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Abstract—Alzheimer’s disease (AD), the most prevalent de-
mentia, gradually reduces the cognitive abilities of patients while
also posing a significant financial burden on the healthcare
system. A variety of multi-task learning methods have recently
been proposed to identify potential MRI-related biomarkers
and accurately predict the progression of AD. These methods,
however, all use a predefined task relation structure that is rigid
and insufficient to adequately capture the intricate temporal
relations among tasks. Instead, we propose a novel mechanism
for directly and automatically learning the temporal relation
and constructing it as an Automatic Temporal relation Graph
(AutoTG). We use the sparse group Lasso to select a universal
MRI feature set for all tasks and particular sets for various
tasks in order to find biomarkers that are useful for predicting
the progression of AD. To solve the biconvex and nonsmooth
objective function, we adopt the alternating optimization and
show that the two related suboptimization problems are amenable
to closed-form solution of the proximal operator. To solve the two
problems efficiently, the accelerated proximal gradient method
is used, which has the fastest convergence rate of first-order
method. We have preprocessed two latest AD datasets, and the ex-
perimental results verify our proposed novel multi-task approach
outperforms several baseline methods. To demonstrate the high
interpretability of our approach, we visualize the automatically
learned temporal relation graph and investigate the temporal
patterns of the important MRI features. The implementation
source is at https://github.com/menghui-zhou/MAGPP.

Index Terms—Alzheimer’s disease, multi-task learning, auto-
matic temporal relation graph, disease progression

I. INTRODUCTION

Alzheimer’s disease (AD), the most prevalent neurodegen-

erative disorder, is marked by the deterioration of cognitive

abilities over time [1]. Since only a challenging brain biopsy

or autopsy can provide a conclusive diagnosis of AD, it is

of great importance to accurately predict AD progression over

time. There are currently no treatments that can halt or reverse

AD progression, it is hence crucial to identify the biomarkers

that are significant to the emergence of AD [1].

Previous studies have demonstrated that a variety of cog-

nitive scores, such as ADAS-Cog (the Alzheimer’s Disease

Assessment Scale Cognitive Sub-scale) and MMSE (the Mini-

Mental State Examination), are capable of assessing the state

of AD patients [2]. Noninvasive structural magnetic resonance

imaging (MRI) can identify atrophic changes in the brain [3].

Due to an intrinsic relation between a series of time points, it is

anticipated that a joint examination of several time points will

enhance model performance. To achieve this goal, in recent

years, several multi-task learning (MTL) strategies have been

put forth to forecast how AD will develop [4], [5], [6]. They

consider predicting a target at a series of time points to be a

MTL problem, with each task focusing on the prediction at

a specific time point. As illustrated in Fig. 1, the k-th time

point is regarded as the k-th task wk. The goal of MTL is

to improve generalization ability and model performance by

utilizing the inherent relations between various related tasks

[7]. Despite recent great advancements made in investigating

AD through MTL, a significant challenge is determining how

to fully capture and hence exploit the complex temporal

relation between multiple tasks.

A typical approach is employing the temporal smoothness

relation, which assumes there is a limited difference between

two adjacent tasks. Zhou et al. [4] propose a MTL method

with the temporal group Lasso (TGL) and assume that the

cognitive score of patients will not change significantly over

time, i.e., there will not be much of a difference in cognitive

scores between two successive time points. TGL penalizes the

difference between adjacent tasks ∥wk −wk+1∥22 to achieve

temporal smoothness at task level. Similar to TGL, a MTL

formulation with convex sparse group Lasso ( cFSGL) is



Fig. 1. Illustration of MTL prediction model. We use baseline MRI features to
predict the progression of AD patients, whose states are measured by cognitive
scores. The notation BL and M00 both mean the baseline time point. Mx

means x months after baseline time point and x ∈ {0, 6, 12, 24, 36, 48}.

proposed in [5] which assumes that nearby time points have

similar features, so they penalize
∑

k |wi,k−wi,k+1| to pursue

temporal smoothness at feature level. Clearly, these two kinds

of methods seek the same outcome, i.e., wk ≈ wk+1.

However, the main limitation is that both two kinds of

temporal smoothness relation is a type of local and predefined

structure. It only takes into account how the task relates

with its neighbors, potentially ignoring other important task

relations. In essence, if each task is viewed as a node in a

graph, with edges determining task relation, TGL and cFSGL

both utilize a graph with only edges between successive tasks,

but on other edges. Different from TGL and cFSGL, Liu et

al. [2] propose a multi-task formulation with fused Laplacian

sparse group Lasso (FLSGL), which enables a fully connected

graph with decreasing task weights. This type of relation is

also based on a predefined Gaussian kernel. Recently Zhou et

al. [6] propose an adaptive global temporal relation structure

LSA. As this structure is built on a predefined and specific

iterative convex combination, it has limited capability to

handle complicated temporal relations among tasks.

Different from all mentioned existing methods, the moti-

vation of this work comes from a common but extremely

complicated situation, i.e., the time points are not evenly dis-

tributed and the corresponding notation is usually inaccurate

when collecting the data. Specifically, as shown in Fig. 1, the

notation M00 is the baseline time point and Mx represents

x months after M00. Clearly, the time points are not evenly

distributed since the intervals between two successive time

points are not the same, i.e., 6 months or a year. Furthermore,

even when the time points are evenly distributed, the given

time notation is frequently inaccurate. The data at M24 may

come from M23, M25, or M26 in practice [8].

To handle this common but extremely complicated problem,

it should be far preferable to learn the complex temporal rela-

tion between tasks directly and automatically from the given

data, rather than relying on a predefined temporal relation

structure. So we present a novel mechanism, termed Automatic

Temporal relation Graph (AutoTG), to automatically capture

the complex temporal relation between tasks and construct it

as a relation graph.

Note that MTL based on temporal relation is found in a vast

variety of applications. Except for the study of AD, Emrani

et al. [9] use multi-task learning with temporal smoothness

relation to diagonalize the progression of Parkinson’s disease.

Romeo et al. [10] suggest a novel spatio-temporal MTL

with the temporal smoothness to predict the development of

diabetes. Wang et al. [11] propose a temporal MTL model

for survival analysis. Though this paper focuses on AD, we

believe that AutoTG has great potential to be a building block

for other MTL models based on temporal relation.

In the area of AD research, finding the biomarkers associ-

ated with the progression is crucial as well. We apply the

sparse group Lasso [12] to introduce the sparsity between

groups and within each group, as shown in Fig. 1. It means

that we select a universal MRI feature set for all time points

and particular sets for specific time points. Combing sparse

group Lasso with AutoTG, we propose a novel Multi-task

learning approach with Automatic temporal relation Graph for

Predicting Alzheimer’s disease Progression (MAGPP).

We summarize main contributions of this work as follows:

• We present a novel multi-task approach MAGPP. It auto-

matically captures the complex temporal relation between

tasks and constructs it as a relation graph, while also

selecting a universal MRI feature set for all time points

and particular sets for specific time points. Experimental

findings on two latest AD datasets show that MAGPP

outperforms several baseline methods in terms of overall

performance and nearly every task-specific performance.

• To explore the complex temporal relation among tasks,

we visualize the automatically learned relation graph.

It reveals that the temporal relation among tasks is not

strictly symmetric. Not only that, tasks that are too far

apart may even, although very slightly, repel rather than

approximate each other which has never been considered

in all previous works [2], [4], [5], [6].

• To show the high interpretability of MAGPP, we utilize

the method of stability selection [5] to identify stable

biomarkers from the MRI feature set and investigate

their temporal patterns in the progression of AD. The

features selected are consistent with previous work in

bioinformatics, possibly facilitating the understanding of

AD progression.

Notation: Nm = {1, · · · ,m}. xi and xi,j denote the i-th
element of a vector x and the (i, j)-th element of a matrix

X . xi (xi) denotes the i-th column (row) of a matrix X .

Euclidean and Frobenius norms are denoted by ∥ · ∥2 and ∥ ·
∥F , ⟨A,B⟩ is the inner product, A ⊙ B is component-wise

multiplication of A and B. ∥X∥p,q = (
∑

j(
∑

i x
p
i,j)

q/p)1/q .

II. RELATED WORK

A. Classification Methods for AD

Models based on classification attempt to group the condi-

tion of patients into various recognized disease stages, which

are typically divided into Alzheimer’s disease (AD), Mild

Cognitive Impairment (MCI), and Cognitively Normal (CN).



For the purpose of using structural MRI to diagnose AD and

localize joint atrophy, [3] suggest a hierarchical fully convo-

lutional network. In [13], the multi-view input is regarded

as the first layer in a multi-layer multi-view classification

strategy, and a latent representation is constructed to examine

the relation between class labels and features. In [14], the

authors present an iterative sparse and deep learning model

for diagnosing AD. In [15], the authors applied the generative

adversarial network for the assessment of AD. Although the

aforementioned models worked well for classification prob-

lems, they failed to predict AD progression.

B. Progression Models for AD

Different from the above classification methods, in [16],

the authors use a graph convolutional network to assess

skeleton-based human behavior and subsequently track the

progression of AD. But this kind of monitoring can only

judge the state of patients from the perspective of action, there

are still shortcomings, since the symptoms of AD patients

occur before the behavioral abnormality [17]. In [18], the

authors propose a generalized training rule for long short-

term memory (LSTM). This method only focuses on predicting

progression of biomarkers of AD patients. However, only one

biomarker cannot accurately measure the state of AD patients.

In contrast, in our approach MAGPP, we use two kinds of

cognitive scores to measure the state of AD and simultaneously

explore the correlation between the cognitive scores and the

MRI features. The limited interpretability of LSTM is another

possible drawback. The high interpretability of MAGPP not

only reveals the complex temporal relation between tasks,

but also enables us to investigate the temporal pattern of

selected important features, which has the potential to improve

understanding of AD.

As discussed, although much effort has been dedicated

to AD study, the noted methods suffer from the several

limitations. ① The MTL models based on fixed temporal

relation structure [4], [5], [2], [6] are rigid and insufficient

to capture the complicated temporal relation among tasks.

② Classification methods [3], [13], [15] make progress in

diagnosing AD but fail to predict AD development. ③ The

deep methods based on graph convolutional network [16] or

LSTM [18] have limited ability to directly measure the state

of AD patients and are not capable to explore the relation

between different kinds of cognitive scores and MRI features.

III. METHODS

A. Multi-task Learning

Given m tasks, each task i ∈ Nm has a set of sam-

ples (Xi,yi), where Xi ∈ R
ni×d,yi ∈ R

ni . X =
[X1, · · · , Xm], Y = [y1, · · · ,ym], W = [w1, · · · ,wm] ∈
R

d×m is model coefficient matrix. We minimize the empirical

risk to learn the m tasks concurrently: minW L(W )+Ω(W ),
where Ω(W ) is the penalty, L(W ) is the empirical loss. We

use the square loss to fit the relation between X and Y .

Fig. 1 is the illustration of model. Each time point concerns

a prediction of a single task. For the i-th task, each row in

Xi represents all features of one patient. One MRI feature

is represented by each column of Xi at the baseline time

point. The cognitive score at each time point is represented

by a column of Y = [y1, · · · ,yt]. We have total 6 time

points, every time point corresponds to a task for predicting

disease progression. The notation ”Mx” denotes x months

after the baseline time point (BL, M00). When modeling

disease progression using a MTL approach, the following two

major challenges need to be solved: ① How are the tasks

related to one another? ② Which concrete method should be

used to capture such task relation?

To address the challenging problems, we propose the fol-

lowing novel mechanism, termed Automatic Temporal relation

Graph (AutoTG), to automatically capture the complex tem-

poral relation among tasks rather than using several predefined

temporal relation structures [4], [5], [2], [6].

B. Automatic Temporal Relation Graph

We start with the widely used temporal smoothness assump-

tion [4], [5], [19], [10], which assumes every time point is

similar to its adjacent time points. If every task concerns a pre-

diction of a time point, every task has a trend to be similar to

its neighboring tasks, i.e., wk ≈ wk+1. To achieve this goal,

the models based on temporal smoothness usually penalize

the difference between two successive tasks ∥wk − wk+1∥22
[20], [10] or

∑

k |wi,k − wi,k+1| [5], [6]. Despite that many

experiments have proved that the introduction of temporal

smoothness can effectively enhance the model performance,

it is actually only a local and predefined temporal relation.

To make our statement clear, we explain this temporal

relation from the perspective of graph theory. In [4], [5],

[21], they consider total six time points and each time point

corresponds to a task. If we view each task as a node, the

temporal relation between a pair of nodes is an edge, so all

tasks and their temporal relation form a graph. However, the

adjacency matrix R of temporal smoothness relation graph is

a fixed and symmetric tridiagonal matrix as

ri,j
predefine
======

{

1, ∀i = j + 1 & ∀i = j − 1

0, otherwise

This structure at has least three limitations. ① Every task is

only related to its adjacent tasks, potentially missing helpful

and informative relation with other tasks. ② The weights of

temporal relations are fixed, which is not sufficient and flexible

to capture the complex temporal relation between tasks. ③ The

weights of temporal relations are also identical, which is not

appropriate in terms of the asymmetry in time.

Motivated by the discussion above, first of all, we allow that

each task can be connected to every other task, and the weight

of temporal relation can be learned directly and automatically

from every given dataset, rather than predefined. So we write

this type of temporal relation mathematically as

wk ≈ r1,kw1 + · · ·+ rk−1,kwk−1

+ rk+1,kwk+1 + · · ·+ rm,kwm.



Clearly, as shown in Fig. 1, wk is related to all other tasks

wi, ∀i ̸= k. The weight of temporal relation rx,k (the relation

from task wk to wx) is not fixed yet and needs to be learned

from data. Another important point is that in this structure, the

temporal relation is not symmetric as predefined [4], [5], [2],

since we do not constrain rx,k = rk,x. In fact, this asymmetry

corresponds to the real-life temporal relation. For instance,

rk−1,k represents analyzing the past state of one patient in the

current k-th time point, whereas rk,k−1 represents predicting

future state from (k− 1)-th time point. They have completely

different meanings in practice and should be allowed to have

different values, rather than being predefined as the same value

which is too strict in real-life applications.

Not only that, we do not assume that tasks are necessarily

similar to others, i.e., we do not constrain rx,k ⩾ 0. In fact, as

the results show in Section V, we found that sometimes if two

tasks that are too far apart can have a slightly negative relation

with rx,k < 0, i.e., they slightly repel, rather than approximate

each other. This phenomenon has never been considered in all

existing works such as [2], [4], [5], [6].

We Integrate temporal relation between all tasks to have

W ≈ W















0 r1,2 · · · r1,m
r2,1 0 · · · r2,m

...
...

. . .
...

rm−1,1 rm−1,2 · · · rm−1,m

rm,1 rm,2 · · · 0















= WR, (1)

where R is the adjacency matrix of the temporal relation graph

between tasks.

Based on above description, we propose a novel mechanism,

termed Automatic Temporal relation Graph (AutoTG), to

automatically capture the complex temporal relation among

tasks, and construct it as a temporal graph adjacency matrix:

min
W,R

1

2

m
∑

i=1

∥Xiwi − yi∥22 + λ1∥W −WR∥2F + λ2∥R∥1,1,

s.t. ri,i = 0, i ∈ Nm. (2)

The first penalty ∥W−WR∥2F is applied to chase the complex

temporal relation among all tasks. We use the second penalty

∥R∥1,1 to encourage only the tasks that are most pertinent to

share common temporal information.

In order to constrain ri,i = 0, we need to penalize the main

diagonal elements of R much more heavily than other entries.

So we introduce the auxiliary matrix S which is formulated

as S = (s − 1) · Im×m + 1m×m. The optimization problem

(2) becomes

min
W,R

1

2

m
∑

i=1

∥Xiwi − yi∥22

+ λ1∥W −WR∥2F + λ2∥R⊙ S∥1,1. (3)

We just need to give s an enough large number to constrain

ri,i = 0 for i ∈ Nm. In our experimental setting, we let

s = 109 to achieve the constraint of ri,i = 0. Please refer

to Section V for more detailed information. We conclude that

introducing S will not increase the computational complexity

of the associated optimization problem.

C. A Novel Multi-task Learning Formulation

In the area of AD research, finding the biomarkers associ-

ated with AD progression is crucial, so we utilize the group

Lasso to choose a universal set of biomarkers for all tasks.

The group Lasso constraint, however, fails to select particular

feature sets for each task. Then, we use the Lasso to add

sparsity to the matrix of model coefficients. The sparse group

Lasso β∥WT ∥2,1 + α∥WT ∥1,1, the mixture of L1-norm and

L2,1-norm, introduces sparsity into both group and within-

group levels, as illustrated in 1. In the context of AD study,

it promotes choosing a particular MRI feature set for each

task as well as selecting a universal MRI feature set for all

tasks [19], [6]. Then the proposed novel mechanism AutoTG

is applied to capture the temporal task relation automatically.

After integrating AutoTG with sparse group Lasso, we

present a novel approach, termed Multi-task learning with

Automatic temporal relation Graph for Predicting Alzheimer’s

disease Progression (MAGPP). The mathematical formulation

of MAGPP is defined as

min
W,R

1

2

m
∑

i=1

∥Xiwi − yi∥22 + λ1∥W −WR∥2F

+ λ2∥R⊙ S∥1,1 + λ3∥WT ∥2,1 + λ4∥WT ∥1,1. (4)

λ1, λ2, λ3, λ4 are all fine-tuned hyperparameters. The AutoTG

part of two penalties λ1∥W − WR∥2F + λ2∥R ⊙ S∥1,1 is

applied to automatically capture the complex temporal relation

among tasks. The sparse group Lasso part of two penalties

λ3∥WT ∥2,1 + λ4∥WT ∥1,1 is employed to conduct feature

selection at both group and within-group levels.

IV. OPTIMIZATION ALGORITHM

Note that the objective function (4) is not easy to solve,

since it is nonsmooth and biconvex. In this section, we first

introduce the whole alternating optimization for solving (4).

Then we show how to customize the accelerated proximal

gradient method (APM) [22] to solve the associated two

subproblems about W and R with high efficiency.

The alternating optimization is widely used for solving the

biconvex objective function [23]. We conclude the overall

alternating optimization algorithm for solving our proposed

MAGPP in Algorithm 1. The procedure is stopped when the

relative changes in W and R between two successive iterations

∆W and ∆R are both not bigger than the threshold τ .

A. Accelerated Proximal Gradient Method

To update W and R efficiently, we use the accelerated

proximal gradient method (APM). Because of the fastest

convergence rate for the class of first-order methods, APM

has been widely used to address issues with MTL [24]. It has

the form

min
W

F (W ) = f(W ) + g(W ), (5)



Algorithm 1 Alternating Optimization for MAGPP.

Input: X,Y, λ1, λ2, λ3, λ4, s, ϵ.
Output: W,R

1: Initialize: W = 0, R = 0.

2: for k = 1 to · · · do

3: Fix R, update W .

4: Fix W , update R.

5: if then∆W ⩽ τ and ∆R ⩽ τ
6: break

7: end if

8: end for

where f(W ) is smooth and convex, and g(W ) is nonsmooth

and convex. APM is built on two sequences, the search point

{Sk} and the approximation point {W k}. Sk is a linear com-

bination of W k−1 and W k. Sk+1 = W k +αk(W
k −W k−1),

where αk is the combination coefficient. The approximation

point W k is computed as

W k = π(Sk − ηk∇f(Sk)), (6)

where ηk is step size, π(V ) is the proximal operator of V . We

follow the line search schemes [25] to estimate ηk.

Emphasize that the computation of the proximal operator (6)

is the crucial step in using APM. The complexity for solving

(6) dominates the whole complexity of APM-based algorithms.

As usual, the proximal operator of the nonsmooth part is

not easy to solve, e.g., [5], [6]. However, in our proposed

novel MAGPP (4), we will show no matter updating W or R,

the proximal operators admit a closed-form solution, which

enables to design an efficient algorithm.

B. Fix R, Update W

For updating W , we fix R. In order to find the proximal

operator of λ3∥WT ∥2,1 + λ4∥WT ∥1,1, we need to solve

argmin
V

1

2
∥V −W∥2F + λ3∥V T ∥2,1 + λ4∥V T ∥1,1. (7)

According to [26], the complexity to get the closed-form

solution of (7) is only O(md), so we can update W efficiently.

C. Fix W , Update R

For updating R, the sub-optimization problem is

min
R

λ1∥W −WR∥2F + λ2∥R⊙ S∥1,1. (8)

To obtain the proximal operator of λ2∥R⊙ S∥1,1, we solve

π(R) = argmin
Q

1

2
∥Q−R∥2F + λ2∥R⊙ S∥1,1. (9)

Clearly, (9) is an extension of Lasso problem, we also apply

soft-thresholding method to arrive the closed-form solution. It

means We only need the complexity of O(m2) to solve (8).

D. Complexity Analysis

For simplicity, we make an assumption that each task has

identical n training samples.

1) The Complexity of Updating W: When optimizing W ,

each iteration needs to compute the gradient of the smooth

part which is 1

2

∑m
i=1

∥Xiwi − yi∥22 + λ1∥W − WR∥2F and

the proximal operator of λ3∥WT ∥2,1+λ4∥WT ∥1,1. The com-

plexity for computing the gradient is O(nmd+m2(m+ d)).
Here we emphasize that in our implementation MATLAB

code, we compute the loss part L(W ) parallelly with the

complexity of O(nd), so the complexity of every iteration

reduces to O(nd +m2(m + d)). The cost for computing the

proximal operator of λ3∥WT ∥2,1+λ4∥WT ∥1,1 is O(md). The

convergence rate of APM is proved to be O(1/
√
ϵ) iterations

for a desired accuracy ϵ [27], so the overall complexity for

updating W is O
(

(nd+m3 +m2d)/
√
ϵ
)

.

2) The Complexity of Updating R: When optimizing R,

each iteration needs to compute the gradient of smooth part

λ1∥W −WR∥2F and the proximal gradient of nonsmooth part

λ2∥R ⊙ S∥1,1. The complexity for computing the gradient is

O(m2d). The cost for computing the proximal operator of

λ2∥R ⊙ S∥1,1 is O(m2). So for updating R, each iteration

has the complexity of O(m2d). So the overall complexity for

updating R is O
(

m2d/
√
ϵ
)

.

3) The Overall Complexity: In Algorithm 1, W and R
will be updated once each, which counts as a full iteration.

Therefore, a full iteration has the complexity of

O
(

nd+m2(m+ d)√
ϵ

)

.

V. EXPERIMENTAL RESULT

The experiment hardware is an Apple M1 Max chip with 32

GB memory. The implementation code runs on MATLAB and

can be found at https://github.com/menghui-zhou/MAGPP.

A. The Latest Dataset from ADNI

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database [8] supports research efforts [4], [5], [2] and is

the data source for this study. In ADNI, the baseline (BL)

marks the initial patient screening, serving as a time point

reference.“M12,” for example, signifies a year after baseline.

Some patients have follow-up data up to 120 months, but many

leave the study. Due to limited data at later points, we follow

prior methods [4], [5], [2] by using only the first six time

points. This paper employs MMSE and ADAS-Cog to measure

AD cognitive state. Data preprocessing aligns with previous

work [4], [5], [2], [6]. Ultimately, we extract 314 features,

with further details in Table I.

TABLE I
THE SPECIFIC DETAILS OF THE SAMPLE NUMBER AT EACH TIME POINT IN

THE SEQUENCE ON MMSE AND ADAS-COG DATASETS.

Time point M00 M06 M12 M24 M36 M48

MMSE 1092 1078 1027 883 579 494

ADAS-Cog 1074 1064 1014 867 556 483



B. Empirical Evaluation

In this section, we thoroughly assess the efficacy of our

proposed MAGPP in comparison to several baseline methods.

We randomly select β of the dataset as the training set,

where the training ratio β ∈ {0.4, 0.6, 0.8} and the rest is

divided randomly and equally into validation set and test

set. We repeat 5 trials. In each trial, we train the model

on the training set and use the validation set to select the

best hyperparameters λ1, λ1, λ3, λ4 ∈ {100, 101, 102, 103},

the pseudo hyperparameter s is set as 109. The feature matrix

X is normalized.

1) Evaluation Metrics: We use the Root Mean Squared

Error (rMSE) for task-specific regression performance. Addi-

tionally, we measure overall performance across all tasks using

the weighted R-value (wR) and the normalized mean squared

error (nMSE), both of which are frequently used in the MTL

literature [5], [6]. Higher performance is indicated by lower

nMSE and rMSE or higher wR.

2) Comparative Models and Ablation Experiments: We

thoroughly contrast our MAGPP with a number of MTL

baseline techniques. All comparative models include TGL

[4], cFSGL [5], VSTG [28], FLSGL [2], and LSA [6]. In

addition, in order to further demonstrate the superiority of

our algorithm, we also compare the performance of the neural

network based method, LSTM (Long Short Term Memory).

The number of training iterations was 1000 epochs. In multiple

training iterations, we train the model using the Adam opti-

mizer, set rMSE as the loss function, and the batch size is 2.

The learning rate starts at 0.0001. Since LSTM does not allow

the patient to have missing cognitive score at specific time

points, after we keep all the patient data with cognitive scores

at six time points, MMSE and ADAS-Cog datasets have 331

and 365 samples, respectively. Given that MAGPP consists of

two components—AutoTG and sparse group Lasso (SGLasso),

we validate the efficiency of both AutoTG and SGLasso on

two AD datasets, reaffirming the effectiveness of MAGPP.

Table II presents the results, revealing inferior performance

of LSTM across all cases possibly attributed to inadequate

training data (around 300 samples). SGLasso exhibits sub-

optimal performance due to its disregard of inter-task rela-

tions. This underscores the significance of incorporating task

relations in the study of AD progression. VSTG does not

perform well on two datasets. The possible reason is that

VSTG is capable of feature selection, but the low-rank task

relation based on the k-support norm is not a great choice

for the case of the progression of AD. The poor performance

of FLSGL suggests that using a specific exponential format

to capture the temporal relation between tasks is insufficient.

TGL also performs poorly, owing to the fact that it does not

introduce sparsity within and between groups as cFSGL does.

It constrains all tasks to share a single feature set, which is

overly restrictive in practice. AutoTG surpasses SGLasso, yet

falls short of the performance of MAGPP. This discrepancy

highlights the value of introducing sparsity within and be-

tween groups for effective feature selection. Overall, MAGPP
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Fig. 2. The comparison of single task performance, between our MAGPP
and several baseline methods.
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Fig. 3. The adjacency matrix of temporal relation graph between tasks, which
MAGPP automatically learns from the MMSE and ADAS-Cog datasets.

demonstrates superior efficacy, except in instances such as the

ADAS-Cog dataset with β = 0.8, where cFSGL marginally

outperforms it by a small metric margin (wR = 0.756 for

cFSGL versus wR = 0.755 for MAGPP).

Apart from assessing overall model performance, we also

evaluate efficacy of MAGPP at individual time points. Due

to space constraints, we only present results for a training

ratio of β = 0.8 in Fig. 2. Notably, other β cases yield

similar outcomes. Across diverse datasets, LSTM consistently

demonstrates the poorest performance. Conversely, SGLasso

consistently ranks second worst at each time point, under-

scoring the imperative of integrating task relationships in

AD progression. In contrast, AutoTG delivers intermediate

performance compared to alternative methods, highlighting

the necessity of feature selection in AD progression. The

performance of MAGPP emerges as consistently superior at

individual time points, regardless of the dataset.

C. Visualization of Temporal Relation

For a comprehensive analysis of inter-task temporal re-

lations, we visualize the adjacency matrix R captured by

MAGPP, focusing on a training ratio of β = 0.8. From

the findings in Fig. 3, MAGPP unveils both shared patterns

and distinctions in its learned temporal relations across the

two datasets. Notably, the adjacency matrices are not strictly

symmetrical, mirroring real-world temporal dynamics. For

example, rk−1,k signifies an evaluation of previous state of

patient at the current time point k, while rk,k−1 entails

predicting the future state from the (k−1)-th time point. These

divergent practical implications warrant distinct values rather

than a predetermined uniformity.

In both datasets, most tasks are closely connected to their

adjacent tasks. The strong connectivity within the ADAS-Cog



TABLE II
THREE DIFFERENT TYPES OF COGNITIVE SCORES ARE USED. THE AVERAGE NMSE AND WR OVER 5 REPETITIONS ARE DISPLAYED IN THE RESULTS.

THE BOLD FONT HIGHLIGHTS THE STATISTICALLY SUPERIOR MODELS. SGLASSO AND AUTOTG ARE THE TWO PARTS OF MAGPP.

Ratio β Metric TGL cFSGL FL-SGL VSTG LSA LSTM SGLasso AutoTG MAGPP

Dataset: MMSE

0.4
nMSE 0.620 0.631 0.651 0.649 0.630 0.850 0.671 0.642 0.624

wR 0.616 0.610 0.594 0.588 0.610 0.438 0.590 0.601 0.619

0.6
nMSE 0.621 0.597 0.639 0.659 0.601 0.860 0.666 0.638 0.585

wR 0.618 0.632 0.607 0.593 0.619 0.444 0.599 0.607 0.636

0.8
nMSE 0.602 0.583 0.626 0.641 0.579 0.756 0.653 0.617 0.567

wR 0.631 0.650 0.619 0.608 0.650 0.562 0.612 0.629 0.663

Dataset: ADAS-Cog

0.4
nMSE 0.494 0.490 0.511 0.527 0.493 0.870 0.526 0.498 0.485

wR 0.717 0.730 0.700 0.691 0.734 0.493 0.673 0.695 0.740

0.6
nMSE 0.482 0.470 0.491 0.500 0.463 0.796 0.519 0.487 0.460

wR 0.729 0.747 0.713 0.698 0.749 0.513 0.685 0.709 0.748

0.8
nMSE 0.471 0.459 0.474 0.483 0.463 0.703 0.505 0.476 0.453

wR 0.734 0.756 0.729 0.711 0.753 0.591 0.698 0.717 0.755
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Fig. 4. The stability vector of table MRI features using MAGPP on two datasets. We choose top 6 stable features on each time point, finally we get 21 stable
features on MMSE dataset and 22 stable features on ADAS-Cog dataset.

dataset results from its extensive 11-item cognitive tests, tai-

lored to gauge changes in AD severity. This strong connection

aligns with prior research [4], [5] advocating local temporal

relations in AD studies, considering its status as a prevalent

chronic condition. However, within the MMSE dataset, inter-

neighboring task relationships are notably weaker. Specifi-

cally, the relation weight between the 3rd and 4th tasks is

merely 0.18. A plausible explanation lies in the primary role

of MMSE as a widely-used scale for gauging AD-related

cognitive decline. However, compared to ADAS-Cog, MMSE

lacks detailed evaluations of memory, executive function,

and language ability. Notably, in ADAS-Cog dataset, certain

temporal relation weights are negative. For instance, task 1

and tasks 5 and 6 have relation weights of -0.01 and -

0.05 respectively. This indicates that when time intervals are

considerable, corresponding tasks might become less similar

and exhibit some repulsion. Importantly, this phenomenon has

been overlooked in prior studies [2], [4], [5], [6].

It is concluded that the temporal relation learned by MAGPP

shows that ① in AD progression, the temporal relation between

tasks is asymmetric and global, which proves the deficiency of

using local temporal relation in previous works [4], [5]. ② The

temporal relation between tasks is extremely complex, which

indicates that the previous works use a predefined Gaussian

kernel method [2] or a iterative convex structure [6] can not

fully capture the complex task relation. ③ All existing works

[4], [5], [2], [6] do not consider the negative temporal relation.

D. Temporal Pattern of Stable Biomarkers

MAGPP offers the advantage of analysing temporal MRI

feature patterns for better understanding of AD progression.

To explore discovered MRI biomarkers, we employ the lon-

gitudinal stability selection method [19], used in prior studies

[2], [6]. The term “stability vector” denotes the calculated

frequency vector.

To begin, we notice that the volume of the left hippocampus

(Vol. of L.Hippocampus) is considered a stable biomarker

in all datasets, particularly in ADAS-Cog dataset, where the

volume of the left hippocampus is selected to be stable the

biomarkers with the probability close to 1. In MMSE dataset,

the volume of the left hippocampus is selected to stable the

biomarkers with a probability greater than 0.8. This is in line

with other AD studies [6] because it has long been known that

the hippocampus plays a key role in the development of AD.

There are many different discoveries between the two datasets.

In ADAS-Cog dataset, we also discover that the cortical

thickness average of the left entorhinal (CTA. of L. Entorhinal)



and the cortical thickness average of the right entorhinal

(CTA. of R. Entorhinal) are both chosen as stable biomarkers

with a probability close to 1. The most stable biomarker in

the MMSE dataset is the volume of right IsthmusCingulate

(Vol of R.IsthmusCingulate). However, in ADAS-Cog dataset,

the volume of right IsthmusCingulate only shows stability

in the last few moments from M24 to M48. The cortical

thickness average of middle temporal (CTA. of Mid. Temporal)

always has a high selection frequency of about 0.7 in the

MMSE dataset, in ADAS-Cog dataset, it is selected as a stable

biomarker with a higher frequency, close to 0.9.

The distinct temporal patterns of the stable biomarkers of

two cognitive scores also suggest that it may be less effective

to confine the model to a shared set of features [5], [2], [6].

VI. CONCLUSION

In this study, we introduce AutoTG, a novel method to cap-

ture intricate task temporal relations via a graph adjacency ma-

trix. Our approach MAGPP combines sparse group Lasso and

AutoTG, outperforming baselines for overall and individual

task performance. The nonsmooth, biconvex objective function

is tackled through customized alternating optimization and an

accelerated proximal gradient method. The graph adjacency

matrix of MAGPP visualizes complex temporal relations. The

results reveal asymmetry, indicating distinct tasks even with

negative weights. This insight furthers our understanding of

AD progression. We employ stability selection to identify

stable MRI features, enhancing interpretability. This approach

aids in discovering potential new biomarkers.

As MAGPP is a general method for modelling disease

progression, in the future, we hope to investigate the efficacy

in a border area like Parkinson’s disease [9] and diabetes [10].
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