
This is a repository copy of Super strong ETH is true for PPSZ with small resolution width.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/204342/

Version: Published Version

Proceedings Paper:
Scheder, D. and Talebanfard, N. (2020) Super strong ETH is true for PPSZ with small
resolution width. In: Saraf, S., (ed.) 35th Computational Complexity Conference (CCC
2020). 35th Computational Complexity Conference (CCC 2020), 28-31 Jul 2020,
Saarbrücken, Germany (Virtual). Leibniz International Proceedings in Informatics (LIPIcs),
169 . Schloss Dagstuhl - Leibniz-Zentrum für Informatik , 3:1-3:12. ISBN 9783959771566

https://doi.org/10.4230/LIPIcs.CCC.2020.3

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Super Strong ETH Is True for PPSZ with Small

Resolution Width

Dominik Scheder

Shanghai Jiaotong University, China
dominik.scheder@gmail.com

Navid Talebanfard

Institute of Mathematics, The Czech Academy of Sciences, Prague, Czech Republic
talebanfard@math.cas.cz

Abstract

We construct k-CNFs with m variables on which the strong version of PPSZ k-SAT algorithm, which
uses resolution of width bounded by O(

√
log log m), has success probability at most 2−(1−(1+ǫ)2/k)m

for every ǫ > 0. Previously such a bound was known only for the weak PPSZ algorithm which
exhaustively searches through small subformulas of the CNF to see if any of them forces the value of
a given variable, and for strong PPSZ the best known previous upper bound was 2−(1−O(log(k)/k))m

(Pudlák et al., ICALP 2017).

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases k-SAT, PPSZ, Resolution

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.3

Funding Dominik Scheder : Supported by the National Natural Science Foundation of China under

grant 61502300 and 11671258.

Navid Talebanfard: Supported by GAČR grant 19-27871X.

1 Introduction

The PPSZ algorithm for k-SAT by Paturi, Pudlák, Saks, and Zane [7] is simple to state but

famously difficult to analyze. Given a k-CNF formula Φ as input, it first chooses a random

ordering π of its variables x1, . . . , xm. It goes through them one by one, in the order given by

π. For each variable x, it tries to derive the correct value using a certain proof heuristic P .

P takes as input a k-CNF formula Φ and a variable x and returns a value in {0, 1, ?}. P

must be sound, meaning if P (Φ, x) = b ∈ {0, 1} then Φ |= (x = b), i.e., every satisfying

assignment of Φ sets x to b; however, we allow P to be incomplete, i.e., it may answer “?”,

meaning “I don’t know”. If P (Φ, x) = b ∈ {0, 1}, then PPSZ sets x to b; otherwise it sets x to

some b ∈ {0, 1} chosen uniformly at random. In either case, it simplifies Φ to Φ|x7→b. Once

all variables have been processed, the resulting formula either contains the empty clause �,

and we declare this run of PPSZ a failure; or it does not, in which case PPSZ has found a

satisfying assignment.

If PPSZ has success probability p then we can repeat it 1/p times, obtaining a constant

success probability. As long as P runs in subexponential time, the overall running time of

this Monte Carlo algorithm is dominated by 1/p (which will, most likely, be exponential in n).

Which proof heuristics P should one consider? There are currently just two on the market.

The first one is Pw, which checks whether (x = b) is implied by a set of up to w clauses of Φ.

The second one is Rw, which tries to derive the clause (x = b) by resolution, bounded by

width w. Obviously they both can be implemented in time O∗
(

(

|Φ|
w

)

)

≤ O∗
(

(

mk

w

)

)

, which

© Dominik Scheder and Navid Talebanfard;
licensed under Creative Commons License CC-BY

35th Computational Complexity Conference (CCC 2020).
Editor: Shubhangi Saraf; Article No. 3; pp. 3:1–3:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

3:2 Super Strong ETH Is True for PPSZ with Small Resolution Width

is subexponential as long as w ∈ o
(

m
log m

)

. It is easy to see that Rw·k is at least as strong

as Pw. We also speak of weak PPSZ when it uses Pw and strong PPSZ when it uses Rw

(ignoring the concrete values of w).

Proving positive results, i.e., lower bounds on the success probability, seems remarkably

insensitive to our choice of P . In fact, all lower bounds we currently know work for Pw, for

any w ∈ ω(1):

◮ Theorem 1 (Paturi, Pudlák, Saks, and Zane [7] and Hertli [6]). On k-CNF formulas with m

variables, the success probability of PPSZ using the heuristic Pw is at least 2−m(1−sk)+o(m),

where limk→∞ ksk = π2

6 , provided that w = w(m) ∈ ω(1).

Originally, Paturi, Pudlák, Saks, and Zane stated their algorithm as using Rw, i.e., width-

bounded resolution; however, it is easy to see that their analysis works for the weaker heuristic

Pw as well, see for example [10] for a formal proof. We do not know any better bound for

PPSZ using Rw, for any w ∈ o(m).

The parameter sk in the theorem is called the savings of the algorithm. Ignoring constant

factors, the theorem shows that the savings of PPSZ are at least Ω(1/k). Other algorithms,

arguably much simpler, such as PPZ [8] and Schöning’s Random Walk [11] have smaller

savings than PPSZ, but also of order Ω(1/k). In general, let σk be the supremum of all σ

such that there is a randomized algorithm for k-SAT running in time O
(

2m(1−σ)
)

. There is

a whole hierarchy of conjectures about how large the savings for k-SAT can be. Here is a

list, sorted from weak to strong.

1. P 6= NP: k-SAT has no polynomial time algorithm.

2. ETH (exponential time hypothesis): σ3 < 1.

3. SETH (strong exponential time hypothesis): limk→∞ σk = 0, i.e., as k grows, the

advantage over brute force shrinks to nil.

4. SSETH (super strong exponential time hypothesis): σk ∈ O(1/k).

We already know (as shown by PPZ, Schöning’s and PPSZ algorithms) that σk ∈ Ω(1/k), so

Point 4 actually conjectures that σk ∈ Θ(1/k). Of course proving an unconditional upper

bound on σk is far out of reach for now. However one could try to prove such upper bounds

on the savings of specific algorithms. This would then shed light on the difficulty of improving

k-SAT algorithms. In this paper we prove close to tight upper bounds on the savings of the

strong PPSZ algorithm showing that its running time is consistent with SSETH, that is the

worst case running time of PPSZ is as predicted by SSETH. This is in contrast to a recent

result of Vyas and Williams [12] who showed that SSETH is false for random k-SAT.

1.1 Previous Results: Hard Instances

The first hard instances for PPSZ were given by the authors together with Chen and Tang [3].

That work constructed k-CNFs based on a random distribution of linear systems and showed

that PPSZ using Rw, that is resolution of bounded width, succeeds with probability at most

2−m(1−O(log2(k)/k)) on these formulas, as long as w ≤ ln(k)n
k (Theorem 1.2 in [3]). Together

with Pudlák [9] we then improved this lower bound to 2−m(1−O(log(k)/k)), which holds as

long as w ≤ n/k (Theorem 6 in [9]). This improvement came mainly from clarifying and

sharpening a union bound in [3]. However based on a completely different construction, it

gave an upper bound of 2−m(1−2(1+ǫ)/k) for the “weak” heuristic Pw, for some w = nΘ(ǫ)

(Theorem 5 in [9]). This construction is based on Tseitin formulas defined on large girth

graphs. For Rw, it was left open whether one can obtain the same bound.

D. Scheder and N. Talebanfard 3:3

2 Our Results

◮ Theorem 2 (SSETH Holds for PPSZ). For every k ∈ N, there is a polynomial p and a

sequence (Fm)m∈N of satisfiable k-CNF formulas Fm on m variables, such that for every ǫ > 0

and w ≤
√

ǫ · log log m
2 log k − 3, it holds that Pr[ppsz(Fm, Rw) succeeds] ≤ p(m)2−m(1−2(1+ǫ)/k).

Thus, the super strong exponential time hypothesis is true for Strong PPSZ, provided

that we do not make it too strong, i.e., keep w fairly small. Note that this gives an upper

bound on the savings of PPSZ by 2/k, which is quite close to the currently best lower bound

of (π2/6 + o(1))/k [7].

Our result is incomparable to the previous ones. We feel that the “super strong ETH

bounds” of 2(1 + ǫ)/k in the exponent make this result much stronger than its predecessors.

However, the doubly-logarithmic upper bound on w is, of course, much more restrictive

than the w ≤ m/k bound of Theorem 6 in [9]. Might it be that super strong ETH fails for

w = m/k? Maybe even for w = log(m)? If we could rule out this possibility, we would have

done so in this paper. However, remember that the lower bound on the success probability

(Paturi, Pudlák, Saks, and Zane [7]) holds for Pω(1), which is arguably the weakest possible

non-trivial proof heuristic. At the moment, there are no better lower bounds for Ro(m),

which is much stronger than Pω(1). Thus, we feel that the parameter w is not as relevant as

the savings.

◮ Conjecture 3. Super Strong ETH holds for PPSZ using Rw, as long as w = o(m).

To be honest, the only supporting evidence we have for this conjecture is the lack of progress

in analyzing the success probability of PPSZ. If this conjecture is true, the hard instances

proving it might use a very different construction from those in Theorem 2. Thus, we further

conjecture:

◮ Conjecture 4. Theorem 2 holds for some w = Θ(log m), with the same formulas Fm.

We have a little bit more evidence supporting the second conjecture: our constructions are

based on Tseitin formulas, and our bound on w is related to the girth of a graph H; the

graph H has Θ(log m) vertices and girth Θ(log log m). However, the resolution width of

Tseitin formulas is usually governed by the expansion properties of the underlying graph, not

its girth, and thus we hope that some proof also works for w = Θ(log m).

Recently, Hansen, Kaplan, Zamir, and Zwick [5] published an improved version of PPSZ,

called biased-PPSZ. Roughly stated, the idea of their improvement is that, looking at a

formula F with a unique satisfying assignment α, we can identify a set a set X ⊆ V of

variables on which α is biased, i.e., the number of x ∈ X set to 1 by α deviates from |X|/2

significantly. Thus, setting those variables to 1 with some probability p 6= 1/2 gives a higher

success probability. We have not checked whether the bounds of Theorem 2 also hold for

biased-PPSZ.

2.1 Notation

Given a set of variables X, a partial assignment is a function α : X → {0, 1, ∗}, that is an

assignment of 0-1 values to some of the variables with ∗ intended to mean unset by α. We

denote the set of variables to which α gives a value by var(α) := {x ∈ X : α(x) ∈ {0, 1}}.

For two partial assignments α and β we write α ⊆ β to mean that for every x ∈ var(α), it

holds that β(x) = α(x). Naturally, α ⊂ β means that α ⊆ β and |var(α)| < |var(β)|. Given a

CCC 2020

3:4 Super Strong ETH Is True for PPSZ with Small Resolution Width

variable x and b ∈ {0, 1}, x 7→ b is the partial assignment which sets x to b. The assignment

which sets every variable to 0 is denoted by 0. For Y ⊆ X, we write Y 7→ 0 to denote the

partial assignment which sets all variables in Y to 0. If var(α) ∩ var(β) = ∅, we define α ∪ β

to be the partial assignment which sets all x ∈ var(α) to α(x), all x ∈ var(β) to β(x), and

all other variables to ∗. Finally the restriction of a formula Φ by α is denoted by Φ|α.

2.2 The Formula

Let G = (V, E) be a graph. For every e ∈ E(G) we introduce a variable xe. Given a charge

c : V → {0, 1}, the Tseitin formula on G with charge c is the Boolean formula

Tseitin(G, c) :=
∧

u∈V (G)





∑

e∈E(G):u∈e

xe ≡ c(u) mod 2



 (1)

If G has maximum degree k then this can be expressed as a k-CNF formula on m = |E(G)|

variables and |V (G)|2k−1 clauses. Usually in proof complexity, the charge c is chosen so

that Tseitin(G, c) is unsatisfiable. In this paper, all charges will be 0, and Tseitin(G, 0) is

obviously satisfiable: set all variables to 0. We will hence drop c from the notation and

simply write Tseitin(G) to denote this formula. The constraint
∑

e∈E(G):u∈e xe ≡ 0 mod 2

is called the Tseitin constraint of vertex u. Given a set B of pairs of edges in G consider the

following formula

Tseitin(G) ∧
∧

{e,f}∈B

(x̄e ∨ x̄f).

The constraint (x̄e ∨ x̄f) is called a bridge constraint. It is easy to see that 0 is the unique

satisfying assignment of this formula if and only if every cycle in G contains a bridge in B.

We will consider a particular instantiation of bridges given by graph homomorphisms. A

graph homomorphism from a graph G to a graph H is a function ϕ : V (G) → V (H) such

that {ϕ(u), ϕ(v)} ∈ E(H) whenever {u, v} ∈ E(G). Thus, ϕ also induces a function from

E(G) to E(H); ϕ({u, v}) := {ϕ(u), ϕ(v)}. Given G, H, and a homomorphism ϕ from G to

H, we define a Tseitin formula with bridges on the variable set {xe | e ∈ E(G)}:

TseitinBridge(G, H, ϕ) := Tseitin(G) ∧
∧

e,f∈E(G)
e6=f,ϕ(e)=ϕ(f)

(x̄e ∨ x̄f) . (2)

For brevity, we write V = V (G) and E = E(G).

◮ Observation 5. If girth(G) > |E(H)| then TseitinBridge(G, H, ϕ) is uniquely satisfiable

by 0.

Proof. Let α 6= 0 be a total assignment. Let F := {e ∈ E(G) | α(xe) = 1}. If some vertex u

has degree 1 in (V, F), then α violates its Tseitin constraint. Otherwise, (V, F) has a cycle,

which has length at least girth(G). By the pigeonhole principle, this cycle contains two edges

e, f such that ϕ(e) = ϕ(f), and thus α violates their bridge constraint. ◭

Locally Injective Homomorphisms. A homomorphism ϕ is called locally injective if for

every u ∈ V (G) and any two of its neighbors v1 and v2, it holds that ϕ(v1) 6= ϕ(v2). Note

that ϕ : G → H being locally injective immediately implies that degG(u) ≤ degH(ϕ(u)).

We call ϕ locally bijective if, additionally, degG(u) = degH(ϕ(u)) for all vertices u of G.

Note that a locally bijective homomorphism bijectively maps the neighborhood of u to the

neighborhood of ϕ(u). The graph G is called a covering graph of H or a lift of H.

D. Scheder and N. Talebanfard 3:5

a

b

c

d

e

f

1 : a 2 : b

3 : a4 : b

G
H

Example of a homomorphism that is not locally injective. The two neighbors of 1 are both mapped
to b.

a

b c

d

b c

d
a

b c

da

G H

Example of a locally bijective homomorphism. The letters next to the vertices of G are not their
names but rather their images under ϕ.

◮ Theorem 6. Let G be a graph on n vertices and m edges. Suppose there is a locally

injective graph homomorphism ϕ : G → H for some graph H with |E(H)| < girth(G). Then

for all ǫ > 0 and w :=
√

ǫ·girth(H)
2 − 3, the success probability of PPSZ with heuristic Rw on

Φ := TseitinBridge(G, H, ϕ) is at most

Pr[ppsz(Φ, Rw)] ≤ 2−m+(1+ǫ)n .

Proof of Theorem 2 using Theorem 6. We first show how to construct Fm for infinitely

many m. Let n0 be some given, sufficiently large even integer. A well-known fact, first

proven by Erdős and Sachs [4], is that there is a k-regular graph G0 on n0 vertices having

girth at least g0 := log n0

log(k−1) . Set n1 :=
⌊

2(g0−1)
k

⌋

or n1 :=
⌊

2(g0−1)
k

⌋

− 1, whichever is even,

and let G1 be a k-regular graph on n1 vertices, such that girth(G1) ≥ g1 := log n1

log(k−1) . This

exists, provided that n0 is sufficiently large. Note that G1 has at most g0 − 1 < girth(G0)

edges.

A result by Angluin and Gardiner [1] states that there is a common lift G of G0 and

G1. That is, G is a covering graph of G0 and of G1. Being a lift of a k-regular graph, G is

k-regular as well. A closer inspection of their proof reveals that n := |V (G)| ≤ 4n0n1.

Let m := kn
2 be the number of edges in G. We set Φm := TseitinBridge(G, G1, ϕ1), where

ϕ1 is the locally bijective homomorphism from G to G1.

It is not difficult to see that lifting cannot decrease the girth, and thus girth(G) ≥

girth(G0) > |E(G1)|. Thus, we can apply Theorem 6 to G, G1, and ϕ1, and conclude

that the success probability of PPSZ on Φm is at most 2−m+(1+ǫ)n when using heuristic

Rw. A quick calculation shows that g1 ≥ log log m
log k if n0 is sufficiently large, and thus

w ≥
√

ǫ · log log m
2 log k − 3.

This construction gives us an infinite set M ⊆ N and, for each m ∈ M , a satisfiable

k-CNF formula Fm on m variables for which the claimed hardness result holds. By a

simple tweaking of the construction, we can ensure that M is “reasonably dense”, meaning

that there is some m∗ ∈ M ∩ [m − log m, m] for all sufficiently large m. We then let

Fm∗ be Fm, plus m − m∗ dummy variables. The success probability is then at most

2−m∗(1−2(1+ǫ)/k) ≤ poly(m)2−m(1−2(1+ǫ)/k). We leave the details to the reader. ◭

CCC 2020

3:6 Super Strong ETH Is True for PPSZ with Small Resolution Width

3 All You Need to Know About PPSZ: Proof of Theorem 6

We will explain the connection between PPSZ and width-bounded resolution lower bounds.

After this section, the reader can forget everything about PPSZ and think of this paper as

proving a certain resolution width lower bound. If C = (C ′ ∨ x) and D = (D′ ∨ x̄) are clauses,

then (C ′ ∨ D′) is called the resolvent of C and D. It is clear that C ∧ D logically implies

C ′ ∨ D′. Let Φ be a CNF formula. A resolution derivation from Φ is a sequence of clauses

C1, . . . , Ct such that every Ci is (1) a clause of Φ or (2) the resolvent of two earlier clauses.

The width of the derivation is max1≤i≤t |Ci|. For a clause C, we denote by width(Φ ⊢ C) the

minimum width of a resolution derivation from Φ that contains C. Resolution is complete

for refutations, that is, Φ is unsatisfiable if and only if there is a derivation of the empty

clause, denoted by �, from Φ.

Proof of Theorem 6. Let G, H, ϕ be as in Theorem 6, and let Φ := TseitinBridge(G, H, ϕ).

The only satisfying assignment of Φ is 0. Consider a variant of PPSZ run on Φ such that

whenever it has to pick a random value for a variable, it correctly sets it to 0. Fix a

permutation π. Let Y (π) be the set of variables for which this variant of PPSZ under π could

not derive the value using Rw, and let Z(π) := var(Φ) \ Y (π) be the rest, i.e., all variables

whose value can be derived using Rw once all variables before them in π are set to 0. It is not

difficult to see that the success probability of the actual PPSZ on Φ is exactly Eπ

[

2−|Y (π)|
]

.

Suppose, for the sake of contradiction, that PPSZ using heuristic Rw has success probab-

ility greater than 2−m+(1+ǫ)n. Then there is some π for which Z(π) ≥ (1 + ǫ)n. Fix this π

and set Z := Z(π) and Y := Y (π). The set of variables Z corresponds to a set F of edges,

F = {e ∈ E(G) : xe ∈ Z}. Set G′ = (V, F). Note that G′ has n vertices and at least

(1 + ǫ)n edges. Setting a variable in Φ to 0 corresponds to simply deleting the corresponding

edge in G, and therefore

Φ|Y 7→0 = TseitinBridge(G′, H, ϕ) .

For a graph G = (V, E) and a set X ⊆ V , define the edge boundary ∂(X) := {e ∈ E :

|e ∩ X| = 1}. Call G an (a, b)-expander if |∂(X)| ≥ b for all sets X of exactly a vertices. The

next lemma is basically Lemma 17 from [9], adapted for our purposes. We give a proof for

completeness.

◮ Lemma 7. Let ǫ > 0 and let G′ be a graph on n vertices with at least (1 + ǫ)n edges. Let

ℓ ∈ N and h = ℓ/ǫ. If h < girth(G′) then G′ contains a non-empty subgraph G′′ that has

minimum degree at least 2 and is an (h, ℓ + 1)-expander,

Proof. Start with G′′ = G′. If G′′ has a vertex of degree 0 or 1, delete it. If G′′ contains a

set X of h vertices with |∂(X)| ≤ ℓ, delete X from G′′, along with all incident edges.

The first type of deletion removes one vertex and at most one edge. The second type

removes exactly h vertices. There are at most ℓ edges in the boundary of X; since |X| <

girth(G′), the graph G′′[X] is a forest, and thus there are at most h − 1 edges within X.

Thus, removing X removes at most ℓ + h − 1 < (1 + ǫ)h edges.

We see that a step that removes a vertices removes fewer than (1 + ǫ)a edges. Suppose

the process terminates with t vertices deleted. Trivially t ≤ n. Fewer than (1 + ǫ)n edges

have been deleted, so G′′ is non-empty. ◭

D. Scheder and N. Talebanfard 3:7

Let G′′ be given by Lemma 7 with ℓ := w+1. We will further restrict Φ so that only edges

of G′′ remain unset. Let F ′′ := E(G) \ E(G′′), Y ′′ := {xe : e ∈ F ′′}, and Φ′′ := Φ|Y ′′ 7→0.

Note that Φ′′ = TseitinBridge(G′′, H, ϕ). Recall that all edges of G′′ are mentioned in Z and

since Y ′′ ⊇ Y and restricting additional variables cannot increase the resolution width, we

conclude that there exists e ∈ E(G′′) such that

width(Φ′′ ⊢ x̄e) ≤ w. (3)

Towards a contradiction, we claim that in fact this resolution width is large for all variables

xe where e ∈ E(G′′). Indeed, we have the following theorem:

◮ Theorem 8 (Resolution Lower Bound). Let G be a graph of minimum degree 2 that is an

(h, ℓ + 1)-expander. Suppose there is a locally injective homomorphism ϕ : G → H into some

graph H. Then

width(TseitinBridge(G, H, ϕ) ⊢ x̄e) > ℓ − 1 , (4)

for all edges e of G, provided that 2hℓ + 5h + ℓ < girth(H).

Note that G′′ has minimum degree 2 and is a (h, ℓ + 1)-expander for ℓ = w + 1 and

h = w+1
ǫ . Also note that ϕ : V (G′′) → V (H) (or rather, the restriction of ϕ to V (G′′))

is still a locally injective homomorphism. Recall that w =
√

ǫ·girth(H)
2 − 3 and hence

2hℓ + 5h + ℓ = 2(w + 1)2/ǫ + 5(w + 1)/ǫ + w + 1 < girth(H), and thus Theorem 8 applies to

G′′. This contradicts (3) and finishes the proof of Theorem 6. ◭

4 Proof of Theorem 8

Let Φ = TseitinBridge(G, H, ϕ) and let e∗ be an edge of G. We will show that width(Φ ⊢

x̄e∗) > ℓ − 1 for all such edges e∗. In fact, we will prove width(Φ|xe∗ 7→1 ⊢ �) > ℓ − 1, which

is a slightly stronger statement.

We will use the game characterization of resolution width due to Atserias and Dalmau [2].

Given a CNF formula F , the ℓ-bounded Atserias-Dalmau game played by two players, Prover

and Delayer is defined as follows. A position in this game is a partial assignment α setting

up to ℓ variables. The start position is the empty assignment. At position α, Prover can

either (1) forget some variables, i.e., replace α by some β ⊂ α. Or, (2), if |var(α)| ≤ ℓ − 1,

pick a variable x 6∈ var(α) and query it; Delayer has to respond with a truth value b ∈ {0, 1},

and α is updated to α ∪ (x 7→ b). The game ends if α violates a clause of F , in which case

Prover wins. Delayer wins if she has a strategy to play indefinitely.

◮ Theorem 9 (Atserias and Dalmau [2]). Let F be an unsatisfiable CNF formula. If Delayer

has a winning strategy for the ℓ+1-bounded game then there is no width-ℓ resolution refutation

of F .

To show that width(Φ|xe∗ 7→1 ⊢ �) > ℓ − 1 we define a winning strategy for Delayer for

the ℓ-bounded game that ensures she never loses. Indeed, we will modify the game a bit: it is

now played on Φ instead of Φ|xe∗ 7→1; the starting position is the partial assignment xe∗ 7→ 1;

Prover can never forget xe∗ but is now allowed partial assignments up to size ℓ + 1. That is,

he can query a new variable provided |var(α)| ≤ ℓ. It is easy to see that if Delayer wins this

modified game, she wins the original one, too. Since Φ = TseitinBridge(G, H, ϕ), we can

easily rephrase the rules of the game in terms of sets of edges instead of partial assignments:

CCC 2020

3:8 Super Strong ETH Is True for PPSZ with Small Resolution Width

The Atserias-Dalmau, Graph View. A position of the game is described by two

disjoint set F0, F1 ⊆ E(G). F0 and F1 correspond to the variables of Φ that the

current partial assignment sets to 0 and 1, respectively. The start position is F0 = ∅

and F1 = {e∗}.

In every step, Prover either (1) removes one edge e from F0 or F1 (but never

removes e∗). Or (2) he queries an edge e ∈ E(G) \ (F0 ∪ F1), provided |F0| + |F1| ≤ ℓ.

Delayer can then decide whether to add e to F0 or F1.

Prover wins if there is a vertex u in G such that all edges incident to u are in F0 ∪F1

but degF1
(u) is odd (then the partial assignment α violates the Tseitin constraint of

u); or if there are two edges e, f ∈ F1 with ϕ(e) = ϕ(f) (then α violates a bridge

constraint).

We will now describe a winning strategy for Delayer. Throughout the game, she maintains

a set F̃1 such that F1 ⊆ F̃1 ⊆ E \ F0. Let V (F̃1) denote the set of vertices incident to at

least one edge of F̃1. She makes sure F̃1 satisfies certain invariants:

1. Every connected component of (V, F̃1) is a path; a path of positive length (i.e., a path

that is not an isolated vertex) is called an F̃1-path.

2. Every F̃1-path contains at least one edge of F1.

3. ϕ is injective on V (F̃1).

4. Each F̃1-path has length at least 2h + 1, and the first and last h edges of every F̃1-path

are not in F1.

5. Each F̃1-path has length at most 2hℓ + 2h + ℓ.

◮ Observation 10. If F̃1 satisfies the invariants, then no constraint is violated.

Proof. In fact we show that invariants 1-4 already give the result. First, consider a Tseitin

constraint of a vertex u. Since F̃1 consists of disjoint paths, so does F1. Thus, u is incident

to 0, 1, or 2 edges of F1. If it is incident to 0 or 2 edges of F1, the Tseitin constraint of u

is clearly not falsified. If it is incident to exactly one edge of F1, then it is the endpoint of

some path of F1-edges. By Invariant 4, u is incident to some other edge f ∈ F̃1 \ F1. Thus,

f is neither in F0 nor in F1, and the Tseitin constraint of u is not violated.

Next, consider a bridge constraint (x̄e ∨ x̄f). By construction we have ϕ(e) = ϕ(f). By

Invariant 3, ϕ is injective on F̃1, and thus e, f cannot both be in F1, and the bridge constraint

is not violated. ◭

We will use the following property of ϕ.

◮ Proposition 11. Let G′ be a connected subgraph of G of diameter less than girth(H). Then

ϕ is injective on V (G′), and thus ϕ(G′) is isomorphic to G′.

Proof. For the sake of contradiction, suppose u, v ∈ V (G′) are two vertices with ϕ(u) = ϕ(v).

Let p be a shortest path from u to v in G′. Write p as u = u0, u1, . . . , ut = v. By assumption,

t < girth(H). Under ϕ, the path p is mapped to a reduced walk in H, reduced meaning that

ϕ(ui−1) 6= ϕ(ui+1) for all 1 ≤ i ≤ t − 1. Since ϕ(u) = ϕ(v), this is a closed walk and thus

contains a cycle. The cycle has length at most t < girth(H), a contradiction. ◭

How to initialize F̃1. Delayer can easily initialize F̃1. Write e∗ = {u∗, v∗}. Since G has

minimum degree 2, Delayer can start a reduced walk from u∗ of length h, and also from v∗

and add this to F̃1. Since 2h + 1 < girth(H), this is a path; by Proposition 11, ϕ is injective

on its vertices.

D. Scheder and N. Talebanfard 3:9

How to handle a Forget Step. Suppose Prover forgets some edge e ∈ F0 ∪ F1. If e ∈ F0,

Delayer leaves F̃1 unchanged. If e ∈ F1, let p be the F̃1-path containing e. If p contains some

other F1-edge besides e, Delayer does not change F̃1; otherwise it simply removes all of p

from F̃1. All invariants stay satisfied.

How to handle a Query from Prover. Suppose Prover queries an edge e. Delayer has now

to choose whether to include e into F0 or F1, and potentially update F̃1

Case 1: e is not in F̃1. Then Delayer adds e to F0 and leaves F̃1 unchanged. All invariants

still hold. This includes the case that e is incident to some vertex on a F̃1-path, but is not

itself inside this path.

Case 2: e is in some F̃1-path p but not among its first or last h edges. Delayer adds e

to F1 and leaves F̃1 unchanged. All invariants still hold.

Case 3: e is among the first or last h edges of some F̃1-path p. Let v1, . . . , vh+1 be the

first h + 1 vertices of p, and let q denote the length-h-path v1, . . . , vh+1. By assumption,

e lies on the path q. Since G is an (h, ℓ + 1)-expander, there are edges f1, . . . , fℓ+1, each

incident to exactly one vertex in {v1, . . . , vh}. One of those edges could be {vh, vh+1}, but

without loss of generality, for 1 ≤ i ≤ ℓ, edge fi connects some ai ∈ {v1, . . . , vh} to some

bi outside {v1, . . . , vh+1}. Since G has minimum degree 2 and girth larger than h, we can

find paths p1, . . . , pℓ such that each pi has length h and starts with ai as its first and bi

as its second vertex. Since 3h < girth(H) ≤ girth(G), the pi are vertex-disjoint. Since

h + |p| ≤ h + 2hℓ + 2h + ℓ < girth(H) ≤ girth(G), the path pi intersects p only in vertex ai.

Thus, C := p ∪ p1 ∪ · · · ∪ pℓ is a tree, and its diameter is at most h + 2hℓ + 2h + ℓ. This

figure shows how C could look like:

e
v1

v2

v3

v3 vh

p1
p3

pi
pℓ

the F̃1-path p

vh+1

f1

f2

f3

fi fℓ

p2

Call pi blocked by F0 if it contains some edge from F0; at most |F0| of the ℓ paths are

blocked by F0. Let p′ be an F̃1-path different from p. We say p′ blocks pi if the vertex sets

of ϕ(p′) and ϕ(pi) intersect.

◮ Proposition 12. Let path p′ in F̃1 be different from p. Then p′ blocks at most one of the

paths p1, . . . , pℓ.

Proof. Let C = p ∪ p1 ∪ · · · ∪ pℓ. As argued above, this is a tree in G and its diameter is less

than girth(H). By Proposition 11, its image ϕ(C) is a tree in H, isomorphic to C. Suppose,

for the sake of contradiction, that ϕ(p′) intersects ϕ(pi) and ϕ(pj). This scenario would look

like this:

CCC 2020

3:10 Super Strong ETH Is True for PPSZ with Small Resolution Width

ϕ(pi) ϕ(pj)

ϕ(p)

ϕ(vh+1)ϕ(v1)

ϕ(p′)

Since ϕ(p′) and ϕ(p) do not share any vertex (by Invariant 3), the subgraph ϕ(p′) ∪ ϕ(pi) ∪

ϕ(pj)∪ϕ(p) contains a cycle. This cycle has size at most |p′|+|pi|+|pj |+|q| ≤ 2hℓ+2h+ℓ+3h,

a contradiction. ◭

Call pi blocked by F̃1 if there is some F̃1-path different from p that blocks pi. By

Proposition 12, at most |F1| − 1 paths pi are blocked by F̃1. Thus, a total of at most

|F0| + |F1| − 1 ≤ ℓ − 1 of the paths pi are blocked by F0 or F̃1. Thus, there exists some path

pi, 1 ≤ i ≤ ℓ, that is not blocked. We now modify p by removing the edges on the path

v1, v2, . . . , ai and adding pi. Let p̂ denote the new version of p and F̂1 the new version of F̃1.

Note that F1 ⊆ F̂1 still holds, since we only modify the set F̃1 \ F1. Obviously, F̂ satisfies

Invariants 1, 2, and 4. Since pi is not blocked by F0, F̂ is disjoint from F0; because pi is not

blocked by F̃1, Invariant 3 still holds. Invariant 5 might be violated: p̂ might be too long.

We will deal with this in a minute.

Note that e is now either outside F̂1, and Delayer can include it into F0; or it is inside p̂,

but then it is not among the first or last h edges of p̂, and Delayer can include it into F1.

It remains to address the possibility that p̂ is too long, violating Invariant 5. If indeed p̂

has more than 2hℓ + 2h + ℓ edges, then it must somewhere contain 2h + 1 consecutive edges

that are not in F1 (note that |F1| ≤ ℓ). Let e0, . . . , e2h be these edges. Define F̂1 := F̃1 \{eh}.

That is, we split p̂ into two parts, the first ending in e0, . . . , eh−1, the second starting with

eh+1, . . . , e2h. Note that this satisfies Invariant 4. If one of these paths contains no edge

from F1 at all, we delete it from F̂ . We continue this process until all paths in F̂ have size

at most 2hℓ + 2h + ℓ. The final F̂ satisfies all invariants.

5 Conclusion

We constructed close to tight hard instances for the PPSZ algorithm which uses bounded

width resolution to derive values and showed that the savings can be at most (1+ǫ)2
k . Several

questions of various levels interest remain open. The first one is to obtain Super Strong ETH

hard instance for resolution of larger width, ideally as close to m/ log(m) as possible. Even

for the weak heuristic, the hard instances from [9] hold for subformulas of size up to mO(1).

The next problem is determining the precise constant in the savings of PPSZ.

D. Scheder and N. Talebanfard 3:11

References

1 Dana Angluin and A Gardiner. Finite common coverings of pairs of regular graphs. Journal of

Combinatorial Theory, Series B, 30(2):184–187, 1981. doi:10.1016/0095-8956(81)90062-9.
2 Albert Atserias and Víctor Dalmau. A combinatorial characterization of resolution width. J.

Comput. Syst. Sci., 74(3):323–334, 2008. doi:10.1016/j.jcss.2007.06.025.
3 Shiteng Chen, Dominik Scheder, Navid Talebanfard, and Bangsheng Tang. Exponential

lower bounds for the PPSZ k-SAT algorithm. In Sanjeev Khanna, editor, Proceedings of

the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,

New Orleans, Louisiana, USA, January 6-8, 2013, pages 1253–1263. SIAM, 2013. doi:

10.1137/1.9781611973105.91.
4 Paul Erdős and Horst Sachs. Reguläre graphen gegebener taillenweite mit minimaler knotenzahl.

(regular graphs with given girth and minimal number of knots.). Wiss. Z. Martin-Luther-Univ.

Halle-Wittenberg, Math.-Naturwiss., 12:251–258, 1963.
5 Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-sat algorithms

using biased-ppsz. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual

ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June

23-26, 2019, pages 578–589. ACM, 2019. doi:10.1145/3313276.3316359.
6 Timon Hertli. 3-SAT faster and simpler - unique-SAT bounds for PPSZ hold in general. SIAM

J. Comput., 43(2):718–729, 2014. doi:10.1137/120868177.
7 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved

exponential-time algorithm for k-SAT. J. ACM, 52(3):337–364, 2005. doi:10.1145/1066100.

1066101.
8 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chicago J.

Theor. Comput. Sci., 1999, 1999.
9 Pavel Pudlák, Dominik Scheder, and Navid Talebanfard. Tighter hard instances for PPSZ. In

44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July

10-14, 2017, Warsaw, Poland, pages 85:1–85:13, 2017. doi:10.4230/LIPIcs.ICALP.2017.85.
10 Dominik Scheder. PPSZ for k ≥ 5: More is better. TOCT, 11(4):25:1–25:22, 2019. doi:

10.1145/3349613.
11 Uwe Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In

40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,

1999, New York, NY, USA, pages 410–414. IEEE Computer Society, 1999. doi:10.1109/

SFFCS.1999.814612.
12 Nikhil Vyas and R. Ryan Williams. On super strong ETH. In Theory and Applications of

Satisfiability Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal,

July 9-12, 2019, Proceedings, pages 406–423, 2019. doi:10.1007/978-3-030-24258-9_28.

A Existence of Common Lift

◮ Theorem 13 (Angluin and Gardiner [1]). Let G and H be k-regular graphs. Then there

exists a k-regular graph L that is a common lift of both G and H. Furthermore, |V (L)| ≤

4|V (G)| · |V (H)|.

Proof. Suppose first that both G = (U, E) and H = (V, F) are bipartite. By Hall’s Theorem,

each has a perfect matching, and in fact, we can partition E and F into k perfect matchings

each: E = E1 ⊎ · · · ⊎ Ek and F = F1 ⊎ · · · ⊎ Fk. The common lift L has vertex set U × V

and edge set

k
⋃

i=1

{

{(u, v), (u′, v′)} ∈

(

U × V

2

)

| {u, u′} ∈ Ei, {v, v′} ∈ Fi

}

.

It is not difficult to see that the projections ϕG : (u, v) 7→ u and ϕH(u, v) 7→ v are locally

bijective homomorphisms from L into G and H, respectively.

CCC 2020

3:12 Super Strong ETH Is True for PPSZ with Small Resolution Width

If G (or H or both) fails to be bipartite, we first replace it by its 2-lift G2. The vertex

set of G2 is U × {0, 1}, and we form its edge set by creating, for each {u, v} ∈ E, two edges

{(u, 0), (v, 1)} and {(u, 1), (v, 0)}. The graph G2 is bipartite, and projection to the first

coordinate is a locally bijective homomorphism. Finally, observe that the composition of

locally bijective homomorphisms is again a locally bijective homomorphism. Altogether, we

can replace G and H by their respective 2-lifts G2 and H2; these are bipartite graphs, so we

find a common lift L on 4|U | · |V | vertices. ◭

	Introduction
	Previous Results: Hard Instances

	Our Results
	Notation
	The Formula

	All You Need to Know About PPSZ: Proof of Theorem 6
	Proof of Theorem 8
	Conclusion
	Existence of Common Lift

