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Abstract

A natural model of read-once linear branching programs is a branching program where queries are F2

linear forms, and along each path, the queries are linearly independent. We consider two restrictions
of this model, which we call weakly and strongly read-once, both generalizing standard read-once
branching programs and parity decision trees. Our main results are as follows.

Average-case complexity. We deĄne a pseudo-random class of functions which we call
directional affine extractors, and show that these functions are hard on average for the strongly
read-once model. We then present an explicit construction of such function with good parameters.
This strengthens the result of Cohen and Shinkar (ITCSŠ16) who gave such average-case hardness
for parity decision trees. Directional affine extractors are stronger than the more familiar class
of affine extractors. Given the signiĄcance of these functions, we expect that our new class of
functions might be of independent interest.
Proof complexity. We also consider the proof system Res[⊕], which is an extension of resolution
with linear queries, and deĄne the regular variant of Res[⊕]. A refutation of a CNF in this
proof system naturally deĄnes a linear branching program solving the corresponding search
problem. If a refutation is regular, we prove that the resulting program is read-once. Conversely,
we show that a weakly read-once linear BP solving the search problem can be converted to a
regular Res[⊕] refutation with constant blow up, where the regularity condition comes from the
deĄnition of weakly read-once BPs, thus obtaining the equivalence between these proof systems.
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1 Introduction

Circuit complexity and proof complexity are two major lines of inquiry in complexity theory

(see [13, 15] for extensive introductions). The former theme attempts to identify explicit

Boolean functions which are not computable by small circuits from a certain restricted

class, and the latter aims to Ąnd tautologies which are not provable by short proofs in
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a given restricted proof system. These seemingly unrelated topics are bound together in

at least two different ways: via feasible interpolation where a circuit lower bound for a

concrete computational problem implies proof size lower bounds (see, e.g., [11]), and more

fundamentally many proof systems have an underlying circuit class where proof lines come

from. Notable examples are Frege, bounded depth Frege, and extended Frege systems where

proof lines are De Morgan formulas, AC
0 circuits, and general Boolean circuits, respectively.

Intuitively we expect that understanding a circuit class in terms of lower bounds and

techniques should yield results in the proof complexity counterpart. This intuition has been

supported by bounded depth Frege lower bounds using specialized Switching Lemmas (see,

e.g., [10]), the essential ingredient of AC
0 lower bounds.

AC
0[2] circuits and Res[⊕] proof system. It is not clear if this intuition should always

hold. Lower bounds for AC
0[p] circuits (AC

0 circuits with Modp gates) have been known for

a long time [19, 23] yet lower bounds for bounded depth Frege systems with modular gates

still elude us. Perhaps this failure is not too surprising since our understanding of AC
0[p]

circuits is not of the same status as our understanding of AC
0. For example, even for AC

0[2],

that is AC
0 with parity gates, no strong average-case lower bound is known. Settling such

bounds is an important challenge, since Shaltiel and Viola [22] showed that for standard

worst-case to average-case hardness ampliĄcation techniques to work, the circuit class is

required to compute the majority function, which is not the case for AC
0[2]. Several works

have highlighted the special case of AC
0 ◦ Mod2, where the parity gates are next to the input

[21, 2, 8]. Among these works we pay special attention to the result of Cohen and Shinkar [8]

who considered the depth-3 case of this problem and proved a strong average-case hardness

for the special case of parity decision trees. The more general case of DNF ◦ Mod2 remains

open.

In the proof complexity parallel, a special case of AC
0[2]-Frege was suggested by Itsykson

and Sokolov [12]. They considered the system Res[⊕] that is an extension of resolution which

reasons about disjunctions of linear equations over F2, which we call linear clauses. The rules

of this system are:

the weakening rule: from a linear clause we can derive any other linear clause which is

semantically implied,

the resolution rule: for every two linear clauses C and D and linear form f , we can derive

C ∨ D from (f = 0) ∨ C and (f = 1) ∨ D.

They proved exponential lower bounds for the tree-like restriction of this system. These lower

bounds were later extended in [9, 18]. For DAG-like proofs, the only known results are due to

Khaniki [14] who proved almost quadratic lower bounds, and to Lauria [16] for a restriction

of the system when parities are on a bounded number of variables. Super-polynomial lower

bounds for unrestricted DAG-like Res[⊕] are widely open.

Parity decision trees and tree-like Res[⊕]. Given an unsatisĄable CNF F = C1 ∧ . . . ∧ Cm,

the search problem for F is the computational problem of Ąnding a clause Ci falsiĄed by

a given assignment to the variables. A tree-like Res[⊕] refutation of F can be viewed as a

parity decision tree solving the search problem for an unsatisĄable CNF [9]. Recall that the

strongest average-case lower bounds for AC
0[2] are in fact for parity decision trees. Thus it

seems that parity decision trees are at the frontier of our understanding in these two areas.

Therefore a natural approach to make progress towards both general Res[⊕] lower bounds

and average-case hardness for AC
0[2] is to consider DAG-like structures more general than

decision trees.
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1.1 Our contributions

Motivated by strengthening tree-like Res[⊕] lower bounds as well as average-case lower bounds

for parity decision trees to more general models, we consider a model of read-once branching

programs (BPs) with linear queries. The most natural way to interpret the property of

being read-once in BPs with linear queries, is to impose that along every path, the queries

are linearly independent. We consider two restrictions of this model which we call weakly

read-once and strongly read-once, both of which extend parity decision trees and standard

read-once branching programs.

For strongly read-once BPs, we prove average-case hardness for a new class of pseudo-

random functions, and we give an explicit construction of such a function, thus strengthening

the result of Cohen and Shinkar [8] and making progress towards average-case hardness for

DNF ◦ Mod2. Our pseudo-random functions are deĄned below and might be of independent

interest.

Directional affine extractors. The average-case hardness result of Cohen and Shinkar [8]

is for affine extractors. An affine extractor for dimension d and bias ϵ is a function such

that restricted to any affine subspace of dimension at least d it has bias at most ϵ. Explicit

constructions for such functions are known (e.g., [5, 24, 4]). For our purposes it is not clear if

affine extractors are sufficient. Therefore we consider a more robust concept. We say that a

function f : ¶0, 1♢
n

→ ¶0, 1♢
n

is a directional affine extractor for dimension d with bias ϵ, if

for every non-zero a ∈ ¶0, 1♢
n
, the derivative of f in the direction a, Daf(x) = f(x+a)+f(x),

is an affine extractor for dimension d with bias ϵ. We give an explicit construction of a good

directional affine extractor for dimension larger than 2n/3.

For weakly read-once BPs we show a correspondence with Res[⊕]. More precisely, we

show that a weakly read-once BP solving the search problem for a CNF F , can be converted

to a Res[⊕] refutation of F while preserving the proof structure. This also justiĄes deĄning

a Res[⊕] counterpart to regular resolution similarly to weakly read-once BPs. Recall that

in a regular resolution proof, no variable is resolved more than once along any path. It is

well-known that a read-once BP solving the search problem for an unsatisĄable CNF can be

converted to a regular resolution refutation of the formula. Our result should be interpreted

as an extension of this result to Res[⊕].

1.2 Read-once linear branching programs

The model of read-once branching programs is a natural and extensively studied model of

computation for which strong lower bounds are known [20, 3]. Here we consider an extension

of this model where queries are linear forms. A linear branching program1 P in the variables

x is a DAG with the following properties:

it has exactly one source;

it has two sinks labeled with 0 and 1 representing the values of the function that P

computes;

every inner node is labeled by a linear form q over F2 in x which we call queries;

every inner node with a label q has two outgoing edges labeled with 0 and 1 representing

the value of q.

1 This term has already been used before in [1] with a different meaning in the context of quantum
computation.

CCC 2022
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Any assignment to the input variables naturally deĄnes a path in the program. We say

that P computes a Boolean function f : ¶0, 1♢
n

→ ¶0, 1♢ if for every x ∈ ¶0, 1♢
n
, the path in

P deĄned by x ends in the sink labeled with f(x).

We now deĄne read-once linear BPs. Given an inner node v of a linear branching program

P, we deĄne Pre(v) as the span of all queries that appear on any path from the source of P

to v, excluding the query at v. We deĄne Post(v) as the span of all queries in the subprogram

starting at v.

▶ DeĄnition 1 (Weakly and strongly read-once linear branching programs). We say that a

linear branching program P is weakly read-once if for every inner node v of P which queries

q, it holds that q ̸∈ Pre(v).

We say that a linear branching program P is strongly read-once if for every inner node v

of P, it holds that Pre(v) ∩ Post(v) = ¶0♢.

It follows from both deĄnitions that queries alongside any path in weakly or strongly read-

once BP are linearly independent. Furthermore, both of these models generalize standard

read-once BPs and parity decision trees. When the distinction between weakly and strongly

read-once is not important, we simply write Şread-onceŤ.

1.3 Regular Res[⊕]

We also deĄne a regular variant of Res[⊕] using similar conditions that we require from

weakly read-once BPs.

▶ DeĄnition 2 (Regular Res[⊕]). A Res[⊕] refutation is (weakly) regular if for every clause

C obtained by the application of the resolution rule on a literal q, the span of all literals

appearing in any application of the resolution rule to C or a clause derived from C, does not

contain q.

Intuitively, the read-once (or regular) nature of this deĄnition can be described as following:

after we resolve on q, we restrict the query space U by its complimentary to q, i.e., the space

W with q ̸∈ W and span(q) + W = U . If a clause C was derived using q, there exists a linear

isomorphism L that maps q to a variable y, and for every application of the resolution rule

to C of a clause derived from C on a linear literal q′, Lq′ does not contain y.

In Section 6 we establish the connection between weakly read-once BPs and regular

Res[⊕] refutations.

2 Notation and basic facts

Each path in a read-once program deĄnes an affine subspace given by the set of solutions of

the system corresponding to the queries on the path. Any affine subspace can be represented

by a vector space shifted by a vector from the affine space. For our purposes, we need to

choose this shift carefully.

Let p be a path in a read-once linear BP P leading to a node v with queries q1, . . . , qk and

answers a1, . . . , ak to these queries which deĄne the affine subspace Sp = ¶x :
∧k

i=1 qi(x) = ai♢.

Let Vp be the supporting vector space of Sp, i.e., Vp = ¶x :
∧k

i=1 qi(x) = 0♢. Then clearly

Sp = Vp + b for any b ∈ Sp. Choose an arbitrary basis q′
1, . . . , q′

t for Post(v). Since q′
1, . . . , q′

t

are independent of q1, . . . , qk, there exists b such that
∧k

i=1 qi(b) = ai and
∧t

i=1 q′
i(b) = 0.

Then Sp = Vp + b and for every q ∈ Post(v), we have q(b) = 0.
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▶ DeĄnition 3 (Canonical affine subspace). Given a path p which ends at a node v, we call

Sp the canonical affine subspace for p. Furthermore a canonical representation of Sp is any

Vp + b = Sp where every q ∈ Post(v) vanishes on b.

Throughout the paper we drop the word representation and simply say Vp + b is the

canonical affine subspace of p to mean that it is a canonical representation of Sp.

Since we will often use canonical affine subspaces to represent paths in BPs, we adopt

the following algebraic notation. Let us denote the space of all linear forms on F
n
2 (the dual

space) as (Fn
2 )

∗
. Given a subspace V of Fn

2 , we deĄne V ⊥ as the space of all linear forms

from (Fn
2 )

∗
that vanish on V (this space is sometimes called the annihilator of V ), i.e.,

V ⊥ = ¶ℓ ∈ (Fn
2 )

∗
: ∀v ∈ V, ℓ(v) = 0♢.

Given a path p with queries q1, . . . , qk and its canonical affine subspace V + b, the space V ⊥

is the query space of p, i.e., V ⊥ = span(q1, . . . , qk).

It is clear that every read-once BP is a strongly read-once linear BP. We also show that

every parity decision trees can be transformed into an equivalent tree that is also a strongly

read-once linear BP, without increasing its size. We need the following notation. Let V and

W be two subspaces. Then the sum of V and W is the subspace

V + W := ¶v + w : v ∈ V, w ∈ W♢.

Note that V + W = span(V ∪ W ).

▶ Lemma 4. Let T be a parity decision tree. Then there exists a parity decision tree T ′

computing the same function, which is a strongly read-once linear BP.

Proof. Without loss of generality, we may assume that for every node v of T , the query

at v is linearly independent of the queries leading to v, since otherwise we can replace v

with one of its children. To prove this lemma, we will use the fact that exactly one path

passes through any node of the tree. We construct T ′ inductively on the depth of a tree node

starting from the root. Let v be a node of T labeled with the query q. Let B = ¶β1, . . . , βt♢

be a basis of Pre(v) + span(q) and B′ its extension to a basis of the whole query space (Fn
2 )

∗
.

We can rewrite every query in the subtree rooted at v in the new basis B ∪ B′. Since the

program is a tree, every query from B has the unique value. Thus, we can safely substitute

them in every query in the v-subtree, possible changing the labels of the outgoing edges.

After this transformation, every query in Post(v), except for the query at v, will be expressed

in terms of B′. By construction, B ∪ B′ is a basis and Pre(v) and Post(v) are expressed

using different basis vectors, which implies Pre(v) ∩ Post(v) = ¶0♢. ◀

Throughout the paper we adopt the following notation.

Given a vector c ∈ ¶0, 1♢
n

the support of c is deĄned as

supp(c) := ¶i : ci ̸= 0♢.

Let σ be a partial assignment to the variables x1, . . . , xn. Then

dom(σ) := ¶i : σ(xi) is deĄned♢.

We say that a ∈ ¶0, 1♢
n

is consistent with a partial assignment σ to x1, . . . , xn if for every

i ∈ dom(σ), it holds that σ(xi) = ai.

We write a + b without specifying the underlying Ąeld, if it is clear from the context and

often intended to be F2.

CCC 2022
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2.1 The trace map

The trace map Tr: Fpn → Fp is deĄned as

Tr(x) :=

n−1∑

i=0

xpi

.

One important property that we need is that Tr is an Fp-linear map. We also use the

following fact about the trace.

▶ Proposition 5 (cf. [17]). For every Fp-linear map π : Fpn → Fp there exists µ ∈ Fpn such

that for all x ∈ Fpn we have

π(x) = Tr(µ · x).

Furthermore, π is trivial if and only if µ = 0.

Since, we are interested in Boolean functions, we will only consider the case p = 2. Let

ϕ : Fn
2 → F2n be any F2-linear isomorphism. Then Tr(µ · ϕ(x)) is a linear Boolean function

of x and we have the following:

▶ Proposition 6. The set of all linear Boolean functions coincides with the set of functions

ℓµ(x) = Tr(µ · ϕ(x)), where µ ∈ F2n .

In the rest of the paper we Ąx ϕ. To make the proofs more readable we use bold font to

denote the corresponding elements of F2n , e.g., x for ϕ(x).

2.2 Affine extractors and dispersers

A Boolean function f : ¶0, 1♢
n

→ ¶0, 1♢ is an affine disperser for dimension d if f is not

constant on any affine subspace of dimension d. Let us also recall affine extractors, which

are generalizations of affine dispersers.

The bias of f is deĄned as

bias(f) :=

∣∣∣∣ E
x∈Un

[(−1)f(x)]

∣∣∣∣,

where Un is a uniform distribution on ¶0, 1♢
n
. Given an affine subspace f , the bias of f

restricted to S ⊆ ¶0, 1♢
n

is deĄned as

bias(f ♣S) :=

∣∣∣∣ E
x∈U(S)

[(−1)f(x)]

∣∣∣∣,

where U(S) is a uniform distribution on S.

A Boolean function f : ¶0, 1♢
n

→ ¶0, 1♢ is an affine extractor for dimension d with bias ϵ

if for every affine subspace S of dimension d, the bias of f restricted to S, bias(f ♣S), is at

most ϵ.

3 Affine mixedness

In this section we give a criterion for functions to be worst-case hard for read-once linear

BPs. Let us Ąrst recall mixedness from standard read-once BPs.
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▶ DeĄnition 7. A Boolean function f : ¶0, 1♢
n

→ ¶0, 1♢ is d-mixed2 if for every I ⊆ [n] of size

at most n − d and every two distinct partial assignments σ and τ with dom(σ) = dom(τ) = I,

it holds that f ♣σ ̸= f ♣τ .

▶ Theorem 8 (Folklore; see [13] for a proof). Let f : ¶0, 1♢
n

→ ¶0, 1♢ be a d-mixed Boolean

function. Then any read-once branching program computing f has size at least 2n−d − 1.

Explicit constructions of d-mixed functions with d = o(n) and thus 2n−o(n) size lower

bounds for read-once BPs were given in [20, 3]. We generalize this notion for linear branching

programs. We need the following equivalent deĄnition of d-mixedness.

▶ Lemma 9. A Boolean function f is d-mixed if and only if for every partial assignments σ

of size at most n − d and every c ̸= 0 with supp(c) ⊆ dom(σ), there exists x consistent with

σ such that f(x) ̸= f(x + c).

Proof. (⇐) Let σ and τ be two distinct partial assignments with domain I of size at most

n − d. DeĄne ci = τ(xi) + σ(xi) for i ∈ I and ci = 0 otherwise. By assumption there

exists x consistent with σ such that f(x) ̸= f(x + c). It follows from the deĄnition of

c that x + c is consistent with τ . DeĄne J = [n] \ I and z = xJ = (x + c)J . Then

f ♣σ (z) = f(x) ̸= f(x + c) = f ♣τ (z).

(⇒) Let σ be a partial assignment with a domain of size at most n − d and let c be given

such that supp(c) ⊆ dom(σ). DeĄne τ(xi) = σ(xi) + ci for i ∈ dom(σ). By assumption

f ♣σ ̸= f ♣τ , hence there exists z such that f ♣σ (z) ̸= f ♣τ (z). DeĄne x to take the same value

as σ on dom(σ) and equal to z otherwise. Then f(x) = f ♣σ (z) ̸= f ♣τ (z) = f(x + c). ◀

▶ DeĄnition 10. A Boolean function f : ¶0, 1♢
n

→ ¶0, 1♢ is d-affine mixed if for every affine

subspace S of dimension at least d and every vector c ̸∈ V , where V is the supporting vector

space of S, there exists x ∈ S such that f(x) ̸= f(x + c).

It follows from Lemma 9 that d-affine mixedness implies d-mixedness since a partial

assignment is a special case of an affine subspace.

Now we are ready to prove a generalization of Theorem 8.

▶ Theorem 11. Let f : ¶0, 1♢
n

→ ¶0, 1♢ be a d-affine mixed Boolean function. Then any

strongly read-once linear branching program computing f has size at least 2n−d − 1.

Proof. We prove that any such program P computing f starts with a complete binary tree

of depth n − d − 1. Assume for the sake of contradiction that there are two paths p and q of

length at most n − d − 1, which meet for the Ąrst time at a node v. Let V + a and W + b be

their corresponding canonical affine subspaces. Both of them have dimension at least d + 1.

We start by proving V ⊥ = W ⊥ which implies V = W . Suppose that it is not the case.

Without loss of generality, there exists ℓ ∈ W ⊥ \ V ⊥. By the read-once property ℓ ̸∈ Post(v).

Consider two affine subspaces V ′ + a1 and V ′ + a2 obtained by intersecting V + a

with ℓ(x) = 0 and ℓ(x) = 1 such that for every ℓ′ ∈ Post(v), ℓ′(a1) = 0 and ℓ′(a2) = 0

(recall that we can choose such a1 and a2 since Pre(v) ∩ Post(v) = ¶0♢). By construction,

they have dimension at least d. Since f is d-affine mixed, there exists z ∈ V ′ such that

f(z + a1) ̸= f(z + a2). Consider any query ℓ′ in the subprogram starting at v. The fact that

2 This deĄnition is commonly given for sets of size d instead of n − d. We deviate from this since for our
generalization to affine spaces, it corresponds to dimension which is more natural.

CCC 2022
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ℓ′ ∈ Post(v) implies ℓ′(a1) = ℓ′(a2) = 0. Thus, we have ℓ′(z + a1) = ℓ′(z) = ℓ′(z + a2). It

implies that in the subprogram starting at v both z + a1 and z + a2 must follow the same

path contradicting f(z + a1) ̸= f(z + a2).

Now, since V = W , V + b is the canonical affine subspace for q, and a ≠ b since p

and q are different paths. Again, since f is d-affine mixed, there exists z ∈ V such that

f(z + a) ̸= f(z + b). Analogously to the previous case, for every ℓ′ ∈ Post(v) we have

ℓ′(a) = ℓ′(b) = 0, and thus ℓ′(z + a) = ℓ′(z + b) contradicting f(z + a) ̸= f(z + b). ◀

4 Affine dispersers for directional derivatives

In this section we give an explicit construction of an affine mixed function for linear dimension.

In fact, we give an even more powerful construction, which allows us to get an average-case

lower bound for strongly read-once linear branching programs.

For a Boolean function f its directional derivative with respect to a non-zero vector a is

deĄned as

Daf(x) := f(x + a) + f(x).

▶ DeĄnition 12. A Boolean function f : ¶0, 1♢
n

→ ¶0, 1♢ is a directional affine extractor for

dimension d with bias ϵ if for every non-zero a, the derivative Daf is an affine extractor for

dimension d with bias ϵ.

Similarly, f is a directional affine disperser for dimension d if for every non-zero a, Daf

is an affine disperser for dimension d.

Observe that this notion is stronger than the one deĄned in the previous section: if f is a

directional affine disperser for dimension d, then it is d-affine mixed.

In what follows we construct a Boolean function f in n variables that is a good directional

affine extractor for dimensions bigger than 2
3 n.

It is a well-known fact that the inner product function is an affine extractor. IP is a

member of the class of bent functions, which are all affine extractors. A Boolean function

f : ¶0, 1♢
n

→ ¶0, 1♢ is called a bent function if all Fourier coefficients of its ±1 representation

f±(x) := (−1)
f(x)

have the same absolute value.

▶ Lemma 13 (Folklore; for a proof see, e.g., [8, 7]). Let f be a bent function on n variables

and c ≥ 1 be an integer. Then, f is an affine extractor for dimension k = n/2 + c with bias

at most 2−c. In particular, f is an affine disperser for dimension n/2 + 1.

We apply this result to prove that the following function is an affine extractor.

▶ Lemma 14. Let a0, a1, a2, a3 ∈ F2k with a0 ̸= 0. Let g : ¶0, 1♢
k

× ¶0, 1♢
k

→ ¶0, 1♢ be the

function deĄned as

g(x, y) = Tr(a0 · ϕ(x) · ϕ(y) + a1 · ϕ(x) + a2 · ϕ(y) + a3).

Then g is an affine extractor for dimension k + c with bias at most 2−c. In particular, g is

an affine disperser for dimension k + 1.

Intuitively, the functions Tr(x · y) and IP(x, y) behave similarly: the Fourier transform of

functions with domain F2n is sometimes deĄned in terms of the trace map. Here we prove the

statement directly using the usual deĄnition of the Fourier transform for Boolean functions.
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Proof. Let g± be the ±1 representation of g. By Lemma 13, it is enough to prove that

all Fourier coefficients of g± have the same absolute value. Recall that given α ∈ ¶0, 1♢
2k

the α-character χα is deĄned as χα(x, y) = (−1)
α·(x,y)

, where α · (x, y) is the inner product.

Fourier coefficient ĝ±(α) can be computed as follows.

ĝ±(α) =
∑

x,y∈¶0,1♢k

g±(x, y) · χα(x, y) =
∑

x,y∈¶0,1♢k

(−1)
Tr(a0·x·y+a1·x+a2·y+a3)

· χα(x, y).

Split α into two equal parts: α = (α1, α2). Then α·(x, y) = α1 ·x+α2 ·y. By Proposition 6,

there exist µ1, µ2 ∈ F2k such that α1 · x = Tr(µ1 · x) and α2 · y = Tr(µ2 · y). Also deĄne

b1 := a−1
0 · (a1 + µ1),

b2 := a−1
0 · (a2 + µ2),

b3 := a3 + a−1
0 · (a1 + µ1) · (a2 + µ2).

Then we can express ĝ±(α) in terms of bi:

ĝ±(α) =
∑

x,y∈¶0,1♢k

(−1)
Tr(a0·x·y+a1·x+a2·y+a3)

· (−1)
Tr(µ1·x)+Tr(µ2·y)

=
∑

x,y∈¶0,1♢k

(−1)
Tr(a0·x·y+a1·x+a2·y+a3+µ1·x+µ2·y)

=
∑

x,y∈¶0,1♢k

(−1)
Tr(a0·(x+b2)·(y+b1)+b3)

= (−1)
Tr(b3)

·
∑

x,y∈¶0,1♢k

(−1)
Tr(a0·(x+b2)·(y+b1))

.

Since x and y iterate through all vectors from ¶0, 1♢
k
, a0 · (x + b2) and y + b1 take all

possible values from F2k . It follows that

ĝ±(α) = (−1)
Tr(b3)

ĝ±(0). ◀

We are now ready to present our directional affine extractor.

▶ Theorem 15. Let f : ¶0, 1♢
k

× ¶0, 1♢
k

× ¶0, 1♢
k

→ ¶0, 1♢ be the function deĄned by

f(x, y, z) = Tr(ϕ(x) · ϕ(y) · ϕ(z)).

Then f is a directional affine extractor for dimension 2k + c with bias ϵ ≤ 2−c. In particular,

f is a directional affine disperser for dimension 2k + 1.

Proof. Consider the directional derivative of f in the non-zero direction a = (a1, a2, a3):

Daf(x, y, z) = f(x + a1, y + a2, z + a3) + f(x, y, z)

= Tr(ϕ(x + a1) · ϕ(y + a2) · ϕ(z + a3)) + Tr(x · y · z).

By linearity of Tr and ϕ we have

Daf(x, y, z) = Tr((x + a1) · (y + a2) · (z + a3) + x · y · z)

= Tr(a1 · y · z + a2 · x · z + a3 · x · y + ℓ(x, y, z)),

where ℓ is an affine function.
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Without loss of generality we may assume that a3 ≠ 0. Let S be an affine subspace with

dimension at least 2k + c. We need to show that the bias of f restricted to S is at most ϵ.

Given z0 ∈ ¶0, 1♢
k

deĄne Sz0
:= ¶(x, y) : (x, y, z0) ∈ S♢. For every z0 the affine subspace Sz0

is either empty or has dimension at least k + c. Consider the restriction of Daf to z = z0.

hz0
(x, y) := Daf(x, y, z0) = Tr(a3 · x · y + ℓ′

z0
(x, y)),

where ℓ′
z0

is an affine function. By Lemma 14, hz0
is an affine extractor for dimension k + c

with bias ϵ ≤ 2−c. In particular, if Sz0
is non-empty, then bias(hz0

♣Sz0

) ≤ ϵ.

Thus, the bias of Daf restricted to S can easily be bounded as follows:

bias(Daf ♣S) =

∣∣∣∣∣∣
1

♣S♣

∑

(x,y,z)∈S

(−1)
Daf(x,y,z)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

♣S♣

∑

z0∈¶0,1♢n

∑

(x,y,z0)∈S

(−1)
Daf(x,y,z0)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

♣S♣

∑

z0∈¶0,1♢n

∑

(x,y)∈Sz0

(−1)
hz0

(x,y)

∣∣∣∣∣∣

≤
1

♣S♣

∑

z0∈¶0,1♢n

∣∣∣∣∣∣
∑

(x,y)∈Sz0

(−1)
hz0

(x,y)

∣∣∣∣∣∣

≤
1

♣S♣

∑

z0∈¶0,1♢n

ϵ · ♣Sz0
♣ = ϵ. ◀

5 Average-case lower bound

We consider a canonical form of strongly read-once linear branching programs. We adopt

the terminology of [6] and say that a read-once linear branching program is full if for every

inner node v of the program, all the paths leading to v have the same query space.

A multipath (w1, . . . , wm, v) is a linear branching program of the form

w1 w2 · · · wm v

That is, the program ignores the answers to the queries at wi for every i. Given a program

P, we say that a subset of nodes is an antichain if none of its nodes is a descendant of another.

For example, the set of nodes at a Ąxed depth and the set of leaves form an antichain. The

following lemma and its proof are easy extensions of Lemma 3.7 in [6].

▶ Lemma 16. Every weakly read-once or strongly read-once linear branching program P

of size s in n variables has an equivalent full weakly read-once or strongly read-once linear

branching program P ′, respectively, of size at most 3n · s. Furthermore, the size of every

antichain in P ′ is at most 2s.

Proof. We construct P ′ inductively. Consider the nodes of P in topological order. It is clear

that the start node satisĄes the fullness property. Let v be a node of P and p1, . . . , pk the

paths that meet at v, and V1 + a1, . . . , Vk + ak their canonical affine subspaces. For every

i ∈ [k] choose a set of linearly independent queries Qi such that Vi
⊥ + span(Qi) = Pre(v).
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For every i ∈ [k] do the following. Let Qi = ¶q1, . . . , qm♢. Replace the edge ui → v with

a multipath (w1, . . . , wm, v) and an edge ui → w1, where wi are labeled with qi. After this

transformation, every path to v will have the query space Pre(v).

Since a branching program of size s has at most 2s edges and we replaced every edge with

a multipath of length at most n, the size of the constructed full read-once linear branching

program P ′ is at most s + 2s · n ≤ 3n · s.

Consider an antichain A in P ′. We map every node in A to nodes in P. Each node in A

is either originally in P or it was created by a multipath. In the former case we map it to

itself, and in the latter case we map it to the parent node from which it was created. Since

the out-degree in P is 2 and A is an antichain, at most 2 nodes are mapped to the same

node. This proves the result. ◀

Denote by dist(f, g) the relative distance between Boolean function f and g.

▶ Theorem 17. Let f : ¶0, 1♢
n

→ ¶0, 1♢ be a directional affine extractor for dimension d

with bias ϵ < 1
2 . Then for every g : ¶0, 1♢

n
→ ¶0, 1♢ computed by a strongly read-once linear

branching program P of size at most ϵ · 2n−d−1, it holds that dist(f, g) ≥ 1−
√

2ϵ
2 .

Proof. Let s denote the size of P. We Ąrst convert P into a full program. By Lemma 16,

the size of every antichain is at most 2s. We then construct an equivalent program P ′ in

which every path has length at least n − d. We can achieve this by extending every leaf of

low depth by a multipath of an appropriate length.

Consider the set A of nodes in P ′ at depth exactly n − d. Note that every v ∈ A is either

a node at depth n − d in P, or it is uniquely deĄned by a leaf of P by a multipath. Thus A

is identiĄed by an antichain in P and thus ♣A♣ ≤ 2s.

We call an input x wrong if f(x) ̸= g(x). The distance dist(f, g) between f and g is the

fraction of wrong inputs.

▷ Claim 18. Let v ∈ A and k the numbers of paths that meet at v. Then the number of

wrong inputs that pass through v is at least

k · 2d

2


1 −

√
ϵ +

1

k


.

Proof. Since the program is full, the corresponding canonical affine subspaces for the paths

that meet at v are V + a1, . . . , V + ak, for some d-dimensional vector space V , and distinct

a1, . . . , ak ∈ ¶0, 1♢
n
. Recall that f is a directional affine extractor with bias ϵ. Then for

every i ̸= j, it holds that Dai+aj
f = f(x + (ai + aj)) + f(x) is an affine extractor with bias

ϵ, thus

∣∣∣∣∣
∑

x∈V

(−1)
f(x+ai)

· (−1)
f(x+aj)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈V +aj

(−1)
f(x+ai+aj)+f(x)

∣∣∣∣∣∣

= bias


Dai+aj
f
∣∣
V +aj


· ♣V ♣ ≤ ϵ♣V ♣.

(1)

Every x ∈ V produces a partition of [k] into two parts (J, [k] \ J) such that f(x + ai) = 0

for i ∈ J and f(x + ai) = 1 for i ̸∈ J . Let mx be the size of the smallest part. By deĄnition

of canonical affine subspace and the choice of ai, for any linear query q ∈ Post(v) we have

q(ai) = 0 for all i ∈ [k]. Then x + a1, . . . , x + ak will follow the same path in the subprogram
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starting at v. Hence, for every x ∈ V it holds that f(x + a1) = · · · = f(x + ak). It implies

that at least mx inputs of the form x + ai are wrong and the total number of wrong inputs

passing through v is at least

m :=
∑

x∈V

mx.

Now consider the following sum

E :=
∑

x∈V
1≤i<j≤k

♣f(x + ai) − f(x + aj)♣.

We apply double counting to this quantity to obtain the result. On the one hand, by

deĄnitions of mx and m, we have

E =
∑

x∈V

mx · (k − mx) = km −
∑

x∈V

m2
x.

By the CauchyŰSchwarz inequality,
∑

x∈V m2
x ≥

(∑
x∈V mx

)2
/♣V ♣ = m2/♣V ♣. Thus,

E ≤ km − m2/♣V ♣. (2)

On the other hand, E can be rewritten as follows.

E =
∑

x∈V
1≤i<j≤k

1

4


(−1)

f(x+ai)
− (−1)

f(x+aj)
2

=
1

4

∑

1≤i<j≤k


2♣V ♣ − 2

∑

x∈V

(−1)
f(x+ai)

· (−1)
f(x+aj)


.

Applying (1), we obtain the following lower bound on E.

E ≥
1

2


k

2


♣V ♣(1 − ϵ). (3)

Combining (2) and (3), we get

km − m2/♣V ♣ ≥
1

2


k

2


♣V ♣(1 − ϵ).

This can be written as


m −

k♣V ♣

2

2

≤
1

4
k2♣V ♣

2
−

1 − ϵ

2


k

2


♣V ♣

2

=
k2♣V ♣

2

4


1 − (1 − ϵ)


1 −

1

k



≤
k2♣V ♣

2

4


ϵ +

1

k


.

Thus,

m ≥
k♣V ♣

2


1 −

√
ϵ +

1

k


=

k · 2d

2


1 −

√
ϵ +

1

k


. ◁
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Let k(v) denote the number of paths that meet at v and deĄne w(k) as

w(k) :=
k2d

2


1 −

√
ϵ +

1

k


.

Then by Claim 18 the total number of bad inputs that pass through A is at least

∑

v∈A

w(k(v)) =
∑

v∈A

k(v)2d

2


1 −

√
ϵ +

1

k(v)


.

Since all paths in P ′ has length at least n − d,
∑

v∈A k(v) = 2n−d.

The function w is convex, hence by JensenŠs inequality, the total number of bad inputs

passing through A is at least

∑

v∈A

w(k(v)) ≥ ♣A♣ · w

∑
v∈A k(v)

♣A♣


=

1

2
2n


1 −

√
ϵ +

♣A♣

2n−d


.

Since ♣A♣ ≤ 2s ≤ ϵ2n−d, this expression is at least 1−
√

2ϵ
2 2n. ◀

Plugging in the function of Theorem 15 we get the following corollary.

▶ Corollary 19. Let f : ¶0, 1♢
n
3 × ¶0, 1♢

n
3 × ¶0, 1♢

n
3 → ¶0, 1♢ be deĄned by f(x, y, z) =

Tr(ϕ(x) · ϕ(y) · ϕ(z)). Then for every g : ¶0, 1♢
n

→ ¶0, 1♢ computed by a strongly read-once

linear BP of size at most 2
n
3

−o(n), dist(f, g) ≥ 1
2 − 2−o(n).

6 Weakly read-once BPs and Res[⊕]

In this section we prove an analogue of the correspondence between read-once BPs and

regular resolution for Res[⊕] and weakly read-once BPs. The Ąrst part of the proof is an

extension of a standard argument; the second part, while also easy, is more subtle.

▶ Theorem 20.

1. Every Res[⊕] refutation of an unsatisĄable CNF F can be translated into a linear BP

solving the corresponding search problem without increasing its size. If the refutation is

regular, then the resulting program is weakly read-once.

2. Every weakly read-once BP of size s solving the search problem for CNF F = C1 ∧ . . .∧Cm

in n variables can be translated into a regular Res[⊕] refutation of F of size O(ns).

Proof.

1. Consider an application of the resolution rule in the proof DAG G. Suppose that it

is applied to clauses C0 ∨ (f = 0) and C1 ∨ (f = 1). Then we label the outgoing edges

with f = 1 and f = 0 respectively. We leave the edges corresponding to the weakening rule

unlabeled.

Let u be a vertex in G and Cu the clause it is labeled with. It can be shown by induction on

the depth of u that for every path to u, the linear system obtained from the equations written

on the edges on this path implies ¬Cu. The source contains the empty clause, hence the base

case holds. For the inductive step, consider any path leading to u and let v be the parent of

u on this path. Consider the case when v corresponds to an application of the resolution rule

and w be its other child. Let C0 ∨ (f = b), C1 ∨ (f = b + 1), and C0 ∨ C1 be the labels of u,

w, and v respectively, where b ∈ ¶0, 1♢. By the induction hypothesis, every path to v implies
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¬(C0 ∨ C1). In particular, it implies ¬C0. By construction, the edge (v, u) is labeled with

f = b + 1. Then every path to u going through v implies ¬C0 ∧ (f = b + 1) = ¬(C0 ∨ (f = b)).

Now consider the case when u corresponds to an application of the weakening rule and let v

be it parent on this path. Let C and D be the labels of u and v. Every path to v implies ¬D

by the induction hypothesis and ¬D ⊨ ¬C. Thus, every path to u through v implies ¬C.

In particular, every path to the sinks of G falsiĄes some clause of F . To obtain a linear

BP, we remove labels at the inner nodes and contract all unlabeled edges. If the refutation is

regular, the resulting linear BP is indeed read-once since we did not essentially change the

structure of the underlying DAG.

2. A linear clause C =
∨k

i=1(fi = ai) can be viewed as a negation of a linear system

¬C =
∧k

i=1(fi = ai + 1). We Ąrst convert P into a full BP of size O(ns) using Lemma 16.

Inductively, to every node v we associate a linear clause Cv such that:

1. Every assignment reaching v falsiĄes Cv.

2. If ¬Cv represents a linear system Bx = b, then the row space of B is Pre(v).

For the base case, with each leaf v we associate the clause Cv it is labeled with. The Ąrst

condition holds since P solves the search problem. To see the second property, note that any

path reaching v can be expressed as a linear system on a basis for Pre(v) which forces every

literal in Cv. This implies that single variables in Cv are in Pre(v).

For the inductive step, consider a node v, which queries q with outgoing neighbors u

and w, in the directions q = 0 and q = 1 respectively. Observe that ¬Cu ̸♣= q(x) = 1 and

¬Cw ̸♣= q(x) = 0. Thus, there are only two cases to consider:

1. ¬Cu ̸♣= q(x) = 0 or ¬Cw ̸♣= q(x) = 1,

2. ¬Cu ♣= q(x) = 0 and ¬Cw ♣= q(x) = 1.

In the Ąrst case, we simply let Cv be Cu or Cw, depending on which condition holds.

For the second case, let B = ¶β1, . . . , βt♢ be a basis of Pre(v). Fullness implies Pre(u) =

Pre(w) = Pre(v) + span(q). Applying the inductive hypothesis, we can write ¬Cu = (q(x) =

0) ∧ (Bux = bu) and ¬Cw = (q(x) = 1) ∧ (Bwx = bw), where Bu and Bw are matrices with

rows in β1, . . . , βt and bu and bw are some vectors. To write Cu and Cw in these forms,

we might need to change the basis, which we can do by applying the weakening rule. We

claim that setting Cv so that ¬Cv can be written as Bux = bu ∧ Bwx = bw satisĄes the

requirements.

Consider any path to v. Such a path can be described by a system Rx = b where rows

in R are from B. Since every such path can be extended to both u and w, it follows that

Bux = bu ⊨ Rx = b and Bwx = bw ⊨ Rx = b. This means that Bux = bu ∧ Bwx = bw is

consistent and thus the derivation of Cv from Cu and Cw (possibly changing the basis) is a

valid Res[⊕] step. It is easy to see that conditions 1 and 2 hold for Cv.

Since for every v we create at most 2 extra clauses, the total size of the proof is at most

O(ns). ◀

Note that we can also deĄne a Şstrongly regularŤ variant of Res[⊕] that would be equivalent

to strongly read-once programs. Since we have obtained average case lower bounds on strongly

read-once BPs, it is plausible that it might be easier to prove lower bounds for this restriction

of Res[⊕].
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7 Conclusion

Several problems are immediately suggested by our work:

Explicit constructions. Give an explicit construction of directional affine extractors (or

dispersers) for smaller dimension d, ideally d = o(n).

BP lower bounds. Prove worst-case and average-case hardness results for the weakly

read-once BPs.

Proof complexity. Prove a read-once linear BP lower bound for a search problem, that is

for some unsatisĄable CNF F = C1 ∧ . . . ∧ Cm, show that a read-once linear BP with

leaves labeled by Cis solving the corresponding search problem has to be large.
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