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Variation in spatial dependencies across the
cortical mantle discriminates the functional
behaviour of primary and association cortex

Robert Leech 1 , Reinder Vos De Wael2, František Váša 1, Ting Xu 3,

R. Austin Benn4, Robert Scholz 5, Rodrigo M. Braga6, Michael P. Milham3,

Jessica Royer2, Boris C. Bernhardt 2, Emily J. H. Jones7, Elizabeth Jefferies8,

Daniel S. Margulies4 & Jonathan Smallwood 9

Recent theories of cortical organisation suggest features of function emerge

from the spatial arrangement of brain regions. For example, association cortex

is located furthest from systems involved in action and perception. Associa-

tion cortex is also ‘interdigitated’ with adjacent regions having different pat-

terns of functional connectivity. It is assumed that topographic properties,

such as distance between regions, constrains their functions, however, we lack

a formal description of how this occurs. Here we use variograms, a quantifi-

cation of spatial autocorrelation, to profile how function changes with the

distance between cortical regions. We find function changes with distance

more gradually within sensory-motor cortex than association cortex. Impor-

tantly, systemswithin the same type of cortex (e.g., fronto-parietal and default

mode networks) have similar profiles. Primary and association cortex, there-

fore, are differentiated by how function changes over space, emphasising the

value of topographical features of a regionwhen estimating its contribution to

cognition and behaviour.

One of the most important discoveries in human neuroscience is that

brain topography plays an important role in determining how a region

contributes to cognition and behaviour1. These topographic features

can shape a region’s function in many ways including: (i) through the

influence of neighbouring neural systems that make up the local

environment within which a specific region is embedded2, (ii) the

physical location of the network on the cortical mantle with respect to

core cortical landmarks3, (iii) andmoreabstract topographical features

such as the degree to which functional activity within a network is

spatially distributed across the cortical mantle2,4, or, instead is limited

to adjacent regions, often within a single cortical lobe5,6.

Contemporary evidence suggests that local topographical

properties influence a region’s function in a complicated, inter-

dependent manner. For example, neural systems concerned with

sensation and movement, such as the visual or motor cortex, are

spatially distant fromeach other, yet bothof these systems tend to be

relatively spatially contiguous, and both contain topographic fea-

tures resembling maps, either of the external environment or how

the organism engages with the outside world7–10. Other systems, such

as the default mode or frontoparietal networks, are located in

regions of association cortex, are spatially adjacent to one another,

both are spatially distributed across cortex; yet functionally these
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systems appear to serve different, often opposing roles in human

cognition11. Topography is also important for understanding mac-

roscale brain function, because systems that tend to be more spa-

tially discontinuous (e.g., the default mode network) tend to bemore

distant from sensory and motor systems where spatial discontinuity

is an exception rather than the norm (e.g. sensorimotor or visual

cortex)3. In contemporary neuroscience, macroscale topographical

features provide a useful heuristic for understanding the involve-

ment of frontoparietal and default mode networks in cognition.

These networks are hypothesised to be at the transmodal apex

regions of a broad sensory-fugal hierarchy, allowing oversight across

broad areas of cortex12. In contrast, mesoscale features of topo-

graphy, such as the retinotopic maps located within sensory cortex,

are thought to explain aspects of how the visual system represents

and extracts features of the environment from retinal input8.

Topography at both macro and mesoscale is, therefore, a key

principle of brain organisation and is crucial for understanding brain

function both within specific systems and across the cortex as a whole.

Our study set out to formally examine how the meso and macro scale

perspectives can be combined to formally understand the relationship

between topography and brain function. The distance between

regions, calculated as the geodesic distance between two vertices,

provides one metric to understand how topography influences func-

tion. This measure has been used to describe macroscale features of

cortical topography, for example, highlighting that systems like the

defaultmode and frontal-parietal cortex are distant fromboth systems

concerned with sensory input andmotor output systems13. However, a

given location on the cortical mantle may be influenced by local

topographical features as well, such as the features of the local

neighbourhood in which the region is situated, or, whether the system

is part of a distributed or localised network. Accordingly, it is

important to understand how the balance of meso and macro scale

influences combine in order to understand how topography influences

function within a given brain region. Our study set out to understand

meso and macro scale changes in the influence of topographical fea-

tures on brain function by examining whether there are regional dif-

ferences in the way distance impacts functional connectivity.

In order to establish how distance between regions influences

their similarity in function, we calculated for each cortical surface

vertex how the similarity of its activity changes with all other vertices

as a function of the distance between them; quantifying the local rate

of change of similarity across the cortex. This is a simplified version of

the empirical variogram14, as illustrated schematically in the upper

panel of Fig. 1. Spatial variograms are expected to show that similarity

in function declines with distance until it reaches an asymptote, the

distance after which there is no longer a spatial dependency between

vertices. The empirical variogram can be summarised by fitting an

exponential function which in turn can be described by two values

capturing how similarity changes with distance for each vertex: the

effective range and the sill. The sill is the height (i.e., degree of dis-

similarity between two regions) and the range is asymptote (i.e., the

spatial distance between the two regions). Heterogeneity in the spatial

variogram across regions can be used to quantify the different ways

topography influences function in different cortical locations. For

example, in regions where function is more influenced by the local

neighbourhood, the spatial variogram shows a relatively shallow

decline in similarity with distance. In contrast, in regions where func-

tion is relatively distinct from the local environment, the variogram

should increase more rapidly with the distance. This approach allows

for the presence of variable spatial dependencies across the cortex, in

contrast to accounts that imply a homogeneous spatial relationship,

e.g., a single exponential distance rule15.

Fig. 1 | Calculationof variograms. Top Panel. Schematic illustration of how spatial

variograms can be used to characterise how functional connectivity changes as

distance increases between brain regions. Bottom Left. Whole-brain variograms of

functional connectivity can be calculated by comparing how the distance along the

cortical surface is related to the average similarity in brain activity between regions.

BottomRight. Whole brain variograms are shown for the left and right cortices and

can be seen to be broadly similar. The thick lines/dots are the mean across parti-

cipants, and the filled area is the standard error of the mean. The dashed lines are

the estimated location of the sill (asymptotic correlation between vertices) and

range (distance in mm between vertices at which the asymptote is reached).
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Results
Whole-brain spatial dependency
We first quantified the spatial dependency between functional con-

nectivity and distance by calculating whole-brain variograms assessing

how functional connectivity (Pearson’s correlation) varies with dis-

tance along the cortical surface for each hemisphere (Fig. 1, lower

panel). We used resting state fMRI data from 51 participants from the

Human Connectome Project. We took two scans on the same data for

each individual allowing us to calculate the reliability of these metrics

within an individual. Averaging these vertex-wise variograms across

the whole cortex, the global variogram, reveals an initially steep rise

(rapidly increasing dissimilarity with distance (Fig. 1). This is followed

by a continuous increaseup to themeasured limit (all vertices included

distances up to 150mm, which was the maximum distance present for

all vertices (see Supplementary Figure 1 for vertex distance distribu-

tions and higher upper measurement limits). The variograms for the

left and right hemispheres show a similar pattern (see left hand panel).

The landscape of these variograms can be formally understood by

comparing the observed rate of change in function with distance with

different mathematical growth functions (e.g., exponential, gaussian,

sinusoidal and power-law). It can be seen in Fig. 1 that the whole brain

variogram of the human ismost similar to an exponential relationship.

For the purposes of our analyses, we extracted the two para-

meters used to fit the theoretical function to the empirical variograms:

(i) the sill, which is the height the variogram reaches at 95% of its

asymptote and reflects the approximate point at which there is

no longer a relationship between space and functional connectivity

(i.e., that vertex’ baseline average correlation level with other vertices);

and (ii) the range which is where the sill occurs. These are both dis-

played in the top panel of Fig. 2. Importantly comparing the variogram

calculated for each of the participants from separate resting state

scans on the same day shows a high degree of correspondence both in

terms of the sill (the average difference in correlation between ver-

tices) and the distance (i.e., rho > 0.73; Fig. 2 top panel).

Regional variation in spatial dependency across the cortex
Thewhole-brain variogramsestablish that in humans, distance leads to

an increase in dissimilarity in neural function that is asymptotic

exponential in nature and that these measurements are broadly con-

sistent within an individual over time. This aligns with descriptions of

spatial similarity previously reported in humans and non-human pri-

mates e.g., refs. 15–18. By computing variograms, we are able to go

beyond a single description of spatial dependency in each region of

the brain, and this therefore allows us to capture regional differences

in spatial dependencies (see also Supplementary Fig. 2, for random

models with homogeneous spatial dependency structures to contrast

with the empirical results). To understand whether there are sys-

tematic differences in howdistance leads to changes inneural function

across different brain regions, we calculated separate variograms for

each vertex across the cortex. The middle panel in Fig. 2 summarises

how the twometrics (sill and effective distance) vary across the cortex.

It can be seen that sill (reflecting the spatial dissimilarity in functional

connectivity across the cortex) ranges between 0.25 and 0.5, and that

in some regions the dissimilarity continues to increase to the max-

imum range of our measurements (150mm).

Relationship between spatial dependency and cortical
organisation
Having highlighted the features that whole brain variograms have, we

next considered how this varied across the cortex. To this end, we

examined how the distribution of the sill and the effective range varies

across the principal gradient of change in functional connectivity3.

This gradient can be derived by application of dimensionality reduc-

tion techniques to functional connectivity data3, and recapitulates

foundational features of the sensory-transmodal cortical hierarchy1.

The lower panel of Fig. 2 shows that regions closer to the transmodal

end of the principal gradient tend to be regions where the variograms

tend to have a relatively high sill and short effective distance (i.e.,

regions where dissimilarity shows a relatively rapid increase), in gen-

eral. In contrast, regions closer to the unimodal end of the principal

gradient tend to have a relatively lower sill and a longer effective dis-

tance (i.e., regions that show a slower rate of decline in function with

increasing distance). This analysis provides preliminary support that

two broad types of cortex (primary and association cortex) can be

discriminated based on how activity varies with distance. Spin per-

mutation tests (Fig. 2, bottom, right) as well as generative null models

basedon randomisation or randomisation followedby smoothingwith

a homogeneous function (Supplementary fig. 2) show that these rela-

tionships are unlikely to be due to chance.

The principal gradient provides an organising principle for mac-

roscale features of brain function, including large-scale brain networks

(see ref. 3). Next, we examined how the large-scale networks that span

theprincipal gradient, focusingonawell-defined setof canonical resting

state networks from Yeo and colleagues4. Figure 3 (upper panel) shows

the average empirical variogram for each network while the lower panel

shows the average sill and effective distance of each network. Regions

making up the limbic network (Cream) have the highest sill and the

shortest effective distance, a pattern that is also seen in the transmodal

networks (Defaultmode, Red; Fronto-parietal network, Orange) but to a

lesser degree. Regions that make up unimodal cortex (Visual network,

Purple; Motor cortex, Blue) show the reverse profile with variograms

with small sills and relatively long effective distance. Finally, the two

attention networks (Dorsal and Ventral) show intermediate profiles

both having moderate sills and effective ranges. These two systems are

distinguished fromeachother because theDorsal attentionnetwork has

a longer effective distance and a short sill, and so is more similar to the

unimodal systems, whereas the ventral attention network shows the

opposite profile.

This network analysis contrasts with a comparison between broad

features of brain organisation such as the principal gradient. In parti-

cular, while there are clear differences between networks in terms of

their variogram profile, networks embedded in similar types of cortex

show relatively high similarity. In particular, both the default mode

network and the frontoparietal network, embeddedwithin association

cortex, show similar profiles. Likewise, the variograms of visual and

motor systems, which are both embedded in primary cortex, are also

similar. To quantify this apparent similaritywe randomly permuted the

location of the Yeo networks (by rotating them on the sphere) to

generate null models and compared the difference in the Range and

Sill parameters. This analysis showed the only significant differences

were between different types of cortex (see Fig. 4), e.g., between visual

and default mode networks.

Having established that heterogeneity in spatial dependencies

capture important features of brain organisation in humans, we next

sought to understandwhether this generalises to non-humanprimates.

To this end, we repeated this analysis in a sample of macaques (using

homologue networks, see Methods for details). This analysis identified

that the network profile of each species is broadly similar. For example,

in both species the limbic network has the highest sills and the shortest

effective distances, and the visual system provides the clearest exam-

ple of the opposite profile (low sills and longer effective distance). We

note that some regions within the limbic network have been reported

to have signal dropout and related issues in the Human Connectome

Project dataset19 and so should be interpreted with caution.

Clustering variation in spatial dependency
The variograms stratified by resting-state network suggest that there

may be a small set of spatial dependency profiles that characterise a

larger number of networks, and that these likely correspond to the

difference between association and primary cortex. To provide an
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independent test of this idea, we performed hierarchical clustering on

the binned data from the vertex-wise variograms and display the results

coloured by different canonical networks. The top panel of Fig. 5 pre-

sents the dendrogram produced by this analysis. Clustering vertices

based on their variogram profiles gives rise to two groups, one pre-

dominantly encompassing the unimodal systems (primary sensor-

imotor networks as well as parts of the dorsal attention network) and

the other corresponding to limbic and transmodal systems, as well as

the ventral attention network. This analysis, therefore, highlights a

broad dissociation of cortex into two classes based on their variograms:

one class of regions where the variograms have low sills and long con-

nectivity and a second class of regions with higher sills and shorter

effective distances. We also assessed how consistent these results were

for individuals’ variograms across different scans (Fig. 5C), to ensure the

cluster structure was not a consequence of group averaging and

generalises to out-of-sample data. Comparing each individual partici-

pant’s empirical variograms across scans showed within-cluster corre-

lations (cluster variograms from scan 1 correlated with cluster

variograms from scan 2) substantially higher than across clusters.

Our analysis highlights that variograms vary between primary and

association cortex, but do not separate large-scale networks such as

the default mode and fronto-parietal cortex, even though these have

contrasting behaviour at rest20 and have differing functional profiles.

Our next analysis, therefore, examined how the variograms vary with

meta-analytic descriptions of function. To this end, we averaged

vertex-wise estimates of the range and sill parameters for responsive

vertices (defined as those with an estimated evoked BOLD response

greater than threshold) in 24 topic maps generated by data mining

the neuroimaging-related literature21 and discovering brain maps

associated with them from an automated meta-analysis22. Figure 5

Fig. 2 | Distribution of the sill and effective distance of variograms across the

cortex. A Variograms can be formally described through comparison of the

observed rate of change between similarity in brain activity and distance with

different mathematical growth functions. We observe that the whole-brain vario-

gram has most similarity to an exponential function. B Variograms can be char-

acterised by two numbers, the partial sill (the height of the curve at 95% of its

asymptote) and the effective range (the distance of the sill). C Both the sill and the

range of the whole brain variogram show reasonable similarity when measured

within the same individual in two scans on the same day (>0.73). D The regional

distribution of the range (the distance of the sill) and (E) the sill (the height of the

variogram at 95% of its asymptote) across the vertices of the human cortex. It can

be seen that the sill varies from 0.25 and 0.5 across the cortex and that in some

regions the range can be as long as 15 cm. The relationship between the

F distribution of the principal gradient of intrinsic connectivity and (G) variograms

at each vertex (as described by each vertex’s partial sill and effective distance).

H Spin permutation tests to assess the significance of the correlation between the

principal gradient and theoretical variogram parameters (the range and the sill).

The true values are depicted by the dashed lines and the histogram displays the

distribution of correlations from the permuted maps.
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shows how brain regions related to different cognitive states differ in

terms of their profile of spatial dependencies. In general, more exter-

nally focused tasks (e.g., labelled “visual” or “motor”) showed slower

decrease in similarity with distance and a lower sill; whereas cognitive

tasks associated with more abstract functions (such as “emotion”,

“social”, “memory”), were associated with the opposite pattern with

shorter ranges and higher sills. We subsequently clustered the tasks

according to their sills/ranges to allow us to easily visualise the varia-

bility in the variograms associatedwith each task (the red/blue colours

in Fig. 5, panels A–E). This allowed us to create a composite task acti-

vation map for each cluster and plot the associated variograms

showing the different spatial dependency profiles.

Fig. 3 | Variograms calculated for each canonical resting state network (Yeo,

Krienen et al.47) in humans and in homologue networks in macaques. The

middle panel shows the mean variogram (FC dissimilarity by distance along the

cortex) calculated across all vertices for each Yeo network in the human Human

Connectome Project data; the filled areas are the standard errors of the mean

across vertices. Below is a similar analysis with fMRI data averaged from 14 awake

Macaque monkey as a comparison. Data to recreate the variograms in Fig. 3 is

available in source data file.

Fig. 4 | Permutation tests to assess the difference in average Sill and Range

between networks. The results from spin permutation tests comparing the dif-

ference in thedifferences between the range and sill between each pair of canonical

resting state networks (in the human); network pairs with significant differences

(FDR-corrected, α <0.1) are indicated with an asterisk.
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Relationship between spatial dependency and intracortical
myelin
Our final analysis examined how microstructural features of different

regions of the cortex correspond to the observed differences in spatial

dependencyprofiles across cortex. Given its role in signal propagation,

we examined whether myelination is linked to the shape of the vario-

grams for different vertices. Figure 6 depicts the spatial distribution of

estimated cortical myelin. We split vertices into deciles based on their

levels of corticalmyelination and plotted separate variograms for each

decile. A clear separation emerges, with more highly myelinated ver-

tices displaying, on average, longer distance spatial dependencies, and

lower sills. This is mademore explicit by plotting the range and the sill

per vertex (Fig. 6) coloured by the level of myelination (warm colours

indicating higher myelination).

Discussion
Given emerging evidence of the importance of topography in the

mammalian cortex3,12, our study set out to understand how the dis-

tance between regions relates to their functional similarity. In parti-

cular, we examined whether this profile of spatial dependence is

heterogeneous, varying across different cortical regions. Our analysis

first established whole brain variograms are reasonably consistent

across hemispheres, individuals, and within individuals measured in

different scans on the same day. When we examined these on a

regional basis, we observed substantial differences across the cortex.

This finding suggests a more complex relationship between functional

connectivity and distance along the cortex than has typically been

reported. For example, multiple previous studies have defined a

homogeneous cortex- or brain-wide relationship between function

and distance (such as a single exponential distance rule, e.g.,

refs. 15,17,18,23, although23 noted that a single spatial relationship was

inadequate to fully explain patterns of brain activity). The regional

variability that we observed, reflects known functional divisions of

brain function. Notably, the observed differences in spatial depen-

dence profile recapitulated the distinction between primary sensor-

imotor and transmodal association cortex. In primary sensorimotor

cortices, including visual and somatosensory cortex, we found that

increasing distance is associated with a gradual change in function. In

contrast, in association cortex we found that function changed with

distance at a much faster rate. Importantly, while these broad types of

cortex differed substantially in terms of their spatial dependencies,

networks located within similar types of cortex were generally similar

to each other, an observation which is important because these sys-

tems are often thought to have contrasting functional and cognitive

associations. These differences between unimodal and association

cortex in humans were broadly similar to those seen in macaques

suggesting that they are conserved across the primate nervous system.

We found that these changes in how distance impacts functional var-

iation are likely to be at least partly related to differences in micro-

structure, as we found differences between association and unimodal

Fig. 5 | Clustering vertices based on empirical variograms. Left A: clustering

vertices based on empirical variograms. The dendograms, are coloured by the Yeo

network that each vertex belongs to, displaying the tree structure of the similarity

betweenvariograms; the number for each column is the index of the representative

vertex. B The dendogram was used to cluster the data into two clusters (coloured

red and blue) for the left and right hemispheres. The order of the clustering was

arbitrary across hemispheres and has been coloured based on approximate simi-

larity between the left and right hemispheres. Broadly, transmodal regions were

clustered together in a separate cluster (red) to unimodal sensorimotor regions

(blue). C Correlation of empirical variograms across vertices are consistent within

each cluster within individuals and across differentMR scans; bars are the standard

error of the mean. D Average empirical variograms for each of the clusters within

individuals reveals that one cluster exhibits more dramatic change in functional

similarity with distance (shaded areas are the standard error of the mean). E The

range and sill for each vertex, coloured by the cluster label for the left and right

hemispheres. F the ranges and sills calculated across vertices activated by different

cognitive processes (taken from a large automatic meta-analysis); These are over-

layed on vertices coloured by their cluster membership from E.
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cortex similar to those seen when exploring variation in intracortical

microstructure approximated by the ratio of T1w/T2w image intensity

a known proxy for intracortical myeloarchitecture24.

These results have implications forunderstandinghow topographic

differences influence cortical function. First, our data provides support

for an organisation of unimodal cortex that supports the progressive

elaboration of encoded stimulus features25. Our analysis established that

both sensorimotor cortex andvisual cortex are situatedwithin regions in

which the changes in function over distance are some of the most gra-

dual when the cortex is viewed as a whole. When contrasted with asso-

ciation cortex, this pattern is consistent with the view that sensory

regions have a spatial organisation in which adjacent regions encode

progressively complex features of the information extracted from sen-

sory signals and that these compressed signals form the basis of signal

processing for the next stage in the hierarchy e.g. ref. 26. This pattern of

progressive change is assumed to be important in regions of primary

cortex, such as visual cortex, and is captured empirically by the vario-

grams in these regions which show relatively small steady changes in

functional properties as the distance between two regions increases.

Our study also provides insight into theoretical perspectives on

how neural processing occurs in regions of association cortex. For

example, contemporary work highlights that regions of association

cortex can have relatively unique features both in termsof the functions

they support, and in their observed neural properties (for a similar

argument see12). For example, both the fronto-parietal and default

mode networks are implicated in cognition in a relatively abstract

manner, highlightedby their involvement in awide range of taskswhich

despite being superficially different may draw on similar underlying

cognitive operations. For example, situations that have superficially

different features, such as the Stroop27 or working memory28, but show

a common reliance on executive control, tend to activate the fronto-

parietal network, as well as other task positive systems29. Similarly, the

default mode network is often observed as contributing to situations

when information from memory may be important for organising

cognition, such as during mental time travel30, memory processes that

rely on semantic31 or episodic knowledge32. Our analysis suggests that

both of these large-scale systems are situated in regions of cortexwhere

there are fairly rapid changes in functional similarity with increasing

distance. These rapid changes in functionover relatively short distances

are likely to reflect the interdigitated nature of these systems6,33. These

perspectives assume that a general property of associative cortex may

be a topographic organisation in which relatively different functional

systems terminate within close proximity of one another. This topo-

graphic system could form the basis of an architecture that is hypo-

thesised to explain why both the fronto-parietal34 and default mode

networks12 contribute to multiple different forms of behaviour in a

relatively abstract manner. These more complex, interdigitated pat-

terns of function are captured empirically by the variograms which

show rapid functional changes as a function of distance in each of the

large-scale networks in association cortex. Importantly, our analysis

suggests that both the fronto-parietal and default mode network share

similar variogram profiles, suggesting that this is likely to explain simi-

larities in their function rather than their differences.

Our study provides insights into the important observation that

the default mode network, a brain system located at the maximal dis-

tance from primary landmarks like the calcarine sulcus, also has a

functional profile which is one of the most unique in the mammalian

nervous system3. Our analysis suggests regions of cortex where the

default mode network is located combine two unique topographic

properties that together explain why the distance between these sys-

tems and the primary sensorimotor landmarks corresponds to the

primary dimension of functional differentiation with the whole brain

connectivity space3. Our analysis suggests that the increasing distance

from primary landmarks in sensory cortex, and regions of the DMN

would first lead to increasing differences in functional similarity

through the slow progressive changes in function with distance that

emerge in primary cortex. In conjunction, with these gradual changes,

our study suggests that the cortex where the DMN is where function

changes most rapidly with increasing spatial distance. Thus, the

observation that the distance between the DMN and sensory cortex

corresponds to the greatest differentiation in function (i.e. the princi-

ple gradient of functional connectivity3) is inevitable because this dis-

tance combines (i) the progressive changes in function within primary

sensorimotor cortex, and (ii) the complex interdigitated structure seen

within theDMN6. Basedonour analysis of T1w/T2w images it is possible

that microstructural differences, such as myelin content, may be an

important feature in distinguishing these types of cortex, an important

question for future research to explore with more detailed anatomical

techniques (e.g. ref. 35, than those used in the current investigation.

Although our study highlights how different types of cortex can

be understood through the emergence of functional differentiation

across space, it also raises a number of important questions for future

research into how topography shapes function. First, although our

study shows that association and unimodal cortex systematically vary

Fig. 6 | Variograms vary with intracortical myelin. A The empirical variograms

between functional connectivity and distance split into deciles based on vertices’

myelin value (pink-greener colours correspond to higher-myelin content; shaded

area is the standard error of the mean across individuals). Individual average esti-

mated intracortical myelin for the two clusters. B The estimated range and sill for

each vertex, coloured by estimated myelin. The inset brain is the average dis-

tribution of estimated cortical myelin (from the HCP group average dataset). C the

average estimated myelin distribution from the lateral and medial surfaces. D spin

permutation tests comparing the spatial distribution of myelin with the range and

sill parameters; the true correlations are depicted by the dashed lines.
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in how function changes across the surface of the brain, this metric

does not discriminate between systems that are known to be dis-

tinctive in their functions. For example, although the variograms for

both the fronto-parietal and default mode networks are similar, the

situations inwhich these systems contribute to cognition aredifferent.

Likewise, the variograms in motor and visual cortex are similar, yet

these systems have clear functional differences. It is likely that the

different roles that these systems play in cognitionmay arise, not from

the general way that function changes with space in these areas of

cortex, but in terms of the specific location that these systems inhabit

within the broader cortical landscape. In this way, our study highlights

the more abstract properties that distinguish association and unim-

odal cortex, but do not provide a concrete explanation for how these

systems contribute to cognition and behaviour in a distinctivemanner.

Second, our study does not constrain accounts of why association

and unimodal cortex have differences in the spatial differentiation that

we observe. Our analysis highlights that microstructural differences,

via a proxyof intracorticalmyelination, systematically trackdifferences

in the empirical variograms. However, there are likely to be multiple

microstructural features that track these differences, and these

microstructural properties may also vary as a consequence of experi-

ence. Therefore, it is important for futurework to examine thedifferent

genetic and experiential changes that influence how function varies as

a function of distance in both primary and association cortex to fully

understand the influences that determine this fundamental feature of

cortical organisation. One possibility is that the high degree of spatial

heterogeneity within association cortex may result from the long-

distance connections that link specific regions36. By extrapolation,

these long-distance connections may provide a clue into how regions

within these areas of cortex are able to serve distinct cognitive func-

tions. Understanding how the broad changes in the parameters cap-

tured by the variograms relate to long-distance connections is an

important question for future research to address. In addition, from a

methodological perspective, it is important for future work to under-

standhowdata analysis decisions (such as smoothing) impact variation

in spatial autocorrelation as well as their consequences for quantifying

large-scale cortical organisation37 and making statistical inferences.

Methods
The researchpresentedhere complieswith relevant ethical regulations

(King’s College London College Research Ethics Committee) govern-

ing reanalysis of existing data.

Imaging data
The data used in this study are available from the HumanConnectome

Project (https://www.humanconnectome.org/study/hcp-young-adult/

document/extensively-processed-fmri-data-documentation), the PRI-

MatE Data and Resource Exchange (https://fcon-1000.projects.nitrc.

org/indi/indiPRIME.html), and Neurosynth https://neurosynth.org/

analyses/topics/).

The majority of the analyses were performed on 51 participants’

resting state fMRI from the Human Connectome Project’s minimally

pre-processed dataset (34 female); this involved registration to a

common MNI152 template, minimal spatial smoothing and extensive

filtering for slow drifts, motion and other nuisance signals estimated

using independent components analysis38. The 4D fMRI datasets for

each participant were projected onto the Conte32k surface and

the number of faces reduced resulting in 10,000 remaining vertices

(using Matlab’s reducepatch command). Two resting-state runs

(with opposite phase encoding direction, left-to-right and right-to-left,

from the same scanning session) were taken from each participant.

No further pre-processing was performed on the data. Since we were

not focused on across-participant or within-participant variability, and

for computational efficiency, we focused only on two scans from a

subset of the whole Human Connectome Project dataset.

Group averaged data from 14macaquemonkeys (two female) was

used from the Newcastle cohort. Surface geodesic distance and

homologous regions to the human data were taken from ref. 39.

The vertex-wise map of cortical myelin was the group-average

map taken from the Human Connectome Project 900-subject release;

it is released in the Conte32k surface space and reduced to the

same 10,000 vertices as the fMRI data. Similarly, the Yeo cortical

parcellation4 in Conte32k surface space was taken from the same HCP

900 data release and was also reduced to 10,000 vertices. The 50

Neurosynth data-derived topic maps were downloaded in MNI152

2mm space and then projected onto the mid-thickness Conte32k

surface using the Connectome Workbench40 and then reduced to the

same 10,000 vertices. Topics that were not related to cognitive tasks/

states were removed, leaving 24 topics.

Geodesic distance
Pairwise geodesic distance was calculated along the cortical surface

between all vertices (excluding themedial wall) using the Connectome

Workbench tools, as implemented through the BrainSmash toolbox41.

This was done on each hemisphere’s mid-thickness Conte32k surface

reduced to 10,000 vertices prior to calculating the distances. The

resulting vertex-wise distance matrices were used in all subsequent

analyses.

Functional connectivity
The functional connectivity affinitymatrixwasfirst calculated between

all 10,000 vertices for each individual fMRI scan using Pearson’s cor-

relation between the BOLD time series. For group-average results, the

correlation coefficients were subsequently Fisher transformed and

then for each vertex, averaged across subjects before applying an

inverse Fisher transform, resulting in values between −1 and 1 for each

edge of the functional connectivity matrix. Using a bounded similarity

metric (0 = no similarity, 1/−1 identical) aids comparison across indi-

viduals/vertices and facilitates interpretation for the resulting empiri-

cal variograms.

Empirical variograms
The empirical variogram was calculated by quantifying how functional

connectivity decreases in similarity as distance increases. To do this, all

distances between pairs of vertices were collapsed into 20 equally

spaced bins. Subsequently, dissimilarity matrix was created from the

functional connectivity (1- Pearson’s correlation coefficient) between

pairs of vertices. These values were formed into equally spaced bins

using a Gaussian smoothing function (following the approach set out in

refs. 41,42). This resulted in a whole-cortex empirical variogram. For

vertex-wise variograms, the same approach was taken but repeated for

every row of the functional connectivity/distance matrix separately,

resulting in a simplified formof the empirical variogram for each vertex.

The empirical variogram captures the rate of change of (dis)similarity

along the cortical surface, either globally or locally for each vertex.

Theoretical variogram
It is common practice to fit a function to empirical variograms, this is

typically used prior to spatial regression; however, in our case, it allows

us to compactly summarise the shape of the empirical variogram with

a small number of parameters, facilitating comparisons across datasets

and vertices, and aggregation across multiple vertices. For the repor-

ted analyses we used an exponential function. This is motivated by a

range of prior studies suggesting exponential relationships between

distance and various neuralmeasures (e.g., ref. 43).We also performed

a similar fit for three other theoretical models (a Gaussian, a power-

law model, and a periodic model which allows for non-monotonic

functions), with qualitatively similar results. Empirical variograms

were trimmed to bins between 2 and 19 (to remove bins with few

sampleddistances). Subsequently, non-linear least squareswas used to
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estimate the sill and range parameters. Given that the distribution of

pairwise distances varies across vertices (see Supplementary Fig. 1,

left), for the main analyses we restricted the maximum distance to be

150mmfor calculating bins. However, qualitatively similar resultswere

obtained by varying the upper distance limit (see Supplementary

Fig. 1, right).

Low-dimensional embedding of functional connectivity
The principal connectivity gradient was calculated using the Brain-

space toolbox44. This involved taking the group-average functional

connectivity affinity matrix and performing non-linear dimensionality

reduction using the Laplacian Eigenmaps approach, separately for

each hemisphere.

Clustering
Agglomerative hierarchical clustering, with ward linkage and the Eucli-

dean distance metric was applied simultaneously to all the vertex-wise

variograms separately for each cortical hemisphere. Subsequently,

SciPy’s fcluster command was used to flatten the hierarchy into two

clusters. To assess the robustness of the resulting clusters each vertex’s

variogram was correlated with all other variograms calculated in a

separate fMRI run within the same individual. The correlation scores

were Fisher transformed and then subsequently averaged both within

and across clusters.

Cognitive tasks
From the Neurosynth 50 data-derived topics dataset22, those that did

not refer to cognitive or behavioural states were removed, leaving:

cognitive, inhibition, motor, numerical, action, conflict, spatial, emo-

tion, empathy, decision, pain, memory, language, semantic, face,

imagery, visual, eye movement, motion, attention, auditory, reward,

social and working memory. The corresponding map for each topic

was thresholded (absolute value z > 10, although qualitatively similar

results were observed for other thresholds) and binarized, resulting in

a vertex-wise mask of values that were strongly implicated for that

topic (other thresholds produced qualitatively similar results). For

each topic, the range and sill (taken from the theoretical variogram

from the group average functional connectivity analysis) for each

vertex within each mask were averaged together.

Myelin
The estimated intracortical myelin maps derived from the ratio of T1

and T2 weighted MR images24 from the Human Connectome Project

were split into deciles based on their estimated myelin level. The

empirical variograms of vertices within each decile were averaged. In

addition, the estimated average myelin value for each of the clusters

(see above) were calculated.

Null models
We used spin permutation tests to assess the strength of correlations

between theoretical variogram parameters with the principal gradient

and estimated myelin spatial maps. A 1000 permutations of randomly

rotated data were generated for the spatial maps using ref. 45 and

permutation correlation values were then compared to the true value,

resulting in a p-value. We also applied a similar approach to spinning

the Yeo7 parcellation on the sphere 1000 times, and then calculating

the difference in estimated range and sill between each of the Yeo7

networks; this resulted in a distribution of random differences for the

sill and the parameter against which the true difference scores could

be assessed.

We also used generative null models (Supplementary Fig. 2)46 both

to generate alternate statistics but also to illustrate the difference

between homogeneous spatial dependency structure and the observed

heterogeneous structure. To this end, three generative null models

were applied to a downsampled (for computational efficiency) version

of the empirical functional connectivity matrix from which the vario-

grams were generated: full random permutation, Mantel permutation

(that preserved row and column structure), or Mantel permutation

followed by spatial smoothingmatched to the empirical variogram and

then resampling (similar to the approach taken by41 but applied to

the functional connectivity matrix). All three approaches enforce an

approximately homogeneous spatial dependency across the brain,

although in the case of the randomisation and Mantel randomisation

the spatial dependency is destroyed. For approach 3, a smoothing

kernel was chosen iteratively to maximise the overlap with the mea-

sured empirical variogram; thereby approximately capturing thewhole-

brain spatial dependency but with an homogeneous spatial relation-

ship. Eachmodelwas recalculated 1000 times, and the sill and the range

for each vertex calculated. The true sill and range parameters could

then be compared to the equivalent null model parameters.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study are available from the HumanConnectome

Project (https://www.humanconnectome.org/study/hcp-young-adult/

document/extensively-processed-fmri-data-documentation), the PRI-

MatE Data and Resource Exchange (https://fcon-1000.projects.nitrc.

org/indi/indiPRIME.html) and Neurosynth https://neurosynth.org/

analyses/topics/). Data to recreate the variograms in Fig. 3 is avail-

able in source data file. Source data are provided with this paper.

Code availability
Python code to reproduce the analyses and figures is available at

https://github.com/ActiveNeuroImaging/BrainVariograms.git.
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