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Simultaneous Hip Implant Segmentation and
Gruen Landmarks Detection

Asma Alzaid , Beth Lineham, Sanja Dogramadzi, Hemant Pandit, Alejandro F. Frangi and Sheng Quan Xie

Abstract— The assessment of implant status and com-
plications of Total Hip Replacement (THR) relies mainly on
the clinical evaluation of the X-ray images to analyse the
implant and the surrounding rigid structures. The current
clinical practice depends on the manual identification of
important landmarks to define the implant boundary and
to analyse many features in arthroplasty X-ray images
which is time-consuming and could be prone to human
error. Semantic segmentation based on Convolutional Neu-
ral Network (CNN) has demonstrated successful results
in many medical segmentation tasks. However, these net-
works cannot define explicit properties that lead to inaccu-
rate segmentation, especially with the limited size of image
datasets. Our work integrates clinical knowledge with CNN
to segment the implant and detect the important features
simultaneously. This is instrumental in arthroplasty compli-
cations diagnostics, particularly for implant loosening and
implant-close bone fractures, where the fracture location
in relation to the implant has to be accurately determined.
In this work, we define the landmarks using Gruen zones
that represent the implant’s interface with the surrounding
bone to build a Statistical Shape Model (SSM). We propose
a multi-task CNN that combines regression of pose and
shape parameters constructed from the SSM and semantic
segmentation of the implant. This integrated approach has
improved the estimation of the implant shape, from 74%
to 80% dice score, making the segmentation realistic and
allowing automatic detection of the Gruen zones. In order
to train and evaluate our method, we generated a dataset of
annotated hip arthroplasty X-ray images that will be made
available.

Index Terms— Arthroplasty, Image segmentation, Land-
marks detection, Medical image analysis, Statistical Shape
Model,

I. INTRODUCTION

Total Hip Replacement (THR) follow-up radiographs are

used in routine prosthetic joints evaluation and monitoring to
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identify any potential complications. These include loosening,

infection, and other short and long-term problems related

to the region surrounding the implant. For instance, Aseptic

loosening, which is the most common cause for THR revision

[1] is detected by visually assessing the radio-lucencies ’gaps’

around the implant and determining the implant’s positional

variations in relation to the bone. The widely used clinical

protocol for assessing the implant status is the Gruen zone

system, which divides the interface between the bone and

implant into seven zones (see Fig.1 (a)). In clinical practice,

these landmarks and the surrounding boundary of the implant

are defined by clinicians, often time-consuming, and prone

to human error process that could lead to inconsistencies in

outcomes between various clinical specialists. Automating the

identification of these landmarks and segmenting the implant

can minimize these problems and ultimately lead to more

efficient and reliable diagnoses, better treatment planning, and,

ultimately, improved patient outcomes.

In several research studies [2] [3] and medical imaging

analysis and assisted tools in orthopaedics such as Ortho View

and ELBRA, manual selection of anatomical landmarks or

implant boundaries is used for subsequent analysis. To the

best of our knowledge, there is currently no existing work on

automated identification of the Gruen landmarks. On the other

hand, several studies attempted to automate the segmentation

of hip implant. The early work on implant segmentation con-

sidered the analysis of images based on hand-crafted features

such as histogram thresholding [4] [5], Active Contour method

initialized by using the Fast randomized circle detection

method [3], and the region growing method initialized by

applying the Hough transforms [2]. These methods are not

generalized well towards THR radiographs and could provide

good results only when the implant components are clearly

presented in the X-ray images. Moving from traditional-based

methods to Deep Learning (DL) based methods, Patel et al.

[6] applied U-Net to segment hip implants as an initial step

for classification of the type of implant. Even though the

Convolution Neural Network (CNN) showed state-of-the-art

results in many medical segmentation tasks, these networks

map the global shape structure and can not define the local

regional properties. In addition, these networks could produce

unrealistic segmentations i.e. gaps or missing parts in the

segmented implant, especially when the training dataset is lim-

ited, which is considered a major challenge in many medical

imaging research. Similarly, the Gruen landmarks might not

have simple distinguishable features to be learned by a CNN. It

is defined based on the shape and geometry of the implant and
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its surrounding bone. CNN exceeds at learning hierarchical

representations of the visual features but may have difficulty

capturing precise geometric features and shapes particularly if

the training dataset is small.

Increasing the dataset size would improve the performance

of CNN based methods, however, it is difficult and time-

consuming to annotate a large number of THR X- ray images.

In addition, the quality, complexity and variety of THR images

may limit the effectiveness of synthesizing new data [7].

Therefore, we introduce a hybrid approach that leverages

the shape knowledge of hip implants for simultaneous seg-

mentation and detection of Gruen landmarks in the implant.

Although several studies in the medical image analysis domain

incorporate shape knowledge into DL such as segmentation of

left ventricle [8], brain boundary [9] and skin lesions [10], this

is the first work that uses such an approach for implant shape

segmentation and landmark localization. This paper proposes

a multi-task CNN to perform a binary segmentation map of

the implant, detect the implant tip point and regress SSM

parameters to compute the shape of the implant. We employed

the Statistical Shape Model (SSM) to build a landmark-based

shape model from a training dataset and fit this model to a

new image using the shape coefficients and pose parameters.

We combine the advantages of SSM for both imposing shape

constraints and describing the important landmarks in the

implant. In addition, we preserved the benefits of CNN to

extract complex features from images.

Integrating segmentation and regression of the shape model

parameters was utilised in other medical imaging domains,

either using two parallel steps- one for predicting shape

parameters and the other one for predicting the segmentation

map such as in prostate segmentation in MRI image [11]

or by combining the two steps in one pipeline [12] [13].

Regression of the SSM parameters and the distance map to

segment the left ventricle was developed in [12], while [13]

predicted shape coefficients and pose parameters to compute

the coordinates of the landmark points that approximated the

final segmentation. Compared to these methods, our approach

improves the segmentation as well as landmarks identification

by simultaneously predicting the SSM parameters, the implant

tip point and perform the binary segmentation maps.

The novel contributions of this work are: (1) We propose

integrated approach that allowed segmentation of implant and

automatic detection of the landmarks of interest in the implant.

(2) define Gruen zone landmarks and represent the shape of

implant femoral component accordingly. (3) Annotated THR

images dataset that defines implant landmarks. It will be

publicly available to enhance the research in this field.

II. RELATED WORK

There are many currently adopted approches in the med-

ical image domain that introduced the integration of shape

knowledge with CNN. These approaches can be divided into

five main categories: (1) post-processing by shape model, (2)

prior knowledge, (3) multiple CNNs and shape models, (4)

learning hidden representations of shape and (5) shape prior

as regularization in the objective function.

follows this strategy for segmentation and tracking of the

left ventricle. They swap out the CNN for a Faster-RCNN and

use an improved ASM that allows to obtain matching points

in greater ranges. ASM improves R-CNN segmentations for

detection and tracking

The shape model is used as a post-processing step to refine

the CNN segmentation. A method of using left ventricle

segmentation that initialized the segmentation with a Faster

R-CNN model for detection and tracking was reported in

[15] followed by a selection-based sparse shape model and

a local deformable model to perform the final segmentation.

A modified Active Shape Model (ASM) to refine the seg-

mentation of the left ventricle was implemented in [8]. Since

the main limitation of ASM is high outliers as a result of

searching for landmarks, the authors took advantage of CNN

to maximize the quality of feature extraction from images. The

Expectation-Maximization was selected to minimize the effect

of outliers during the ASM optimization. Rather than using

segmentation maps for initializing the shape model, Tabrizi

et al. [16] predicted the bounding boxes as initializations,

and the final segmentation using the weighted fuzzy ASM.

A similar approach was introduced by Li et al. [17] for

myocardial segmentation, where they applied random forest

to build probability maps from the detected bounding box and

utilized SSM for the final segmentation.

Prior shape knowledge is applied to generate the initial

segmentation. Nguyen et al. [9], split images into groups with

similar shapes and structures of brain boundaries. Then, prior

ASM was used for each group to generate coarse segmenta-

tion, followed by a CNN and post-processing methods such

as Conditional Random Field (CRF) and Gaussian processes

to refine the segmented contours. Extended U-net architec-

ture by incorporating multi-resolution input and integrating

a shape prior as a template for cardiac MRI segmentation

were reported by Zotti et al. [18]. Shape priors encoded the

probability of a voxel being part of a specific class, which is

used in segmentation and for predicting the central location of

the object.

More accurate outcomes can be obtained by using multiple

CNNs and shape models. A pipeline of multiple CNNs and

SSMs to segment knee bone and cartilage from MRI images

was proposed by Ambellan et al. [19]. The pipeline started

with 2D U-Net to generate initial segmentation masks which

are then regularized by SSMs. Then, 3D U-Net is employed

to extract smaller MRI subvolumes. To further enhance the

results, another SSM is used as a post-processing step. Fi-

nally, a third U-Net is used to segment the cartilage. Three

steps pipeline of hippocampus segmentation from MRI was

proposed by Brusini et al. [20], using U-Net, SSMs and a

second U-Net. They utilized three orthogonal U-Nets and

averaged their prediction to extract the final segmentation.

A segmentation method for cardiac images that combined

a multi-task DL approach with an atlas as a prior shape

was reported by Duan et al. [21]. Their method trained a

Fully Convolutional Network (FCN) for both segmentation and

landmarks detection. The landmarks were used to initialize the

atlas by selecting the most corresponding one, which is used

to refine the segmentation.
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Fig. 1. (a) Femoral component zones according to Gruen et al. [14], (b) Modified definition of Gruen zones. (c) Shape landmarks description.

For learning the hidden representation of the anatomical

shape and topological structures to impose the shape con-

straints on the initial segmentation, denoising autoencoders

(DAE) were used for post-processing step for lung segmen-

tation [22], constraint variational autoencoder (cVAE) for

learning the latent representation of cardiac shapes [23], and

a Shape-aware Multi-view AutoEncoder (Shape MAE) for

learning the anatomical shape priors of cardiac anatomy [24].

The approaches that combine the shape priors as regular-

ization terms in the loss function of the segmentation network

are based on either using the landmarks distance [11] [25]

or on the shape parameters [13] [12]. The normalized distant

maps for the constructed contour from SSM parameters were

combined in the segmentation as a parallel step to a network

that generated the probability maps for prostate segmentation

[11], or as the initialization step of the segmentation [25]. A

stage-wise regression model is proposed in [13] that initially

predicted the centre location of the prostate and subsequently

incorporated shape parameters and rotation vector predictions.

In contrast, [12] incorporated regression of shape and pose

parameters along with the distance maps regression in one

pipeline to segment the left ventricle. To enhance the segmen-

tation of skin lesions, a shape prior was encoded as a new loss

term in an FCN, with non-star shape segments being penalized

in the prediction maps [10].

In this paper, we propose a hybrid approach that lever-

ages the shape knowledge of hip implant for simultaneous

segmentation and detection of important landmarks. A multi-

task CNN is proposed that incorporates aspects of previous

approaches to automatically extract an implant shape repre-

sentation that can be utilized for several regional assessments.

Compared with category 5 approaches to use the shape priors

as regularization in the objective function, we regress the shape

parameters of an SSM that helps us to identify the important

landmarks in the implant, which enable further computation

and extraction of implant surrounding regions. In contrast to

other methods, we improve shape prediction by simultane-

ously detecting the implant tip point and performing semantic

segmentation. In addition, a final alignment of the shape

is calculated by applying the ICP algorithm. Our proposed

architecture is designed as an encoder-decoder CNN where

the features in the encoder part have shape-related information.

These feature maps are shared by both branches- regression

Fig. 2. GPA steps: (a) Samples of training shapes. (b) Aligned shapes.
(c) mean shape

of pose and shape parameters and semantic segmentation.

This automate the identification of the Gruen landmarks by

constructing the implant shape from the predicted parameters.

III. METHODS

A. Anatomical knowledge

The clinical assessment of THR postoperative radiographs

includes examining the changes in the appearance of implant

components and bone. Experienced clinicians depend greatly

on their knowledge of the anatomical priors such as shape

and position of the implant and bone for assessing radiograph

images. We include this knowledge into our DL model to

segment the implant and detect the important landmarks of

the femoral component of the implant. The most widely used

medical system for evaluating the status of the femoral stem is

the Gruen system [14], which divides the femoral component

into seven zones in Antero-Posterior (AP) radiograph (see Fig.

1 (a)). We introduce shape landmarks based on these zones

(Fig. 1 (b) shows the definition of Gruen landmarks).

B. Shape Model

THR radiograph images significantly vary in appearance

depending on the condition of the patient and the complication

after THR surgery. A SSM, that describes the object shape and

its variations [26], is generated from a training image set that is

annotated by a human expert and built from the analysis of the
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Fig. 3. The proposed GruenNet architecture. The encoder block (EB) consisted of 3×3 convolutional (conv) layer, batch normalization (BN),
a parameterized rectified linear unit (ReLU) followed by another conv and BN. The Down sampling (SD) consisted of conv followed by BN. The
number of feature maps (#FM) is presented for each block.

shape variations. The interpretation of a new image requires

identifying the parameters that best match the model to the

image. An accurate SSM requires correspondence mapping

between shape landmarks. We define these landmarks using

the Gruen zones.

The localization of these zones simplifies the analysis of

the surrounding region of the implant which, consequently,

approximates the shape of the implant and localizes the

important landmarks.

Fig. 1 (c) shows a comprehensive description of the defined

landmarks. Additional landmarks within each zone were added

to accurately represent the shape of the implant.

After defining the shape landmarks, as a set of N con-

nected landmarks x = (x1, ...xN , y1, ...yN ), the SSM can be

constructed using the following steps. First, the mean shape is

computed by aligning all the training S shapes together using

Generalized Procrustes Analysis (GPA). GPA is an iterative

method that starts by selecting a random shape from the

training set as a mean shape. All shapes are aligned with

reference to the mean shape, which is re-estimated and the

alignment is repeated. The process ends when the estimated

mean shape is equal to the previous one. The resulting aligned

shape is defined as:

(

x
′

y
′

)

=

(

tx
ty

)

+

(

cos θ − sin θ
s sin θ s cos θ

)(

x
y

)

(1)

Where (tx, ty), θ and s are the pose parameters (translation,

rotation and scaling). The average shape can be estimated by:

x̄ =
1

S

S
∑

i=1

x
′

i (2)

Where x
′

i denotes the aligned shape vector and i ∈ {1, 2, ..S}.

This process is presented in Fig. 2. The S samples of the

training set are shown in Fig. 2(a) whereas the aligned shapes

xi are shown in Fig. 2 (B) and the mean shape x̄ is presented

in Fig. 2(C).

Then, the Principal Component Analysis (PCA) is applied

to obtain shape variations. Given a set of shape vectors {x
′

i},

the mean shape is computed by using (2), and the covariance

of the data is computed by:

C =
1

S − 1

S
∑

i=1

(xi − x̄)(xi − x̄)T (3)

The eigenvectors P = {p1, p2, ...pt} and corresponding

eigenvalues λt of C represent the directions of variation in

the data about the mean. The first M largest eigenvalues are

chosen such that:
M
∑

i=1

λi ≥ fvVT (4)

where fv defines the proportion of the total variation VT .

Assuming that the shape follows a Gaussian probability dis-

tribution, the shape can be approximated using:

x ≈ x̄+ Pb (5)

where P contains the first m eigenvectors and b is a m
dimensional vector given by:

b = PT (x− x̄) (6)
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C. Dataset Pre-processing

All images are resized to 224× 224 px and are normalized

by dividing by the largest pixel value (255). Pose parameters

(θ and s) and b-coefficients are normalized by min-max feature

scaling to values between 0 and 1. The tip point position is

used to generate a heat-map image of size 224×224 by using

a Gaussian kernel with σ = 5.

Online data augmentation is used to increase the dataset

size. This is computed by first applying random transforma-

tions to the shape parameters as the following: the shape

coefficients b are modified by adding a random uniform value

baug = b + a where a ∈ [−2, 2], random shape rotation

θ ∈ [−60, 60] and translation by a random value between [-

10,10]. The images are transformed according to the computed

augmented shape using the Thin Plate Spline Transformation

method [27]. The masks and heat-maps are created respec-

tively. In addition, brightness variation [−0.2, 0.2] is applied

for augmentation.

D. Gruen Net

The proposed Gruen network architecture for detecting

Gruen landmarks and performing implant segmentation is

presented in Fig. 3. The input to the network is the X-ray

image and it has four outputs: (1) shape parameters bm. (2)

pose parameters θ and scale s. (3) implant tip point (cx, cy).
(4) segmentation maps. The proposed architecture consisted

of two branches; the green branch, which is responsible for

learning bm, θ and s, and the yellow branch which learns

the binary segmentation map and the tip point heatmap. The

grey layers are shared by all tasks. Semantic segmentation

and tip point prediction share the same features that are

conducted by an encoder-decoder to infer the probability label

map. The encoder part includes three residual blocks that

consist of two convolution layers with a kernel size of 3 ×

3. Each convolution layer is followed by batch normalization

and ReLu activation function. The encoder is followed by

the bridge part which consists of one residual block. The

decoder part uses both the features map from the bridge and

the skip connections from different encoder blocks to learn

the binary classification of each pixel for both segmentation

and tip point localization tasks. Finally, the task-specific layers

which consisted of convolution and ReLu layers followed by

a sigmoid function are added to the network architecture. The

regression of the SSM parameters branch starts from the bridge

block. It shares three convolution layers and has specific two

convolution layers and a Linear layer. Each convolution is

followed by batch normalization and ReLu layers.

The network is trained using a weighted sum of multiple

loss functions (Lb, Lθ,s, Lsh, Lcx,xy
and Lseg). The shape

parameters loss (Lb) is defined as the Mean Squared Error

(MSE) between the ground truth shape parameters (bi,true)

and the predicted one (bi,pred):

Lb =
1

N

N
∑

i=1

(bi,true − bi,pred)
2 (7)

The pose parameters loss (Lθ,s) are defined as the sum of MSE

loss between the ground truth (θi,true, si,true ) and predicted

orientation and scale (θi,pred, si,pred):

Lθ,s =
1

N
(

N
∑

i=1

(θi,true − θi,pred)
2 +

N
∑

i=1

(si,true − si,pred)
2)

(8)

The heatmap regression is employed to detect the tip point.

For each image, a heatmap image is formed using a Gaussian

filter that is centred at the tip point location. The heatmap loss

(Lhm) is defined using the Cross-Entropy (CE) loss function

as:

Lhm = hmtrue · log hmpred+(1−hmtrue) · log(1−hmpred)
(9)

where hmtrue is the ground truth label and hmpred is the

predicted probability of the point being tip point.

The implant shape is computed using the shape parameters

(bi, θi, si, and cx, cy) as described in section III-B. The shape

loss (Lsh) is calculated by the MSE between the predicted

shape (shi,pred)) and the ground truth shape (shi,true)):

Lsh = 1/N

N
∑

i=1

(shi,true − shi,pred)
2 (10)

The binary segmentation loss is defined using the CE loss

function:

Lseg = ytrue · log ypred + (1− ytrue) · log(1− ypred) (11)

where ytrue is the ground truth label and ypred is the predicted

probability.

IV. EXPERIMENTAL SETTINGS

Multiple experiments have been carried out to validate

the proposed method and the effect of each parameter. In

addition, different loss functions and hyper-parameters have

been explored to obtain the best results. For simplicity, BSM

is referred to the segmentation resulting from the binary

segmentation map and SP is referred to the segmentation

constructed from the prediction of shape coefficients, pose

parameters and tip points detection.

The purpose of the first experiment is to assess the perfor-

mance of each task separately; (1) The prediction of a BSM of

the image for semantic segmentation. (2) the prediction of the

SP for segmentation and landmarks localization. The BSM was

achieved by training the main branch of the proposed model

(Fig. 3 the grey and yellow parts for segmentation task only),

while the SP predictions were learned by training the grey and

green part and yellow part for heatmap prediction. The effect

of the data augmentation was also investigated on both tasks.

The second experiment is to evaluate the performance

when combining both semantic segmentation and shape and

pose parameters prediction in the learning process. In this

experiment, we study also the effect of adding shape loss (Lsh)

that is computed from the shape and pose parameters. The last

experiment will study the impact of employing the ICP method

to align the segmentation map with the predicted landmarks.
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A. Dataset

To increase the variability of X-ray images, two different

hip implant datasets were utilized to construct, train and

validate the proposed method: Orthonet dataset [6] and in-

house dataset [28]. Orthonet dataset is a publicly available

dataset that was originally collected for the classification of the

implant model type in knee and hip arthroplasty. It consisted

of 1191 unilateral hip X-ray images with 8 different models

of implant. Part of this dataset (198 images) was intended

for implant segmentation. So, it includes the original x-ray

images and the implant mask images. The images have various

sizes and all the images represent the normal status of the

implant. More details about this dataset and the generation of

the implant masks can be found in [6]. The in-house dataset

was generated for automated peri-prosthetic femur fracture

diagnosis [28]. It consisted of X-ray images after the THR,

which is considered normal cases, and X-ray images with

various types of fractures. More details about this dataset can

be found in [28].

Due to difficulties of manual annotation of the ground

truth, this work has included part of both dataset. A total

number of 330 images were used for training and validation of

the proposed method. From Orthonet data, approximately, 30

images were randomly selected from each implant model. The

remaining images were selected from the in-house data. The

choice of in-house images was based on the fracture type. The

fracture types B1, B2 and B3 occur within the implant region.

Therefore, the images were randomly selected from these types

(approximately 30 images per type). Table I demonstrates the

distribution of the dataset.

Ground truth segmentations of implant femoral component

and the SSM landmarks were annotated by a clinical expert

using the Microsoft VOTT tool. The landmarks were annotated

as described in Fig. 1 (c). Landmarks (2, 4, 6, 8, 10, 12, 14) are

the Gruen zone landmarks, while the other points are added

to define the implant boundary precisely. The implant masks

were generated by filling the area of the defined shape.

B. Implementation details

The femoral stem is represented by N = 15 landmarks and

(θ, tx, ty, s) are computed as explained in Section III-B. The

shape model has M = 15 modes of shape variation which

explains 98% of shape variation. Fig. 4 shows examples of

the shape variations related to the first 15 eigenmodes of the

implant.

The dataset was divided into two parts: training and val-

idation, with the ratio 75% : 25%, respectively. Different

augmentation methods have been applied as explained in

section III-C to the dataset to minimize the effect of the small

dataset size.

The network was trained on a Windows machine equipped

with 8 GB RAM, Intel(R) Core(TM) CPU @ 3.00 GHz and

GeForce RTX 2080 graphics card. It is trained over 200 epoch

with AdamW optimizer, learning rate 1× 10−4, weight decay

5−4 and batch size = 8.

TABLE I

DISTRIBUTION OF THE DATASET.

C. Evaluation settings

Multiple evaluation metrics were used to validate the pro-

posed method. As explained earlier, we evaluated the accuracy

of the femoral stem segmentation for both outcomes; BSM

and SP. Dice coefficient and Hausdorff distance were used to

evaluate the segmentation results.

Additionally, the performance of the predicted shape co-

efficients, pose parameters and tip point prediction were

evaluated. For the pose parameters evaluation, the absolute

error was utilized where the orientation error is defined as

δθ = |θpred − θtrue| and the scale error is defined as δs =
|spred−strue|. The Euclidean distance was used to validate the

tip point prediction. In addition, the impact of each parameter

on the construction of the shape landmarks is analysed by

taking into account the ground truth of all parameters except

the studied one.

The shape landmarks were assessed using the Normalized

Root Mean Square Error (NRMSE). NRMSE measures the

average distance between the predicted and the ground truth
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Fig. 4. 15 modes of shape variations. Green represents the mean
model. Yellow represents the deformed shape by −3

√
λi and blue

represents the deformed shape by 3
√

λi

TABLE II

DICE AND HD RESULTS FOR SEGMENTATION COMPUTED FROM BSM

(UPPER ROW) AND SEGMENTATION COMPUTED FROM THE

CONSTRUCTED IMPLANT SHAPE SP (BOTTOM ROW) IN THE ABLATION

STUDIES. THE BEST RESULTS ARE HIGHLIGHTED.

Experiment Dice (%) HD (px)

U-Net 74 ± 13.3 16 ± 23.4
BSM 78 ± 23.3 20 ± 23.6
BSM + A 79 ± 24 12 ± 17.9
BSM + SP + A 77.7 ± 22.7 10 ± 14
SBSM + A + Lsh 80 ± 22 8.8 ± 10.7

SPTXY 22.04 ± 24.11 34.7 ± 13
SPHM 56.7 ± 16.8 26 ± 30.6
SP + A 57.4 ± 17.7 24.8 ± 23.4
SP + BSM + A 62 ± 15.7 20 ± 15.7
SP + BSM + A + ICP 66.7 ± 17.7 17.5 ± 17.6
SP + BSM + A + Lsh 62 ± 15.2 20.4 ± 9
SP + BSM + A + Lsh + ICP 69.7 ± 16.7 16.8 ± 9.8

landmarks normalized by the distance between two adjacent

ground truth landmarks (xi−1, xi+1)

NRMSE =
1

N

N
∑

i=1

√

(xp
i − xt

i)
2 + (ypi − yti)

2

√

(xt
i−1

− xt
i+1

)2 + (yti−1
− yti+1

)2

(12)

Where N is the number of the landmarks, (xp
i , y

p
i ) is the

predicted landmark and (xt
i, y

t
i ) is the corresponding ground

truth landmark. Furthermore, the cumulative error distribution

(CED) was utilized to assess the detection of the landmarks.

CED plots the cumulative NRMSE against the proportion of

images with an NRMSE of less than or equal to a particular

value.

The performance of using augmentation, adding shape loss

and applying the ICP algorithm was validated by Dice coeffi-

cient, Hausdorff and NRMSE.

V. RESULTS

A. Ablation studies

In this paper, we integrated implant shape into a deep

learning model to segment the implant and detect the Gruen

landmarks. To demonstrate the effectiveness of our proposed

method, we performed ablation experiments on the THR

dataset. The results in Table II presented the validity of

our proposed method. The upper rows in the table showed

the segmentation result computed from the BSM component,

while the bottom rows showed the segmentation result com-

puted from the predicted shape and pose parameters SP. For

simplicity, A represents the data augmentation, Lsh represents

the shape loss. For the BSM task, the proposed model pro-

vided better segmentation results compared to U-net with a

dice score of 78%. The performance was further improved

when introducing the data augmentation with a dice score of

79% and HD of 12 px. The segmentation did not improve

when joining the shape parameters prediction component in

the training, however, introducing (Lsh) resulted in the best

segmentation performance with a dice score of 80% and HD of

8.8 px. Fig. 5 illustrated examples of the binary segmentation

results compared to the ground truth segmentation in different

experimental settings. Also, the dice score is reported for each

image. The predicted segmentation appeared disconnected

when utilizing the BSM only, while the shape tends to be

connected when joining the regression of the shape parameters,

specifically when adding Lsh.

The bottom rows of Table II demonstrated the segmentation

results computed from SP task. Two experiments were carried

out to compute the implant shape. The first experiment re-

gresses the translation, rotation, scale and shape parameters

to compute the implant shape. For simplicity, we denoted this

experiment as SPTXY . The second experiment differs from

the first one by the computation of the translation parameter

which is computed based on the position of the implant tip

point. The tip point is predicted using the heatmap regression.

We denoted this experiment as SPHM . The regression of

shape and pose parameters only including the regression of the

translation parameters (SPTXY ) produced poor segmentation

results. The performance is enhanced significantly (by 34%

dice score) when utilizing the tip point to calculate the

translation parameter (SPHM ). The performance is further

improved by adding data augmentation. When joining the

BSM, the segmentation performance was improved in both

metrics (Dice = 62% and HD = 20 px). On the other hand,

the results have not changed when introducing the shape loss.

Applying the ICP algorithm to align the predicted shape to the

BSM results produced better shape segmentation with dice =

69.7% and HD = 16.8 px. Fig. 6 showed some examples in

different experiments for the segmentation using the predicted

shape. Additionally, a dice score is reported for each example.

The shape results were improved with each change to the

training method. Furthermore, it is illustrated in the images

that when aligning the shape to the BSM the shape outcome

is enhanced.

Table III listed a further validation to the predicted shape

experiments by reporting the pose parameters (θ and s) errors,

the implant tip point detection error and the constructed shape

landmarks error. Regression of pose and shape parameters

(SPTXY ) provided the best rotation and scale outcomes with

∆θ = 4.48° and ∆s = 0.13. The same scale error was

produced when the BSM was combined with the training
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TABLE III

MEAN AND STANDARD DEVIATION FOR ORIENTATION ERROR, SCALE ERROR, TIP POINT EUCLIDEAN DISTANCE, THE NRMSE FOR THE SHAPE

LANDMARKS AND AFTER APPLYING ICP METHOD. THE BEST RESULTS ARE HIGHLIGHTED.

Experiment θ(°) scale Tip point (px) Landmarks (px) ICP (px)

SPTXY 4.48 ± 3.24 0.13 ± 0.09 88.07 ± 19.73 1.54 ± 0.98 -
SPHM 5.80 ± 4.45 0.16 ± 0.12 5.11 ± 31.31 0.80 ± 1.44 -
SP + A 6.09 ± 4.34 0.14 ± 0.10 3.46 ± 23.09 0.71 ± 1.13 -
SP + BSM + A 4.78 ± 4.32 0.14 ± 0.10 2.17 ± 8.28 0.57 ± 0.42 0.36 ± 0.27
SP + BSM + A + LSh 5.41 ± 4.23 0.13 ± 0.10 1.29 ± 0.94 0.55 ± 0.30 0.33 ± 0.20

Fig. 5. Comparison of segmentation computed from BSM in ablation
studies. The red is the predicted segmentation and the green is the
ground truth. The dice score is presented in each image

Fig. 6. Comparison of segmentation computed from SP in ablation
studies. The green is the ground truth, the pink is the computed shape
and the blue is the shape after applying the ICP algorithm. The dice
score is presented in each image.

and the shape loss was added. However, we observed that

the error difference among experiments for both orientation

and scale parameters was slightly low, demonstrating that

these parameters did not benefit from combined semantic

segmentation to some extent.

We measured the translation error using the distance be-

tween the predicted implant tip point and the ground truth

point. The results demonstrated that the translation parameter

has improved significantly with each modification to the

training method and provided the best result when the BSM

joined the training and the Lsh is applied. The regression of

translation parameters in the first experiment produced a large

Fig. 7. The impact of error in translation, rotation, scale and B-
coefficient on the computation of the implant shape landmarks. Each
plot represents the mean NMSE for the shape computed by fixing all
parameters as ground truth values except the studied parameter where
the predicted value is used.

error. Introducing the tip point heatmap prediction to compute

the translation parameters has improved the results from 88

px to 5.11 px. Similarly, the shape landmarks have improved

in each alteration and the best outcome has resulted from the

last experiment (SP + BSM + A + LSh). The shape landmarks

have been considerably enhanced by aligning the constructed

shape to the predicted segmentation, which has reduced the

error by 0.22 px.

In addition, we studied the impact of the error in each shape

component i.e translation, rotation, scale and B-coefficient to

the final reconstruction of the shape landmarks. To study the

impact, shape landmarks are constructed by fixing the values

of all shape parameters to the ground-truth value except the

parameter under investigation which involved the predicted

value. Fig. 7 presented the NRMSE between the ground truth

landmarks and the computed shape. The figure indicated that

the landmarks error resulting from the error in the translation

parameter has improved significantly in each modification. In

addition, the B-coefficient error indicated a slight enhancement

to the landmarks error. On the other hand, scale and translation

errors have a major impact on the landmark error compared

to the other parameters.

Furthermore, we summarised the performance of landmarks

detection using the CED curves. It can be seen in Fig. 8

that in both experiments i.e. using the simultaneous training

method with data augmentation and by adding shape loss the

localization of the landmarks, 80% of the images are below
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Fig. 8. cumulative error distributions. Comparing the performance of
each experiment using point-to-point distance normalized by the two
adjacent point distance.

TABLE IV

QUANTITATIVE RESULTS FOR IMPLANT SEGMENTATION ON OUR

DATASET. BEST RESULTS ARE IN BOLD

Method Dice (%) HD (px)

UNet [29] 74.0 ± 13.3 16.0 ± 23.4
Res-Unet [30] 72.3 ± 12.0 17.5 ± 25.3
UNet ++ [31] 70.3 ± 13.1 33.0 ± 42.0
Attention UNet [32] 69.0 ± 16.0 44.2 ± 48.1
R2UNet [33] 48.2 ± 17.7 34.0 ± 25.9
CE-Net [34] 55.5 ± 5.50 135 ± 24.1
U2Net [35] 57.1 ± 9.32 124 ± 20.6
Our method 80.0 ± 22.0 8.80 ± 10.7

0.5 NRMSE. On the other hand, ∼ 40% of images are below

0.5 NRMSE using the prediction of shape parameters only

(SPHM+A and SPHM+A +LSh). In addition, the maximum

error produced by the simultaneous training method is lower

than in other experiments.

B. Experimental Comparison on Test Dataset

To validate the advantages of the proposed method, state-

of-the-art networks for both medical image segmentation and

landmarks detection were considered as a comparison strategy.

Seven state-of-the-art networks were utilized to compare the

segmentation results: UNet [29], Res-Unet [30], UNet++, [31],

Attention Unet [32] , R2Unet [33], CE-Net [34] , U2-net [35].

Table IV listed the results of the implant segmentation using

different segmentation networks. We can observe that with a

small-size dataset, the complex model might be more prone to

overfitting, introduce complexity and cannot generalise from

limited training samples. UNet tends to be a better solution

because it has a relatively smaller number of parameters

compared to other variants. However, employing shape priors

has significantly improved the results to 80% dice score.

Regarding the Gruen landmarks detection, we compared our

method with different CNN-based networks (UNet, ResNet50

[36], VGG16 [37], DenseNet121 [38] and SwinNet [39]) for

predicting the landmarks as direct regression of the points or

as heatmap regression. Table V listed the NRMSE of each

tested model. The results indicated that our method improved

landmarks detection significantly.

VI. DISCUSSIONS

.

TABLE V

QUANTITATIVE RESULTS FOR GRUEN LANDMARKS DETECTION ON OUR

DATASET. THE BEST RESULTS ARE IN BOLD

Method NMRSE (px)

UNet 3.21 ± 1.02
VGG16 3.06 ± 1.35
DenseNet121 2.78 ± 1.07
ResNet50 2.90 ± 1.14
SwinNet 3.00 ± 1.28
Our method 0.55 ± 0.30

Recent survey demonstrated that combining deep learning

with medical knowledge has a huge impact on the outcomes of

several medical image analysis tasks, including segmentation

and diagnosis [40]. Therefore we adopt this strategy for

implant joint images domain aiming to automate the segmenta-

tion of the implant and detecting the Gruen landmarks. Despite

the challenges imposed by a limited dataset, incorporating

implant shape knowledge into the CNN shows precise and

valid implant segmentation and Gruen landmarks detection.

In this paper, we defined the implant shape using the Gruen

landmarks definition and presented a deep learning method

to predict the shape and pose parameters of the implant

femoral component and perform its semantic segmentation.

Compared to typical semantic segmentation where each pixel

is binary classified, this approach predicts the shape and

pose parameters which link to landmarks representation that

can be used in many diagnostic tasks. Diagnosing implant

complications depends mainly on the position in relation

to the implant. Therefore, we defined the shape landmarks

based on Gruen zones, to combine the advantage of both the

segmentation and the detection of important landmarks. This

is the first algorithm that can detect locations of the important

landmarks and segment the femoral component. This has

been successfully demonstrated through the comparison of the

segmentation and landmarks detection results with the stste-of-

the-art segmentation models and landmarks detection models.

The landmarks localisation results could be considered state-

of-the-art results. The dataset used in this work will be publicly

available to enhance the research on this domain.

The results of the proposed approach indicated that the

regression of the shape and pose parameters is a more

challenging process compared to semantic segmentation. The

shape and pose parameters regression is performed by training

on and predicting a small number of uncorrelated values (19

values) per image using a limited-size dataset, whereas the

semantic segmentation is predicted based on a large number of

correlated values per image. Replacing the translation param-

eter regression with translation computed from the prediction

of the tip point position has substantially enhanced the shape

outcomes. The shape-based data augmentation is used to

increase the size of the training dataset. Although orientation

prediction did not benefit from the data augmentation, the

prediction of the other parameters has improved which impacts

positively on the computation of the position of the landmarks.

Combining the training of semantic segmentation with the

shape and pose parameters regression has enhanced the out-

comes of the segmentation using the constructed shape (see
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TableII). The shared layers between the two tasks enable the

learning of more relevant geometric features. We hypothesised

that introducing the shape loss will impact the segmentation

output of both tasks. It has enhanced the semantic segmen-

tation performance which also makes indirect benefit to the

segmentation based on the shape construction by aligning the

resulting shape to the semantic segmentation outcome.

This paper focused on the segmentation and landmark

detection of the implant femoral components, however, this

method can be extended to other implant joints.

VII. CONCLUSION

In this paper, we proposed a new CNN approach for jointly

segmenting the implant femoral component and regression

of the pose and shape parameters. The implant landmarks’

positions are computed from the predicted shape and pose

parameters. Experiments demonstrated that combining seman-

tic segmentation has enhanced the overall outcomes of the

shape landmarks localisation. Results show that our method

is accurate with an overall segmentation dice score of 80%

and HD of 8.8 px. In addition, this work reported the state-of-

the-art result of Gruen landmarks localisation with NRMSE

of 0.33. Future work will consider extending this approach to

other implant joints and utilise it as an initial stage for analysis

of femur implant complications.
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