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Abstract

This paper considers estimating functional-coefficient models in panel

quantile regression with individual effects, allowing the cross-sectional and

temporal dependence for large panel observations. A latent group struc-

ture is imposed on the heterogenous quantile regression models so that the

number of nonparametric functional coefficients to be estimated can be re-

duced considerably. With the preliminary local linear quantile estimates of

the subject-specific functional coefficients, a classic agglomerative clustering

algorithm is used to estimate the unknown group structure and an easy-to-

implement ratio criterion is proposed to determine the group number. The

estimated group number and structure are shown to be consistent. Further-

more, a post-grouping local linear smoothing method is introduced to esti-

mate the group-specific functional coefficients, and the relevant asymptotic

normal distribution theory is derived with a normalisation rate comparable

to that in the literature. The developed methodologies and theory are veri-

fied through a simulation study and showcased with an application to house

price data from UK local authority districts, which reveals different homo-

geneity structures at different quantile levels.
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1 Introduction

The quantile regression models and their estimation have received increasing attention

since the seminal work by Koenker and Bassett (1978). They have been widely applied

in various disciplines including economics, finance, health science and social science. In

contrast to classic mean regression, the quantile regression provides a more comprehen-

sive picture in capturing the relationship between the response and explanatory vari-

ables, and serves as a robust alternative. Various parametric methods with theoretical

treatment and empirical applications have been extensively studied for quantile regres-

sion, see Koenker (2005) and Koenker et al. (2017) for comprehensive reviews. Due to

wide availability of panel/longitudinal data in many areas, it is natural to extend para-

metric linear quantile regression from independent data to more general panel data.

Subject-specific individual effects are often incorporated in linear quantile panel mod-

els to reflect location shift effects on the quantile regression and describe heterogeneity

over subjects. The number of these “incidental parameters” diverges as the number of

subjects N increases, affecting estimation accuracy of the common quantile regression

coefficients (in particular when the number of observations per subject T is fixed). Vari-

ous quantile estimation and inferential techniques have been proposed in the literature

(e.g., Koenker, 2004; Canay, 2011; Kato et al., 2012; Galvao et al., 2013; Galvao and Kato,

2016; Galvao et al., 2020) for large panel data, i.e., both N and T are large. However, the

aforementioned literature relies on a pre-specified parametric linear model assumption,

which may be too restrictive in quantile regression and is often rejected in practical data

analysis. In this paper, we adopt a nonparametric panel modelling approach, allowing

data to “speak for themselves” and thus providing more reliable numerical performance

in quantile regression than the parametric one.

Nonparametric quantile regression estimation has been systematically studied in the

literature for independent cross-sectional data or weakly dependent time series data

(e.g., Yu and Jones, 1998; Cai, 2002; Yu and Lu, 2004; Cai and Xu, 2008; Li et al., 2013; Bel-

loni et al., 2019; Li et al., 2021). In recent years, there have been some attempts to study

nonparametric quantile regression for panel data with individual effects. For example,
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Yan and Li (2018) introduce a three-step nonparametric conditional quantile estimation

method combining series approximation, first-order difference (to remove incidental pa-

rameters) and deconvolution; and Chen (2021) proposes two local-linear-based methods

to estimate quantile partial effects and further derives the asymptotic distribution theory

under the large panel setting. Among various nonparametric quantile regression mod-

els, the functional-coefficient model is one of the most commonly-used frameworks. It

is a natural extension of the linear quantile regression model, avoiding the so-called

“curse of dimensionality” problem in nonparametric estimation when the number of

covariates is large. For the classic independent or time series data setting, the functional-

coefficient quantile model and its generalised version have been extensively studied in

the literature (e.g., Honda, 2004; Kim, 2007; Cai and Xu, 2008; Wang et al., 2009; Kai

et al., 2011; Tang et al., 2013). In particular, the functional-coefficient quantile regression

allows the dynamic quantile relationship to vary smoothly over a state variable, and is

thus connected to the functional linear quantile regression (e.g., Kato, 2012), but the lat-

ter assumes the covariate takes a functional value and bases the estimation methodology

on some dimension reduction techniques (such as the functional principal component

analysis). For the panel data with subject-specific fixed effects, Su and Hoshino (2016)

combine the series approximation and instrumental variable quantile regression (e.g.,

Chernozhukov and Hansen, 2006) to estimate functional coefficients under a large-T

framework, whereas Cai et al. (2018) use a kernel weighted quasi-likelihood to estimate

semiparametric functional-coefficient quantile regression under a fixed-T framework.

A typical assumption imposed on nonparametric quantile regression for panel data

in the existing papers is that the main nonparametric regression structure (after remov-

ing subject-specific location shift effects) is invariant over subjects, indicating that the

dynamic relationship between the dependent and explanatory variables is the same for

all subjects. However, such an assumption is often too restrictive in panel data stud-

ies when subjects involved have very different characteristics. An example is the house

price data from UK local authority districts that we consider in Section 5.2. Due to dif-

ferences in their location, population, and the socio-economic backgrounds of their pop-

ulation, the effects of factors, such as population growth and personal income growth,
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on house price growth are very unlikely to be homogeneous. As a result, in this paper,

we relax the homogenous panel model assumption, allowing the functional-coefficients

in nonparametric quantile regression to vary over subjects, see model (2.1).

However, for the heterogenous functional-coefficient panel quantile regression with-

out imposing any structural restriction on the subject-specific coefficients, we can only

rely on the sample information from an individual subject to estimate the subject-specific

dynamic relationship, which leads to slow convergence of the estimated functional co-

efficients and unstable numerical performance of the estimates in finite samples. To

address this problem, we assume that there exists a latent group structure on the subject-

specific functional coefficients at each quantile level. If the underlying group structure

is known or can be estimated, more efficient coefficient estimates can be obtained by

pooling information belonging to the same group. From an empirical perspective, some

panel data studies, such as Phillips and Sul (2007) and Hahn and Moon (2010), have

found group structures for the panel models they use. For the UK house price data in

Section 5.2, we identify two or five homogeneous groups (depending on the quantile

level) for the 335 local authority districts. Such homogeneous groups may exist due to

similarities in the characteristics of many districts (e.g., type of district, i.e., urban or ru-

ral, and socio-economic background of the majority of the population). Hence, it is both

beneficial and reasonable to assume a group structure in some panel studies.

There has been increasing interest on estimating latent group structure in mean re-

gression models for panel data in recent years. For example, Ke et al. (2016) use a binary

segmentation technique to identify the latent group structure in linear regression mod-

els for panel data, whereas Su et al. (2016) introduce a penalised method via the so-called

classifier-LASSO. Vogt and Linton (2017, 2020) propose a kernel-based classification of

univariate nonparametric regression functions in panel data, which is further extended

by Chen (2019) to estimate the group structure in time-varying coefficient panel data

models. Other relevant developments can be found in Bonhomme and Manresa (2015),

Ando and Bai (2017), Su et al. (2019), Liu et al. (2020), Wang and Su (2021) and Lian et al.

(2021). In contrast, there is sparse literature on quantile regression models for panel

data with latent group structures. Chetverikov et al. (2016) study IV panel quantile re-
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gression with group-specific coefficients defined as a linear regression with observable

group-level covariates, but the “groups” in their paper are essentially the subjects in the

context of this paper. Zhang et al. (2019b) propose an L1-penalised estimation method

to identify the group structure on the intercept in linear median regression; Gu and

Volgushev (2019) estimate linear quantile regression for panel data with a latent group

structure on the subject-specific fixed effects; and Zhang et al. (2019a) introduce an it-

erative algorithm using an idea similarly to the classic k-means clustering to estimate

groups of units in panel data with heterogeneous slope coefficients. These estimation

methods and algorithms rely on the parametric linear model assumption in quantile re-

gression and cannot be directly applied to estimate the latent structure in nonparametric

panel quantile regression.

In this paper, we aim to consistently estimate the group structure, the group num-

ber and the group-specific functional coefficients, all of which are allowed to vary over

quantile levels. As there is no prior information on the latent groups, we start with

a preliminary local linear quantile estimation of the subject-specific functional coeffi-

cients and the incidental parameter, only using the sample information from one subject.

Based on the preliminary estimates of the functional coefficients, we compute the dis-

tance matrix between the subjects and subsequently use a classic agglomerative cluster-

ing algorithm to estimate the unknown group structure for the heterogenous functional

coefficients. The resulting estimate is shown to be consistent (once the group number

is pre-specified). Then, we introduce a simple ratio criterion to consistently estimate

the group number. As the preliminary quantile estimates have rather slow convergence

rates, we further propose a post-grouping local linear smoothing method to estimate

the group-specific functional coefficients using the consistently estimated group struc-

ture, and derive the asymptotic normal distribution theory for the developed estimate

with a convergence rate comparable to that in the literature. In the asymptotic analysis,

we focus on the large panel setting with both N and T diverging to infinity. The panel

observations are allowed to be temporally dependent and cross-sectionally correlated,

relaxing the commonly-used cross-sectional independence restriction for panel quantile

estimation (e.g., Kato et al., 2012; Cai et al., 2018; Chen, 2021).
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We apply the proposed method to the house price data from UK local authority dis-

tricts over the period Q1/1997–Q4/2016 and discover different group structures at dif-

ferent quantiles. At the lower quartile and median, we find more homogeneity in the

effects of population and income growth on house price growth across districts, while

at the upper quartile, more groups (i.e., five) are identified. By allowing the group struc-

ture to vary with the quantile level, we uncover a clearer picture about the relationship

between population and income growth and house price growth across the distribution

of house price growth.

The rest of the paper is organised as follows. Section 2 introduces the model and la-

tent group structure. Section 3 describes the clustering algorithm and the ratio criterion

for estimating the latent structure, and the post-grouping local linear quantile estima-

tion. The technical assumptions and main asymptotic properties are provided in Section

4. Section 5 reports both the simulation and empirical studies. Section 6 concludes the

paper. Proofs of the main theorems and technical lemmas, extensions of the developed

methods and theory, and additional simulation and empirical results are available in a

supplement.

2 Model structure

Suppose that we collect the panel random observations (Yit, Xit), i = 1, · · · ,N, t =

1, · · · , T , and time series random observations Zt, t = 1, · · · , T , where Yit and Zt are

univariate and Xit is d-dimensional. Let αi be a subject-specific effect which may be

correlated with Xit and Zt. At a given quantile level 0 < τ < 1, the conditional quantile

function for the i-th subject has the following functional-coefficient regression form:

Qτ,i (Yit|Xit,Zt,αi) = X
⊺

itβτ,i(Zt) + ατ,i, (2.1)

where βτ,i(·) is a d-dimensional vector of subject-specific functional coefficients. Both

βτ,i(·) and ατ,i are allowed to depend on the quantile level τ. It is worth stressing that

model (2.1) is different from the random-coefficient quantile regression model (Koenker

and Xiao, 2006), see the discussion in Appendix C.1 of the supplement. The functional
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coefficients βτ,i(Zt) capture smooth changes of the dynamic quantile relationship (over

Zt) between Yit and Xit at a fixed quantile level. Without loss of generality, we assume

Zt has a compact support [0, 1]1. In practical applications, we may replace the random

index variable Zt in (2.1) by the fixed scaled time, t/T , or a variable Zit that varies

over both i and t, which would lead to the following functional-coefficient quantile

regressions:

Qτ,i (Yit|Xit,αi) = X
⊺

itβτ,i(t/T) + ατ,i, or Qτ,i (Yit|Xit,Zit,αi) = X
⊺

itβτ,i(Zit) + ατ,i.

(2.2)

With slight modification, the methodology and theory to be developed in Sections 3

and 4 are still applicable to the above two model variants. Models in (2.1) and (2.2) can

be seen as an extension of the functional-coefficient/time-varying panel data models

studied by Li et al. (2011), Chen (2019), Su et al. (2019) and Phillips and Wang (2022)

from mean regression to quantile regression.

In this paper, we further assume that there exists a partition of the index set {1, 2, , · · · ,N},

denoted by Gτ = {Gτ
1 ,Gτ

2 , · · · ,Gτ
Rτ,0

} such that

Gτ
j ∩ Gτ

k = ∅ for 1 ⩽ j ̸= k ⩽ Rτ,0, and βτ,i(·) = γτ,j(·) for i ∈ Gτ
j , (2.3)

where γτ,j(·) denotes a d-dimensional vector of group-specific functional coefficients

that may also depend on τ. Neither the group membership nor the group number is

known a priori. Combining (2.1) and (2.3), we readily have that

Qτ,i (Yit|Xit,Zt,αi) = X
⊺

itγτ,j(Zt) + ατ,i, i ∈ Gτ
j , j = 1, · · · ,Rτ,0. (2.4)

Note that the total number of unknown functional coefficients in (2.4) is dRτ,0, which is

much smaller than dN, the number of heterogenous functional coefficients in (2.1).

Two remarks are in order here. First, the group membership Gτ and the group num-

ber Rτ,0 are allowed to vary over τ, which implies that the latent group structure can

1In the main model, we assume that Zt is a continuous random variable with a density function satis-

fying Assumption 2(ii). This ensures that the maximum distance between two consecutive observations

of Zt is of order OP(log T/T), indicating that there is a large number of observations in any neighborhood

of z ∈ [0, 1] when T is sufficiently large. This is crucial for the kernel-based nonparametric estimation

methodology and theory to be developed in the subsequent sections.
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change over quantile levels. This makes the proposed quantile regression model frame-

work more flexible and applicable than the mean regression one for practical research.

Second, although we assume a group structure on the functional coefficients, βτ,i(·), no

group structure is imposed on the individual effects ατ,i. This means that the subjects be-

longing to the same group are still allowed some degree of heterogeneity, as represented

by their individual specific effects, albeit having the same functional slope coefficients.

The main interest of this paper lies in the estimation of Gτ, Rτ,0 and γτ,j(·), j =

1, · · · ,Rτ,0. For notational simplicity, we write βτ,i(·) = βi(·) = [βi,1(·), · · · ,βi,d(·)]
⊺

,

γτ,j(·) = γj(·) = [γj,1(·), · · · ,γj,d(·)]
⊺

, ατ,i = αi, Rτ,0 = R0 and Gτ = G = {G1,G2, · · · ,GR0
},

suppressing their dependence on τ.

3 Estimation methodology

3.1 Preliminary local linear estimation and clustering algorithm

As mentioned in the introductory section, model (2.1) is a semiparametric functional-

coefficient quantile model by treating αi as an incidental parameter for fixed i. Assume

that the unknown functional coefficients have continuous second-order derivatives. For

z ∈ [0, 1], with the sample information from the i-th subject, we define

T∑

t=1

ρτ

(
Yit − X

⊺

itb1 − a1 − (Zt − z)X
⊺

itb2 − (Zt − z)a2

)
Kh(Zt − z), (3.1)

where ρτ(·) is the quantile check function defined by ρτ(z) = z [τ− I(z ⩽ 0)] with I(A)

being the indicator function of the event A, Kh(u) = K(u/h), K(·) is a kernel function

and h is a bandwidth. The local linear estimates β̂i(z), β̂
′

i(z), α̂i(z), α̂
′
i(z) are obtained as

the solution to minimise the objective function in (3.1).

Let ∆ be an N × N distance matrix among the true functional coefficients βj(·),

j = 1, · · · ,N. The diagonal elements of ∆ are zeros, whereas the off-diagonal elements

∆(j,k), 1 ⩽ j ̸= k ⩽ d, are defined by

∆(j,k) =

∫ 1

0

∥∥βj(z) − βk(z)
∥∥ fZ(z)dz,
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where fZ(·) is the density function of Zt and ∥ · ∥ denotes the Euclidean norm. With the

preliminary local linear quantile estimates, we have the following estimate of ∆(j,k)2:

∆̂(j,k) =
1

T

T∑

t=1

∥∥∥β̂j(Zt) − β̂k(Zt)
∥∥∥ .

With ∆̂(j,k), we obtain ∆̂, an N ×N estimated distance matrix of ∆. The (j,k)-entry of

∆̂ is ∆̂(j,k) and the diagonal elements of ∆̂ are zeros. Using the estimated distance ma-

trix, we may apply the agglomerative clustering method which has been widely used

in the literature of cluster analysis (e.g., Everitt et al., 2011; Rencher and Christensen,

2012). Recently, such a method, combined with the kernel-based smoothing technique,

has been applied to estimate the homogeneity/group structure in nonparametric mean

regression models (e.g., Chen, 2019; Vogt and Linton, 2020; Chen et al., 2021). However,

so far as we know, there is virtually no work on applying the kernel-based agglomera-

tive clustering method to quantile regression models with a latent group structure. We

next introduce the clustering algorithm when the group number is assumed to be R.

1. Start with N clusters, each of which corresponds to one of the N subjects. Search

for the smallest off-diagonal element in ∆̂ which is the smallest distance estimate.

2. Merge the two clusters with the smallest distance. Consequently, the cluster num-

ber reduces from N to N − 1. Update the estimated distance matrix for the N − 1

clusters. Here the distance between two clusters A1 and A2 is calculated via the

complete linkage, i.e., compute the farthest distance between an element in A1 and

that in A2.

3. Repeat the previous steps with the updated distance matrix, and stop the algo-

rithm when the number of clusters reaches R.

Let Ĝ1|R, · · · , ĜR|R be the estimated clusters for a given group number R. If the true

number of groups, R0, is known a priori, we denote the estimated groups as Ĝr = Ĝr|R0
,

r = 1, · · · ,R0, whose consistency property is given in Theorem 4.1.

2When the index variable is Zit which varies over i and t, we estimate the functional coefficients at

a set of equidistant grid points u1,u2, · · · ,um, where m is a sufficiently large positive integer. Then, we

define ∆̂(j,k) = 1
m

∑m
t=1 ∥β̂j(ut) − β̂k(ut)∥.
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3.2 Estimation of the group number

We next introduce a ratio criterion to consistently estimate the group number R0. For a

given number R, with the estimated groups Ĝr|R defined in Section 3.1, we may pool the

estimated functional coefficients β̂j(·), j ∈ Ĝr|R, and obtain the following estimate:

β̂r|R(z) =
1∣∣∣Ĝr|R

∣∣∣

∑

j∈Ĝr|R

β̂j(z), r = 1, · · · ,R,

where |A| denotes the cardinality of a set A. Then, we calculate the average deviation

for β̂j(·) if the group number is assumed to be R:

D(R) =
1

TR

R∑

r=1

1∣∣∣Ĝr|R

∣∣∣

∑

j∈Ĝr|R

T∑

t=1

∥∥∥β̂j(Zt) − β̂r|R(Zt)
∥∥∥ . (3.2)

It follows from Theorem 4.1 that the functional-coefficient quantile panel regression

model is either correctly- or over-fitted (with probability tending to one) when R ⩾ R0,

and D(R) is thus convergent to zero. On the other hand, the model is under-fitted when

R < R0, and at least two groups are falsely merged. Consequently D(R) is strictly larger

than a positive constant (using Assumption 5(ii) in Section 4.1). Hence, it is sensible to

determine R0 via the following simple ratio criterion:

R̂ = arg min
1⩽R⩽R

D(R)

D(R− 1)
, (3.3)

where R is a pre-specified positive integer larger than R0, and we set D(1)/D(0) = 1,

D(R) = 0 if D(R) is smaller than ωNT , a threshold satisfying some mild restrictions, and

define 0/0 ≡ 1. A similar ratio criterion is also used by Lam and Yao (2012) and Ahn

and Horenstein (2013) to find the number of latent factors in approximate factor models,

and by Li et al. (2020) to determine the dimension of dominant sub-space in functional

time series. Theorem 4.2 in Section 4.2 below shows that R̂ is a consistent estimate of

R0. With R̂, we may extract the estimated groups G̃ = {G̃1, G̃2, · · · , G̃R̂} by terminating the

agglomerative clustering algorithm when R = R̂.

3.3 Post-grouping local linear estimation

Note that the preliminary functional coefficient estimates defined in Section 3.1 only

make use of the sample information from one subject, resulting in a relatively slow uni-
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form convergence rate, see Lemma A.2 in Appendix A of the supplement. The nu-

merical performance of these estimates may be unstable in finite samples in particular

when T is not sufficiently large. With the consistent estimates of the group number and

membership constructed in Sections 3.1 and 3.2, we next propose a post-grouping lo-

cal linear quantile estimation method for the group-specific functional coefficients γj(·),

j = 1, · · · ,R0, improving the convergence rate of the preliminary functional coefficient

estimates. From Corollary 4.1 to be given in Section 4.2, for any j = 1, · · · ,R0, there exists

1 ⩽ j∗ ⩽ R̂ such that P

(
Gj = G̃j∗

)
→ 1. Without loss of generality, we let j∗ = j in the

rest of the section. Define the post-grouping local linear weighted objective function:

∑

i∈G̃j

T∑

t=1

ρτ

(
Yit − X

⊺

itb1 − ai1 − (Zt − z)X
⊺

itb2 − (Zt − z)ai2

)
Kh1

(Zt − z), (3.4)

where Kh1
(z) = K(z/h1), K(·) is the kernel function and h1 is a bandwidth which may be

different from h used in the preliminary local linear estimation. The post-grouping local

linear estimates γ̃j(z), γ̃
′
j(z), α̃i(z), α̃

′
i(z), i ∈ G̃j, are obtained as a solution to minimise

the objective function in (3.4). As the fixed effects αi are treated as “nuisance param-

eters”, our primary interest lies in γ̃j(z) whose asymptotic distribution theory will be

derived in Section 4.2 below.

4 Main asymptotic theory

4.1 Technical assumptions

For i = 1, · · · ,N, we let

Ωi(z) = fZ(z) · E


fie(0|Xit,Zt)


 1

Xit


(1, X

⊺

it

) ∣∣Zt = z


 , (4.1)

where fZ(·) is the density of Zt and fie(·|x, z) is the conditional density of eit = Yit −

X
⊺

itβi(Zt) −αi given Xit = x and Zt = z. Assumptions 1–5 below are sufficient to prove

the consistency properties for the estimated group membership and number.

Assumption 1. For each i, the process {(Yit, Xit,Zt)} is stationary and α-mixing dependent

with the mixing coefficient αi(·) satisfying max1⩽i⩽N αi(s) ≍ ρs, 0 < ρ < 1.
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Assumption 2. (i) The conditional density function fie(·|x, z) is continuous and has a bounded

first-order derivative. In addition, fie(0|x, z) is continuous with respect to z and satisfies that

0 < ce ⩽ min
1⩽i⩽N

inf
x,z

fie(0|x, z) ⩽ max
1⩽i⩽N

sup
x,z

fie(0|x, z) ⩽ ce < ∞,

where ce and ce are two positive constants.

(ii) The density function fZ(·) has continuous first-order derivative, and is bounded away

from zero and infinity.

Assumption 3. (i) The matrix Ωi(z) defined in (4.1) is continuous (with respect to z) and

positive definite with all the eigenvalues bounded away from zero and infinity uniformly over

z ∈ [0, 1] and 1 ⩽ i ⩽ N. Furthermore,

max
1⩽i⩽N

E [∥Xit∥κ+ϵ|Zt] < ∞ a.s., 4 < κ < ∞, ϵ > 0. (4.2)

(ii) The subject-specific coefficient functions βi(·) are twice continuously differentiable. In

addition, there exists a positive constant cβ such that

max
1⩽i⩽N

sup
0⩽z⩽1

∥∥β′
i(z)

∥∥+ max
1⩽i⩽N

sup
0⩽z⩽1

∥∥β′′
i (z)

∥∥ ⩽ cβ,

where β′
i(z) and β′′

i (z) are the first-order and second-order derivatives of βi(z), respectively.

Similar conditions also hold for the group-specific coefficient functions γj(·).

Assumption 4. (i) K(·) is a bounded, Lipschitz continuous and symmetric probability density

function with a compact support [−1, 1].

(ii) The bandwidth h satisfies that

h5 = o

(
log(T ∨N)

T

)
,

Th

(NT)4/κ log5
(N∨ T)

→ ∞, (4.3)

where κ is defined in Assumption 3(i). In addition, define ξ2
NT =

log(N∨T)

Th
, then it holds that

ξ2
NT = o

(
ζ2
NT

)
, where ζNT = min

1⩽j ̸=k⩽R0

∫ 1

0

∥∥γj(z) − γk(z)
∥∥ fZ(z)dz. (4.4)

Assumption 5. (i) Let the group number R0 be fixed and there exist 0 < cg ⩽ cg < 1 such that

cgN ⩽ min
1⩽r⩽R0

|Gr| ⩽ max
1⩽r⩽R0

|Gr| ⩽ cgN.
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(ii) For any k different (true) groups Gr1
, · · · ,Grk , when they are falsely merged, define

γ∗(z) =
1

|Gr1

⋃ · · ·⋃Grk |

[
|Gr1

|γr1
(z) + · · ·+ |Grk |γrk

(z)
]

.

There exist j ∈ {r1, · · · , rk} and a positive constant c∗ such that

∫ 1

0

∥∥γ∗(z) − γj(z)
∥∥ fZ(z)dz > c∗.

(iii) The threshold parameter ωNT , used in the ratio criterion in Section 3.2, satisfies ωNT =

o(1) and ξNT = o(ωNT ), where ξNT is defined in (4.4).

Remark 4.1. Most of the above regularity conditions are mild and justifiable. Assump-

tion 1 shows that the panel data are temporally dependent over t. The α-mixing depen-

dence is one of the weakest mixing dependence conditions, which is satisfied for some

commonly-used time series models (such as a vector ARMA process). The smoothness

conditions on the (conditional) density functions and functional coefficients in Assump-

tions 2 and 3 are needed due to application of the local linear smoothing technique to

estimate the unknown functions in quantile regression (e.g., Cai and Xu, 2008). The

relatively strong moment condition in Assumption 3(i) is crucial to derive the uniform

Bahadur representation and uniform consistency for the local linear quantile estimates,

see Lemmas A.1 and A.2 in Appendix A of the supplement. It is worthwhile to point

out that when κ is larger (indicating a stronger moment condition on Xi), we may relax

the bandwidth restriction and allow N to diverge at a faster polynomial rate of T . Let-

ting h ∝ T−1/5 and κ be sufficiently large, we may show that the two conditions in (4.3)

are satisfied. Similar to Assumption 4(iii) in Chen (2019) and Assumption 4(ii) in Chen

et al. (2021), the condition (4.4) indicates that the minimum Euclidean distance between

distinct coefficient functions is allowed to converge to zero. When ζNT > c∗ > 0, (4.4)

would be automatically satisfied. Assumption 5 is mainly used to derive the consistency

for the group number estimate stated in Theorem 4.2. Assumption 5(i) shows that the

latent groups have similar sizes (with the same divergence rate), whereas Assumption

5(ii) is crucial to prove that D(R) defined in (3.2) would be strictly larger than a positive

constant when the model is under-fitted (i.e., R < R0). In fact, Assumption 5(ii) can be

verified by using Assumption 5(i) and assuming ζNT > c∗ > 0.
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With the latent structure (2.3), we write eit = Yit − X
⊺

itγj(Zt) − αi for i ∈ Gj and let

bit(z) = X
⊺

it

[
βi(Zt) − βi(z) − β′

i(z)(Zt − z)
]
= X

⊺

it

[
γj(Zt) − γj(z) − γ′

j(z)(Zt − z)
]

.

Re-write Ωi(z) defined in (4.1) in the block-matrix form:

Ωi(z) =


 ωα

i (z) Ω
αγ
i (z)

Ω
γα
i (z) Ω

γ
i (z)


 , (4.5)

where ωα
i (z) is univariate and Ω

γ
i (z) is a d× d matrix. For j = 1, · · · ,R0, we define

Ω(z;Gj) =
1

|Gj|

∑

i∈Gj

[Ω
γ
i (z) −Ω

γα
i (z)Ωαγ

i (z)/ωα
i (z)] , (4.6)

Γt0(Gj) =
∑

i∈Gj

ηit(z), Γt1(Gj) =
∑

i∈Gj

ηit(z) [Xit −Ω
γα
i (z)/ωα

i (z)] , (4.7)

where ηit(z) = τ−I (eit ⩽ −bit(z)). To derive the asymptotic distribution theory for the

post-grouping local linear quantile estimation, we need some additional conditions.

Assumption 6. (i) The joint process {(Yt,Xt,Zt)} is stationary and α-mixing dependent with

the mixing coefficient satisfying α(s) ≍ ρs, where ρ is defined as in Assumption 1, Yt = {Yit :

i = 1, 2, · · · } and Xt = {Xit : i = 1, 2, · · · }.

(ii) The bandwidth condition in (4.3) holds when h is replaced by h1, the bandwidth used in

the post-grouping local linear estimation. For any j = 1, · · · ,R0,

Nj = |Gj| = o
(
(Th1)

1/2/(log T)3/2
)

.

(iii) For j = 1, · · · ,R0, Ω(z;Gj) defined in (4.6) is positive definite with all the eigenvalues

bounded away from zero and infinity.

Assumption 7. (i) The joint density function of (Zt,Zs) exists and is bounded for any t ̸= s.

(ii) There exists ι > 4 such that

E [|Γt0(Gj) − E [Γt0(Gj)]|
ι
] = O

(
N

ι/2
j

)
, E [∥Γt1(Gj) − E [Γt1(Gj)]∥ι] = O

(
N

ι/2
j

)
.

(iii) There exists a d× d matrix Λ(z;Gj) such that, as Nj → ∞,

1

Nj

E

[
(Γt1(Gj) − E [Γt1(Gj)]) (Γt1(Gj) − E [Γt1(Gj)])

⊺

|Zt = z
]
→ Λ(z;Gj).
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Remark 4.2. Assumptions 6(i) and 7(ii)(iii) show that the panel observations are allowed

to be temporally correlated over t and cross-sectionally dependent over i. The high-level

conditions would be satisfied when Yit, Xit and Zt are independent over i and t. The

condition Nj = o
(
(Th1)

1/2/(log T)3/2
)

in Assumption 6(ii) indicates that the number of

subjects (in each group) needs to be much smaller than the time series length in order

to derive the limit distribution theory in Theorem 4.3 with root-(NjTh1) convergence.

Analogous restrictions can also be found in Kato et al. (2012), Galvao and Kato (2016)

and Chen (2021), and more comments will be given in Remark 4.4.

4.2 Asymptotic properties

We start with the consistency property for the group membership estimate when R0 is

pre-specified.

Theorem 4.1. Suppose that Assumptions 1–4 are satisfied and the group number R0 is known

a priori. Then we have

P

({
Ĝr, r = 1, · · · ,R0

}
=

{
Gr, r = 1, · · · ,R0

})
→ 1, T → ∞. (4.8)

Remark 4.3. The consistency result (4.8) is similar to Theorem 3.1 in Vogt and Linton

(2017), Theorem 1 in Chen (2019) and Theorem 4.1(a) in Vogt and Linton (2020), all of

which study nonparametric mean regression for panel data with a latent group struc-

ture. By the clustering algorithm, to achieve the consistency property, it is sufficient to

show that max1⩽j,k⩽N

∣∣∣∆̂(j,k) − ∆(j,k)
∣∣∣ is of order smaller than the minimum distance

between true group-specific functional coefficients. This can be proved by using the uni-

form consistency result for the preliminary local linear quantile estimation (see Lemma

A.2 in Appendix A) and Assumption 4(ii). We do not need to impose any restriction on

the cross-sectional dependence structure for panel random observations in this theorem.

The following theorem shows that the simple ratio criterion proposed in Section 3.2

consistently estimates the group number R0.

Theorem 4.2. Suppose that Assumptions 1–5 are satisfied. Then

P

(
R̂ = R0

)
→ 1, T → ∞. (4.9)
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Combining Theorems 4.1 and 4.2, we readily have the following corollary on consis-

tency of the group membership estimate when R0 is unknown.

Corollary 4.1. Suppose that the assumptions in Theorem 4.2 are satisfied. Then

P

(
G̃ = G

)
→ 1, T → ∞, (4.10)

where G̃ = {G̃1, G̃2, · · · , G̃R̂} and G = {G1,G2, · · · ,GR}.

We finally turn to the asymptotic normal distribution theory for the post-grouping

estimate γ̃j(z) of the group-specific functional coefficient. It follows from Corollary 4.1

that there exists 1 ⩽ j∗ ⩽ R̂ such that P

(
Gj = G̃j∗

)
→ 1. Without loss of generality, we

let j∗ = j, and define µk =
∫
zkK(z)dz and νk =

∫
zkK2(z)dz for k = 0, 1, 2, · · · .

Theorem 4.3. Suppose that Assumptions 1–7 are satisfied. For z, an interior point of [0, 1], and

j = 1, · · · ,R0, we have

√
NjTh1

[
γ̃j(z) − γj(z) − Bj(z)

] d−→ N (0d, Σ(z;Gj)) , (4.11)

where Bj(z) =
1
2
h2

1γ
′′
j (z)µ2 with γ′′

j (z) being the second-order derivative of γj(z), and Σ(z;Gj) =

[Ω(z;Gj)]
−1

[ν0Λ(z;Gj)] [Ω(z;Gj)]
−1 with Ω(z;Gj) defined in (4.6) and Λ(z;Gj) defined in As-

sumption 7(iii).

Remark 4.4. (i) Theorem 4.3 can be seen as an extension of the asymptotic normality

given in Theorem 3.2 of Kato et al. (2012) from linear quantile regression to functional-

coefficient quantile regression. To obtain the root-(NjTh1) convergence, we need to

asymptotically remove the influence of the nuisance parameters αi, i ∈ Gj, and im-

pose a somehow restrictive condition on the divergence rate of Nj. Specifically, we

assume that Nj = o
(
(Th1)

1/2/(log T)3/2
)

in Assumption 6(ii), analogous to the condi-

tion N = o
(
T 1/2/(log T)3/2

)
in Kato et al. (2012) if Th1 is treated as the effective sample

size for each subject in the kernel-based estimation. Galvao et al. (2020) show that the

latter restriction may be relaxed to N = o
(
T/(log T)2

)
in the context of linear panel

quantile regression with fixed effects. This improvement is achieved by more precisely

computing the orders of the remainder terms in the Bahadur representation of the quan-

tile regression estimation. In particular, they show that the main remainder term can
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be approximated by a cross-sectional average of independent random elements under

the cross-sectional independence restriction. Extension of this technique in the asymp-

totic proofs to our more general setting is non-trivial since we allow the panel obser-

vations to be cross-sectionally correlated. However, we conjecture that the restriction

of Nj = o
(
(Th1)

1/2/(log T)3/2
)

may be similarly relaxed by imposing some additional

high-level conditions and handling the remainder terms of the Bahadur representation

more carefully. This will be left in our future research.

(ii) Theorem 4.3 can be used to conduct point-wise statistical inference on the group-

specific functional coefficients. For this, we have to estimate the bias and asymptotic

variance matrix in (4.11), both of which contain some unknown quantities. Appendix

C.3 in the supplement introduces nonparametric methods to estimate these quantities

and subsequently obtains the bias and variance matrix estimate denoted by B̃j(z) and

Σ̃(z;Gj), respectively. Let ul be a d-dimensional vector with the l-th element being one

and the others being zeros. For α ∈ (0, 1), the 100(1−α)% confidence interval of γj,l(z) =

u
⊺

lγj(z) is constructed as

γ̃j,l(z) − u

⊺

lB̃j(z) − c1−α/2

(
u

⊺

lΣ̃(z;Gj)ul

NjTh1

)1/2

, γ̃j,l(z) − u
⊺

lB̃j(z) + c1−α/2

(
u

⊺

lΣ̃(z;Gj)ul

NjTh1

)1/2

 ,

where γ̃j,l(z) = u
⊺

lγ̃j(z) and c1−α/2 is the (1 − α/2)-quantile of the standard normal

distribution. In the empirical study, we ignore the bias term by appropriate under-

smoothing to simplify our construction of the confidence intervals. Alternatively, the

estimation bias term can be removed via the so-called jackknife correction.

5 Numerical studies

5.1 Monte-Carolo simulation

Data is generated via the following functional-coefficient quantile regression:

Yit = X
⊺

itβi(Zt) + αi + eit, i = 1, · · · ,N, t = 1, · · · , T , (5.1)

where Zt, t = 1, · · · T , are independently drawn from the uniform distribution U[0, 1],

Xit = (Xit,1,Xit,2)
⊺

, i = 1, · · · ,N, t = 1, · · · , T , are independently drawn from a bivari-
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ate normal distribution with zero means, unit variances, and a correlation coefficient

of 1/2, αi =
(
X̄2
i,1 + X̄2

i,2

)
/5 with X̄i,k = 1

T

∑T
t=1 Xit,k, and the idiosyncratic errors eit

are independently generated from one of the following distributions: N(0, 1), t(5), and

0.4
[
χ2(3) − 3

]
, and are independent of Zt and Xit. The results for the N(0, 1) errors

can be used as the benchmark for assessing how the proposed method performs when

the errors are heavy tailed (with t(5) distribution) or asymmetrically distributed (with

0.4
[
χ2(3)−3

]
distribution, where the scaling factor 0.4 is used to give a comparable error

variance to N(0, 1)).

As in Chen (2019) and Su et al. (2019), the heterogenous functional coefficients βi(·) =
[βi,1(·),βi,2(·)]

⊺

satisfy the following group structure:

βi,1(z) =






γ1,1(z) = 3F(z; 0.5, 0.1) if i ∈ G1,

γ2,1(z) = 3[2z− 6z2 + 4z3 + F(z; 0.7, 0.05)] if i ∈ G2,

γ3,1(z) = 3[4z− 8z2 + 4z3 + F(z; 0.6, 0.05)] if i ∈ G3,

and

βi,2(z) =






γ1,2(z) = 3[2z− 4z2 + 2z3 + F(z; 0.6, 0.1)] if i ∈ G1,

γ2,2(z) = 3[z− 3z2 + 2z3 + F(z; 0.7, 0.04)] if i ∈ G2,

γ3,2(z) = 3[0.5z− 0.5z2 + F(z; 0.4, 0.07)] if i ∈ G3,

where F(z; ξ,η) = 1/(1+exp[−(z−ξ)/η]), G1 = {1, 2, · · · ,N1}, G2 = {N1 + 1, · · · ,N1 +N2},

and G3 = {N1 +N2 + 1, · · · ,N1 +N2 +N3} with N1 = ⌊0.3N⌋, N2 = ⌊0.3N⌋ and N3 =

N−N1 −N2.

The sample size is N = 50, 100 and T = 50, 100, and the number of replications is

M = 200. We consider three quantile levels, τ = 0.25, 0.50 and 0.75, and use the Gaus-

sian kernel, K(u) = e−u2/2/
√

2π, in the local linear estimation. The bandwidth is selected

via the leave-one-out cross-validation method. To gauge the performance of the ratio cri-

terion (3.3) in estimating the number of groups, we set R = 5 and report the percentage

of replications where each integer (between 1 and R) is chosen. To understand the accu-

racy of the estimated groups (and their membership) from the agglomerative clustering

algorithm in Section 3.1, we consider two measures: purity and the normalised mu-

tual information (NMI) of the estimated groups G̃ =
{

G̃1, · · · , G̃R̂

}

with the true groups
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G = {G1, · · · ,GR}, both of which are classic criteria of clustering quality and are defined

respectively as

Purity(G̃,G) =
1

N

R̂∑

k=1

max
1⩽j⩽R0

∣∣∣G̃k ∩ Gj

∣∣∣ , NMI(G̃,G) = 2 · I(G̃,G)

H(G̃) +H(G)
,

where I(G̃,G) is the mutual information between G̃ and G defined as

I(G̃,G) =
R̂∑

k=1

R0∑

j=1

∣∣∣G̃k ∩ Gj

∣∣∣
N

· log2



N
∣∣∣G̃k ∩ Gj

∣∣∣
∣∣∣G̃k

∣∣∣ · |Gj|


 ,

H(G̃) is the entropy of G̃ defined as

H(G̃) = −

R̂∑

k=1

∣∣∣G̃k

∣∣∣
N

log2




∣∣∣G̃k

∣∣∣
N


 ,

and H(G) is defined analogously. The closer the values of NMI and purity are to 1, the

more accurate the estimated groups are to the true ones. We also look at the estima-

tion accuracy of the functional coefficients for both the preliminary local linear quantile

estimator defined in Section 3.1 and the post-grouping local linear quantile estimator de-

fined in Section 3.3. For this we compute the average root mean squared errors (RMSE)

defined as

RMSE(β̂) =
1

N

N∑

i=1

[
1

T

T∑

t=1

∥∥β̂i(Zt) − βi(Zt)
∥∥2

2

]1/2

,

for an estimate, β̂(·) =
(
β̂1(·), · · · , β̂N(·)

)⊺
, of the true functional coefficients β(·) =

(
β1(·), · · · ,βN(·)

)⊺
. As a benchmark, we also compute the RMSE of the oracle estimator,

which assumes that the true group structure is known a priori and pools data belong-

ing to each group to obtain group-specific estimates of the functional coefficients. The

results for DGP 1 are reported in Table 1 (for N(0, 1) errors), Table 2 (for t(5) errors), and

Table 3 (for 0.4
[
χ2(3) − 3

]
errors).

Table 1 shows that for DGP 1, when the errors follow the N(0, 1) distribution, for the

smallest sample size considered (i.e., N = 50 and T = 50), the ratio criterion (3.3) picks

the correct number of groups in about 75% of the replications at τ = 0.50 and about

60% of the replications at τ = 0.25 and 0.75. These percentages increase markedly as T
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increases and usually as N increases, but to a lesser extent. When T = 100, the correct R0

is chosen in 100% of the replications at τ = 0.50 and more than 85% of the replications

at τ = 0.25 and 0.75. This is consistent with the theoretical result in Theorem 4.2. On

the other hand, the NMI values are above 0.77 and purities above 0.91 at all quantiles

when T = 50, and they increase to above 0.95 when T increases to 100, verifying the

consistency results in Theorem 4.1 and Corollary 4.1 for the agglomerative clustering

algorithm. The lower block of Table 1 shows that by pooling data belonging to the

same group in the estimation, the post-grouping local linear estimator cuts the RMSE

of the preliminary local linear estimator by more than 30%, and its RMSE values are

not far from those of the oracle estimator. When T increases to 100 and the groups are

accurately estimated, the RMSEs of the post-grouping estimator are very close to the

oracle estimator. Similar findings can be drawn from Tables 2 and 3, where the errors

in DGP 1 follow the heavier tailed t(5) distribution and the asymmetric 0.4
[
χ2(3) − 3

]

distribution, respectively. The results for t(5) errors are in general worse than those of

N(0, 1) and 0.4[χ2(3) − 3] errors, which may be due to the fact that the t(5) distribution

has a larger variance than the other two. For 0.4[χ2(3) − 3] errors, the results are better

than those of N(0, 1) at τ = 0.25, worse than N(0, 1) at τ = 0.75 and comparable at

median τ = 0.50. This may be because at τ = 0.25, the 0.4
[
χ2(3) − 3

]
distribution has

more data points than the N(0, 1) distribution and hence, the preliminary functional

coefficients estimation and latent group estimation are more accurate. At τ = 0.75, the

reverse is true.

In the supplement, we consider additional simulation study with quantile-dependent

functional coefficients and group structure and obtain similar results, see Tables D.1–D.3

in Appendix D.2.

5.2 Empirical analysis

To further illustrate the applicability and usefulness of our methods, we next consider

a panel house price growth model for UK local authority districts (LADs). Similarly

to Chen et al. (2022), we use quarterly house price data over the period Q1/1997 –
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Table 1: Simulation results with N(0, 1) idiosyncratic errors

Percentage of replications each R̂ value is selected by the ratio criterion

with true R0 = 3 for τ = 0.25, 0.50, 0.75

T

N N = 50 N = 100

R̂ = 1 R̂ = 2 R̂ = 3 R̂ = 4 R̂ = 5 R̂ = 1 R̂ = 2 R̂ = 3 R̂ = 4 R̂ = 5

τ = 0.25 0.0% 2.5% 63.0% 27.5% 7.0% 0.0% 32.5% 65.0% 2.5% 0.0%

50 τ = 0.50 0.0% 2.5% 74.5% 19.0% 4.0% 0.0% 2.0% 92.5% 4.5% 1.0%

τ = 0.75 0.0% 42.5% 56.5% 1.0% 0.0% 0.0% 4.0% 89.0% 7.0% 0.0%

τ = 0.25 0.0% 0.0% 96.5% 3.5% 0.0% 0.0% 0.0% 99.5% 0.5% 0.0%

100 τ = 0.50 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

τ = 0.75 0.0% 15.0% 85.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

Average NMI and purity (with standard deviation in parentheses)

T

N N = 50 N = 100

NMI Purity NMI Purity

τ = 0.25 0.8363 (0.1305) 0.9174 (0.0868) 0.7807 (0.1466) 0.9556 (0.0552)

50 τ = 0.50 0.8923 (0.1084) 0.9508 (0.0644) 0.8994 (0.0956) 0.9646 (0.0468)

τ = 0.75 0.7766 (0.1416) 0.9647 (0.0502) 0.8347 (0.1385) 0.9452 (0.0575)

τ = 0.25 0.9915 (0.0356) 0.9953 (0.0202) 0.9938 (0.0257) 0.9973 (0.0156)

100 τ = 0.50 0.9986 (0.0099) 0.9996 (0.0028) 0.9986 (0.0082) 0.9997 (0.0021)

τ = 0.75 0.9522 (0.1021) 0.9987 (0.0053) 0.9921 (0.0328) 0.9975 (0.0122)

Average RMSE of β(·) estimates (with standard deviation in parentheses)

T

N N = 50 N = 100

Oracle Preliminary Post-grouping Oracle Preliminary Post-grouping

τ = 0.25 0.4211 (0.0213) 0.7085 (0.0280) 0.4770 (0.0653) 0.3877 (0.0181) 0.7105 (0.0235) 0.4910 (0.0906)

50 τ = 0.50 0.3783 (0.0195) 0.6608 (0.0282) 0.4190 (0.0602) 0.3693 (0.0170) 0.6646 (0.0204) 0.4025 (0.0497)

τ = 0.75 0.3866 (0.0191) 0.7038 (0.0287) 0.5057 (0.0924) 0.4003 (0.0176) 0.7114 (0.0214) 0.4598 (0.0727)

τ = 0.25 0.3028 (0.0124) 0.5213 (0.0166) 0.3056 (0.0205) 0.2742 (0.0091) 0.5160 (0.0129) 0.2762 (0.0146)

100 τ = 0.50 0.2407 (0.0131) 0.4805 (0.0170) 0.2410 (0.0135) 0.2291 (0.0090) 0.4783 (0.0129) 0.2294 (0.0090)

τ = 0.75 0.2675 (0.0134) 0.5171 (0.0170) 0.3016 (0.0792) 0.2753 (0.0093) 0.5170 (0.0128) 0.2780 (0.0186)
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Table 2: Simulation results with t(5) idiosyncratic errors

Percentage of replications each R̂ value is selected by the ratio criterion

with true R0 = 3 for τ = 0.25, 0.50, 0.75

T

N N = 50 N = 100

R̂ = 1 R̂ = 2 R̂ = 3 R̂ = 4 R̂ = 5 R̂ = 1 R̂ = 2 R̂ = 3 R̂ = 4 R̂ = 5

τ = 0.25 0.0% 7.5% 67.0% 21.0% 4.5% 0.5% 4.5% 59.0% 28.0% 8.0%

50 τ = 0.50 0.0% 23.0% 70.0% 6.5% 0.5% 0.0% 17.5% 78.0% 4.5% 0.0%

τ = 0.75 0.0% 15.5% 71.5% 10.0% 1.0% 0.0% 15.5% 71.5% 10.5% 2.5%

τ = 0.25 0.0% 0.5% 85.5% 12.0% 2.0% 0.0% 0.0% 94.5% 5.0% 0.5%

100 τ = 0.50 0.0% 0.0% 95.5% 4.5% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

τ = 0.75 0.0% 0.0% 91.5% 6.0% 2.5% 0.0% 0.0% 98.5% 1.5% 0.0%

Average NMI and purity (with standard deviation in parentheses)

T

N N = 50 N = 100

NMI Purity NMI Purity

τ = 0.25 0.7272 (0.1414) 0.8885 (0.0897) 0.6954 (0.1689) 0.8770 (0.0943)

50 τ = 0.50 0.7940 (0.1641) 0.9497 (0.0618) 0.8026 (0.1364) 0.9494 (0.0589)

τ = 0.75 0.7292 (0.1555) 0.9026 (0.0857) 0.6839 (0.1474) 0.9018 (0.0835)

τ = 0.25 0.9601 (0.0892) 0.9786 (0.0483) 0.9783 (0.0430) 0.9915 (0.0227)

100 τ = 0.50 0.9922 (0.0263) 0.9949 (0.0220) 0.9946 (0.0177) 0.9986 (0.0054)

τ = 0.75 0.9690 (0.0617) 0.9850 (0.0382) 0.9768 (0.0505) 0.9926 (0.0218)

Average RMSE of β(·) estimates (with standard deviation in parentheses)

T

N N = 50 N = 100

Oracle Preliminary Post-grouping Oracle Preliminary Post-grouping

τ = 0.25 0.4269 (0.0202) 0.7903 (0.0358) 0.5386 (0.0783) 0.4259 (0.0176) 0.7914 (0.0249) 0.5401 (0.0928)

50 τ = 0.50 0.3999 (0.0207) 0.7178 (0.0308) 0.4980 (0.0967) 0.3776 (0.0182) 0.7195 (0.0223) 0.4646 (0.0850)

τ = 0.75 0.4187 (0.0221) 0.7935 (0.0381) 0.5340 (0.0864) 0.4095 (0.0174) 0.7949 (0.0266) 0.5462 (0.0922)

τ = 0.25 0.3206 (0.0139) 0.5819 (0.0217) 0.33421 (0.0471) 0.3117 (0.0104) 0.5804 (0.0161) 0.3184 (0.0259)

100 τ = 0.50 0.2753 (0.0130) 0.5185 (0.0189) 0.2778 (0.0156) 0.2673 (0.0098) 0.5183 (0.0148) 0.2686 (0.0110)

τ = 0.75 0.3204 (0.0143) 0.5825 (0.0206) 0.3324 (0.0377) 0.2955 (0.0102) 0.5810 (0.0165) 0.3037 (0.0305)
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Table 3: Simulation results with 0.4 ∗ [χ2(3) − 3] idiosyncratic errors

Percentage of replications each R̂ value is selected by the ratio criterion

with true R0 = 3 for τ = 0.25, 0.50, 0.75

T

N N = 50 N = 100

R̂ = 1 R̂ = 2 R̂ = 3 R̂ = 4 R̂ = 5 R̂ = 1 R̂ = 2 R̂ = 3 R̂ = 4 R̂ = 5

τ = 0.25 0.0% 0.0% 95.5% 4.5% 0.0% 0.0% 0.5% 97.5% 2.0% 0.0%

50 τ = 0.50 0.0% 1.0% 69.0% 24.5% 5.5% 0.0% 0.5% 96.0% 3.5% 0.0%

τ = 0.75 0.0% 11.0% 66.5% 18.5% 4.0% 0.0% 22.5% 70.5% 6.5% 0.5%

τ = 0.25 0.0% 0.5% 99.5% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

100 τ = 0.50 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

τ = 0.75 0.0% 0.0% 98.0% 2.0% 0.0% 0.0% 0.0% 98.0% 1.5% 0.5%

Average NMI and purity (with standard deviation in parentheses)

T

N N = 50 N = 100

NMI Purity NMI Purity

τ = 0.25 0.9766 (0.0574) 0.9927 (0.0182) 0.9748 (0.0691) 0.9945 (0.0187)

50 τ = 0.50 0.9382 (0.0789) 0.9608 (0.0595) 0.9477 (0.0831) 0.9827 (0.0354)

τ = 0.75 0.7418 (0.1690) 0.9010 (0.0873) 0.7469 (0.1573) 0.9342 (0.0735)

τ = 0.25 0.9986 (0.0199) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

100 τ = 0.50 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

τ = 0.75 0.9811 (0.0502) 0.9933 (0.0195) 0.9755 (0.0554) 0.9904 (0.0299)

Average RMSE of β(·) estimates (with standard deviation in parentheses)

T

N N = 50 N = 100

Oracle Preliminary Post-grouping Oracle Preliminary Post-grouping

τ = 0.25 0.3259 (0.0191) 0.5420 (0.0267) 0.3363 (0.0436) 0.3212 (0.0171) 0.5420 (0.0201) 0.3334 (0.0470)

50 τ = 0.50 0.3526 (0.0189) 0.6041 (0.0278) 0.3736 (0.0448) 0.3300 (0.0162) 0.6007 (0.0223) 0.3498 (0.0498)

τ = 0.75 0.4172 (0.0220) 0.7685 (0.0380) 0.5251 (0.0935) 0.3944 (0.0158) 0.7638 (0.0238) 0.5039 (0.0944)

τ = 0.25 0.1953 (0.0089) 0.3531 (0.0136) 0.1964 (0.0204) 0.1911 (0.0072) 0.3534 (0.0113) 0.1911 (0.0072)

100 τ = 0.50 0.2109 (0.0103) 0.4241 (0.0175) 0.2109 (0.0103) 0.2027 (0.0094) 0.4210 (0.0134) 0.2027 (0.0094)

τ = 0.75 0.3119 (0.0136) 0.5704 (0.0192) 0.3188 (0.0290) 0.3005 (0.0098) 0.5686 (0.0162) 0.3093 (0.0302)
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Q4/20163, downloaded from the UK Office of National Statistics (ONS) website: https:

//www.ons.gov.uk/. Growth rates in population and the nominal per capita personal

income are used as the explanatory variables. Their data at the individual LAD level are

available at the annual rate on the ONS website4, and we construct quarterly data for the

two variables using the interpolation method in Denton (1971) and Dagum and Cholette

(2006). For the index variable, we use quarterly inflation rates, which are available at the

country level at https://www.bls.gov/cpi/data.htm. This allows for interaction

between inflation and the explanatory variables and for the effects of the explanatory

variables on house prices to vary with inflation. Data for all the variables have been

de-seasoned and de-trended5.

Assume the following panel quantile regression:

Qτ,i(hpit|popit, inci,t−1, inft,αi) = αi + βi,1(inft)popit + βi,2(inft)inci,t−1, (5.2)

for i = 1, · · · , 335 and t = 2, · · · , 80, where hpit is the house price growth rate (in %)

for the i-th LAD in the t-th quarter, popit is the population growth (in %), inci,t−1 is the

growth in per capita personal income (in %), inft is the inflation rate (in %), and αi is

the fixed effect. Here inc is lagged by one time period due to the likely lagged effect of

income growth on house price.

While the model (5.2) offers great flexibility by allowing the coefficients to vary

across LADs and quantiles as well as with inflation, there may exist some homogeneity

groups of LADs at each quantile level, where the coefficients are homogeneous within

each group (while still varying with inflation) but heterogeneous across groups. That

is, at a given quantile level τ, there may exist a partition of the index set {1, 2, , · · · , 335},

denoted as {G1,G2, · · · ,GR0
}, such that

βi(·) :=


 βi,1(·)

βi,2(·)


 = γj(·) :=


 γj,1(·)

γj,2(·)


 for i ∈ Gj, i = 1, · · · , 335, j = 1, · · · ,R0.

3Due to data unavailability, we consider LADs only in England and Wales.
4Four LADs from England and Wales - Aylesbury Vale, Gloucester, Norwich, and Powys, are excluded

due to their outlying values. This gives a total of 335 LADs for the subsequent analysis.
5More data details can be found in Chen et al. (2022).
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We consider 3 quantile levels, i.e., τ = 0.25, 0.50, 0.75, and at each quantile, we then use

the methods proposed in Section 3 to estimate the number of latent groups as well as

the group membership. The results are summarised in Table 4. The post-grouping local

linear estimates of the group-specific functional coefficients, together with their 95%

confidence intervals, are plotted in Figures 1–3 for τ = 0.25, 0.50, 0.75, respectively. The

confidence intervals are computed using the plug-in estimates of the asymptotic bias

and variance matrix derived in Theorem 4.3 (see Appendix C.3 in the supplement for

detail). The estimated groups at each quantile level, projected onto a choropleth map,

are shown in Figures 4–6.

At both τ = 0.25 and τ = 0.50, two groups of LADs are identified, although the

membership of the groups is not exactly the same6. Furthermore, Figures 1 and 2 show

that the coefficient functions for each group have similar patterns at these two quantiles,

especially for that of population growth. The coefficients are mostly positive, consistent

with the economic theory that growth in population and income leads to growth in de-

mand for housing and hence, a rise in house price. At τ = 0.25, the effects of population

and income growth in general decrease as inflation increases. This decreasing trend is

more marked for the effect of population growth in Group 1 LADs (88% of which are

non-metropolitan districts or unitary authorities), but much less so in Group 2 LADs

(which include 88% of the London boroughs and 89% of the metropolitan districts). For

example, when inflation rate is -0.5%, for each 1% increase in population growth, house

price growth is increased by around 8%. But when inflation rate is 0.5%, a 1% increase

in population growth leads only to a 2% increase in house price growth. At τ = 0.50,

we observe a similar trend. We can also find, from Figures 1 and 2, that at τ = 0.25

and τ = 0.50, the effect of population growth on house price growth dominates that of

income growth for Group 1 LADs, which are mainly non-metropolitan or unitary dis-

tricts. At τ = 0.75, where five groups are identified, we see some different trends for

different groups (see Figure 3). While most values of the coefficient functions are posi-

6The membership of the two groups at τ = 0.50 is similar to that of the two groups at τ = 0.25 with

a large number of overlapping member LADs (e.g. for Group 1, there are 45 overlapping LADs and for

Group 2, there are 247 overlapping LADs).
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Table 4: Estimated latent groups for house price data from 335 UK LADs

Quantile Number of groups Cardinality of each group

τ = 0.25 R̂ = 2 69, 266

τ = 0.50 R̂ = 2 64, 271

τ = 0.75 R̂ = 5 4, 59, 45, 204, 23

tive, there are negative values for some groups in some subintervals. For example, the

coefficient function of population growth for Group 1 exhibits a downward sloping pat-

tern with increasing inflation and is negative when inflation is above −0.7%. A closer

examination of the member LADs reveals that three out of the four LADs of this group

are urban districts with major or minor conurbation, where immigration are more likely

to occur. If population growth is driven by migration inflows, its effect on house price

growth might be ambiguous and sometimes even negative (Sá, 2015). Chen et al. (2022)

also find negative effects of population growth on house price growth in some LADs.

For comparison, we also conduct a grouping analysis based on the functional-coefficient

mean regression for the same variables. The same ratio criterion and HAC algorithm are

used for choosing the number of groups and estimating the group membership. The ob-

tained results are similar to those from the quantile analysis at τ = 0.50: two groups

are found with similar, although not exactly the same, membership to those from the

quantile regression at τ = 0.50. Results from the mean regression are more susceptible

to the influence of outliers. More detail about the mean regression grouping results can

be found in Appendix D.1 of the online supplement.

The above analysis reveals that at τ = 0.25 and τ = 0.50, there is more homogeneity

in the effects of population and income growth on house price growth across LADs, and

in general these effects are positive and decrease as inflation increases. At τ = 0.75, more

heterogeneity is observed, and for some identified groups the effects of population and

income growth are negative for some values of inflation. It also appears that at τ = 0.75,

the effect of income growth is larger than at lower quantiles. This empirical application

demonstrates the benefit of the quantile grouping analysis: it can shed more light on

the impact of population and income growth on house price growth across LADs than

a mean regression analysis or a mean regression based grouping analysis does. The
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Figure 1: Post-grouping local linear estimates of the functional coefficients (with 95% confidence

intervals) for population growth (γ1(·), top row) and income growth (γ2(·), bottom row) at τ =

0.25: left - for Group 1; right - for Group 2.

results may be useful for policy makers in developing more targeted policies for specific

groups of districts at specific quantiles.

6 Conclusion

In this paper, we propose a general functional-coefficient quantile regression model for

large panel data and assume a latent group structure on the heterogenous functional

coefficients. An estimation methodology which combines preliminary functional coef-

ficient estimates (ignoring the latent group structure), an agglomerative clustering al-

gorithm and a simple ratio criterion is introduced to consistently estimate the group

number and membership. Furthermore, a post-grouping local linear quantile regression

method is used to estimate the group-specific functional coefficients, aiming to achieve

faster convergence rates than the preliminary local linear estimator. To asymptotically

remove the influence of nuisance parameters and derive an asymptotic normal distribu-

tion theory comparable to that in the literature such as Kato et al. (2012), we impose a
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Figure 2: Post-grouping local linear estimates of the functional coefficients (with 95% confidence

intervals) for population growth (γ1(·), top row) and income growth (γ2(·), bottom row) at τ =

0.50: left - for Group 1; right - for Group 2.

Figure 3: Post-grouping local linear estimates of the functional coefficients (with 95% confidence

intervals) for population growth (γ1(·), top row) and income growth (γ2(·), bottom row) at τ =

0.75: from left to right - Group 1, Group 2, Group 3, Group 4, Group 5.
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Figure 4: Spatial pattern of estimated groups for τ = 0.25: blue LADs - Group 1; red LADs -

Group 2.

Figure 5: Spatial pattern of estimated groups for τ = 0.50: blue LADs - Group 1; red LADs -

Group 2.
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Figure 6: Spatial pattern of estimated groups for τ = 0.75: blue LADs - Group 1; red LADs -

Group 2; yellow LADs - Group 3; purple LADs - Group 4; green LADs - Group 5.

relatively restrictive condition on the divergence rate of the group size, but allow weak

cross-sectional and temporal dependence for large panel observations. The simulation

studies show that the proposed methods have reliable finite-sample performance. The

empirical application to the UK house price data reveals that the latent structures vary

over different quantile levels with more heterogeneity observed at the upper quartile.

In addition, the methodology is modified to estimate the latent group structure in lin-

ear panel quantile regression uniformly over quantile levels, and the main methodology

and theory are applicable to the time-varying coefficient panel quantile regression with

the latent structure.
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