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Abstract—Identifying and utilising various biomarkers for
tracking Alzheimer’s disease (AD) progression have received
many recent attentions and enable helping clinicians make
the prompt decisions. Traditional progression models focus
on extracting morphological biomarkers in regions of interest
(ROIs) from MRI/PET images, such as regional average cortical
thickness and regional volume. They are effective but ignore
the relationships between brain ROIs over time, which would
lead to synergistic deterioration. For exploring the synergistic
deteriorating relationship between these biomarkers, in this
paper, we propose a novel spatio-temporal similarity measure
based multi-task learning approach for effectively predicting AD
progression and sensitively capturing the critical relationships
between biomarkers. Specifically, we firstly define a temporal
measure for estimating the magnitude and velocity of biomarker
change over time, which indicate a changing trend(temporal).
Converting this trend into the vector, we then compare this
variability between biomarkers in a unified vector space(spatial).
The experimental results show that compared with directly
ROI based feature learning, our proposed method is more
effective in predicting disease progression. Our method also
enables performing longitudinal stability selection to identify the
changing relationships between biomarkers, which play a key role
in disease progression. We prove that the synergistic deteriorating
biomarkers between cortical volumes or surface areas have a
significant effect on the cognitive prediction.

Index Terms—Alzheimer’s disease, brain biomarker correla-
tion, cosine similarity, multi-task learning

I. INTRODUCTION

Alzheimer’s disease (AD) is a serious neurodegenerative

disease, which is characterized by memory loss and cognitive

decline due to the progressive damage of neurons and their

connections, which directly leads to death [1]. According

to World Health Organization (WHO), it is estimated that

there are globally 47.5 million people with dementia in 2016

with 7.7 million new cases every year. Previous research has

focused on using biomarkers combined with machine learning

algorithms to predict patients’ Mini Mental State Examination

(MMSE) and Alzheimer’s Disease Assessment Scale cognitive

subscale (ADAS-Cog) scores as the target data to predict

whether a patient is an AD patient and find the weight of each

biomarker feature at different prediction time points, existing

AD disease progression models mainly use machine learning

regression algorithms [2], survival models based on statistical

probabilities [3], [4], and deep learning methods based on neu-

ral networks [5]–[7]. The above-mentioned research focuses

on using the data obtained by the patient during the first test

(baseline data) to make predictions, which is a method that

uses a small number of input features to make predictions.

The disadvantage is that it ignores the information contained

in the biomarkers in the process of changing over time.

Some previous studies in brain science have studied the

differences in the correlation between brain biomarkers for

AD, cognitively normal older individuals (NL) and mild cog-

nitive impairment (MCI). [8] proposed a deformation-based

framework to jointly model the effects of aging and AD on

the evolution of brain morphology, confirming the existence of

components that significantly accelerate aging in AD patients,

while highlighting the Specific morphological changes can

help identify clinical conditions, even in the prodromal phase.

[9] evaluated the correlation of MRI and CSF biomarkers with

clinical diagnosis and cognitive performance in subjects with

NL and aMCI (amnestic mild cognitive impairment) and AD

patients. It is concluded that MRI provides stronger cross-

sectional grouping and recognition ability and has better corre-

lation with general cognitive and functional status on the cross-

section, and although MRI and CSF provide complementary

information, MRI better reflected the clinically determined

disease stage than CSF biomarkers. Some previous studies
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Fig. 1. The workflow of proposed MTL approach using spatio-temporal measure.

focused on the similarity between biomarkers form ROIs,

[10] employed the correlation of regional average cortical

thickness and multi-kernel support vector machine to integrate

relevant information with ROI-based information to improve

the classification performance. However, the above-mentioned

researches only focused on the use of a single biomarker or the

same type of biomarkers and did not focus on the relationships

of temporal and spatial changes between different types of

biomarkers.

To address the above challenges and uncover the critical

relationships between biomarkers, we propose to utilise the

temporal and spatial information of brain changes to model

the disease process of AD. Additionally, to reinforce tem-

poral relationships between follow-up time points, a multi-

task learning method [11] based on temporal smoothness is

introduced for interpretably modelling disease progression.

In this paper, we propose to utilise the spatio-temporal simi-

larity between biomarkers changes to predict clinical scores of

patients. Specifically, we firstly define a temporal measure for

estimating the magnitude and velocity of biomarker change

over time, which indicate a changing trend(Fig.1:temporal

feature mapping). Converting this trend into the vector, we

then compare this variability between biomarkers in a unified

vector space(Fig.1:spatial feature mapping). The computation

of spatial similarity results in an increase in data dimension

by an order of magnitude of square. Faced with the scarcity

of samples and a large number of feature dimensions, we

introduce multiple loss terms with L1 [12] and its variant norm

[11] to overcome the Curse of dimensionality and interpretably

capture the key relationships. The contributions of this work

are summarized as follows:

• A novel spatio-temporal similarity measure approach is

proposed of analysing and extracting reliable features

from MRI. This similarity measure will effectively quan-

tify the synergistic deterioration between these biomark-

ers over time;

• A multi-task feature learning algorithm with spatio-

temporal embedding is designed for effectively predicting

AD progression, visualising brain biomarkers related to

this progression;

• A comprehensive experimental analysis is carried out by

accessing impact of AD progression on brain function

synergistic deteriorating biomarkers.

II. RELATED WORK

In traditional machine learning paradigm, an accurate

learner is usually treated as one single learning task (e.g.,

classification, regression) and learnt by a large number of train-

ing samples. For instance, deep learning model [5], [13] can

train an accurate AD prediction model of neural network with

hundreds of layers contacting a great amount of parameters via

massive labelled biomarkers at baseline from ADNI. But one

key challenge here is that sufficient and well-labelled longitu-

dinal AD data at multiple time points are hardly collected from

AD patients. The problem of missing, sparse and insufficient

data strongly impacts on learning a fine model. Differing

with traditional ML approaches, Multi-Task Learning (MTL)

[14] considers the prediction of AD progression as multiple

learning tasks each of which can be a general prediction task

art certain time point. Among these prediction tasks, all of

them are assumed to be related to each other in time domain

with relevant temporal features (e.g., biomarkers in MRI). We

demonstrate a typical pipeline of leveraging MTL algorithms

for predicting cognitive functionality of AD patients from their



brain imaging scans [15], where the predictive information

is shared and transferred among related models to reinforce

their generalization performance. The data sources employed

are Freesufer (Extracted features from MRI like Volume of

Hippocampus) and cognitive functional scores (AD cognitive

scores like MMSE [16] or ADAS-cog [17]) from selected AD

patients repeatedly by multiple time points. By considering

the prediction of cognitive scores at a single time point (like

6, 12 or 18 months) as a regression task. The prediction

of clinical scores at multiple future time points as a multi-

task regression problem. MTL model matrix is trained and

optimized through processing pre-extracted features from MRI

and baseline cognitive scores.

Two important issues affect the progress of applying MTL

in AD modelling problems. First, it is important to obtain

good quality of baselines from AD raw data, where Magnetic

resonance imaging (MRI) reflects changes in brain structure,

such as the cerebral cortex and ventricle; cognitive score

directly shows cognitive functions of AD patients. Sparse

representation [18] is a popular method in MTL for cap-

turing key biomarkers in AD, which uses sparseness as a

regularization condition, image blocks with key characteris-

tics. Cognitive measure can be achieved by using worldwide

standard AD cognitive assessment, such as Mini Mental State

Exam score (MMSE) [16], Alzheimer’s Disease Assessment

Scale cognitive total score (ADAS-cog) [17] and Rey Auditory

Verbal Learning Test (RAVLT) [19], [20]. As the second

issue, utilizing and improving advanced regression models

[21] in MTL are highly critical, where they could better

explore the relationship and correlations between MRI features

and cognitive measures. Here, structural regularization [11]

is a common approach in MTL for minimize the penalized

empirical loss and bundling the correlations between tasks

in the assumption. In the field of MTL in AD, there are

many prior work that model relationships among tasks using

novel regularizations [22], [23]. The addition of kernel method

problems allows the algorithm to fit non-linear relationships

[24]. The benchmark of this paradigm is derived from [25]

and subsequent achievements are mostly aimed at theoretical

structure, relevance, and fusing the multi-modality data ap-

plications. So far to our best knowledge, above regularized

MTL approaches deliver promising performance in many AD

prediction applications.

III. PROPOSED APPROACH

A. Spatio-temporal change similarity calculation of MRI

biomarkers

Two consecutive MRI scans are used to calculate the

temporal and spatial changes of brain biomarkers. For instance,

we utilise BL and M06 MRI to calculate the magnitude and

velocity for biomarkers, let x be the detection value of brain

biomarkers and t be the MRI test dates, the magnitude is
xM06−xBL

xBL

, the velocity is xM06−xBL

tM06−tBL

per month. Use the

magnitude and velocity to compose a vector that represents

the changing trend of the brain biomarker.

Cosine similarity is used to calculate the similarity between

two vectors to express the similarity of the temporal and

spatial changes of two MRI biomarkers. Cosine similarity

uses the cosine value of the angle between two vectors in

the vector space as a measure of the difference between two

individuals. As the values of different types of biomarkers are

different in MRI dataset, while the cosine similarity measures

the difference in trend rather than the value. The temporal

and spatial relationships of brain biomarkers of AD, NL and

MCI displayed by Cosine similarity, Euclidean distance and

Mahalanobis distance. Compared with Mahalanobis distance,

the difference in the distribution of Cosine similarity is greater

between AD, NL, and MCI.

B. Regression model via structural regularization

Regression analysis has been widely used in statistical,

medical and industrial applications. It is a mathematical and

statistical analysis of dependent influences (independent vari-

ables) and predictors (dependent variables). Its strength lies

in its strong interpretation. By fitting the data, the parameter

values corresponding to the independent variable indicate its

effect on the dependent variable.

Considering the problem of prediction as a linear model.

In order to obtain models with generalizability, loss functions

with empirical structural loss risk minimization L(Y,X,W )
and the regularization.

The regularization term is considered as the addition of a

prior, and common paradigms are Ridge regression and Lasso,

which respectively add the L2 and L1 norm. Statistical theory

can prove that Ridge regression specifies a prior that the model

obeys a Gaussian distribution and Lasso specifies a prior that

the model obeys a Laplace distribution. This regularization

term can be expressed as:

min
w

L(Y,X,W ) + λ||W ||1 (1)

min
w

L(Y,X,W ) + λ||W ||2 (2)

Ridge regression constrains variables to a smaller range for re-

ducing some factors with little impacts on model’s prediction.

Unfortunately, this reduction means that these variables are

still considered. To solve this problem, Lasso was proposed

as a new sparse representation linear algorithm, which si-

multaneously performs feature selection and regression. Some

variables are set to zero directly to achieve sparsity and

dimensionality reduction.

C. Experiment protocol

Firstly, we verified that MTFL is superior in following AD

progression and combined with randomization techniques to

locate stable and sensitive cortical biomarkers identified by

MTEN. Our empirical protocol design is based on a pipeline

shown in Fig.1. The complete experimental process mainly

includes 7 steps:

1) Original feature extraction, which performed the opera-

tion of transform the MRI to structural data that machine

learning algorithm can be recognized.



2) Spatial feature mapping, which enumerates all possible

associations expressed synergistically between ROIs.

3) Spatial feature mapping, which considers the variations

of spatial associations from time t to time t+1(or t+n).

4) feature selection. Through this stage, the dimensionality

of the features is greatly reduced, and the core informa-

tion is retained to the greatest extent possible. Noting

the cognitive scores at baseline period were used to

complete feature selection.

5) Utilising the MTL algorithm to fit data.

6) Using trained models to predict cognitive scores.

7) Embedding MTL methods in the general stability se-

lection to excavate stability collaborative biomarkers of

ROIs in AD progression.

Secondly, the evaluation metric of cross-validation is em-

ployed to evaluate the performance of AD progression model.

When a metric is set in the cross-validation experiment pro-

cess, a set of hyper-parameters can be obtained. By comparing

the pros and cons of the results, the suitable metric for

the model is finally determined. The regression performance

metric often employed in MTL is normalized mean square

error (nMSE) and root mean square error (rMSE) is employed

to measure the performance of each specific regression task.

In particular, nMSE has been normalized to each task before

evaluation, so it is widely used in MTL methods based on

regression tasks. Also, weighted correlation coefficient (wR) as

employed in the medical literature addressing AD progression

problems [25]–[27]. nMSE, rMSE and wR are defined as

follows:

nMSE(Y, Ŷ ) =

∑t

i=1

∥

∥

∥
Yi−, Ŷi

∥

∥

∥

2

2
/σ (Yi)

∑t

i=1 ni

(3)

rMSE(y, ŷ) =

√

∥y − ŷ∥22
n

(4)

wR(Y, Ŷ ) =

∑t

i=1 Corr
(

Yi, Ŷi

)

ni

∑t

i=1 ni

(5)

Finally, as for repeated experimental times, one evaluation

consensus in MTL models for AD study is that one experiment

result is usually accidental and unreliable. To reduce experi-

ment accidental errors, repeated experiments are required. So,

we evaluate the performance of four selected regularized MTL

models under different repeated experimental times and lastly

evaluate typical factors like data size and number of tasks

affecting MTL models.

D. Multi-task learning

Consider a multi-task learning of k tasks with n training

samples of d features. Let x1, x2, ..., xnbe the input data for

the samples, and y1, y2, ..., ynbe the predicted value for each

sample, where each xi ∈ R
d represents the feature data of an

AD patient, and yi ∈ R is the predicted value of cognitive

score of different types of scales. Specifically, xj
i = [m, v]

denotes spatio-temporal ROIs similarity on the jth feature of

the ith sample, m, v represent the magnitude and velocity of

two specific biomarkers (jth and (j+ k)th; j, (j+ k) ∈ (0, d])
over time separately.

Then, let X = [x1, ..., xn]
T ∈ R

n×d be the data matrix,

Y = [y1, ..., yn]
T ∈ R

n×k be the predicted matrix, and W =
[w1, ..., wk]

T ∈ R
d×k be the weight matrix. The process of

establishing a MTL model is to estimate the value of W, which

is the parameter to be estimated from the training samples.

In order to solve above problem, many prior works in MTL

that model relationships among tasks using regularization

methods. Normally, they assume the empirical loss to be

square loss and common regularization terms are L1 and

L2 norms, separately named as Lasso regression and ridge

regression models as shown in Eq. 6 and 7. Ridge regression

constrains variables to a smaller range for reducing some

factors with little impacts on model’s prediction. Unfortu-

nately, this reduction means that these variables are still con-

sidered. To solve this problem, Lasso was proposed as a new

sparse representation linear algorithm, which simultaneously

performs feature selection and regression. Some variables are

set to zero directly to achieve sparsity and dimensionality

reduction.

min
w

L(Y,X,W ) + λ||W ||1 (6)

min
w

L(Y,X,W ) + λ||W ||2 (7)

In AD study, the task of predicting AD patient’s cognitive

score at certain time point is strongly associated with other

tasks at adjacent time points. Thus, many recent studies have

focused on designing novel structural regularization methods

to improve their performance in AD study.

In this paper, we concentrate on two AD progression

prediction models : Temporal Group Lasso (TGL) [15] and

Convex Fused Sparse Group Lasso (cFSGL) [28]. Specifically,

TGL contains a time smoothing term and a group Lasso term

as constraints, which ensures that all regression models at

different time points share a common set of features. The TGL

formulation solves the following convex optimization problem:

min
w

||XW −Y ||2F + θ1||W ||2F + θ2||WH||2F + δ||W ||2,1 (8)

where the first term measures the empirical error on the

training data, ||W ||F is the Frobenius norm, ||WH||2F is the

temporal smoothness term, which ensures a small deviation

between two regression models at successive time points, and

||W ||2,1 is the group lasso penalty, which ensures that a small

subset of features will be selected for the regression models

at all-time points.

cFSGL involves sparsity between tasks, where it considers

both common features at different points in time and unique

features to each task. This feature is helpful to improve the

overall performance of the model. cFSGL formulation solves

the following convex optimization problem:

min
w

||XW −Y ||2F + θ1||W ||1+ θ2||RWT ||1+ δ||W ||2,1 (9)

where the first term measures the empirical error on the

training data, ||W ||1 is the lasso penalty, ||RWT ||1 is the fused

lasso penalty, and ||W ||2,1 is the group lasso penalty.



Lasso and group lasso combined employ is called sparse

group lasso, which allows simultaneous selection of a common

feature for all time points and internally generates sparse

solutions in response to different time points. Fused lasso

penalty having a given temporal smoothness, which makes

selected features at nearby time points similar to each other.

In addition, notice that cFSGL’s formula involves three non-

smooth terms. Accelerated gradient descent method is utilised

to solve this problem.

E. Stability Selection via structural MTL

In order to improve the interpretability and robustness of

the results, stability selection was modified to meet our actual

needs. The original strategy of feature selection was included

a Lasso algorithm as core feature subsets searches approaches.

In this paper, MTL algorithms were utilised to embedded in

stability selection.

Let F be the overall set of features and let f ∈ F be the

subset of features by sub-sampling. Let γ denote the iteration

number of sub-sampling and Di = {X(i), Y (i)} denote one

random sub-sample operation of number i ∈ (0, γ]. Each

operation size account for ⌞
n
2 ⌟. Let Λ be the regularization

parameter space. For a λ ∈ Λ, let Ŵ (i) denote the model

coefficient of MTFL that fitted on a subset of D(i). Then, the

subset of features generated in task j by the sparse constraints

of the MTFL algorithm can be denote as:

Sλ
j

(

D(i)

)

=
{

f : Ŵ
(i)
j ̸= 0

}

. (10)

With stability selection, we do not simply select one model in

the parameter space λ. Instead the data are perturbed (e.g. by

sub-sampling) γ times at task j and we choose all structures or

variables that occur in a large fraction of the resulting selection

sets:

π̂λ
j =

∑γ

i=1 I
(

f ∈ Sλ
j (Dij)

)

γ
. (11)

Where indicator function I(•) denote I(x) =

{

1, x = 0

0, others

and π̂λ
j ∈ [0, 1] denote the stability probability of task j

at MTFL approaches which feature selection is not based

on individual operations but on multiple task collaboration

constraints.

Repeat the above procedure for all λ ∈ Λ, we obtain the

stability score Sj(f) for each feature f at task j:

Sj(f) = max
λ∈Λ

(

π̂λ
j

)

. (12)

Finally, for a cut-off πth with 0 < πth < 1 and a set

of regularization parameters Λ, the set of stable variables is

defined as:

Ŝstable = {k : Sj(f) ≥ πth} =

{

k : max
λ∈Λ

(

π̂λ
j

)

≥ πth

}

.

(13)

The embedded multi-task approach ensures that the selected

features have the following properties:1) Stability. A cortical

region of the brain that is closely related to the subject’s

TABLE I
SCREENING SUBJECTS

Time Span Scanning Subjects MMSE Baseline Subjects

Baseline to M06 700 429 408
Baseline to M12 670 429 402
Baseline to M24 533 429 373
Baseline to M36 337 429 327

disease progression. 2) Global significance. MTL makes sure

that the selected features are important for each task. One

technique that arises here is to pick the coefficient value for

one of the tasks when doing statistics on the stability of the

selected features at equation 9.

IV. EXPERIMENTAL SETTINGS

A. Subjects

Data used in the preparation of this article were ob-

tained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI). The primary goal of ADNI has been to test whether

serial MRI, PET, other biological markers, and clinical and

neuropsychological assessment can be combined to measure

the progression of MCI and early Alzheimer’s disease (AD).

To track the effectiveness of disease progression models,

ADNI-1 dataset is explored that contains longitudinal multi-

center study designed to develop clinical, imaging, genetic,

and biochemical biomarkers for the early detection and track-

ing of AD. As shown in the Table I. Subjects are between

55–90 years of age, the male accounts for 52.18%, the degree

of suffering from the dementia, the data ratio of AD, MCI and

NL are 25%, 50% and 25% respectively.

To explore the impact of the correlation between ROIs on

progression with AD, MRI data from two follow-up points in

the longitudinal cohort were extracted to facilitate observation

of this spatiotemporal variation. At the same time, the cogni-

tive scores (like MMSE or ADAS-cog) of longitudinal cohorts

are employed to estimate the patients’ cognitive functional

decline during the AD progression. During the screening

period, all the subject must satisfy the data integrity for

verifying the reliable result. In other words, the cohort subjects

must complete participation in two follow-up point MRI scans

and multiple cognitive scoring assessments. In addition, the

enrolled participates went through a rigorous selection process.

In this paper, only ADNI-1 subjects with all corresponding

MRI and cognitive scores are evaluated.

B. Data pre-processing

For guarantees high image quality and reliable data han-

dling, the MR images used in the paper were derived from

standardized datasets, which provide the intensity normalized

and gradient unwrapped TI image volumes. Subsequently, the

FreeSurfer [29] was performed to feature extraction of the

MR, which execute cortical reconstruction and volumetric

segmentations for processing and analysing brain MR images.

For each MRI, cortical regions and subcortical regions are

generated after this pre-processing suite. For each cortical



region, the cortical thickness average, standard deviation of

thickness, surface area, and cortical volume were calculated as

features. For each subcortical region, subcortical volume was

calculated as feature. Data cleaning operations are performed

as the following steps: 1) removal of individuals who failed

cortical reconstruction and failed quality control; 2) removal

of features with more than half of the sample missing values;

3) individual subject whose removal of baseline did not screen

for MRI; 4) using the average of the features to fill in missing

data; and 5) removal of cognitive function tests in individuals

with missing follow-up points in longitudinal studies.

C. Feature selection

To discover the impact of the correlation between ROIs

on progression with AD, we couple all the regions in pairs,

which allows 326 block statistic indicators to combine 52975

features. For a given sample size, the higher the dimension-

ality, the sparser the distribution of the sample in space. As

the dimension increase, the exponential number of samples

are required to satisfy model estimate parameters effectively.

In addition, the probability of the sample distribution being

near the centre becomes lower and lower as the dimensionality

increases. If the high-dimensional data is directly applied to

the algorithm, it will cause the model to overfit. In order to

solve this challenge, some basic methods and one advanced

feature selection are employed to extract the representative

feature from large number of original feature spaces.

1) Variance Threshold: It removes all features whose vari-

ance doesn’t meet some threshold. If there are many

features, but not every feature can well reflect the degree

of discrimination, then such features will not have the

value of analysis.

2) Univariate feature selection: Univariate feature selection

works by selecting the best features based on univariate

statistical tests. It removes all but a user-specified highest

scoring percentage of features.

3) Stability Selection: Stability selection is based on sub-

sampling in combination with (high dimensional) selec-

tion algorithms. The stability ranking score gives the

probability that it is naturally interpretable.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. ROIs synchronization represents the progress of AD

We first accomplish three relevance approaches of estimat-

ing ROIs relevant criteria: Euclidean Distance (ED), Maha-

lanobis Distance (MD) and Cosine Similarity (CS). And then,

each criterion between vectors composed of the magnitude

and the non-absolute value of velocity of the biomarker are

used and the feature subset selecting the original feature space

to evaluate the subjects cognitive scores. Table II shows the

different criterion tracking the AD progression. Note that

Table II shows only the averaged results and variance of

30 independent experiments; and the temporal distance from

baseline to M06 period. Besides, we also reproduced the model

achieved by [15], [25], [28], with only MRI data as features.

TABLE II
DIFFERENT SIMILARITY MEASURE

Original ROI Mahalanobis Distance Euclidean Distance Cosine Similarity

Target: MMSE

nMSE 0.827±0.065 0.973±0.076 0.944±0.080 0.743±0.060
wR 0.461±0.053 0.273±0.080 0.552±0.043 0.552±0.043

BL rMSE 1.750±0.157 1.782±1.509 1.901±0.176 1.436±0.134

M06 rMSE 2.326±0.302 2.420±0.195 2.240±0.286 2.190±0.215
M12 rMSE 2.599±0.366 2.943±0.291 2.505±0.415 2.541±0.415
M24 rMSE 3.516±0.777 3.747±0.627 3.689±0.694 3.227±0.575

M36 rMSE 4.169±0.831 4.394±0.803 5.020±0.866 4.125±0.846
Target: ADAS-cog

nMSE 0.693±0.054 0.773±0.087 0.790±0.067 0.666±0.058
wR 0.579±0.041 0.514±0.057 0.488±0.055 0.604±0.043

BL rMSE 4.093±0.388 3.809±0.371 4.238±0.470 3.670±0.606

M06 rMSE 4.540±0.609 4.375±0.497 4.665±0.529 4.399±0.740
M12 rMSE 4.932±0.781 4.759±0.627 4969±0.590 4.693±0.562
M24 rMSE 5.466±0.774 6.234±1.104 6.537±1.023 5.706±0.899
M36 rMSE 7.661±1.092 8.943±1.969 8.851±1.352 8.133±1.720

TABLE III
ROIS SYNCHRONIZATION REPRESENTS THE PROGRESS OF AD

Original ROI BL to M06 BL to M12 BL to M24 BL to M36

Target: MMSE

nMSE 0.827±0.065 0.743±0.060 0.726±0.092 0.693±0.070 0.724±0.121
wR 0.461±0.053 0.552±0.043 0.581±0.047 0.595±0.044 0.582±0.065
BL rMSE 1.750±0.157 1.436±0.134 1.472±0.152 1.408±0.177 1.335±0.152
M06 rMSE 2.326±0.302 2.190±0.215 2.265±0.268 2.134±0.194 1.983±0.332
M12 rMSE 2.599±0.366 2.541±0.415 2.440±0.335 2.559±0.481 2.053±0.306

M24 rMSE 3.516±0.777 3.227±0.575 3.197±0.549 3.244±0.644 2.710±0.517
M36 rMSE 4.169±0.831 4.125±0.846 4.157±0.704 3.847±0.829 3.345±0.701

Target: ADAS-cog

nMSE 0.693±0.054 0.666±0.058 0.691±0.087 0.653±0.075 0.881±0.056
wR 0.579±0.041 0.604±0.043 0.592±0.051 0.626±0.049 0.387±0.053
BL rMSE 4.093±0.388 3.670±0.606 3.522±0.329 3.648±0.479 4.084±0.414
M06 rMSE 4.540±0.609 4.399±0.740 4.406±0.514 4.206±0.530 4.462±0.609
M12 rMSE 4.932±0.781 4.693±0.562 4.847±0.681 4.872±0.702 5.067±0.630
M24 rMSE 5.466±0.774 5.706±0.899 5.953±0.929 5.707±1.124 5.530±0.625
M36 rMSE 7.661±1.092 8.133±1.720 8.100±1.349 8.255±1.727 7.761±1.518

Overall the cosine similarity representation of our proposed

ROIs synchronization approaches outperforms the original

ROIs feature. We have the following observations: 1) The

collaborative expression of ROIs is better than independent

ROI to a certain extent. 2) The expression of Cosine Similarity

performs better than that of Cosine Similarity and Mahalanobis

Distance. 3) The proposed Cosine Similarity representation

witnesses significant improvement for the early time point.

This may be due to the data spanning from baseline and M06

period.

B. Temporal Span of MRI Scan

Inspired by the above experiments, we further explored the

influence of temporal span on the progress of positioning AD

under the collaborative expression of ROIs. In this section,

only cosine similarity was utilized to estimate the cognitive

functional progression.

There are four temporal span group performed, namely

baseline to M06 period, baseline to M12 period, baseline to

M24 period and baseline to M36 period. Table III shows that

the normalized results of different visited time span and the

root mean square error of each sub-task results. We follow

the same experimental procedure as above. The experimental

results are presented in Table III.

We can observe from the table that as the time span

increases, the overall generalization performance of the model

improves. When the temporal span growths, we also have the
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Fig. 2. the vectors of stability temporal collaborative patterns. A total of 94
and 87 stable co-expression pairs respectively. Specifically, (a) and (b) belong
to the MMSE-targeted model of AD progress; (c) and (d) belong to ADAS-
cog-targeted model of AD progress.

following observations: 1) The performance of the subtasks

will gradually improve. 2) The task of the latter point in

time has been greatly enhanced. This may be due to the

latter MRI scanning support more collaborative expression of

ROIs and these results further validate the efficacy of the

proposed method for temporal-spatial collaborative expres-

sion of ROIs. 3) during the BL to M24, the overall task

performance outperforms others. 4) during the BL to M36,

Although the performance of the global model has decreased,

the performance of each subtask has been greatly improved.

On the one hand, it proves once again that the collaborative

expression of ROIs can have an important effect. On the

other hand, the performance of overall model means that the

fundamental premise of multi-task model was weakened: there

is no longer a simple linear relationship between ROIs and

cognitive function. Yet this problem also appears in the model

of Zhou [49], with the help of collaborative expression of

ROIs, this defect can be properly compensated, which verify

the effect of ROIs synchronization represents the progress of

AD.

C. Stability temporal collaborative patterns of MRI biomark-

ers

Firstly, we use the data from a set of experiments with

the best performance in experiment: Temporal Span of MRI

Scan, namely the temporal span for baseline to M24 periods,

which contains 94 dimensions corresponding a crucial couples

of ROIs pairs. Secondly, a set of environmental parameters

are clearly indicated: 1) Only half of the overall sample in

each sampling subset is randomly selected. 2) A total of

210 combinations of model hyperparameters. 3) during every

combination, 10 samplings were executed. Finally, the vectors

of stability temporal collaborative patterns are showed in Fig.2.

For the MMSE set, the result shows that the synergistic

effect of left insula on left entorhinal cortex, left posterior

cingulate cortex, right bankssts, left caudal anterior cingulate

cortex, left pars triangularis. The synergistic effect of right

posterior cingulate gyrus on right isthmus of cingulate cortex,

left temporal pole. For the ADAS-cog set, the result shows

that the synergistic effect of left insula on left entorhinal

cortex, left posterior cingulate cortex, left bankssts, left pars

triangularis. The synergistic effect of left entorhinal on left

parahippocampal, right cuneus, medial orbitofrontal cortex.

The synergistic effect of right posterior cingulate cortex on

left pars triangularis, left parahippocampal. The fact that our

findings are in line with those of previous studies [30]–[32]

demonstrates the validity of our proposed model.

VI. DISCUSSION

In the selection of longitudinal stability, we observed 29

most stable features with MMSE score, which are shown in

Fig.2. Among them, the correlation features based on Cortical

Volume and Cortical Volume are the majority (6 features),

which shows that the similarity of the change trend of the

biomarkers based on Cortical Volumes have important effect

in AD prediction. Previous studies have also observed a

significant improvement in the classification performance of

abnormal cortical patterns and the coordinated patterns of

cortical morphology are widely altered in AD patients [10].

In addition, the number of correlation features based on the

similarity of changes between Surface Area and Surface Area

is also relatively large (5 features).

VII. CONCLUSION

The correlation between biomarkers may improve the accu-

racy of AD progression modeling to help doctors and patients

in early intervention of AD to treat patients and improve the

quality of life. Therefore, we propose a new method to extract

morphological information from MRI, combined with MTL

to effectively model and predict AD progress. This paper has

three main contributions. First, we use cosine similarity to

represent the temporal and spatial relationships between brain

biomarkers. Second, we express the disease progression pre-

diction as a MTL problem and combine the cosine similarity to

predict the disease progression of AD. Third, we use multitask-

based stability selection to analyze the temporal and spatial

dynamic patterns between biomarkers. We prove that correlate

information can better describe the brain structural changes in

patients with NL, MCI and AD. Combining MTL and the

correlation between biomarkers can improve the predictive

performance of AD disease progression.
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