching.

The total accuracy in all four datasets of the target is

significant, though, in H5 and H6, it is below the confi-

dence level of 95%.

4.2 b. Performance comparison with transfer
learning classifier

The sub-section evaluates the mapped feature space per-

formance according to transfer learning classifiers. As

HSOH takes over the classification merits from DSOH,

there should not be a substantial statistical difference in the

performance. This classification in the target is done twice,

first with native (N) HSOH datasets without transfer

learning evidence from source DSOH datasets and second

with the transfer learning (TL) datasets; this dataset is

based on source-inherited sensor triggering evidence of

sequence which defines an activity.

The majority of the TL models performed exceptionally

well for the training datasets of HSOH and DSOH. Even in

current research using MobileNet, the proposed system

secured AUC 1 under the testing dataset. However, it was

below 0.62 for the real-world new dataset, as shown in

Tables 3 and 4. When these existing AI models are applied

to real-world new datasets, they fail to repeat the perfor-

mance. Existing TL models tested under collected HSOH

and DSOH datasets. Their AUC was below 0.62. It dis-
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plays overfitting and high variance, which misguides the

researchers instead of assisting in recognizing early

dementia signs and cognitive impairment. Why are our

models crashing for the new dataset during the real-world

application? This is a vital question! That we need to

understand and address.

The best arrangement is to utilize more training data to

prevent overfitting, which is complicated with the ADL

household age and environment dataset. As the deployment

of sensors into the home environment is followed by the

collection of data of at least one year (which completes all

seasons of the year), so the accessibility of data is limited.

The pre-trained model prepared on more information will

generally sum up better; otherwise, the best arrangement is

to utilize regularization strategies. Sometimes limitations

on the amount and sort of data any model can store. On the

off chance that a system can just bear to remember a few

patterns, the advancement procedure will drive it to

concentrate on the most noticeable patterns from the fea-

tures, which have a superior possibility of generalizing

well. The most straightforward approach to prevent over-

fitting in the present case was to decrease the size of the

deep learning algorithms, for example, the number of

learnable parameters in the model (which is controlled by

the number of layers and the number of units per layer).

Offered research tried that as well, but the performance did

not improve considerably. In deep learning, the number of

learnable parameters in a model is frequently alluded to as

the model’s ‘‘capacity.’’ Instinctively, a model with more

parameters will have more ‘‘memorization capability,’’ and

along these lines will have the option to effectively become

familiar with an ideal word reference like mapping

between training samples and their objectives, a mapping

with no generalization power. However, this would be

pointless when making forecasts on previously unseen data

[7, 13, 17]. Mostly deep learning models will, in general,

Table 1 Description of datasets collected from the DSOH and HSOH

Homes D1 D2 D3 D4 H5 H6 H7 H8 H9

Sensing units 37 32 37 29 34 31 35 33 36

Weeks monitored 43 43 43 43 43 43 43 43 43

Sensory triggering 693,705 605,758 725,671 650,521 677,083 643,485 687,257 705,677 764,365

ADL uncovering 14,067 11,987 15,004 11,541 13,582 12,355 13,598 16,432 17,684

Household type DSOH DSOH DSOH DSOH HSOH HSOH HSOH HSOH HSOH

Labeling Yes Yes Yes Yes Yes No No No NO

Table 2 Accuracy of transferred

and mapped features between

source DSOH to HSOH

DSOH HSOH Through Matching % Fractional Matching % Complete Matching %

D1 H5 89.48 98.43 93.95

D2 H6 87.59 97.67 92.63

D3 H7 93.73 98.87 96.36

D4 H8 90.57 97.89 94.23

Table 3 Performance metrics for deep learning models under the training datasets of DSOH and HSOH

Classification tasks Deep learning

models

Accuracy Sensitivity Specificity Precision F1

Scores

Recognizing cognitive impairment in HSOH on the basis of

DSOH features

MobileNet 0.99 0.99 0.99 0.99 0.99

AlexNet 0.9701 0.98 0.9604 0.9608 0.9703

ResNet-18 0.9604 0.9703 0.9505 0.9515 0.9608

ResNet-50 0.9175 0.9135 0.9216 0.9223 0.9179

ResNet-101 0.8942 0.8868 0.902 0.9038 0.8952

Inception-V3 0.8592 0.8532 0.8654 0.8654 0.8611

GoogLeNet 0.8318 0.8257 0.8381 0.8411 0.8333

SqueezeNet 0.7818 0.7719 0.7925 0.8 0.7857
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be acceptable at fitting to the training data, yet the genuine

test is a generalization, not fitting. So to see the general-

ization, we brought a new real-world dataset for the testing.

If the system has restricted memorization assets, it would

not have the option to learn the mapping without difficulty.

To limit its misfortune, it should learn packed portrayals

that have increasingly predictive power. Simultaneously,

on the off chance that you make your model excessively

little, it will experience issues fitting to the training dataset.

There is a trade-off between ‘‘too much capacity’’ and ‘‘not

enough capacity’’ [36]. Tragically, there is no mystical

equation to decide the model’s correct size or design (re-

garding the number of layers or the correct size for each

layer). It would be best if the researcher tried utilizing the

progression of various structures. The only solution was to

design a new integrated machine learning-based approach

which can learn and generalize with inadequate training

data (Table 5).

Additionally, overfitting occurred in the existing pre-

trained network implementation. A model learned the

feature and noise in the training data to the extent that it

negatively influenced the deep learning pre-trained model’s

performance on a new dataset (real-world dataset). This

explained that the noise or random variations in the training

data were elected and learned as the model’s features. The

difficulty was that those features did not become applicable

to the new dataset and deleteriously influenced the pre-

trained network’s aptitude to generalize. The feature

extraction methods need to apply, which explores the

textures for the feature extraction and discards the error

noise. There was an immediate need to bring a new TL

approach to get stable and better performance. After the

performing deep learning task, we found the pre-trained

transfer learning models had better performance than the

proposed SAMEDR model under training and controlled

training, whereas, during real-world new datasets used,

pre-trained networks showed a significant decrease.

Following abbreviation used in below table, specificity

(SP), F1 score (F1), Mathews correlation coefficient (MC),

N normal without transfer learning (N), with the transfer

learning (TL), average (Avg), and improvement with

transfer learning feature space inheritance (IM). The below

table represents the results of classification under classifier

CNN and LSTM. The research found a significant differ-

ence in these two models’ performance, both with and

without transfer learning feature space. LSTM performs

better in the majority of household datasets. The average

parameter improvement in LSTM as compared to CNN is

Avg.SP (5%), AvgF1 (4%), and Avg.MC (9%). The pro-

jected SAMEDR TL model performs decently well during

controlled testing to a real-world new dataset with a slight

decrease in performance.

4.3 c. Analytical observations of ADL
for dementia patients and healthy age-
matched control

The divergence of ADL trends between HSOH and DSOH

age-matched control is shown below. The categorization

procedure identified ADL in both the subject groups. These

activity maps give the graphical representation of daily

routine and the user-friendly annotation of performance

over different activities in age-matched elderly subjects.

The frequency of occurrence of activities is slightly dif-

ferent in DSOH homes as compared to HSOH. In contrast,

the total number of recognized ADLs did not vary much

from one group to another. A significant difference is found

in the ADL schedule, and consistency exhibited a dis-

crepancy, as seen in Fig. 2 of an HSOH and Fig. 3 of a

DSOH. Figures 2 and 3 illustrate a contrast of the activity

map of an HSOH for the test period of 24 h-30 days. The

activity map spots the significant intervals of action and

inactivity and historical occurrences of the activities. On

computing, the inconsistency in ADL acts over 30 days, a

Table 4 Performance metrics for deep learning models under the real-world datasets of DSOH and HSOH

Classification tasks Deep learning

models

Accuracy Sensitivity Specificity Precision F1

Scores

Recognizing cognitive impairment in HSOH based on DSOH

features

MobileNet 0.6538 0.6875 0.6212 0.6377 0.6617

AlexNet 0.6125 0.6377 0.5865 0.6154 0.6263

ResNet-18 0.588 0.6241 0.5522 0.5804 0.6014

ResNet-50 0.547 0.5804 0.5139 0.5425 0.5608

ResNet-101 0.50 0.5411 0.4583 0.5032 0.5215

Inception-V3 0.4858 0.5282 0.4429 0.4902 0.5085

GoogLeNet 0.4765 0.518 0.4348 0.58 0.4963

SqueezeNet 0.4569 0.5037 0.4091 0.4658 0.484
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substantial divergence in accomplishing the majority of the

ADL (Sleeping, Shower, Cooking, Dishwashing, Toileting,

Grooming) was found between HSOH and DSOH subjects

as shown. The heterogeneousness in the ADL functioning

of the DSOH patients was more significant than the HSOH

for all ADL. The wellness feature mapping attributes from

DSOH to early cognitive impairment subject offer a sig-

nificant indication of the risk of dementia.

5 Discussion

Cognitive impairment scores can influence intellectual

stimulation on ADL. However, intellectual stimulation can

be measured as a vital characteristic of perspective

understanding of ADL. The present research suggests a

method uniting mutually physical and functional health

calculated by integrating various ADL performance

examinations to explore how cognitive class influences

these sense modalities and facilitates improved ambient-

assisted living-based preventive healthcare. The persons

with dementia (PwD) have complications with many

activities but have not understood and recognized their

Table 5 Performance of HSOH

datasets under two different

classifier with and without

transfer learning

Home CNN (N) LSTM (N) CNN (TL) CNN (IM) LSTM (TL) LSTM (IM)

SP H6 0.81 0.84 0.95 0.14 0.95 0.11

H7 0.82 0.90 0.96 0.14 0.96 0.16

H8 0.72 0.76 0.84 0.14 0.89 0.13

H9 0.80 0.82 0.88 0.08 0.94 0.12

F1 H6 0.82 0.83 0.95 0.13 0.95 0.12

H7 0.82 0.91 0.90 0.08 0.95 0.04

H8 0.78 0.82 0.89 0.11 0.91 0.09

H9 0.82 0.86 0.91 0.09 0.94 0.08

MC H6 0.64 0.66 0.90 0.26 0.91 0.25

H7 0.64 0.82 0.81 0.15 0.91 0.09

H8 0.57 0.65 0.78 0.21 0.83 0.18

H9 0.64 0.72 0.83 0.19 0.88 0.16

Avg. SP 0.78 0.83 0.90 0.12 0.93 0.13

Avg.F1 0.81 0.85 0.91 0.10 0.93 0.8

Avg.MC 0.62 0.71 0.83 0.20 0.88 0.17

Fig. 2 Activity map of an individual HSOH
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impairment. People with no reasoning deficiency can do

activities.

The key impact is that we put forward a set of helpful

features utilized to a strengthening system that can assist

doctors who do not know the elder’s latest ADL trends to

instantly screen subjects under test to measure the proba-

bility of having dementia. The proposed system requires

subjects to carry out certain ADLs in a smart home

ecosystem installed with Wellness Sensors Networks.

Then, the system produces sensors, activations, and unearth

features. The features and assessed results for every

activity are supplied into a deep learning algorithm to

categorize elders with dementia and elders without

dementia. The average specificity (SP) 0.93, F1 score (F1)

0.93, Mathews correlation coefficient (MC) 0.88. It

demonstrates that our recommended instant testing system

gets valuable features through sensor activations received

from deployed wellness sensors networks. The benefits of

the proposed system are: (1) these features are valuable and

uncomplicated to be attained, (2) it simply needs the suf-

ficient interval of time to diagnose an elder, and (3) it is

straightforward to use for researchers, and there would be

user score for the medical professionals use. The present

system does not consider the medical professionals’ feed-

back as it has limited user trials; in the next stage, we are

recording the doctor’s input to improve it. The research

findings in this study are encouraging, and our constant

current attempt at engaging more applicants may help

reinforce all the data analytics and inferences. The research

would examine the possibility of offering a context-aware

decision-making system that would help in scenarios such

as the individual with dementia forget to use the toilet flush

or grooming to remind the individual according to their

ADL trends.

The planned and implemented system is an alternative

methodology to past research on preventive healthcare

monitoring systems established to observe cognitive dete-

rioration. We were applying the sensor data relating to

DSOH and HSOH subjects. Some of the HSOH, which

transitioned to mild cognitive impairment throughout the

monitoring period, research revealed that the ADLs could

be modeled to extract the feature required for transfer

learning. Throughout this approach, SAMEDR revealed

and mined trends of activity specific to every single sub-

ject. This feature is exceptionally challenging to apply to

other functions where several predefined procedures are

used. This responded to our initial research issue. To

measure any analytical variances between DSOH of

activity connect to HSOH subjects when cognitively

undamaged and when the changeover to mild cognitive

impairment (MCI) or when undergoing MCI, the research

used a hypothetical data method and applied deep learning

to establish statistical variances between the ADL DSOH

to HSOH matching to the diverse conditions of reasoning.

Lastly, by utilizing an uncomplicated thresholding tactic of

arcs of standardized divergences, the system was proficient

in distinguishing MCI in elderlies. The proposed SAMEDR

system overtook the attitude that the system implemented

through pre-trained transfer learning models. Several pre-

defined procedures correlated with the HSOH and DSOH

activity were used to distinguish MCI.

6 Future work and limitation

The research is subject matter to a few constraints. Fore-

most, it measured elementary ADL connected with own

care, such as cooking, body hygiene, and dishwashing. This

characterizes the more fundamental proficiencies required

Fig. 3 Activity map of an individual DSOH
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for being autonomously but did not consider all IADLs,

such as managing the bank account and paying the monthly

bills, as they will be assessed in a separate arrangement

more significant project. Though IADL performance also

faded in the early phases and provided the distinct scales of

ADL impact on quality of life, the impact of IADLs dic-

tates added examination [21]. Second, caregiver and care

provider ratings were acquired from both relative and care

professionals in some of the cases of DSOH [22]. The

person with dementia (PwD) can still be rehabilitated in

executing ADL using structured learning and audio-as-

sisted coaching. The forthcoming investigation should

explore whether the efficacy of assisted coaching is con-

tingent on the individual patient or particular task

attributes.

7 Conclusion

This article presented a transfer learning approach based on

Wellness Sensors Network’ sensor activations, in which

the procedure has been established corresponding to the

feature learning from DSOH to HSOH for MCI recogni-

tion. This research aims to deliver an efficient approach of

transmitting data-statistics models between different

DSOH to HSOH while maintaining satisfactory imple-

mentation. The research work uses the data features of

source DSOH, which is rich in MCI labels, whereas the

target domain HSOH ecosystems are deficient in training

datasets of cognitive impairment. The recommended pro-

cedure was concentrating on producing junctions between

features for the objective of employing sensor data fusion.

Eventually, SAMEDR formed the target HSOH activities

using designed data analysis models with CNN, LSTM to

modify HSOH models. Offered research foresees that the

likely target domain will be highly distinct in users’ ADL

trends, sensing units, and transmission methods. The most

complex task in activity learning is to acknowledge new

events in the target domain. In this case, we recorded the

performance of the pre-trained transfer learning network,

which showed overfitting. Therefore, we support a new

transfer learning framework, SAMEDR, to understand and

identify recent target domain events.

The SAMEDR system systematically details the pre-

requisites evocation, strategy, and assessment of a designed

preventive healthcare model to MCI. The model was

structured to meet every day and only the requirements of

the dementia subject and their close one. Findings of

assessing the model demonstrate that it is competent to

fulfill the drawn requests, not including complex interfaces

from consumers. For example, to accurately determine

familiarity and make-up choices, the SAMEDR needs to

obtain a set of exceptional knowledge about the subject

under test. The present research study did not be dependent

on the caregivers to furnish the evidence. A deep learning

model with designed transfer learning statistical methods is

applied to uncover and fine-tune the knowledge by treating

the ADLs. SAMEDR for early MCI recognition is pre-

cisely evaluated from both operationality and serviceability

standpoints equally. The proposed research study’s

methodology introduces initial, innovative expertise to

recognize the early sign of dementia, MCI, and disorder

progress at the premises. Applying the data collected from

sensors can correctly characterize the home environment’s

movement and interaction with household objects in the

home and people’s routine behaviors to distinguish when

an anomaly happens. This innovative methodology enables

recognizing precise ADLs in practices that have certainly

not been achievable in the past without encountering sub-

stantial expenditures or overburdening the patient’s cog-

nitive requirements.

Consequently, the scheme adds substantially to the

AAL-based preventive healthcare. In the USA and UK, the

impacts of exponentially raising the elderly population are

challenging to cope with. Subsequently, a range of ques-

tions for well-being and community care suppliers have

been launched.
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