
This is a repository copy of MADDPG-based joint service placement and task offloading in
MEC empowered air-ground integrated networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/204470/

Version: Accepted Version

Article:

Du, J., Kong, Z., Sun, A. et al. (4 more authors) (2023) MADDPG-based joint service
placement and task offloading in MEC empowered air-ground integrated networks. IEEE
Internet of Things Journal. ISSN 2327-4662

https://doi.org/10.1109/JIOT.2023.3326820

© 2023 The Authors. Except as otherwise noted, this author-accepted version of a journal
article published in IEEE Internet of Things Journal is made available via the University of
Sheffield Research Publications and Copyright Policy under the terms of the Creative
Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted
use, distribution and reproduction in any medium, provided the original work is properly
cited. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

MADDPG-Based Joint Service Placement and Task
Offloading in MEC Empowered Air-Ground

Integrated Networks
Jianbo Du, Ziwen Kong, Aijing Sun, Jiawen Kang, Dusit Niyato, Xiaoli Chu and F. Richard Yu

Abstract—Multi-access Edge Computing (MEC) empowered
Air-Ground Integrated Networks (AGINs) hold great promise in
delivering accessible computing services for users and Internet
of Things (IoT) applications, such as forest fire monitoring,
emergency rescue operations, etc. In this paper, we present a
comprehensive air-ground integrated MEC framework, where
edge servers carried by Unmanned Aerial Vehicles (UAVs) will
provide efficient computation services to IoT devices and User
Equipment (which are collectively referred to as UEs). We aim to
minimize the long-term average weighted sum of task completion
delay and economic expenditure for all the UEs. This objective is
achieved through various strategies, including pre-installing new
service instances into UAVs, removing idle service instances from
UAVs, task offloading decision making, access control, selecting
appropriate service instances for each offloaded service request,
and resource allocation optimization. Considering the complexity
of the problem and the dynamics of the system, we reformulate
the problem as a Markov decision process (MDP) and present
a Multi-Agent Deep Deterministic Policy Gradient (MADDPG)-
based algorithm to enable low-complexity and real-time adaptive
decision-making. Since our problem contains integer, binary
and continuous variables, it is not straightforward to apply
the MADDPG algorithm. Specifically, we first normalize the
continuous variables, and then convert the continuous output gen-
erated by MADDPG into discrete variables, while ensuring the
coupling constraints between different variables are preserved.
The simulation results demonstrate the fast convergence of our
proposed algorithm and its superior performance in minimizing
costs compared with the baseline algorithms.

Index Terms—Air-Ground Integrated Networks, computation
offloading, service deployment, resource allocation, deep rein-
forcement learning.

*This work was supported in part by the Natural Science Foundation of
China under Grant 62271391, in part by the Serving Local Special Scientific
Research Project of Education Department of Shaanxi Province under Grant
21JC032, in part by the Horizon Europe Research and Innovation Program un-
der grant 101086219, EPSRC grant EP/X038971/1, and Guangdong Province
Science and Technology Project 2023A0505050127.

Jianbo Du, Ziwen Kong, and Aijing Sun are with School of Com-
munications and Information Engineering, Xi’an University of Posts and
Telecommunications, Xi’an 710121, China. (Email: dujianboo@163.com;
kzw15877611325@163.com; sunaijing@xupt.edu.cn)

Jiawen Kang is with the School of Automation, Guangdong University of
Technology, China. (E-mail: kavinkang@gdut.edu.cn)

Dusit Niyato is with the School of Computer Science and Engineer-
ing, Nanyang Technological University, Singapore 639798. (E-mail: dniya-
to@ntu.edu.sg)

X. Chu is with Department of Electronic and Electrical Engineering,
The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK. (Email:
x.chu@sheffield.ac.uk).

F. Richard Yu is with Systems and Computer Engineering, Carleton
University, Ottawa, ON, Canada. (E-mail: Richard.Yu@carleton.ca).

I. INTRODUCTION

With the rapid advancement of wireless communications,

terrestrial wireless networks are experiencing an unprecedent-

ed surge in traffic, resulting in overwhelming congestion and

an increased risk of network collapse [1]. In recent years,

the frequency of natural disasters, such as earthquakes and

tsunamis, has significantly increased due to the degradation of

the natural environment. In such critical situations, the swift

establishment of a temporary communication network is of

utmost importance [2] [3]. Furthermore, in mission-critical

scenarios like forest fire monitoring, in remote areas, or en-

suring on-site communication during major holiday gatherings,

it’s not practical to deploy ground communication infrastruc-

tures [4]. On the other hand, smart user equipment (UE) has

become an indispensable tool in our daily life, and the Internet

of things (IoT) devices have also become ubiquitous. Many

applications running on smart UEs and IoT devices (which are

collectively referred to UEs) today are computation-intensive

and resource-demanding [5], bringing great challenges to the

processing capability and battery life of UEs [6] [7]. Multi-

access edge computing (MEC) [8] and Air-Ground Integrated

Networks (AGINs), have been considered for addressing those

challenges. Leveraging MEC and Unmanned Aerial Vehicles

(UAVs) for various IoT networks and wireless communication

networks has emerged as a thriving research area in recent

years.

MEC has been proposed as an efficient supplemen-

t to cloud computing [9]. By deploying computation and

caching resources at edge nodes, MEC can empower UEs to

run computation-intensive and resource-hungry applications,

thereby reducing the task processing delay and the energy

consumption [10]. In recent times, UAVs have emerged as

valuable and practical tools for swiftly and cost-effectively

deploying communication infrastructures. By equipping UAVs

with MEC servers, UEs can benefit from reliable communica-

tion and efficient task processing services in various scenarios.

Consequently, the research on MEC-empowered AGINs has

become a prominent and dynamic area of study in recent years.

However, when combining MEC with UAVs, certain chal-

lenges need to be addressed. i) While many studies primarily

address task offloading process-related issues, it is crucial to

note that the deployment of task applications on UAV edge

servers should be given precedence. Only after deploying

the task applications on UAV edge servers can the tasks

be successfully offloaded to them. ii) Given limited caching

2

capabilities of UAVs [11], deploying all task applications on

each individual UAV is not feasible. Therefore, it is imperative

to design optimized service placement strategies [12] thus to

minimize the service distance between UEs and their serving

UAVs. iii) Each UE has an option to either address its task

locally by itself, or offload the task to a connected UAV.

However, given that a UE might be covered by multiple UAVs,

the question arises: should the task be offloaded or not? If the

decision is made to offload the task, determining the optimal

UAV for the UE to access becomes crucial. iv) When a UE is

admitted and served by a UAV, the UAV has two options: it can

either serve the UE with an available idle service instance that

has already been deployed on the UAV, or it can initialize a

new service instance specifically to process the UE’s offloaded

task. In this scenario, determining the best choice for the UAV

is important. v) When multiple UEs offload tasks to the same

UAV, then the UAV needs to allocate its available computation

resources among the UEs in a thoughtful manner. Additionally,

each UE should carefully design its transmit power given

specific objectives, such as delay energy consumption and task

processing cost. vi) In UAV-based systems, the environment is

typically highly dynamic, and the objectives are often defined

with long-term considerations. Given these factors, it becomes

essential to meticulously develop algorithms that optimize the

objectives while maintaining low complexity and delivering

high-performance outcomes. Driven by the aforementioned

rationales, our main contributions are given as follows.

• We present a novel MEC-based AGIN that facilitates the

provision of Quality-of-Service (QoS)-guaranteed task

processing services. Specifically, we investigate and op-

timize the whole process for task offloading. To achieve

this objective, we first consider the service deployment

process, including service instance initializing and remov-

ing, and then we conduct corresponding optimization for

task offloading.

• Our objective is to minimize the long-term averaged

weighted sum of task completion delay and task process-

ing economic expenditure of the system. For this purpose,

we jointly optimize task placement and replacement s-

trategies during the service deployment phase, as well as

decision making, access control, service instance selec-

tion, and resource allocation during the task offloading

phase. Additionally, we ensure that the optimization pro-

cess meets task processing QoS requirements, resource

constraints, service instance placement and replacement

constraints, load balancing, and other relevant factors.

• The complexity of the formulated problem is amplified

by various factors, such as the mixed integer and non-

linear properties, real-time dynamics of wireless channel

gains, time-varying locations of UAVs and UEs, fluc-

tuating communication and computation resources, and

random user requests. Traditional convex optimization

and dynamic programming approaches struggle to solve

the problem effectively. To address this, we reframe

the problem as a Markov Decision Process (MDP) and

propose a Deep Reinforcement Learning (DRL) based

algorithm utilizing the Multi-Agent Deep Deterministic

Policy Gradient (MADDPG) approach. However, since

MADDPG is designed for continuous problems [13], we

reformulate the output of MADDPG to handle integer

and binary variables, enabling us to obtain solutions for

these types of variables as well.

The subsequent sections are structured as follows. In section

II, we provide an overview of the related works. Section III

introduces the system model, while Section IV delves into

our problem formulation. In Section V, we reformulate the

problem as a MDP and propose a joint optimization algorithm

based on DRL. In Section VI, our simulation results are

presented and discussed. Finally, our paper is concluded in

Section VII, summarizing the key findings and contributions.

II. RELATED WORKS

Recent years, there has been a remarkable amount in

research on MEC empowered AGINs, which has emerged as

a prominent and highly active research area. In most existing

studies, MEC-enabled UAVs usually act as the edge computing

node, and will provide UEs with computation offloading (or

task offloading) services.

Reference [14] addressed the computation offloading chal-

lenges in UAV and MEC-assisted IoT systems. Their approach

intended to optimize user access control, UAV positioning,

and resource allocation of the UAV edge server, etc., to

minimize the maximum task processing latency among all end

devices. In [15], a load-balancing based dynamic entry and exit

mechanism was introduced within a multi-UAV edge comput-

ing framework, and thus to ensure the seamless delivery of

uninterrupted, high-quality task offloading services to users

situated within the designated area. To address the objective

of minimizing the maximum latency in task processing across

all UEs, reference [16] proposed to optimize service and UAV

placement, and task offloading decision-making. In [17], the

authors explored the utilization of a UAV-assisted MEC system

to optimize platoon moving vehicles. Their objective was to

maximize the energy efficiency of MEC services through radio

and computation resource scheduling optimization. To cater to

the service requirements of remote edge users, the authors in

[18] introduced a multi-hop task offloading framework where

UAVs work collectively to enable multi-hop task offloading

through joint resource allocation and deployment optimization.

The aforementioned studies employed traditional optimization

algorithms to address their problems. However, traditional

methods often exhibit high complexity, which limit their

efficiency in finding optimal solutions. Additionally, when

considering the real-time dynamics of the network, traditional

methods may struggle to provide solutions that can adapt to

changing conditions effectively.

Several studies have incorporated intelligent algorithms [19]

AGIN networks. In the paper by [20], the authors inte-

grated UAVs, edge computing, etc., into IoT networks to

facilitate data transmission in impaired machine-to-machine

communication networks. The authors intended to maximize

the data computation capacity, and presented an adaptive

algorithm based on dueling Deep Q-network (DQN) to ob-

tain optimal strategies. In [21], the authors focused on task

3

scheduling issues within space-air-ground integrated networks

enabled IoT systems, and presented an Actor-Critic (AC)

based optimization algorithm to effectively allocate comput-

ing resources among different virtual machines deployed at

UAV edge servers and to devise task scheduling strategies.

In [22], the authors tackled the task offloading challenge

within a blockchain-enabled space-air-ground integrated IoT

system. They primarily concerned optimizing UAV selection

for access, offloading decision making between the UAVs

and the satellite, and allocating resources between blockchain

tasks and general computing tasks, in order to minimize the

queuing delay in the system. In [23], the authors delved into

the task offloading related challenges within a three-layer

space-air-ground heterogeneous network to maximize the total

transmit rate of all ground UEs. To achieve this, they employed

a combination of multi-agent proximal policy optimization

algorithm, Lyapunov optimization, and convex optimization

techniques, thus to optimize task scheduling, high-altitude

platform selection, etc. The authors in [24] studied the user

association and computation resource allocation problem in an

UAV assisted vehicular networks, where the macro eNodeB

and UAV act as access points and edge nodes. Based on

MADDPG, the number of offloaded tasks is maximized, and

the heterogeneous QoS is satisfied. The aforementioned studies

primarily focused on the task offloading process, assuming that

the services have already been deployed on UAVs. However,

they did not consider scenarios where the required application

is not available on the edge servers, that require task should

first be placed and then can task offloading be conducted.

In [25], the authors investigated a MEC-empowered IoT

system and specifically focused on the service caching and

placement issues for IoT tasks driven by sensed data, and they

proposed a DRL based algorithm to get the optimal solution.

The research presented in reference [26] focuses on the

Virtual Network Function (VNF) deployment problem within

a satellite-facilitated MEC system. This problem is formulated

as a potential game, and the authors proposed an iterative

algorithm to obtain a suboptimal VNF deployment strategy

to adopt to user requests. While the works mentioned in [25]

and [26] may provide valuable insights into task placement

strategies and resource allocation, they do not consider the

dynamic decision-making process of task offloading.

Few studies have comprehensively examined the complete

task offloading process in AGIN, encompassing both task

placement and offloading procedures, so as for joint opti-

mization. Reference [27] proposed an MEC enabled space-

air-ground integrated framework, where a low earth orbit

satellite serves as the edge server, and they investigated joint

caching placement and offloading decision for the vehicles

in remote areas, while other related issues mentioned in

offloading, such as resource allocation, power control, etc.,

are not considered. In [28], the authors conducted a com-

prehensive investigation into computation offloading issues

in an edge computing enabled ultra-dense network. Their

study focused on addressing the joint challenges of service

placement, task partitioning strategy, etc., to minimize task

processing delays and enhance network resource utilization.

Then the authors proposed a two-layer DQN based algorithm.

The upper layer determined delay-insensitive cache placement

decisions in a slower timescale, and the lower layer operated in

a faster timescale and generated delay-sensitive computation

offloading and resource allocation decisions. Reference [28]

mainly considers task offloading issues in ground scenarios.

In air-ground scenarios, there are several other crucial fac-

tors that need to be considered, such as access control, etc.

Furthermore, it is important to address the challenge of task

replacement when the storage space of the UAV becomes full

because of the limited storage volume of UAVs.

Inspired by the aforementioned considerations, we present a

novel approach by jointly examining the entire process of task

offloading in an AGIN that encompasses the optimization of

both the task deployment process and the task offloading pro-

cess. In task deployment process, we consider task placement

for newly arrived task requests, and the task replacement for

the placed task when the storage space is full. We consider

that each service instance can only serve one UE, and we

should decide whether the task should be served by a new

or an existing service instance. In the task offloading process,

additional considerations need to be taken into account. Firstly,

we need to determine each UE should select local processing

or task offloading modes, and which specific UAV that the

UE should access in task offloading mode. Furthermore, it is

essential to consider the data transmit power of each UE in

computation offloading, and the resource allocation of each

UAV when it serves multiple UEs. Given the complexity of

the problem and the highly dynamics of the environment,

tackling the challenges becomes inherently difficult. In the

subsequent sections, we offer an MADDPG based algorithm

to tackle the problem for adaptive real-time solutions, and

intend for long-term system performance optimization. Since

our problem contains binary, integer and continuous variables,

while MADDPG can only solve problems with continuous

variables, we will improve MADDPG to adapt to our problem.

III. SYSTEM MODEL

In Fig. 1, we present an overview of the considered AGIN,

which comprise a collection of UAVs equipped with MEC

capabilities, as well as a set of UEs. The set of UAVs

and UEs are represented as J = {1, 2, ..., j, ..., J} and

I = {1, 2, ..., i, ..., I}, respectively, and the symbols J and

I stand for the total numbers of UAVs and UEs. Each UAV

is assigned an j within the set J , and each UE is assigned an

index i within the set I. In our system, each UAV and the edge

server deployed on it are treated as the same entity and can be

referred to as either UAV j or edge server j, and UAVs have

the ability to establish direct communication links with each

other via wireless connections. The system operates in a time-

slotted manner, where each time slot (or time step) represents

a discrete unit of time for task placement, offloading and

processing. We use T = {1, 2, ..., t, ..., T} to represent the set

of time slots, where T denotes the number of time slots in the

system. The duration of each time slot is τ . At the beginning

of each time slot, each UE has a compute-intensive task to be

processed, which can either be tackled by the UE itself, or be

offloaded to a UAV for stronger task executing capability at

4

Air Network

Terrestrial Network

MEC-enabled drones

base station

User

Car

Ground network

communication lines

Ground-to-Air network

communication lines

Drone trajectory

Fig. 1: The concerned scenario.

a certain cost. To minimize the delay in task processing, the

effective approach is to pre-install service instances on UAVs

before the arrival of user requests. Idle existing instances can

also be removed to make room for deploying other instances

for frequently requested services. Especially, we call UAV 1

as the primary UAV, which has the most powerful processing

capabilities and plenty energy. Other UAVs are referred to as

general UAVs, whose computing power and energy supply are

relatively limited.

A. Task Model

In the given scenario, there exist H distinct types of

services, where the set of tasks is represented by H =
{1, 2, ..., h, ...,H} [29]. Each task h is described by the pa-

rameters Λh = {Dh,Ξh, Oh, wh, T
max
h }. Here, Dh (measured

in bits) denotes the input data size associated with the task;

Ξh (measured in CPU cycles/s) represents the task processing

density, i.e., the number of CPU cycles necessary to address

one bit of the task; based on Dh and Ξh, the computation

amount Ch can be given by Ch = DhΞh; Oh (measured in

bits) specifies the size of the result obtained from processing

the task, which is considerably smaller than the input data

size Dh [9]; wh (measured in bits) refers to the size of a

service instance for the specific service h; Tmax
h (measured in

seconds) indicates the maximum acceptable delay or latency

for completing the task, and it defines the time constraint

within which the task should be finished.

B. Service placement stage

In this section, we investigate the real-time service place-

ment (or service deployment, task placement, task deployment)

strategies in the system. Service (or task) is an abstraction

of applications that can be deployed at UEs and UAVs, and

requested by UEs. To run a particular service at a device (i.e.,

UAVs and UEs in this paper), the device has to deploy the

service, i.e., to store the data associated with the services,

such as libraries and databases. As such, we consider that each

UE deploys its required service and can process its required

task itself, so we do not consider the task placement issues

at the UE end. The UAVs also have certain storage space

for service deployment. However, the caching capacity of the

UAVs are limited, and each UAV could not deploy all services.

In this paper, we adopt the assumption that each instance of

a task deployed at a UAV is capable of serving only one task

processing request from only one UE [30].

During the service placement stage, we have the flexibility

to deploy or remove service instances from UAVs. We denote

the variable δh,j(t) as the number of instances of task h that

will be installed or removed from UAV j at time slot t. If

δh,j(t) > 0, it indicates that δh,j(t) instances of service h will

be deployed at UAV j; If δh,j(t) < 0, it means that δh,j(t)
instances of service h will be released from UAV j; and if

δh,j(t) = 0, it implies that no instances of service h will be

placed or deleted from UAV j at that particular time step.

Finally, we adapt variable nh,j(t) to represent the number of

instances of service h at UAV j after the service placement

stage at time slot t. Note that the instances of a same task h
are indistinguishable, once the number δh,j(t) is determined,

δh,j(t) random instances will be removed from the UAV j.

C. Task Offloading Stage

At the start of each time slot t, every UE i creates a

task from the H tasks. The task request generated by UE

i is represented by the binary variable ri,h(t) ∈ {0, 1}.
Specifically, if ri,h(t) = 1, it indicates that UE i generates

task h, otherwise ri,h(t) = 0. For each task, there are two

possible processing options: local processing or offloading to

a UAV. The decision of whether to offload the task or process it

locally is denoted by the binary variable ϱi(t) ∈ {0, 1} for UE

i. If ϱi(t) = 1, it indicates the task of UE i will be offloaded

to a UAV for processing. Conversely, if ϱi(t) = 0, it indicates

that UE i will process the task locally by itself.

1) Local Processing: Define f l
i (measured in CPU cycles/s)

as the local CPU frequency of UE i, and the delay of

processing task h locally at UE i can be given by

T l
i (t) =

∑
h∈H

ri,h(t)Ch(t)

f l
i

. (1)

The expense of local processing comes from the energy

consumption, which can be given by

Expli(t) = ηlf l
i , (2)

where ηli (measured in $/(CPU cycles/s)) denotes the price in

using UE i’s local CPU for task processing.

2) UAV Edge Processing: If UE i intends to offload its

task to a UAV j, then the overall incurred delay consists of

three components: data delivery delay, which represents the

time that it takes to transmit the input data from UE i to

UAV j; task processing delay at the UAV, which accounts for

the time taken by the UAV to perform the task and generate

the task processing result; result transmission delay, which

means the time taken to transfer the processing result from

UAV j to UE i. Considering that the size of task processing

results is typically very tiny, we can omit the result delivery

latency in UAV edge processing mode. In addition to delay

considerations, it is important to account for the economic

expenditure of UEs in task offloading decision making, such

5

as the monetary price of using UAV resources or other relevant

factors.
In order to obtain the delay and economic expenditure of

edge processing mode, we first need to consider the data rate

of ground-UAV wireless links. The path loss between UE i
and its associated UAV j could be expressed as [23]

PLi,j(t) = 20 log

4πfc

√
x2
i,j(t) + y2j (t)

c

+ proLoS
i,j (t)ϵLoS

i,j (t) + (1− proLoS
i,j (t))ϵNLoS

i,j (t), (3)

where xi,j(t) (measured in meters) expresses the horizontal

distance between UE i and UAV j, yj(t) (in meters) represents

the vertical altitude of UAV j from the ground, fc (measured

in Hertz) corresponds to the carrier frequency, and c (measured

in m/s) stands for the speed of light. In addition, ϵLoS
i,j (t) and

ϵNLoS
i,j (t) denotes the additional path loss experienced beyond

the free space path loss due to Line-of-Sight (LoS) and Non-

Line-of-Sight (NLoS) transmission, respectively. Moreover,

the probability of whether the LoS link exists between ground

UE i and UAV j can be expressed as [23]

proLoS
i,j (t) =

1

1 + α1 exp{−α2[arctan(
yj(t)
xi,j(t)

)− α1]}
, (4)

where the symbols α1 and α2 are constant parameters.
Denote the bandwidth of each UAV j as Bj , j ∈ J ,

which will be shared among the UEs that are served by

UAV j in Non-Orthogonal Multiple Access (NOMA), thus

to achieve better channel utilization, thereby obtaining higher

channel transmission rates and larger system capacity. Define

ai,j(t), i ∈ I, j ∈ J as the access control scheme of UE i.
In this context, ai,j(t) = 1 indicates that UE i selects UAV j
for task offloading in time step t, and ai,j(t) = 0 otherwise.

Then, the wireless data delivery rate between the ground UE

and its attached UAV could be expressed as

Ri,j(t) = Bj log

1 +

ai,j(t)pi,j(t)hi,j(t)∑
l∈I,hl,j(t)<hi,j(t)

al,j(t)pl,j(t)hl,j(t) + σ2

 , (5)

where hi,j(t) = 10
−PLi,j(t)

10 , pi,j(t) represents the transmit

power when UE i offloads data to UAV j, and σ2 denotes the

noise power.
Next, we discuss the delay and economic expenditure in

UAV edge processing mode. For a UAV j, in order to

accommodate the task processing request ri,h(t) from UE i,
two conditions must be met: either there should be an available

idle service instance at UAV j, or there should be sufficient

space to initialize a new instance for task h. We introduce a

binary variable aidlei,j,h(t) to represent the scenario where the

task processing request ri,h(t) is offloaded to UAV j and

served by an idle instance of task h, and use anewi,j,h(t) to

indicate the case when the request ri,h(t) is served by a newly

deployed instance of task h at UAV j. Consequently, we have

ai,j(t)ri,h(t) = aidlei,j,h(t) + anewi,j,h(t). (6)

For each UE i, the delay to complete the task execution in

UAV edge processing mode consists of the service deployment

delay (if its request is served by a newly initialized service

instance), the data transmission delay, and the task processing

delay, which can be expressed as

Tu
i (t) =

∑

j∈J

∑

h∈H

[
aidlei,j,h(t)

(
ri,h(t)Dh(t)

Ri,j(t)
+

ri,h(t)Ch(t)

fi,j(t)

)

+anewi,j,h(t)

(
Dplace

h,j +
ri,h(t)Dh(t)

Ri,j(t)
+

ri,h(t)Ch(t)

fi,j(t)

)]
, (7)

where fi,j(t) (measured in CPU cycles/s) represents the com-

putation resource assigned to UE i by UAV j, and Dplace
h,j

(measured in second) is the delay of initializing a service

instance for task h on UAV j.

The economic expenditure of UAV edge processing mode

arises from two components, i.e., the utilization of the wireless

channel for data transmission in task offloading, and the

consumption of computation resources for task processing,

which can be given by

Expui (t) =
∑

j∈J

∑

h∈H

[
aidlei,j,h(t)(η

j,1Ri,j(t) + ηj,2fi,j(t))

+anewi,j,h(t)(η
j,1Ri,j(t) + ηj,2fi,j(t) + λh,j)

]
, (8)

where ηj,1 (measured in $/bps) represents the price for utiliz-

ing the wireless channel resource of UAV j, ηj,2 (measured

in $/(CPU cycles/s)) denotes the price for utilizing the com-

putation resources of UAV j, and λh,j (in $) is the additional

economic cost for using a newly deployed instance of service

h on UAV j, respectively.

Combining local and edge processing together, the total

delay for completing the task for UE i is

Ti(t) = (1− ϱi(t))T
l
i (t) + ϱi(t)T

u
i (t), (9)

and the economic expenditure of UE i is expressed as

Expi(t) = (1− ϱi(t))Expli(t) + ϱi(t)Expui (t). (10)

Considering both the delay and economic expenditure fac-

tors, the cost of each UE i is defined as

Costi(t) = γ1ϑtTi(t) + γ2ϑcExpi(t), (11)

where γ1 ∈ [0, 1] and γ2 ∈ [0, 1] are weight coefficients which

determine the importance of reducing delay and reducing

economic expenditure, respectively, and we have γ1+γ2 = 1.

The two parameters ϑt (in Cost/s) and ϑc (in Cost/$) are

coefficients for balancing the range of delay and economic

expenditure to the same magnitude, and also for unifying

the unit of the two quantities. The important notations are

summarized in Table I.

IV. PROBLEM FORMULATION

A. Problem Formulation

In this paper, our objective is to minimize the long-term

average system cost by jointly optimizing the task placement

∆(t) = {δh,j(t)}, h ∈ H, j ∈ J , the offloading decision

ϱ(t) = {ϱi(t)}, i ∈ I, the access control and instance

selection A(t) = {ai,j(t), a
idle
i,j,h(t), a

new
i,j,h(t)}, i ∈ I, j ∈

J , h ∈ H, the transmit power control P(t) = {pi,j(t)}, i ∈
I, j ∈ J , and the computation resource assignment F(t) =

6

{fi,j(t)}, i ∈ I, j ∈ J . The joint optimization problem is

formulated as

(P1) : min
∆(t),ϱ(t),A(t),P(t),F(t)

[
1

Tmax

∑

t∈T

∑

i∈I

Costi(t)

]
(12)

s.t. (C1) : δh,j(t) ∈ N, h ∈ H, j ∈ J ,

(C2) : nh,j(t− 1) ≥ |δh,j(t)| · I{δh,j(t) < 0},

h ∈ H, j ∈ J ,

(C3) : nh,j(t− 1) + δh,j(t) · I{δh,j(t) > 0} ≤ thres,

h ∈ H, j ∈ J ,

(C4) : ϱi(t) ∈ {0, 1}, i ∈ I,

(C5) : ai,j(t) ∈ {0, 1}, i ∈ I, j ∈ J ,

(C6) : aidlei,j,h(t), a
new
i,j,h(t) ∈ {0, 1},

i ∈ I, j ∈ J , h ∈ H,

(C7) :
∑

j∈J

ai,j(t) · I{ϱi(t) = 1} = 1, i ∈ I,

(C8) : aidlei,j,h(t) + anewi,j,h(t) = ai,j(t)ri,h(t),

i ∈ I, j ∈ J , h ∈ H,

(C9) :
∑

h∈H

nh,j(t)wh ≤ Πj , j ∈ J ,

(C10) :
∑

i∈I

ϱi(t)ai,j(t)ri,h(t) ≤ nh,j(t), j ∈ J ,

(C11) :
∑

j∈J

ϱi(t)ai,j(t) = 1, i ∈ I,

(C12) : 0 < pi,j(t) < pmax, i ∈ I, j ∈ J ,

(C13) : 0 < fi,j(t) < fmax
j , i ∈ I, j ∈ J ,

(C14) :
∑

i∈I

fi,j(t) ≤ fmax
j , j ∈ J ,

(C15) : Ti(t) · I{ri,h(t) = 1} ≤ Tmax
h , i ∈ I, j ∈ J ,

where thres is a threshold for the number of deployed service

instances in task placement; Πj , j ∈ J represents the storage

capacity of the UAV j for application data caching in task

placement; pmax denotes the maximum transmit power of

UEs; fmax
j represents the processing capability of MEC server

j; Tmax
h refers to the maximum tolerable task processing la-

tency of task h; and additionally, I{·} is the symbolic function,

where · holds when I{·} = 1, and otherwise, I{·} = 0.

In (P1)
1, (C1) is the integer requirement on task instance

placement; (C2) is used to assure that the removed number of

instances of each service h should be less than the number of

instances deployed on UAV j; (C3) is used to prevent too many

instances are installed at a certain UAV, and thus to keep load

balancing among UAVs; (C4), (C5), and (C6) represent the

binary constraints related to task offloading decision, access

control, and service instance selection; (C7) assures that one

UE can only access one UAV; (C8) assures that there must

be a deployed instance in UAV j to serve its admitted UE i;
(C9) ensures that the volume of the deployed tasks should be

less than the storage volume of each UAV; (C10) constrains

that the number of UEs that admitted in UAV j for processing

task h must not exceed the number of instances of task h in

1Please note that we omit the t ∈ T in each constraint for concise.

UAV j; (C11) constrains that each UE should offload its task

to only one UAV; (C12) represents the constraint on transmit

power control; (C13) requires that the computation resource

allocation must be non-negative; (C14) imposes constraints

that the assigned computation resource must be less than the

processing capability of each UAV; finally, (C15) is the QoS

requirement, which ensures that the task should be completed

within the maximum tolerable delay.

Remark 1: We consider that the duration τ of each time

slot should be greater than or equal to the maximum tolerable

latency of all tasks, as specified in equation (C14). This as-

sumption helps avoiding the challenges of dealing with issues

of queues [31]. The exploration of cross-slot optimization will

be considered as a part of our future work.

Remark 2: We assume all UAVs and UEs work in an ideal

synchronization state.

The formulated problem (P1) is a mixed-integer and non-

linear programming (MINLP) problem, and it is known to

be generally NP-hard and therefore challenging to solve opti-

mally. Moreover, the decision-making process in this problem

occurs in a highly dynamic environment for long-term opti-

mization, which makes it challenging for traditional convex

optimization algorithms to adapt to the unknown environment

and perform adaptive optimization. DRL algorithms are de-

signed to optimize a long-term objective [32], and we attempt

to exploit DRL to solve our problem. Since our problem

contains integer, binary, and continuous variables, discrete

control oriented DRL algorithms, such as DQN, AC, and

advantage actor-critic (A2C), could not work well [33] [34].

Although we can resort to discretization, we have to face

the curse of dimension issues and dramatically deteriorating

performance. Deep deterministic policy gradient (DDPG) is

specifically designed to address continuous control problems,

so it is still not appropriate for solving our formulated mixed

integer and continuous problem. However, we can reshape

DDPG for our problem, and propose a more suitable joint

optimization algorithm based on MADDPG for MINLP, and

thus for more reliable, real-time, and high efficient system

control and decision making optimization.

V. JOINT OPTIMIZATION ALGORITHM BASED ON

MADDPG FOR OUR MINLP PROBLEM

In this section, we demonstrate the utilization and improve-

ment of MADDPG to learn real-time control strategies of our

problem. We begin by introducing the preliminary concepts of

MADDPG. Subsequently, we reformulate our problem (P1) as

a MDP, by constructing its state space, action space, immediate

reward, and state transformation for each agent. Next, we

present the framework of our MADDPG based optimization

algorithm for MINLP problem.

A. Preliminaries of MADDPG

In single-agent DRL frameworks [35], the agent strengthens

its decision-making abilities by continuously and actively

interacting with the environment [36]. Specifically, DDPG al-

gorithm [34] belongs to the DRL algorithm family, that is well-

suited for continuous control tasks. MADDPG is introduced as

7

an extension of DDPG, which aims at addressing the common

challenge in complex systems where individual agents are

often faced with limited observations, which significantly

hampers their learning process. MADDPG operates under the

principle of centralized training and decentralized executing.

In this framework, every agent is associated with an actor and

a critic, referred to as µj(oj(t); θj) and qj(s(t),a(t);wj), re-

spectively. Each actor network µj(oj(t); θj) works in a decen-

tralized and deterministic manner, i.e., for a given input oj(t),
it will output a deterministic action aj(t) = µj(oj(t); θj).
For each critic network qj(s(t),a(t);wj), its input includes

the global state s(t) = {o1(t), ..., oJ (t)} and action a(t) =
{a1(t), ...,aJ (t)}, which comprises the observations and ac-

tions of all agents at time t. The output of the critic network is

a real number that serves as an estimation of the performance

associated with taking action a(t) under the given state s(t).
The actor network of the jth agent µj(oj(t); θj) is used to

control its corresponding agent j, while the jth critic network

qj(s(t),a(t);wj) is used for evaluating action a(t), and the

score its gives can be used to guide the jth actor network

to train its parameters, and thus to make better actions. In

order to cut off ”bootstrapping” to avoid error propagation,

thereby alleviating the overestimation issues of MADDPG,

target networks are employed for calculating time difference

(TD) targets. For each actor network, there’s a corresponding

target actor network, which is denoted as µj(oj(t); θ
−
j); also,

each critic network corresponds to a target critic network

qj(s(t),a(t);w
−
j). Each target network in MADDPG shares

the same structure as its corresponding primary actor or

primary critic, but with different parameters. The parameters

of the jth primary actor and primary critic are represented

by θj and wj , and correspondingly, the parameters of the jth

target actor and target critic are represented by θ−j and w−
j ,

respectively.

We first discuss the training process of actor networks. In the

training process, actor networks are trained using deterministic

policy gradient, and critic networks are trained employing

TD algorithm. As an off-policy DRL algorithm, MADDPG

leverages experience replay to mitigate temporal correlations

among training samples, enabling the reuse of past experi-

ences for network training. This mechanism not only helps

in stabilizing the training, but also promotes more efficient

exploration and thus improves the overall performance of the

algorithm. Experiences are represented as tuples capturing

state, action, reward, and next state information, with the

form <s(t),a(t), r(t), s(t + 1)>, t ∈ T . MADDPG utilizes

a centralized replay buffer, which is located in the central

controller and serves as a repository for all the experiences

collected during the training process. In a general experience,

s(t) and a(t) are the global state and the actions taken by all

agents at time step t as aforementioned, respectively. Similarly,

r(t) = {r1(t), ..., rJ (t)} signifies the rewards received by each

agent at time step t, and s(t+1) = {o1(t+1), ..., oJ(t+1)} is

the new global state observed by all agents in time step t+1,

respectively.

The purpose of training the jth actor network µj(oj(t); θj)
is to optimize its parameter θj , thus to improve the score given

by the jth critic network. The objective function of the jth

actor network in MADDPG can be defined as

Jj(θ1, ..., θJ) (13)

= ES

[
q
(
S,

[
µ1(O1(t); θ1), ..., µJ(OJ(t); θJ)

]
;wj

)]
,

where the expectation is about state S = [O1, ..., OJ]. The gra-

dient of the objective function with respect to the parameters

of the jth actor can be computed by

∇θjJj(θ1, ..., θJ) (14)

= ES

[
∇θjq

(
S,

[
µ1(O1(t); θ1), ..., µJ(OJ (t); θJ)

]
;wj

)]
.

Next, we adopt the Monte Carlo method to appropriate the

expectation in the above equation. We sample a batch of M
experience from the experience pool, where a certain experi-

ence m can be given by < sm(t),am(t), rm(t), sm(t + 1)>.

For each state sm(t) = [om1 (t), ..., omJ (t)], we can obtain J
actions by the J actor networks, which can be given by

âm1 (t) = µ1(o
m
1 (t); θ1),

...

âmJ (t) = µJ (o
m
J (t); θJ). (15)

The gradient of the objective function with respect to the

parameters of the jth actor, i.e., θj , can be given by

gm
θj

= ∇θjq
(
sm(t),

[
µ1(o

m
1 (t); θ1), ..., µJ (o

m
J (t); θJ)

]
;wj

)

= ∇θjq
(
sm(t),

[
âm1 (t), ..., âmJ (t)

]
;wj

)

= ∇θjµj(o
m
j (t); θj) · ∇âm

j
(t)q

(
sm(t),

[
âm1 (t), ..., âmJ (t)

]
;wj

)
,

(16)

and the average gradient is given by

gθj =
1

M

M∑

m=1

gm
θj
. (17)

The parameter θj of actor j can be updated by gradient ascend

as follows

θj ← θj + β · gθj . (18)

Next, we discuss the training methods of critic networks.

Each critic network qj(s(t),a(t);wj) can be trained using TD

algorithm, so as to fit the action value function Qj(s,a) as

possible. Given an experience < sm(t),am(t), rm(t), sm(t +
1)>, and for the state sm(t+1) = [om1 (t+1), ..., omJ (t+1)],
we can obtain J actions by the J target actor networks at time

step t+ 1, which can be given by

âm−
1 (t+ 1) = µ1(o

m
1 (t+ 1); θ−1),

...

âm−
J (t+ 1) = µJ(o

m
J (t+ 1); θ−J), (19)

and we have

âm−(t+ 1) =
[
âm−
1 (t+ 1), ..., âm−

J (t+ 1)
]
. (20)

8

The loss function is

L(θj) =
1

2M

M∑

t=1

(
ŷmj (t)− q(sm(t),am(t);wj)

)2

, (21)

where ŷmj (t) is TD target, which is expressed as

ŷmj (t) = rmj (t) + γ · q
(
sm(t+ 1), âm−(t+ 1);wj

)
. (22)

Then, TD error can be given by

δmj (t) = q
(
sm(t),am(t);wj

)
− ŷmj (t). (23)

To update the parameters wj of the jth critic network, gradient

descent algorithm can be applied as follows

wj ← wj − α ·
1

M

M∑

t=1

δmj (t) · ∇wj
q
(
sm(t),am(t);wj

)
. (24)

In the end, each agent j refreshes its target actor and critic

networks as follows

θ−j ← ζ · θj + (1− ζ) · θ−j ,

w−
j ← ζ · wj + (1− ζ) · w−

j , (25)

where ζ ∈ [0, 1].

B. Problem Reformulation

In the considered system, every UAV functions as a DRL

agent to make independent and localized decisions based on its

observations and learned policies. Besides, the primary UAV

serves as the controller which possesses the global information

of the whole system. At the start of each time slot, every UE

initiates its task processing request and sends it to all UAVs it

is associated with. Each UAV gathers the information, e.g., the

task requests information, the dynamics of the network states,

etc., from all its covered UEs, and then sends it to the centre

controller at the primary UAV. After obtaining the global

network state information, centralized training process will

proceed at the centre controller. After training, each agent will

perform distributed decision making based on its observation

oj(t). To utilize DRL algorithms to address the formulated

problem (P1), it is necessary to convert it into the standard

form of MDP. The key components of this transformation

include defining the state space, action space, reward function,

and state transition for each agent, which are given as follows.

1) State Space: At the start of each time step t, every

agent j, j ∈ J gathers and obtains its own observation oj(t)
from the environment. Please note that each UAV can only

observe the dynamics of its covered UEs. Denote the set of

UEs covered by UAV j as Ij , where the distance between

each UE i in Ij satisfies
√
xi,j(t)2 + yj(t)2 ≤ Dth, (26)

where Dth is the distance threshold [3].

The observation of UAV j, i.e., oj(t), could be represented

as

oj(t) , {rj(t), Nj(t− 1), ϵj(t), Xj(t), Yj(t)}, (27)

where

• rj(t) = {ri,h(t)}, ri,h(t) ∈ {0, 1}, i ∈ Ij , h ∈ H
represents the user request for tasks within the coverage

of UAV j at the start of the tth time step;

• Nj(t−1) = {nh,j(t−1)}, h ∈ H represents the count of

instances of service h exists in UAV j at the conclusion

of time step t− 1, i.e., at the start of time step t;
• ϵj(t) = {ϵ

LoS
i,j (t), ϵNLoS

i,j (t)}, i ∈ Ij represents the time-

dependant additional path loss encountered during LoS

and NLoS transmissions;

• Xj(t) = {xi,j(t)}, i ∈ Ij represents the flat distance

between UAV j and the UE i that falls within its coverage

area;

• Yj(t) = {yj(t)} is the altitude of UAV j away from the

ground.

Once the observation is obtained, each UAV will send it to

the centre controller in the primary UAV, based on which the

centre controller can obtain the joint state of of time slot t,
which is expressed as

s(t) , {o1(t), o2(t), ..., oJ (t)}, (28)

and the state space could be represented by S = {s(t), t ∈ T }.
2) Action Space: Under observation oj(t), the actor of

agent j calculates its action aj(t) as

aj(t) , {∆j(t), ϱj(t), Aj(t), Pj(t), Fj(t)}, (29)

where

• ∆j(t) = {δh,j(t)}, h ∈ H is the task placement decision

at UAV j;

• ϱj(t) = {ϱi(t)}, i ∈ Ij is the offloading decision of UEs

covered by UAV j;

• Aj(t) = {ai,j(t), a
idle
i,j,h(t), a

new
i,j,h(t)}, i ∈ Ij , h ∈ H

represents the access control and instance selection;

• Pj(t) = {pi,j(t)}, i ∈ Ij stands for the transmit power

control of UEs served by UAV j;

• Fj(t) = {fi,j(t)}, i ∈ Ij represents the computation

resource allocation at UAV j.

The collection action of the J agents is described as

a(t) = {a1(t), a2(t), ..., aJ(t)}, (30)

and accordingly, the action space could be expressed as A =
{a(t), t ∈ T }.

3) Reward Function: Upon taking action aj(t), each agent

j obtains an immediate reward r(t). In our formulated problem

(P1), our objective is to reduce the long-term total cost

incurred by all UEs. All agents collaborate to maximize their

contributions towards minimizing the total cost, and each

agent receives the same reward. In this context, we define

the immediate reward r(t) as the reciprocal of the total cost.

Mathematically, it could be represented as

r(t) = rj(t) =
1

J

1∑
i∈I

Costi(t)
. (31)

Moreover, the actions of all agents are bounded by the

constraints as defined by (C1)-(C15) in (P1). However, the

outputs of the actor networks may be infeasible due to these

constraints. To address the issue, we need to judge whether

the constraints are satisfied when all agents have taken their

9

actions. If the constraints are met, each agent will obtain its

reward, and otherwise, it will receive a penalty, which is a

dramatically small negative constant. By this manners, actors

are guided to choose better actions in the next time slot. On

the basis of the aforementioned analysis, the immediate reward

for each agent j could be given by

r(t) =

{ 1
J

1∑

i∈I

Costi(t)
, if all constraints are met,

penalty, otherwise.
(32)

4) Next State: After selecting and executing actions, each

agent receives the immediate reward as defined above. Subse-

quently, the system transitions from the current state s(t) to

the next state s(t+ 1) through the following means:

• User requests for tasks ri,h(t + 1), i ∈ I, h ∈ H
transforms following a certain distribution, and in this

paper, we consider it transforms according to uniform

distribution;

• The count of service h’s instances exists in UAV j at

the end of time slot t − 1, denoted as nh,j(t − 1), j ∈
J , h ∈ H, undergoes changes based on the action aj(t)
during the service placement stage. Specifically, the count

at time slot t is given by nh,j(t) = nh,j(t− 1)+ δh,j(t),
j ∈ J , h ∈ H;

• Time-varying additional path loss under LoS and NLoS

transmissions, i.e., {ϵLoS
i,j (t + 1), ϵNLoS

i,j (t + 1)}, i ∈
I, j ∈ J , are generated from the four tuples randomly:

{0.1, 21}, {1, 20}, {1.6, 23}, and {2.3, 34};
• The horizontal distance between user i and UAV j

xi,j(t + 1) = 300 sin θx + 50, θx is randomly generated

from [0, π/2];
• Altitude of each UAV j away from the ground, i.e., yj(t+

1) = 100 sin θy + 50, θy is randomly generated from

[0, π/2].

C. Reformulating Actions to Adapt to MADDPG

Since MADDPG is designed for addressing problems with

continuous action spaces, each agent j will output continuous

actions. To adapt the output of actors to our formulated

problem (P1), we need to transform the output of the actor

networks.

1) Continuous Action Normalization: In order to cut down

the action space’s dimension, all continuous variables, includ-

ing power control and computation resource assignment, are

limited to a value between 0 and 1. Let a denote a general

action output by the actor network, amax and amin denote

the maximum and minimum value that can be taken by a,

respectively, and let ã denote the actual value, then ã can be

recovered from a as follows:

ã = a(amax − amin) + amin. (33)

2) Discrete Action Reformulation: We transform the dis-

crete actions as follows:

(i) For the integer task placement variable δn,j(t), we simply

round it to the nearest integer, which is denoted as δ̃n,j(t).
(ii) For the binary offloading decision making ϱi(t), we

consider the output as the probability of taking ϱi(t) = 1.

Note that, in order to balance the exploration-utilization issues

in DRL, in the training process, the continuous output of ϱi(t)
is used as the probability for sampling the binary offloading

decision, and in testing process, the agent will select 0 or 1

that with the maximum probability according to the value of

ϱi(t). We denote the reformulated offloading decision as ϱ̃i(t).

(iii) For the binary variables including access control ai,j(t)
and the instance selection variable aidlei,j,h(t), anewi,j,h(t), since

they are coupled by Eq. (6), i.e., constraint (C7) as in our for-

mulated problem in (P1), they should be addressed carefully.

We consider the output of ai,j(t) and aidlei,j,h(t) as the prob-

abilities of ai,j(t) = 1 and aidlei,j,h(t) = 1. During the training

process, a random value is taken following the probability to

determine ai,j(t). If ai,j(t) is sampled as 0, then we take

anewi,j,h(t) = 0 and aidlei,j,h(t) = 0. If ai,j(t) is sampled as 1, then

we use a random probability to determine aidlei,j,h(t): if aidlei,j,h(t)

is sampled as 1, we take anewi,j,h(t) = 0; otherwise, if aidlei,j,h(t)
is sampled as 0, we take anewi,j,h(t) = 1.

During the testing process, agent selects 0 and 1 that with

the maximum probability for ai,j(t), if ai,j(t) = 0, we will

take anewi,j,h(t) = 0 and aidlei,j,h(t) = 0; if ai,j(t) = 1, agent

then selects 0 and 1 that with the maximum probability for

aidlei,j,h(t), and if aidlei,j,h(t) = 1, we take anewi,j,h(t) = 0, otherwise,

if aidlei,j,h(t) = 0, and we take anewi,j,h(t) = 1.

Denote the reformulated access control and the instance se-

lection variables as ãi,j(t) ã
idle
i,j,h(t), and ãnewi,j,h(t), respectively,

and the addressed action at time step t is expressed as

ãj(t) , {∆̃(t), ϱ̃(t), Ã(t), P̃(t), F̃(t)}. (34)

Then the joint action of J agents can be denoted as ã(t) =
{ã1(t), ã2(t), ..., ãJ(t)}.

D. Joint Optimization Algorithm Framework Based on MAD-

DPG for our MINLP problem

Based on the aforementioned state space, action space, the

addressed action, the reward, and the next state, the joint

optimization algorithm based on MADDPG for MINLP is

presented in Algorithm 1. For better understanding, Fig. 2

presents the framework of our Algorithm 1, which encom-

passes service placement, task offloading, access control, and

resource allocation. As shown in Fig. 2 and Algorithm 1,

at the beginning of each episode, each agent j observes

the environment and acquires its initial state oj(t), and the

central controller deployed at the primary UAV obtains the

global state s(t). Based on s(t), each actor obtains its action

aj(t) = µj(s(t); θj), i.e., the joint task placement, offloading

decision, access control and instance selection, transmit power

control, and computation resource assignment, by providing

the state as input to the actor network. In order to enhance the

exploration capabilities of the algorithm, a noise Ψ(t) which

is randomly sampled from an Ornstein-Uhlenbeck process

is incorporated into µj(s(t); θj), and the action becomes

aj(t) = µj(s(t); θj) + Ψ(t). Then transform action as in

Section V-C, aj(t) becomes valid action ãj(t). Each agent

executes its corresponding action ãj(t), and it will receive its

reward rj(t), and its observation will transit to oj(t+1), and

10

Actor

Concentrated Training

Distributed Execution

Jq1q

()J Ju q1 1()u q

Air-ground integrated network environment

Critic Critic
Jw

JaJo

()Jq w

OU

1() { (),..., ()}Jt o t o t=s

Actor

Target Net

Actor
Evalaution

Net

Soft

 update

Target Net

Critic

Evalaution

Net

Soft

 update

 update

Loss

Function

()Jr t

() (();)j j j jt u o t q=a

((), ();)j jq t t ws a

((), ();)j jq t t w-
s a

jw
-

jq
-

jq jw

() { (), (1),

(), (), ()}

j j j

j j j

o t t t

t t t

-r N

X Y

{ ()j{ (),{{{ (){ ()({ (){ (),({ (),

(), (j jj jj j(), ((),((), ()((((((

() (();)j j j jt u o t q -¢ ¢ ¢=a

Replay Memory Mini-batch Normalization

.
jj j qq q b¬ + ×g

Updating the actor network

using gradient ascent

((), (), (), ())j j j jo t a t r t o t¢
*{ (), (), (), ()}b j j j jM o t a t r t o t¢

{ (), (), ()}j j jo t a t o t¢{ (), ()}j jo t o t¢

1w

1()q w

1a
1o

Fig. 2: Framework of the proposed MINLP Tailored MADDPG algorithm.

meanwhile, the global environment will transform to the next

state s(t+ 1).
Then we store the experience <s(t),a(t), r(t), s(t + 1)>

into the experience pool. If the experience pool becomes

full, randomly choose M samples from it to create a mini-

batch. This mini-batch will be utilized to train the actor

and critic networks, according to the procedures described

in equations (18) and (24). Finally, all target networks are

updated according to equation (25).

E. Complexity Analysis

In each training step, the MADDPG algorithm samples

and stores experiences from the J agents, and then sample

batch of M experiences from the stored memory for training

each agent. During each time step, the MADDPG algorithm

computes and updates the action policies and value functions

of each agent, which involves the forward and backward

propagation of neural networks. The MADDPG algorithm

utilizes deep neural networks to construct the actor and critic

networks, which consist of input layers, hidden layers, and

output layers. Specifically, the actor network takes the state

space as input and produces actions as output, while the

critic network takes the concatenation of the state and action

spaces as input and outputs Q-values. The primary factor

influencing the time complexity is the dimensionality of the

network structures. The computational complexity required for

training each actor using a piece of experience is Oactor =
O(RH +H2 +HL), where R represents the dimensionality

of the state space, H represents the number of neurons in the

hidden layers (there are 2 hidden layers in our network), and

L represents the dimensionality of the action space. Similarly,

the time complexity of the critic network can be represented

as Ocritic = O((R + L)H + H2 + H). Since the target

actor and critic networks have the same network structure

as the actor and critic networks, the algorithm complexity

for a single agent can be expressed as follows Osingle =

O
(
2(RH+H2+HL)+2((R+L)H+H2+H)

)
. Therefore,

we can determine the overall time complexity of the algorithm

is O = O
(
2JM(RH +H2 +HL+ (R+L)H +H2 +H)

)
.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we assess the performance of our proposed

MADDPG algorithm for MINLP through simulation. Default

parameter settings are exhibited in Table I, and they will

keep unchanged in the following simulations unless otherwise

stated. Our simulation was run on python 3.7, pycharm 2021

and tensorflow 1.14.

In the subsequent analysis, we initially assess the con-

vergence of the proposed MADDPG algorithm for MINLP

under various learning rates. Subsequently, we compare its

performance with several baseline algorithms to provide a

comprehensive evaluation. To simplify notation, we refer to

our proposed MINLP tailored MADDPG algorithm as “Pro-

posed” or “our proposed algorithm” in the subsequent discus-

sions, which means that we conduct the joint optimization as

defined in problem (P1). The comparison algorithm are given

as follows.

1) “POPO (placement-offloading-power-optimization)”: the

access control strategy takes random values and other s-

trategies are optimized using our proposed algorithm. POPO

shares similarities with the approach presented in [39], where

optimizations are performed for task placement, offloading

decisions, and transmit power control. Besides, POPO also op-

timize computation resource allocation in UAVs. Furthermore,

while each service in [39] can serve all tasks of the service,

in POPO, each service instance can only serve a single task.

2) “OTPOA (Only-task-placement-offloading-access)”: only

the task placement, task offloading, and access control policies

are optimized using our proposed algorithm, while the transmit

power control and computing resource allocation policies are

randomized.

3) “All-offloading”: all UEs perform task offloading, i.e., the

offloading decision of all UEs equals to 1, and other policies,

including task placement, access control, transmission power

11

TABLE I: Parameter Notations and Default Value Settings

Parameter Notations Value

Number of UEs I 10 [37]
Number of UAVs J 3 [14]
Number of tasks H 10

UEs’ local processing capability f l
i 0.06 G CPU cycles/s [9]

UEs’ maximum transmit power pmax 0.1 W [16]
Input data size of task Dh 8 Mb [7]

Processing density of task Ξh 1000 CPU cycles/s
Size of each task instance wh 800 Mb
Delay tolerance of tasks Tmax

h 1 s [14]
Processing capability of MEC server fmax

j 12 G CPU cycles/s [16] [6]
Storage capacity of each MEC server Πj 3 G

Bandwidth of each UAV Bj (1,5) GHz [23]

Carrier frequency fc 1.2× 109 Hz

Speed of light c 3× 108 m/s [23]
Environment-determined variables α1 and α2 1.88, 0.43 [38]

The power spectral density of noise σ2 17× 10−12 [18]

Price of UAV communication resource ηj,1 1× 10−9 $/bps

Price of UAV computation resource ηj,2 4× 10−9 $/(CPU cycles/s)

Price of local computation resource ηl
i 0.2× 10−9 $/(CPU cycles/s)

Service instance initializing delay D
place

h,j 0.1 s

Cost for using a new deployed instance λh,j 0.001 $

Weight of delay γ1 0.3 Utility/s

Weight of expense γ2 0.7 Utility/$

Cost of delay ϑt 0.008 Cost/s
Cost of expense ϑe 0.004 Cost/$

Task placement threshold thres 3
Access distance threshold Dth 300 m [3]

0 500 1000 1500 2000 2500 3000

Episode

0

500

1000

1500

2000

2500

3000

R
ew

ar
d

l
a
=10-3,l

c
=10-4

l
a
=10-4,l

c
=10-4

Fig. 3: Convergence of our proposed algorithm
under various learning rate for the actor net-
work.

0 500 1000 1500 2000 2500 3000

Episode

0

500

1000

1500

2000

2500

3000

R
ew

ar
d

l
a
=10-4,l

c
=10-3

l
a
=10-4,l

c
=10-4

Fig. 4: Convergence of our proposed algor-
ithm under various learning rate for the critic
network.

0 500 1000 1500 2000 2500 3000

Episode

0

500

1000

1500

2000

2500

3000

R
ew

ar
d

Proposed
POPO [39]
OTPOA
All-offloading

Fig. 5: Comprehensive performance compar-
ison between the four algorithms.

control, and computing resource allocation are optimized using

our proposed algorithm.

4) “Random”: all decisions are made randomly, and there’s

no concepts of states, actions and training process as in

other algorithms. Specifically, in this algorithm, the states

variables as in the proposed algorithm, will act as general

known quantities, and these quantities are coupled between

different time slots as the state transition of our proposed

algorithm. Also, the optimization variables, i.e., the actions as

in Proposed, are also considered as known quantities, which

are generated randomly from their value range.

A. Convergence of Algorithm 1

Figs. 3 and 4 demonstrate the convergence of our proposed

algorithm under different combinations of learning rates. The

x-axis of both figures stands for the episodes, while the y-

axis means the immediate total reward of all agents in each

episode. Notably, it is evident from both figures that our

proposed algorithm achieves convergence regardless of the

selected learning rate. In Fig. 3, we set the learning rate of

the critic network as lc = 10−4, and for the actor network, we

evaluate two different learning rates, namely la = 10−3 and

la = 10−4. In Fig. 4, we maintain the learning rate of the actor

network at la = 10−4, while examining the impact of different

learning rates for the critic network, specifically lc = 10−3

and lc = 10−4. Both the curves in the two figures converge

at nearly the 1500th episode, which proves that our algorithm

converges quickly in solving our complicated problem (P1).

Fig. 5 illustrates the performance and convergence of the

above mentioned four algorithms, i.e., Proposed, POPO, OT-

12

Algorithm 1 Joint Optimization Algorithm Based on MAD-

DPG for MINLP

Initialization:
1: Initialize the weight parameters θj and wj of the primary actor

and critic, and initialize the parameters θ−j and w−

j for the target

actor and critic by letting θj ← θ−j and αj ← α−

j , respectively.
2: Initialize the learning rate α and β corresponding to the critic

and actor networks, the discount factor γ, the number of episode
EP , and the maximum number of training steps per episode
Tmax.

3: Initialize the experience pool D, the size of mini-batch M , and
the random process Ψ for action exploration.

4: Initialize the network layout parameters, such as the number of
UEs I , the number of UAVs J , the parameters of tasks, etc.

Iteration:
5: for episode =1:EP do
6: Each UAV is initialized with an initial state oj(t), and the

central controller obtains the global state s(t).
7: for each step t = 1 : Tmax do
8: for agent j = 1 : J do
9: Takes action aj(t) = µj(s(t); θj) + Ψ(t).

10: Reform action aj(t) as ãj(t).
11: Execute the action ãj(t), receives its reward r(t), and

the next observe oj(t+ 1).
12: end for
13: Obtain s(t) and a(t) according to (28) and (30).
14: Store < s(t), ã(t), r(t), s(t+ 1) > in experience pool D.
15: Set s(t)← s(t+ 1).
16: if Reply buffer is full then
17: for agent n = 1 : J do
18: Randomly select M samples from the experience pool

to create a mini-batch.
19: Update the primary actor and critic networks via (18)

and (24), respectively.
20: Update the target networks via (25).
21: end for
22: end if
23: end for
24: end for

POA, and All-offloading. In the comparison, all parameters

take their default settings. From the figure, it can be observed

that all four algorithms exhibit good convergence performance.

However, among these algorithms, our proposed algorithm

is superior to the other three in both convergence speed

and reward performance. In convergence speed, the proposed

algorithm converges slightly faster than other algorithms, and

when it converges, the reward almost keeps stable in the

following episodes, while the baseline algorithms still fluctuate

to a certain extent after convergence.

Next we compare the reward performance among Proposed

and the baseline algorithms. Since our objective is to minimize

the total cost of the system, while the reward is defined as the

reciprocal of the total cost, it follows that a higher reward

corresponds to better performance. Thus, in the subsequent

simulations, higher reward values indicate improved perfor-

mance in terms of cost reduction. Among the baseline algo-

rithms, POPO does not incorporate an optimized access control

strategy, so the performance gap between it and our proposed

algorithm can therefore reflect the performance improvement

achieved through access control optimization. Similarly, OT-

POA does not optimize the transmit power and computation

resource allocation strategies, and thus, the performance gap

between OTPOA and our proposed algorithm highlights the

performance gain resulting from optimized transmit power

control; and All-offloading does not incorporate an optimized

offloading strategy, and therefore, the performance gap ob-

served between it and our proposed algorithm can be attributed

to the performance improvement resulting from optimized

task offloading decision-making. Based on the performance

depicted in Fig. 5, it is evident that our proposed algorithm

achieves the best performance among the evaluated algorithms.

It is followed by POPO, All-offloading, and finally OTPOA,

in descending order of performance.

In Fig. 6, we plot the curve depicting the relationship

between local processing capacity of UEs and the average

system reward of each episode after the algorithm converges

(which is shorted as system reward). When the local process-

ing capacity increases, except for All-offloading, the rewards

of other algorithms gradually increase. This is because when

local processing capacity increase, task processing delay will

be reduced, and the cost will be reduced for one hand;

moreover, for Proposed, POPO, and OTPOA, when local

processing capacity increases, local processing will be feasible

for many UEs, and the three algorithms will let more UEs to

process their tasks locally by task offloading optimization. As

a result, little economic expenditure will be spend, and the

cost will further be reduced for another hand. When cost is

reduced, the system immediate reward will be increased. For

All-offloading algorithm, since all UEs offload their tasks to

UAV processing, the local processing capability of UEs will

not affect the system cost, and further has no effect on the

system reward it could obtain. However, since All-offloading

algorithm offloads all tasks to the UAV for execution, the local

processing capability of UEs will not affect the system cost

and the system reward it could obtain, making the reward of

the All-offloading algorithm remains relatively constant as the

local processing capacity increases. From Fig. 6, it is evident

that our proposed algorithm consistently maintains the highest

reward. This demonstrates the robustness and effectiveness of

our algorithm in achieving optimal performance regardless of

changes in local processing capacity.

In Fig. 7, we present the relationship between the input

data size Dh and the system reward. As was defined, the

computation amount is defined as Ch = DhΞh, which is

tightly coupled with the input data size Dh. When the task

data size is very small, the computation amount Ch is also

very tiny, the majority of tasks can be effectively executed

locally. As a result, the rewards achieved by the Proposed,

POPO, and OTPOA are very similar. In this scenario, the

need for task offloading is minimal, and the impact of factors

related to edge processing, such as access control and power

control strategies, is relatively insignificant. Consequently, the

performance of these algorithms is very close, leading to

similar reward values. For All-offloading algorithm, all tasks

are offloaded to the UAV for processing, which increases the

processing latency and incurs higher economic expenditure,

leading to a decrease in the obtained reward. As the input

data size Dh increases, the rewards of all four algorithms

gradually decrease. This is because the data transmit delay and

13

0 2 4 6 8 10 12

Local process capability,f
i
l (G CPU cycles/s)

1000

1500

2000

2500

3000

3500

4000

R
ew

ar
d

Proposed
POPO [39]
OTPOA
All-offloading

Fig. 6: Reward vs. local processing capability
of UEs f l

i .

0 2 4 6 8 10 12

Task data size,D
n
(M)

500

1000

1500

2000

2500

3000

3500

4000

R
ew

ar
d

Proposed
POPO [39]
OTPOA
All-offloading

Fig. 7: Reward vs. input data size Dh.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Maximum latency,T
h
max (s)

0

500

1000

1500

2000

2500

3000

3500

4000

R
ew

ar
d

Proposed
POPO [39]
OTPOA
All-offloading

Fig. 8: Reward vs. the maximum task process-
ing latency Tmax

h .

0 1 2 3 4 5 6 7 8

Task placement threshold

0

500

1000

1500

2000

2500

3000

3500

R
ew

ar
d

Proposed
POPO [39]
OTPOA
All-offloading

Fig. 9: Reward vs. task placeme-
nt threshold thre.

0 0.5 1 1.5

Service deployment latency,D
h, j
p lace(s)

0

500

1000

1500

2000

2500

3000

3500

R
ew

ar
d

Proposed
POPO [39]
OTPOA
All-offloading

Fig. 10: Reward vs. service depl-
oyment latency D

place

h,j .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
j,2 10-8

0

500

1000

1500

2000

2500

3000

3500

R
ew

ar
d

Proposed
POPO [39]
OTPOA
All-offloading
Random

Fig. 11: Reward vs. UAVs’ com-
putation resource price ηj,2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
j,2 10-8

0

0.5

1

1.5

2

2.5

3

3.5

4

C
os

t

10-3

Proposed
POPO [39]
OTPOA
All-offloading
Random

Fig. 12: Cost vs. UAVs’ computa-
tion resource price ηj,2.

the fees for data transmission in task offloading will increase,

which will contribute to a decrease in the system reward.

When Dh is greater than 6 Mbit, since the default processing

density is defined as Ξh = 1000 in this paper, the computation

amount Ch will be quite large, and at this point, the optimal

choice will be offloading all tasks to the edge servers for

processing, which is achieved by All-offloading. Because joint

access control, task placement and task offloading decision

optimization, our Proposed algorithm could achieve nearly the

same performance with All-offloading, which reflects in Fig.

7 that they both could obtain nearly the same reward.

In Fig. 8, we present the relationship between the maximum

task processing tolerable latency Tmax
h and the system reward.

When Tmax
h is extremely low, indicating stringent latency

requirements, significant computational resources are required

for task processing. At this stage, none of the four algorithms

can handle tasks locally, and task offloading becomes neces-

sary. However, the data transmission in task offloading, service

deployment, and task processing by the UAV all introduce

certain latency, which cannot be completed within the limited

time of Tmax
h , and UAV processing will also infeasible.

Consider the reward function that we defined earlier, when

any constraints could not be satisfied, the reward will be zero.

Therefore, the obtained reward of all algorithms are zero at

this point.

As the maximum tolerable latency for task processing

increases to 0.5s, it becomes feasible to process some tasks

either locally or on the UAV. Therefore, the system’s reward

grows rapidly at this stage for all algorithms, and this increase

continues until Tmax
h = 1 seconds. When Tmax

h > 1,

most tasks can be processed by the system, so the reward

growth slows down. As Tmax
h > 1.5, nearly all tasks can be

successfully executed by a UAV or the UE itself. As a result,

the reward of All-offloading algorithm stops growing, because

there is no further performance gain from task offloading

optimization. For the other three algorithms, as they have

the flexibility to choose between local and UAV execution

based on optimization criteria, they can effectively decrease

latency and economic costs, resulting in a slight increase in

system reward. What’s more, when the maximum task pro-

cessing latency increases, our proposed algorithm consistently

outperforms All-offloading, POPO, and OTPOA in terms of

reducing overall system cost and therefore maximizing the

system reward.

In Fig. 9, we depict the relationship between the task place-

ment threshold thre and the system reward. When thre = 0,

it implies that the UAVs are unable to deploy and handle any

tasks. In such a scenario, our proposed algorithm, POPO, and

OTPOA utilize task offloading decision optimization to deter-

mine that tasks should be processed locally, thereby enabling

them to receive a certain amount of reward. However, in most

cases, the limited processing capability of UEs often results

in the inability to accomplish a significant portion of tasks,

making the QoS constraints are frequently not met, and thus

the reward is usually 0 as defined by our reward function in Eq.

(31). Consequently, the system reward is generally low in such

scenarios. For All-offloading, tasks can only be offloaded to

UAVs for processing. However, since the UAVs are incapable

of handling any tasks, All-offloading will receive a reward of

0 in this particular case. As thre increases from 0 to 4, the

reward for all four algorithms experiences a significant growth.

This can be attributed to the ability to deploy more instances

14

at UAVs, resulting in an increased capacity for processing

tasks with lower latency, and therefore more reward. As thre
continues to increase, the reward for the four curves grows

at a slower pace. In this scenario, even though each UAV

can be deployed with more instances, the actual number of

instances that can be deployed is constrained by the storge

capability of UAVs. As a result, the incremental benefits in

reward derived from increasing thre become progressively

smaller over time. Moreover, it is noteworthy that our proposed

algorithm consistently demonstrates the highest reward when

the task placement threshold is fixed at any given point.

In Fi. 10, we illustrate the correlation between the system

reward and the service deployment latency Dplace
h,j . As in-

dicated in Eq. (7), the task placement solely influences the

case of selecting a newly initialized instance in the UAV

processing mode. When Dplace
h,j is extremely small, the task

completion delay is primarily attributed to data transmission

and processing, with no additional time spent on service

instance placement. As a result, the reward is significantly

higher. As Dplace
h,j increases, the data transmission and pro-

cessing may exceed the available time frame of Tmax
h −Dplace

h,j

for numerous UEs when utilizing a newly initialized service

instance. Consequently, the system reward experiences a rapid

decline. When Dplace
h,j > 1, i.e., the service placement delay

exceeds the maximum required task completion delay, the

QoS requirement (C15) cannot be fulfilled when utilizing a

newly initialized service instance. Consequently, the reward

in this scenario will be zero. Since local processing and

using an existing instance for task processing may be feasible,

our proposed algorithms, POPO and OTPOA, can still yield

certain system rewards by leveraging such situations. For All-

offloading, the service deployment latency is extremely high

and the storage capacity of UAV edge nodes is limited, tasks

cannot be completed within Tmax
h . Consequently, the reward

in these cases will be zero. Furthermore, it is evident that our

proposed algorithm consistently outperforms others regardless

of the values of Dplace
h,j .

In Figs. 11 and 12, we demonstrate the system reward and

cost versus the price of UAVs’ computation resources ηj,2.

There are two points that should be noted. (i) In the two

figures, we add Random as a baseline algorithm. (ii) The

cost in Fig. 12 equals to the reciprocal of the reward of each

episode, which is motivated from the definition of reward as in

(32). However, (32) is defined for each time slot, and the cost

in Fig. 12 is defined for each episode. Although the time scale

is not exactly the same, the cost in Fig. 12 can also reflect the

cost of the system.

When the price of UAVs’ computation resource is very low,

except for Random, all other algorithms could gain relatively

large reward, and correspondingly, the cost is very small.

With the increase of ηj,2, more money will be spent in task

processing, and the reward of all algorithms decrease, and the

costs increase meanwhile. Since there’s no any optimization in

Random, the performance of Random is very poor, where the

reward of Random is much smaller and the cost of Random

is much higher than other algorithms as shown in Figs. 11

and 12. It can also be observed that, the proposed algorithms

always performs the best under different values of ηj,2.

VII. CONCLUSIONS

In this paper, we have conducted a comprehensive inves-

tigation of the task offloading process in an AGIN, encom-

passing both the service placement and task offloading stages.

In service deployment stage, we optimized the application

placement and replacement issues, with the constraints on

the storage capacity satisfied. In the task offloading stage, we

focused on optimizing several key aspects, including the task

offloading decision, access control and service instance selec-

tion, transmit power control for each UE, and computation

resource assignment for each UAV. Since the problem is a

MINLP problem with tightly coupled optimization variables,

it poses significant challenges for traditional optimization

techniques to find an optimal solution efficiently. Also, as we

intended to realize long-term system cost minimization, and

our problem contains continuous variables, which motivates us

to use MADDPG to solve the problem. We further improve

MADDPG to adapt to our MINLP problem in solving the

integer variables with the coupling between variables guar-

anteed. Simulation results have demonstrated the efficacy of

our proposed algorithm, which exhibits fast convergence and

outperforms other baseline algorithms in terms of maximizing

the reward, i.e., weighted sum of task processing delay and

economic expenditure cost reduction.

REFERENCES

[1] D. Zhou, M. Sheng, J. Wu, J. Li, and Z. Han, “Gateway placement in
integrated satellite-terrestrial networks: Supporting communications and
internet of remote things,” IEEE Internet of Things Journal, vol. 9, no. 6,
pp. 4421–4434, 2022.

[2] D. Zhou, M. Sheng, Y. Wang, J. Li, and Z. Han, “Machine learning based
resource allocation in satellite networks supporting internet of remote
things,” IEEE Transactions on Wireless Communications, vol. 20, no. 10,
pp. 6606–6621, 2021.

[3] Z. Zhang, Q. Zhang, J. Miao, F. R. Yu, F. Fu, J. Du, and T. Wu, “Energy-
efficient secure video streaming in uav-enabled wireless networks: A
safe-dqn approach,” IEEE Transactions on Green Communications and

Networking, vol. 5, no. 4, pp. 1892–1905, 2021.
[4] J. Liu, X. Zhang, R. Zhang, T. Huang, and F. R. Yu, “Reliable and

low-overhead clustering in leo small satellite networks,” IEEE Internet

of Things Journal, vol. 9, no. 16, pp. 14 844 – 14 856, 2022.
[5] J. Kang, H. Du, Z. Li, Z. Xiong, S. Ma, D. Niyato, and Y. Li,

“Personalized saliency in task-oriented semantic communications: Image
transmission and performance analysis,” IEEE Journal on Selected Areas

in Communications, pp. 1–1, 2022.
[6] X. Ren, C. Qiu, X. Wang, Z. Han, K. Xu, H. Yao, and S. Guo,

“Ai-bazaar: A cloud-edge computing power trading framework for
ubiquitous ai services,” IEEE Transactions on Cloud Computing, vol.
early access, no. doi: 10.1109/TCC.2022.3201544, 2022.

[7] L. Liu, J. Feng, X. Mu, Q. Pei, D. Lan, and M. Xiao, “Asynchronous
deep reinforcement learning for collaborative task computing and on-
demand resource allocation in vehicular edge computing,” IEEE Trans-

actions on Intelligent Transportation Systems, vol. early access, no. doi:
10.1109/TITS.2023.3249745, 2023.

[8] X. Yuan, J. Chen, N. Zhang, J. Ni, F. R. Yu, and V. C. Leung, “Digital
twin-driven vehicular task offloading and irs configuration in the internet
of vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 12, pp. 24 290–24 304, 2022.

[9] J. Du, F. R. Yu, G. Lu, J. Wang, J. Jiang, and X. Chu, “Mec-assisted
immersive vr video streaming over terahertz wireless networks: A deep
reinforcement learning approach,” IEEE Internet of Things Journal,
vol. 7, no. 10, pp. 9517–9529, 2020.

[10] X. Yuan, J. Chen, J. Yang, N. Zhang, T. Yang, T. Han, and A. Taherko-
rdi, “Fedstn: Graph representation driven federated learning for edge
computing enabled urban traffic flow prediction,” IEEE Transactions on

Intelligent Transportation Systems, vol. early access, 2022.

15

[11] R. Zhang, J. Liu, F. Liu, T. Huang, Q. Tang, S. Wang, and F. R.
Yu, “Buffer-aware virtual reality video streaming with personalized
and private viewport prediction,” IEEE Journal on Selected Areas in

Communications, vol. 40, no. 2, pp. 694–709, 2021.

[12] S. Bi, L. Huang, and Y. J. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge comput-
ing systems,” IEEE Transactions on Wireless Communications, vol. 19,
no. 7, pp. 4947–4963, 2020.

[13] Z. Cheng, M. Min, M. Liwang, L. Huang, and Z. Gao, “Multiagent
ddpg-based joint task partitioning and power control in fog computing
networks,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 104–116,
2021.

[14] S. Mao, S. He, and J. Wu, “Joint uav position optimization and resource
scheduling in space-air-ground integrated networks with mixed cloud-
edge computing,” IEEE Systems Journal, vol. 15, no. 3, pp. 3992–4002,
2020.

[15] H. Guo, X. Zhou, Y. Wang, and J. Liu, “Achieve load balancing in multi-
uav edge computing iot networks: A dynamic entry and exit mechanism,”
IEEE Internet of Things Journal, vol. 9, no. 19, pp. 18 725–18 736, 2022.

[16] G. Zheng, C. Xu, M. Wen, and X. Zhao, “Service caching based aerial
cooperative computing and resource allocation in multi-uav enabled mec
systems,” IEEE Transactions on Vehicular Technology, vol. 71, no. 10,
pp. 10 934–10 947, 2022.

[17] X. Duan, Y. Zhou, D. Tian, J. Zhou, Z. Sheng, and X. Shen, “Weighted
energy-efficiency maximization for a uav-assisted multiplatoon mobile-
edge computing system,” IEEE Internet of Things Journal, vol. 9, no. 19,
pp. 18 208–18 220, 2022.

[18] X. He, R. Jin, and H. Dai, “Multi-hop task offloading with on-the-fly
computation for multi-uav remote edge computing,” IEEE Transactions

on Communications, vol. 70, no. 2, pp. 1332–1344, 2021.

[19] J. Kang, X. Li, J. Nie, Y. Liu, M. Xu, Z. Xiong, D. Niyato, and
Q. Yan, “Communication-efficient and cross-chain empowered federated
learning for artificial intelligence of things,” IEEE Transactions on

Network Science and Engineering, pp. 1–1, 2022.

[20] M. Li, P. Si, R. Yang, Z. Wang, and Y. Zhang, “Uav-assisted data
transmission in blockchain-enabled m2m communications with mobile
edge computing,” IEEE Network, vol. 34, no. 6, pp. 242–249, 2020.

[21] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/aerial-assisted computing offloading for iot applications: A
learning-based approach,” IEEE Journal on Selected Areas in Commu-

nications, vol. 37, no. 5, pp. 1117–1129, 2019.

[22] H. Liao, Z. Wang, Z. Zhou, Y. Wang, H. Zhang, S. Mumtaz, and
M. Guizani, “Blockchain and semi-distributed learning-based secure
and low-latency computation offloading in space-air-ground-integrated
power iot,” IEEE Journal of Selected Topics in Signal Processing, vol.
early access, no. 16, pp. 381–394, 2021.

[23] Y. Gong, H. Yao, D. Wu, W. Yuan, T. Dong, and F. R. Yu, “Computation
offloading for rechargeable users in space-air-ground networks,” IEEE

Transactions on Vehicular Technology, vol. early access, 2022.

[24] H. Peng and X. Shen, “Multi-agent reinforcement learning based re-
source management in mec-and uav-assisted vehicular networks,” IEEE

Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 131–
141, 2020.

[25] Y. Chen, Y. Sun, B. Yang, and T. Taleb, “Joint caching and computing
service placement for edge-enabled iot based on deep reinforcement
learning,” IEEE Internet of Things Journal, vol. 9, no. 19, pp. 19 501–
19 514, 2022.

[26] X. Gao, R. Liu, and A. Kaushik, “Virtual network function placement
in satellite edge computing with a potential game approach,” IEEE

Transactions on Network and Service Management, vol. 19, no. 2, pp.
1243–1259, 2022.

[27] S. Yu, X. Gong, Q. Shi, X. Wang, and X. Chen, “Ec-sagins: Edge-
computing-enhanced spacecaircground-integrated networks for internet
of vehicles,” IEEE Internet of Things Journal, vol. 9, no. 8, pp. 5742–
5754, 2021.

[28] S. Yu, X. Chen, Z. Zhou, X. Gong, and D. Wu, “When deep rein-
forcement learning meets federated learning: Intelligent multitimescale
resource management for multiaccess edge computing in 5g ultradense
network,” IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2238–2251,
2020.

[29] J. Du, Y. Sun, N. Zhang, Z. Xiong, A. Sun, and Z. Ding, “Cost-effective
task offloading in noma-enabled vehicular mobile edge computing,”
IEEE Systems Journal, 2022.

[30] Y. Li, W. Liang, and J. Li, “Profit maximization for service placement
and request assignment in edge computing via deep reinforcement
learning,” in Proceedings of the 24th International ACM Conference

on Modeling, Analysis and Simulation of Wireless and Mobile Systems.
Alicante, Spain, Nov. 2021, pp. 51–55.

[31] H. Zhu, Q. Wu, X. Wu, J. Fan, P. Fan, and J. Wang, “Decentralized
power allocation for mimo-noma vehicular edge computing based on
deep reinforcement learning,” IEEE Internet of Things Journal, vol. 9,
no. 14, pp. 12 770–12 782, 2021.

[32] F. Fu, Y. Kang, Z. Zhang, F. R. Yu, and T. Wu, “Soft actorccritic drl for
live transcoding and streaming in vehicular fog-computing-enabled iov,”
IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1308–1321, 2021.

[33] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[34] T. P. Lillicrap, J. J. Hunt, A. Pritzel, and etc., “Continuous control with
deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[35] J. Du, W. Cheng, G. Lu, H. Cao, X. Chu, and Z. Zhang, “Resource
pricing and allocation in mec enabled blockchain systems: An a3c
deep reinforcement learning approach,” IEEE Transactions on Network

Science and Engineering, vol. 9, no. 1, pp. 33 – 44, 2022.
[36] M. Li, F. R. Yu, P. Si, W. Wu, and Y. Zhang, “Resource optimization for

delay-tolerant data in blockchain-enabled iot with edge computing: A
deep reinforcement learning approach,” IEEE Internet of Things Journal,
vol. 7, no. 10, pp. 9399–9412, 2020.

[37] K. Wei, Q. Tang, J. Guo, M. Zeng, Z. Fei, and Q. Cui, “Resource
scheduling and offloading strategy based on leo satellite edge comput-
ing,” in 2021 IEEE 94th Vehicular Technology Conference (VTC2021-

Fall). Norman, OK, USA, Sep. 2021, pp. 1–6.
[38] R. I. Bor-Yaliniz, A. El-Keyi, and H. Yanikomeroglu, “Efficient 3-d

placement of an aerial base station in next generation cellular network-
s,” in 2016 IEEE international conference on communications (ICC).
Kuala Lumpur, Malaysia, May. 2016, pp. 1–5.

[39] Z. Yao, Y. Li, S. Xia, and G. Wu, “Attention cooperative task offloading
and service caching in edge computing,” in 2022 IEEE Global Com-

munications Conference. Rio de Janeiro, Brazil, Dec. 5189-5194, pp.
1–5.

Jianbo Du received her Ph.D. in communication
and information systems from Xidian University,
Xi’an, Shaanxi, China, in 2018. She was a visiting
scholar at Carleton University, Canada, in 2019. She
is now an associate professor with the School of
Communication and Information Engineering, Xi’an
University of Posts and Telecommunications. Her
research interests include mobile edge computing,
blockchain, space-air-ground integrated networks,
deep reinforcement learning, optimization theory
and methods, etc., and their applications in wireless

communications.

Kong Ziwen obtained a Bachelor’s degree in Com-
munication Engineering from Xi’an University of
Technology in 2021. She is currently studying for
a Master of Engineering degree in Information and
Communication at Xi’an University of Posts and
Telecommunications. Her research interests include
mobile edge computing, blockchain and deep re-
inforcement learning algorithms, as well as their
applications in wireless communication.

16

Aijing Sun is a professor and the Dean of the School
of Communication and Information Engineering,
Xi’an University of Posts and Telecommunications.
She is the vice chairman of Shaanxi Institute of
Communications, expert member of Communica-
tions Branch of China Institute of Electronics, etc.
As the first complete person, she won the third
prize of Shaanxi Science and Technology Award, the
second prize of Shaanxi Provincial Higher Education
Science and Technology Award, the first prize of
Shaanxi Province Excellent Textbook, and the sec-

ond prize of Shaanxi Provincial Higher Education Teaching Achievement
Award. She is also the winner of the 2020 Shaanxi Provincial Teaching
Teacher Award due to her excellent contributions in education and research.
Her research interests include Internet of Things technology and intelligent
education information technology.

Jiawen Kang received the Ph.D. degree from the
Guangdong University of Technology, China in
2018. He has been a postdoc at Nanyang Techno-
logical University, Singapore from 2018 to 2021. He
currently is a full professor at Guangdong University
of Technology, China. His research interests mainly
focus on blockchain, security, and privacy protection
in wireless communications and networking.

Dusit Niyato (M’09-SM’15-F’17) is a professor in
the School of Computer Science and Engineering,
at Nanyang Technological University, Singapore. He
received B.Eng. from King Mongkuts Institute of
Technology Ladkrabang (KMITL), Thailand in 1999
and Ph.D. in Electrical and Computer Engineering
from the University of Manitoba, Canada in 2008.
His research interests are in the areas of sustainabili-
ty, edge intelligence, decentralized machine learning,
and incentive mechanism design.

Xiaoli Chu (M’06-SM’15) is a Professor in the
Department of Electronic and Electrical Engineering
at the University of Sheffield, UK. She received
the B.Eng. degree in Electronic and Information
Engineering from Xi’an Jiao Tong University in
2001 and the Ph.D. degree in Electrical and Elec-
tronic Engineering from the Hong Kong University
of Science and Technology, Hong Kong, China,
in 2005. From 2005 to 2012, she was with the
Centre for Telecommunications Research at King’s
College London. Xiaoli has co-authored over 200

peerreviewed journal and conference papers, including 8 ESI Highly Cited
Papers and the IEEE Communications Society 2017 Young Author Best
Paper. She co-authored/co-edited the books FogEnabled Intelligent IoT Sys-
tems (Springer 2020), Ultra Dense Networks for 5G and Beyond (Wiley
2019), Heterogeneous Cellular Networks-Theory, Simulation and Deployment
(Cambridge University Press 2013), and 4G Femtocells: Resource Allocation
and Interference Management (Springer 2013). She is Senior Editor for IEEE
Wireless Communications Letters, Associate Editor for IEEE Transactions on
Network Science and Engineering, Editor for IEEE Open Journal of Vehicular
Technology, and received the IEEE Communications Letters Exemplary Editor
Award in 2018.

F. Richard Yu (S’00-M’04-SM’08-F’18) F. Richard
Yu (Fellow, IEEE) received the Ph.D. degree in
electrical engineering from The University of British
Columbia (UBC) in 2003. From 2002 to 2006, he
was with Ericsson, Lund, Sweden, and a start-up
in California, USA. He joined Carleton University
in 2007, where he is currently a Professor. His
research interests include cross-layer/cross-system
design, security, green ICT, and QoS provisioning
in wireless-based systems. He received the IEEE
Outstanding Service Award in 2016, the IEEE Out-

standing Leadership Award in 2013, the Carleton Research Achievement
Award in 2012, the Ontario Early Researcher Award (formerly Premiers
Research Excellence Award) in 2011, the Excellent Contribution Award at
IEEE/IFIP TrustCom 2010, the Leadership Opportunity Fund Award from
Canada Foundation of Innovation in 2009, and the Best Paper Awards at IEEE
ICC 2014, Globecom 2012, IEEE/IFIP TrustCom 2009, and Intl Conference
on Networking 2005. He has served as the technical program committee
(TPC) co-chair for numerous conferences. He is a registered Professional
Engineer in the province of Ontario, Canada. He serves as the Vice-Chair for
the IEEE Technical Committee on Green Communications and Computing
and a member of Board of Governors for the IEEE Vehicular Technology
Society.

