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crossing problem.

Quantile crossing is a common phenomenon in shape constrained nonparametric quantile regression. A direct
approach to address this problem is to impose non-crossing constraints to convex quantile regression. However,
the non-crossing constraints may violate an intrinsic quantile property. This paper proposes a penalized convex
quantile regression approach that can circumvent quantile crossing while maintaining the quantile property. A
Monte Carlo study demonstrates the superiority of the proposed penalized approach in addressing the quantile

1. Introduction

Quantile estimation has been widely applied in various fields of
economics and econometrics (see, e.g., Wang et al., 2014; Jradi et al.,
2019; Tsionas et al., 2020; Kuosmanen and Zhou, 2021; Zhao, 2021).
However, when multiple quantiles are separately estimated to obtain a
family of conditional quantile functions, two or more quantile curves
may cross on the condition that the distribution functions and their
associated inverse functions are not monotone increasing (He, 1997).
Such quantile crossing is a longstanding problem in quantile regression.

There are at least three commonly used approaches to avoid quan-
tile crossing: post-processing, stepwise estimation, and simultaneous
estimation. In the post-processing procedure, a non-crossing assump-
tion is usually enforced via a sorting or monotonic rearrangement of the
original estimated non-monotone functions (e.g., Dette and Volgushev,
2008; Chernozhukov et al.,, 2010). While this indirect approach is
effective in estimating the conditional quantile, it lacks the ability to
quantify the effects of the predictors (Bondell et al., 2010). The step-
wise procedure prevents an estimated quantile function from crossing
the previously estimated one by adding an extra set of non-crossing
constraints iteratively to the regression model (e.g., Liu and Wu, 2009).
However, this approach is subject to path dependence; the results may
change depending on which quantile is estimated first. In the simultane-
ous estimation, non-crossing constraints are imposed to ensure that the
estimated conditional quantile functions are monotone nondecreasing,
with all quantiles being estimated simultaneously (e.g., Takeuchi et al.,
2006; Bondell et al., 2010). More recently, Wang et al. (2014) extend
this simultaneous estimation technique to convex quantile regression
(sCQR). However, the non-crossing constraints may violate the quantile
property (Takeuchi et al., 2006).

* Corresponding author.

This paper proposes a new regularization approach to avoid quantile
crossing, which is guaranteed to satisfy the quantile property. For
brevity, we focus on the case of nonparametric quantile regression, but
the general approach readily extends to other nonparametric and para-
metric quantile regression techniques. The main advantage compared
to the existing sCQR approach (Wang et al., 2014) is that our proposed
penalized convex quantile regression (pCQR) approach is guaranteed to
satisfy the intrinsic quantile property. Furthermore, the proposed pCQR
approach performs better than sCQR in Monte Carlo simulations.

2. Penalized convex quantile regression

Consider a general nonparametric regression model with observa-
tions {(x;, yi)}?=1 satisfying

yi=fx)+e, fori=1,..,n, (€8]

where y, € R and x; € R? are output and inputs variables, and ¢, is an
error term with zero mean. Accordingly, for a given quantile = € (0, 1),
the nonparametric quantile function Q,(z | x) is defined as

Q,,(t|x) = f(x)+F. (1), )

where F, is the distribution function of the error term ¢;.

To estimate quantiles empirically, we resort to convex quantile
regression (CQR) that does not require any assumptions about the
functional form of the regression function f or its smoothness, but
imposes the shape constraints such as monotonicity and concavity.
Specifically, CQR estimates the quantile function (2) by solving the
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following linear programming problem (Wang et al., 2014)

n n
. " _
mn 7Y ef+(-1)) € 3
a.f.ete” ; ! ( )g !
/
sty =o+Bx +ef —¢; Vi
’ U
o+ B.x; <o+ Bx; Vi, h
>0 Vi
1
e;* >0, & 20 Vi

where the first set of constraints can be interpreted as a multivariate
regression equation, the second set of constraints imposes concavity
on the quantile function, the third set of constraints (i.e., a system
of Afriat inequalities) guarantees monotonicity, and the last refers to
sign constraints of the error terms. Note that there exists an intrinsic
quantile property in terms of the optimal solutions to problem (3), &}
and £;.

Theorem 1. For any = € (0,1), the number of strict positive residuals
(¢ > 0) by n! and the number of strict negative residuals (¢; > 0) by n;
always satisfy the inequalities:

+ -
< <1-7 and < <.
n n

Proof. See proofs in Wang et al. (2014) and Kuosmanen and Zhou
(2021).

Compared with the conventional full frontier estimation, the quan-
tile function estimation is more robust to random noise, heteroscedas-
ticity, and the choice of direction vectors. However, when separately
estimating each conditional quantile function Q,(z | x), CQR is likely
to violate the assumption that the distribution functions and their
associated inverse functions should be monotone nondecreasing; see
Fig. B.1 for an example of the quantile crossing problem detected in
our empirical application of CQR.

We notice that the quantile crossing problem could be addressed
by simultaneous estimation, which imposes an extra set of linear non-
crossing constraints in the CQR approach (see, e.g., Takeuchi et al.,
2006; Wang et al., 2014). Following Wang et al. (2014), the simul-
taneous convex quantile regression (sCQR) estimator of j conditional
quantile functions at 0 < 7; < 7, < -- < 7; < | is formulated as

J n n
min_ 2(7125:1*'(1‘71)25;/) “)
@petem.C i i=1 i=1
/ — . .
sty =a+ B X e —€ Vi, j

’ ’
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/ ’
Qi+ By %+ Cry S+ B %
Bi;20 Vi, j

+ _ L
£ >0, £ >0 Vi, j

Viil<j<J-1

where C; ; > 0 are small nonnegative constants for quantiles, which are
introduced in sCQR to ensure that 0,(7; | x) < Q)(zj4 | X),Vi and j €
J. For the purpose of non-crossing, C can simply be given by zero;
that is, there may exist touching rather than crossing between two
neighboring quantiles (see Fig. 1(a) for an illustration). In practice,
however, after enforcing the non-crossing constraints, SCQR may vi-
olate the quantile property (Theorem 1) due to the fact that the
approach simultaneously optimizes for both the quantile property and
the non-crossing property (Takeuchi et al., 2006).

This paper proposes an alternative to sCQR to address the quantile
crossing problem. By using the L,-norm regularization on subgradients
B;, we formulate penalized convex quantile regression (pCQR) as

min rZs,++<1—r>_Z:,e;+y2||ﬁi||§ (5)
i= i=

g
a.p.et e e
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stoyi=a+ ﬁ;xi +ef —€f Vi
a; + ,B;x,- <a,+ ﬂ/hxi Vi, h
B =0 Vi
eF>0, 6 20 Vi
where y > 0 is the tuning parameter and || - ||, denotes the standard

Euclidean norm. The L,-norm regularization in pCQR can effectively
help restrict extreme f;, which will eventually eliminate quantile cross-
ings. As y— +oo, the regularization will dominate the minimization and
then all estimated subgradients g; “flatten out” to 0. In such a case,
the estimated quantile function will be a horizontal line (for d = 1)
or hyperplane (d > 1). Therefore, when estimating multiple quantiles,
the estimated quantile functions could be in parallel without crossings
given a prespecified y. Further, the optimal solutions to problem (5)
also satisfy the quantile property.

Theorem 2. For any prespecified y > 0, the minimizer of (5) satisfies,
nt -

—~<l-7 and < <.
n

Proof. See Appendix A.

While introducing L,-norm in pCQR can to some extent avoid quan-
tile crossings thanks to the uniqueness of subgradients j; (cf. Waltrup
et al., 2015), it is not always immune to the quantile crossing issue. We
thus design the following Algorithm 1 to find the smallest y* for which
no quantile crossings occur.

Algorithm 1: Searching the minimal tuning parameter y*.

Data: {x;,y,}" | € R? xR, 7; and 7, (7 < 7,)
1 out =0 and y = 0;
2 while out =0 do
3 Solve problem (5) with quantiles z; and ,, separately, to
calculate Q (7, | x;) and O ,(z; | x,);

n
4 | if ,;1 L6,y 1x)-0,(x2 | x<0) # 1 then

5 ‘ Re-solve problem (5) using the updated y;
6 else
7 L out = 1;
8 | r=r+ 0.01;
Result: y*

The main idea of Algorithm 1 is to let y vary from zero to positive
infinity and check if there are any crossings between two neighboring
quantiles in each iteration. If yes, then add a fixed step to y; other-
wise, the algorithm stops. As y increases, the estimated two quantile
functions will have the equivalent subgradient and then be in parallel
at the point where the crossing occurs. Consider an extreme example:
as y reaches positive infinity, all subgradients become zero; that is,
the estimated quantile functions will be parallel lines or hyperplanes.
Note that in most cases a small y suffices for avoiding crossings (see,
e.g., Figs. 2 and 1(b)).

However, as y increases, there could be multiple possible y
(i.e., {7, 75, ...}) that eliminate quantile crossings. Algorithm 1 finds the
minimum of all these possible y, that is, y* = min{y,,7,,...}. Note that
it is possible that y* equals zero. For sufficiently small y, the optimal
solutions to (3) are also the optimal solutions to (5) due to the exact
regularization property in convex quadratic programming problems
(see Friedlander and Tseng, 2008).

Besides L,-norm, other generic norms can also be integrated into
CQR to restrict the extreme f; and eliminate quantile crossings by fol-
lowing Algorithm 1. For example, one could adapt the L,-norm based
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PCQR formulation by Dai (2023) to the present setting by replacing the
objective function of (5) by

n n n
min_ 7Y ef+(1-0) ) e +y Y lIBillL 6)
whetem 5 i=1 i=1

Note that in the context of convex regression, L;-norm can make
certain ﬁA,-Yh in (6) very small but cannot reduce them exactly to zero
due to the existence of Afriat inequalities, even if an optimal y is
prespecified (see, e.g., Xu et al., 2016; Dai, 2023). Here, L,-norm is
not necessarily superior to L,-norm in terms of forcing B, to approach
zeros as it is in the context of general regression. A holistic performance
comparison among different norms in reducing crossings would be
an interesting avenue for future research. In this paper we focus on
L,-norm, which can make pCQR invariant with respect to orthogonal
transformations and proves sufficient for our purposes.

We proceed to illustrate how non-crossing quantile functions look
like with a real dataset used in Kuosmanen and Zhou (2021) and Dai
et al. (2023). It contains plant-level data on 130 U.S. electric power
plants operating in 2014; see Kuosmanen and Zhou (2021) for a more
detailed description of the data. For the sake of demonstration, we
simply consider a univariate case of one input and one output. The
input is the total cost involved in electricity production and the output
is the net electricity generation of each power plant. Both variables are
in natural logarithm.

An application of CQR to the empirical data finds that the 15th
quantile curve crosses the 25th quantile curve twice (see Fig. B.1). We
then demonstrate how the sCQR and pCQR approaches can address
this problem. It is evident from Fig. 1 that both approaches manage
to circumvent the quantile crossing problem; that is, we observe that
Qy(O.ZS | x;) is greater than or equal to Qy(O.IS | x;) in both approaches.
However, the shapes of the estimated quantile functions in Figs. 1(a)
and 1(b) (see particularly the upper right corner) are slightly different.
As mentioned earlier, this difference arises because sCQR tries to simul-
taneously optimize for the non-crossing property, the quantile property,
and the production axioms, whereas the pCQR approach independently
estimates the quantile production functions. Further, the difference
affects which approach can better retain the quantile property.

3. Monte Carlo study

We perform a Monte Carlo study to examine whether pCQR or
sCQR can better satisfy the quantile property while addressing quantile
crossing. Consider the following data generating process (Dai, 2023)

4 o8
;= x4 4+,
Yi= i i
J=1

where the input matrix x; € R™¢ is generated independently from
U[1,10], random noise v; is drawn independently from N (0, 0'3), and
d is the number of covariates.

We consider 54 scenarios with n € {99,199,499}, d € {2,3,4},
r € {0.85,0.90,0.95}, and 6 € {0.5,1,2}. Each scenario is replicated
500 times using the pyStoNED package (Dai et al., 2021) on Python
with the standard solver Mosek (9.3). We then compute the ramp loss
(RL = |£ Z?:l 1Q,»<éy(r|x,> —7|) (Takeuchi et al., 2006) to examine the
quantile property and the mean squared error (MSE) to evaluate the
finite-sample performance. Replications for which no quantile crossings
happen (i.e., y* = 0) are excluded from the calculations of RL and
MSE. Note that the smaller the ramp loss, the better the quantile
performance.

Tables 1 and B.1 present the estimated ramp loss and MSE statistics
across different scenarios. The results clearly show that compared with
sCQR, pCQR has lower ramp loss in virtually all the scenarios and
lower MSE in all the scenarios. This is because the minimal tuning
parameter y* used in the pCQR simulations mainly locates in the
interval [0.00,0.15] that is closer to zero (see Fig. 2), suggesting that
PCOR can better fit the true quantile functions. Several other findings
are summarized as follows:
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Fig. 1. Empirical illustration of estimated non-crossing quantile functions using the
U.S. power plant data.

The higher the number of covariates, the lower the ramp loss. As
d increases, the data space becomes more sparse, thereby indi-
cating that the probability of crossing between two neighboring
quantiles is relatively small.

The differences in the ramp loss among quantiles in pCQR are
smaller than those in sCQR due to the different estimation strate-
gies, i.e., independent and simultaneous estimation, respectively.
For both approaches, the MSE increases as more inputs are in-
cluded and decreases as the sample size gets larger.

The performance of both approaches in terms of MSE becomes
worse as the variance of noise increases.

Overall, the pCQR approach can better fit the true quantile functions
and satisfy the quantile property while at the same time addressing the
quantile crossing problem. Regularizing the quantile function, instead
of imposing an extra set of non-crossing constraints, proves a better
remedy to quantile crossing according to our simulations.

4. Conclusions

In this paper, a penalized convex quantile regression approach has
been developed to address the quantile crossing problem. The proposed



S. Dai et al.

Economics Letters 233 (2023) 111396

Table 1
Ramp loss and MSE of two neighboring quantiles with n = 499.
d c 7 7, RL, MSE, RL,, MSE,,
PCOQR SCQR PCQR SCQR PCOR sCQR PCQR SCOR
2 0.5 0.85 0.90 0.324 0.355 0.012 0.019 0.370 0.394 0.015 0.024
0.90 0.95 0.371 0.399 0.014 0.023 0.397 0.414 0.021 0.035
1 0.85 0.90 0.355 0.385 0.033 0.057 0.393 0.425 0.039 0.074
0.90 0.95 0.394 0.425 0.040 0.072 0.409 0.431 0.059 0.113
2 0.85 0.90 0.420 0.440 0.105 0.165 0.456 0.479 0.115 0.213
0.90 0.95 0.465 0.482 0.111 0.204 0.473 0.497 0.155 0.341
3 0.5 0.85 0.90 0.259 0.307 0.021 0.038 0.294 0.319 0.026 0.050
0.90 0.95 0.255 0.297 0.028 0.053 0.255 0.267 0.036 0.081
1 0.85 0.90 0.304 0.360 0.050 0.113 0.324 0.379 0.057 0.148
0.90 0.95 0.314 0.361 0.074 0.151 0.293 0.340 0.092 0.233
2 0.85 0.90 0.374 0.428 0.131 0.293 0.375 0.439 0.150 0.394
0.90 0.95 0.395 0.457 0.187 0.418 0.369 0.428 0.240 0.663
4 0.5 0.85 0.90 0.213 0.269 0.031 0.069 0.238 0.249 0.037 0.092
0.90 0.95 0.181 0.230 0.041 0.089 0.179 0.160 0.054 0.139
1 0.85 0.90 0.212 0.290 0.087 0.208 0.216 0.291 0.100 0.274
0.90 0.95 0.269 0.343 0.117 0.263 0.227 0.283 0.151 0.412
2 0.85 0.90 0.335 0.418 0.217 0.517 0.312 0.413 0.249 0.712
0.90 0.95 0.380 0.443 0.305 0.698 0.319 0.400 0.391 1.137
d=2 d=3 d=4
25 8 5
20 4
6
15 3
2
2 4
[
[a)
10 2
2
5 1
(0] 0 0
0.00 0.05 0.10 0.15 0.20 0.00 0.20 0.40 0.60 0.00 025 050 0.75

*

14

Fig. 2. Empirical distribution of y* with n =499, ¢ =0.5, 7, =0.85, and 7, = 0.90.

algorithm can search the minimal tuning parameter such that the
occurrences of quantile crossing are avoided and the quantile property
is ensured as well as possible. A Monte Carlo study confirms the superi-
ority of the proposed approach compared to the existing sCQR approach
in addressing the quantile crossing problem. We believe the regular-
ization approach can be readily introduced to other nonparametric
and parametric quantile regression approaches in addressing quantile
crossings. Furthermore, extending the relevant statistical theory to CQR
would also be useful. We leave those extensions as fascinating avenues
for future research.

Data availability
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Appendix A. Proof of theorem 2

The key for pCQR to satisfy the quantile property is that we do not
impose the regularization on the constant a.

Specifically, the objective function in problem (5) can be rewritten
as (Koenker and Bassett, 1978)

n n
T Z P(Y[ —a; = ﬁi'x[) +v Z ”ﬁz”%
n=1 i=1

Let the objective function in problem (5) be Z,,[f] = = X_, p(y; —
F)) +v X, llgll3, where f = g+ a and a € R. Assume that f* is
the minimum of Z,,[f] with f* = g* + a*. If and only if « = a¥,
Zreg[
the objective function Z,,[f] is equivalent to finding the quantile 7 in
terms of y; — g(x;). This is now the same case as in the CQR approach,
and we can then follow Wang et al. (2014) to prove the statements in

Theorem 2.

g*+a] can be minimized. Therefore, with respect to @, minimizing
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Appendix B. Supplementary tables and figures
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Fig. B.1. Illustration of the quantile crossing problem in CQR estimation.
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4 0.5 0.85 0.90 0.177 0.201 0.057 0.112 0.159 0.201 0.069 0.151
0.90 0.95 0.153 0.178 0.082 0.166 0.094 0.150 0.103 0.260
1 0.85 0.90 0.194 0.265 0.178 0.355 0.203 0.253 0.199 0.461
0.90 0.95 0.209 0.261 0.222 0.464 0.153 0.162 0.295 0.728
2 0.85 0.90 0.293 0.375 0.399 0.935 0.264 0.349 0.467 1.271
0.90 0.95 0.298 0.377 0.566 1.273 0.214 0.290 0.754 2.055
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