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Abstract
Storing quantum information in a quantum error correction code can protect it from errors, but
the ability to transform the stored quantum information in a fault tolerant way is equally
important. Logical Pauli group operators can be implemented on Calderbank-Shor-Steane (CSS)
codes, a commonly-studied category of codes, by applying a series of physical Pauli X and Z gates.
Logical operators of this form are fault-tolerant because each qubit is acted upon by at most one
gate, limiting the spread of errors, and are referred to as transversal logical operators. Identifying
transversal logical operators outside the Pauli group is less well understood. Pauli operators are the
first level of the Clifford hierarchy which is deeply connected to fault-tolerance and universality. In
this work, we study transversal logical operators composed of single- and multi-qubit diagonal
Clifford hierarchy gates. We demonstrate algorithms for identifying all transversal diagonal logical
operators on a CSS code that are more general or have lower computational complexity than
previous methods. We also show a method for constructing CSS codes that have a desired diagonal
logical Clifford hierarchy operator implemented using single qubit phase gates. Our methods rely
on representing operators composed of diagonal Clifford hierarchy gates as diagonal XP operators
and this technique may have broader applications.

1. Overview

Quantum error correction has become a very active area of research because of its potential to mitigate noise
in complex quantum devices. Recent experimental results have validated the storage of quantum information
in the codespace of a quantum error correction code as a practical way of protecting it from noise (see [1–3]).
Many of these initial demonstrations have made use of Calderbank-Shor-Steane (CSS) codes [4], a
well-studied class of quantum error correction codes that are relatively simple to analyse and implement.

To implement algorithms on quantum computers, we also need to transform the stored quantum
information in a fault-tolerant way. One method of implementing fault-tolerant logical operations on CSS
codes is to use transversal logical operators. Transversal logical operators have depth-one circuit
implementations involving single or multi-qubit gates. Such implementations are considered fault-tolerant
because an error on one physical qubit can only spread to a limited number of other qubits when applying
the logical operator. Whilst the Eastin–Knill theorem rules out the existence of a quantum error correcting
code with a set of transversal operators that is universal [5], determining the transversal gates of a quantum
error correction code is key to designing a fault-tolerant architecture.

Deeply connected to fault tolerance and universality is the Clifford hierarchy [6] of unitary operators. The
first level of the Clifford hierarchy is the Pauli group CH1 := ⟨iI,X,Z⟩. Conjugation of Paulis by operators at
level t+ 1 results in an operator at level t. The level t+ 1 operators A ∈ CHt+1 are then defined recursively as
those for which ABA−1 ∈ CHt for all B ∈ CH1. Level 2 Clifford hierarchy gates include the single-qubit
Hadamard and S :=

√
Z gates, as well as the two-qubit controlled-Z (CZ) gates. Level 3 gates include the

single-qubit T :=
√
S gate as well as the multi-qubit controlled-S (CS) and controlled-controlled-Z (CCZ)

gates. A set of gates that includes all level-2 gates and at least one level-3 gate is universal [7].
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Logical Pauli group operators can be implemented transversally on CSS codes and identifying these is
relatively straightforward. Identifying transversal logical operators at higher levels of the Clifford hierarchy is
more challenging and existing methods are of exponential complexity in either the number of physical or
logical qubits in the code. Some classes of CSS codes with high degrees of symmetry are known to have
non-Pauli transversal logical operators. Examples using single-qubit diagonal gates include the seven-qubit
Steane code [8], two-dimensional (2D) color codes [9] and triorthogonal codes [10]. Examples of CSS codes
which have logical operators made from single and multi-qubit gates include the 2D toric code [11], codes
with ZX-symmetries [12] and symmetric hypergraph product codes [13].

In this paper, we present a suite of method and algorithms for identifying diagonal transversal logical
operators on any CSS code, without any knowledge of any symmetries of the code. The building blocks of
our logical operators are physical single- or multi-qubit diagonal gates, at a given level t of the Clifford
hierarchy. Our methods scale as a polynomial in the number of physical and/or logical qubits in the code,
with one exception. We also give a method for constructing a CSS code that has a transversal implementation
of a desired diagonal logical Clifford hierarchy operator using single-qubit gates. Our new algorithms use the
XP formalism, introduced in [14], which is a powerful tool for representing the logical operator structure of
a stabiliser code.

1.1. Existing work on transversal logical operators
We briefly review previous methods for identifying diagonal logical operators of arbitrary CSS codes, and
methods for constructing CSS codes with a desired transversal logical operator. In [15], a method is given to
find all logical operators at level 2 of the Clifford hierarchy for a CSS code by mapping it to a classical code
over GF(4). This method involves calculating the automorphism group of the classical code, which has
exponential complexity in the number of qubits in the stabiliser code [16].

There has also been a significant amount of work on logical operators constructed from single- and
multi-qubit diagonal Clifford hierarchy gates. In [17], operators composed of diagonal Clifford hierarchy
gates on one or two qubits are shown to be representable as symmetric matrices over ZN, referred to as
quadratic form diagonal (QFD) gates. Necessary and sufficient conditions for a QFD gate to act as a logical
operator on a CSS code are then presented. In [18], a method of generating circuits using multi-qubit gates
which implement arbitrary logical operators at level 2 of the Clifford hierarchy is presented. A method for
generating CSS codes with transversal diagonal logical operators at increasing levels of the Clifford hierarchy
is presented in [19], along with a method to increase the Z-distance of such codes. In [14], we demonstrated
an algorithm for finding all diagonal logical operators composed of single-qubit phase gates which, for CSS
codes, involves taking the kernel modulo N of a matrix with n+ 2k columns where n and k are the number of
physical and logical qubits respectively.

1.2. Contribution of this work
In this work, we present efficient methods to identify and test diagonal logical operators on CSS codes using
both single and multi-qubit diagonal Clifford hierarchy gates as building blocks. These methods generalise to
non-CSS stabiliser codes. We also present a technique for generating CSS codes with implementations of any
desired diagonal Clifford hierarchy logical operator using single-qubit phase gates.

We first consider operators composed of single-qubit phase gates at level t of the Clifford hierarchy. We
show that these can be represented as diagonal XP operators of precision N= 2t. For logical operators of this
form, we demonstrate the following algorithms that apply to any CSS code and at any desired level of the
Clifford hierarchy:

1. Finding a generating set of diagonal logical identity operators for the code: an XP operator may act as a
logical identity, but may not be an element of the stabiliser group of a CSS code. The logical identities are
used as inputs to several other algorithms (section 3.1)

2. Search for an implementation of a desired logical controlled-phase operator on the code: useful for
checking if a given CSS code has a transversal implementation of a particular logical operator and for
checking the results of other algorithms (section 3.2);

3. Determining if a given diagonal operator acts as a logical operator on the code: this method is of linear
complexity in the number of independent X-checks whereas existing methods are of exponential
complexity (section 3.3);

4. Finding a generating set of diagonal logical operators on the code: the generating set gives us a
complete understanding of the diagonal logical operator structure of a CSS code, and can be used on CSS
codes with a large number of physical and logical qubits at any desired level of the Clifford hierarchy
(section 3.4);
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Table 1. Comparison of search and test algorithms for diagonal logical operators. The space complexity of the algorithm is expressed in
terms of the dimensions of the key matrices used. The time complexity is based on the number of times we calculate a Howell matrix
form—these dominate the complexity of the algorithms. We calculate the number of matrix operations and multiply this by a time
complexity ofO(mn2) for finding the Howell form of anm× nmatrix.

Algorithm Matrix dimensions Matrix operations Time complexity

1. Diagonal logical identity group generators O((k+ r)t × n) O(1) O((k+ r)tn2)
2. Search by logical action O((k+ r)t × n) O(1) O((k+ r)tn2)
3. Logical operator test∗ O(n× n) O(r) O(rn3)
4. Diagonal logical operator group generators∗ O(n× n) O(r) O(rn3)
5. Determine action of diagonal logical operator O(kt × n) O(1) O(ktn2)
6. Depth-one logical operators∗∗ O(nt × nt) O(2n) O(2nn3t)

Note that entries annotated with∗ require the diagonal logical identities of algorithm 1 as input. Entries annotated with∗∗ require the

diagonal logical operators of algorithm 4 as input.

5. Expressing the action of a diagonal logical operator as a product of logical controlled-phase gates: the
action of a logical operator can be difficult to interpret, particularly for codes with a large number of
logical qubits. This method greatly simplifies the interpretation of logical actions (section 3.5).

We then show that multi-qubit diagonal Clifford hierarchy gates acting on a codesepace can be
represented as diagonal XP operators acting on a larger Hilbert space via an embedding operator
(section 4.3). We demonstrate algorithms for:

6. Finding depth-one implementations of logical operators composed of diagonal Clifford hierarchy
gates: on small CSS codes, this allows us to identify and verify the depth-one logical operators of [11–13]
with no knowledge of the symmetry of the code (section 4.4);

7. Canonical implementations of a desired logical controlled-phase operator composed of multi-qubit
controlled-phase gates: this allows us to write closed-form expressions for arbitrary diagonal Clifford
hierarchy logical operators section 5.1;

8. Construction of CSS codes which have an implementation of a desired logical controlled-phase
operator composed of single qubit phase gates: the canonical logical operator implementation allows us
to construct families of CSS codes which have transversal implementations of a desired diagonal Clifford
hierarchy logical operator section 5.4.

Apart from the depth-one search algorithm, the eight algorithms have complexity that is polynomial in
the parameters n,k, r of the CSS code (see below). As a result, they can be applied to ‘large’ codes that have so
far been out of reach of existing methods. There are no restrictions on the level of the Clifford hierarchy or
maximum support size of the physical gates used in the methods.

A summary of the characteristics and computational complexity of search and test algorithms is
presented in table 1. Complexity is expressed in terms of the following variables:

• Required level of the Clifford hierarchy t;
• Number of physical qubits n in the CSS code;
• Number of logical qubits k in the CSS code;
• Number of independent X-checks r in the CSS code;

The space complexity of the algorithm is expressed in terms of the dimensions of the key matrices used. The
time complexity is based on the number of times we calculate a Howell matrix form—these dominate the
complexity of the algorithms. We calculate the number of matrix operations and multiply this by a time
complexity ofO(mn2) for finding the Howell form of anm× nmatrix.

The algorithms have been implemented in a Python GitHub repository accessible under the GNU
General Public License. A range of sample codes are also available for testing in this repository, including
Reed–Muller codes, hyperbolic surface codes, triorthogonal codes and symmetric hypergraph product codes.

2. Background

This section reviews the necessary background material for this work. We first introduce the Clifford
hierarchy of diagonal operators and introduce a vector representation of these. We then outline notation and
fundamental properties of CSS codes. Next, we define what we mean by a diagonal logical operator on a CSS
code. We then present an example illustrating the types of diagonal logical operators we consider in this work
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for the well-known [[4,2,2]] code. We then review the XP stabiliser formalism and some fundamental
properties of the XP operators, which we will use to represent logical operators composed of diagonal
Clifford hierarchy gates. We explain the logical operator group structure in the XP formalism, which is
somewhat different than in the Pauli stabiliser formalism.

2.1. Diagonal Clifford hierarchy operators
Here we review the properties of operators in the diagonal Clifford hierarchy. We will use diagonal gates at
level t of the Clifford hierarchy on n qubits as the building blocks for logical operators. The diagonal Clifford
hierarchy operators at each level form a group generated by the following operators [20]:

• Level 1: Pauli Z gate on qubit i : 0⩽ i < n denoted Zi;
• Level 2: controlled-Z (CZij) and Si :=

√
Zi;

• Level 3: CCZijk,CSij and Ti :=
√
Si;

• Level t+ 1: square roots and controlled versions of operators from level t.

At each level, we refer to the generators as level-t controlled-phase gates. Where an operator is an element of
the diagonal Clifford hierarchy group at level t, we say that it is composed of level-t controlled-phase gates.

The single-qubit phase gate at level t is of form diag(1,exp(2πi/N)) where N := 2t. If an operator is an
element of the group generated by single-qubit phase gates at level t, we say it is composed of level-t phase
gates.

The matrix form of any diagonal transversal logical operator of a CSS code must have entries of form
exp(qπi/2t) for integers q, t, as shown in [21]. Such matrices are elements of the diagonal Clifford hierarchy
group at some level, and so considering logical operators composed of controlled-phase gates yields all
possible diagonal transversal logical operators on a CSS code.

2.2. Vector representation of controlled-phase operators
We now introduce a vector representation of controlled-phase operators that underpins our analytical
methods. Fix a level t of the Clifford hierarchy (section 2.1) and let N := 2t. Let ω := eπ i/N be a (2N)th root
of unity. The operator CPN(q,v), where q ∈ Z2N and v is a binary vector of length n, is defined as follows by
its action on a computational basis vectors |e⟩ for e ∈ Z

n
2 :

CPN (q,v) |e⟩ :=
{

ωq|e⟩ if v≼ e;

|e⟩ otherwise.
(1)

The relation≼ is a partial order for binary vectors based on their support (the set of indices where the vector
is non-zero). The expression v≼ e indicates supp(v)⊆ supp(e) ⇐⇒ ev= v where vector multiplication is
componentwise. For an integer 0⩽ i < n, we will also write i ≼ v if v[i] = 1. The phase applied can be
expressed more concisely as follows:

CPN (q,v) |e⟩= ωq·pv(e)|e⟩where pv (e) :=
∏

i≼v

e [i] . (2)

Each generator of the diagonal Clifford hierarchy can be written in vector form. To see this, we note that the
phase gate at level t can be written as P := diag(1,ω2). The phase operator acting on qubit i can be written in
vector form as Pi = CPN(2,bni ) where b

n
i is the length n binary vector, which is all zero apart from

component i which is one. Similarly, the operator CPij = CPN(2,bnij) where b
n
ij is zero apart from components

i and j. The operators of form CPN(2wt(v),v) with 1⩽ wt(v)⩽ t are the generators of the level-t
controlled-phase operators presented in section 2.1.

Example 2.1 (vector representation of level 3 controlled-phase operators). This example illustrates the vec-
tor representation of level 3 diagonal Clifford hierarchy operators. At level t= 3 the generators have vector
representations as follows:

Ti = CP8 (2,b
n
i ) (3)

CSij = CP8
(

4,bnij

)

(4)

CCZijk = CP8
(

8,bnijk

)

. (5)

We also include ωI= CP8(1,0) as a generator at the third level of the hierarchy as phases of this form occur in
the commutation relation for controlled-phase operators—see equations (30) and (31).

4



New J. Phys. 25 (2023) 103018 M AWebster et al

2.3. CSS codes
Here we introduce some key notation and results for CSS codes. Our notation for CSS codes is somewhat
different to that in the literature and is used because it simplifies the statement of our results. Although we
focus on CSS codes in this work, the methods are applicable to any stabiliser code as set out in appendix C.
For our purposes, a CSS code on n qubits is specified by an r× n binary matrix SX the rows of which we refer
to as the X-checks and a k× n binary matrix LX whose rows are referred to as the X-logicals. We assume that
the rows of SX and LX are independent binary vectors—otherwise we can use linear algebra modulo 2 to
ensure this. The Z-checks can be calculated by taking the kernel modulo 2 of the X-checks and X-logicals,
i.e.

SZ := kerZ2

(

SX
LX

)

. (6)

In equation (6), the notation kerZ2 refers to the basis in reduced row echelon form of the kernel modulo 2 of
a binary matrix. We form stabiliser generators SX,SZ from the rows of SX and SZ in the obvious way—if x is

a row of SX then the corresponding stabiliser generator is
∏

0⩽i<nX
x[i]
i . The codespace is the simultaneous

+1 eigenspace of the stabiliser group ⟨SX,SZ⟩ and is a subspace ofHn
2 . The codespace is spanned by 2k

canonical codewords which are indexed by binary vectors v of length k and are defined as follows:

|v⟩L :=
∑

u∈Z
r
2

|euv⟩ :=
∑

u∈Z
r
2

|uSX + vLX⟩. (7)

In the above expression, matrix operations are modulo 2. For simplicity, we are not concerned with
normalising codeword states. It may be possible to make a different choice of basis for the span ⟨LX⟩ over Z2.
The choice of basis affects the labelling of the canonical codewords by binary vectors v of length k, but does
not otherwise change the set of canonical codewords.

2.4. Logical operators of CSS codes
We now describe what we mean by a logical operator on a CSS code. Let C :Hk

2 →Hn
2 be the encoding

operator which takes computational basis vectors to canonical codewords of equation (7) i.e. C|v⟩= |v⟩L for
v ∈ Z

k
2. Now let B be a unitary operator acting on k qubits. We say that an operator B acting on n qubits is a

logical B operator if

BC = CB. (8)

A unitary operator B is diagonal if we can write B := diag(c) for some complex-valued vector c of length 2k

representing the phase applied to each computational basis vector, i.e. B|v⟩= cv|v⟩ for v ∈ Z
k
2 and cv ∈ C. If

B is a diagonal logical operator, then B is diagonal as well, though the converse is not necessarily true. From
equations (8) and (7), we have:

BC|v⟩= B|v⟩L = B
∑

u∈Z
r
2

|euv⟩=
∑

u∈Z
r
2

B|euv⟩ (9)

= CB|v⟩= cv|v⟩L =
∑

u∈Z
r
2

cv|euv⟩. (10)

As a result, we can check if B is a logical B operator by doing the following:

1. For each v ∈ Z
k
2, calculate cv ∈ C such that B|v⟩= cv|v⟩;

2. For each u ∈ Z
r
2, check that B|euv⟩= cv|euv⟩.

This method of checking whether a diagonal unitary is a logical operator involvesO(2r+k) steps; we
present a method in section 3.3 with linear complexity in r.

We say that an operator B is a logical identity if B|v⟩L = |v⟩L for all v ∈ Z
k
2—that is, it fixes each

canonical codeword and hence each element of the codespace. If B is diagonal, as a consequence of
equation (10), it is a logical identity if and only if B|euv⟩= |euv⟩ for all u ∈ Z

r
2,v ∈ Z

k
2.

Whether a diagonal operator is a logical identity or a logical operator is independent of the choice of
basis for the span ⟨LX⟩ (see section 2.3). However, the logical action of the operator depends on the labelling
the canonical codewords and so is dependent on the choice of basis for ⟨LX⟩.

5
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Example 2.2 (transversal logical operators of [[4,2,2]] code). We use the [[4,2,2]] code to illustrate the types
of transversal logical operators we consider in this work. Using the notation introduced in section 2.3, the
X-checks and X-logicals of the code are:

SX :=
(

1111
)

(11)

LX :=

(

0101
0011

)

. (12)

In this case, there are r= 1 X-checks and k= 2 X-logicals. There are 2k = 4 canonical codewords which we
calculate using equation (7):

|00⟩L := |0000⟩+ |1111⟩
|01⟩L := |0011⟩+ |1100⟩
|10⟩L := |0101⟩+ |1010⟩
|11⟩L := |0110⟩+ |1001⟩.

(13)

We can calculate the single Z-check as follows:

SZ := kerZ2

(

SX
LX

)

=
(

1111
)

. (14)

Readers can verify that Z⊗4 acts as a logical identity by checking that Z⊗4|v⟩L = |v⟩L for each of the canonical
codewords.

The following are examples of transversal diagonal logical operators composed of controlled-phase gates
at level 2 whose actions can be verified by applying the method of section 2.4:

1. Single-qubit phase gates controlled-Z: CZ01 = S30S1S2S
3
3

2. Multi-qubit controlled-phase gates S operator on both logical qubits: S0S1 = S1S2CZ03

2.5. The XP formalism
The XP formalism is a generalisation of the Pauli stabiliser formalism, and we will show that diagonal
Clifford hierarchy operators can be represented as diagonal XP operators. In the XP formalism, we fix an
integer precision N⩾ 2 and let ω = exp(πi/N) be a (2N)th root of unity. We define a diagonal phase
operator P= diag(1,ω2) which is a 1/N rotation around the Z axis and consider the group of XP operators
XPn

N that is generated by ωI,Xi,Pi where Pi is a P operator applied to qubit i. By setting N := 2t, it is easy to
see that the Pi correspond to the level t phase gates of section 2.1, and so any operator composed of
single-qubit phase gates can be represented as a diagonal XP operator. For example, setting t= 1 results in
N= 2,ω = i and P=Z so XPn

2 is the Pauli group on n qubits.
The XP formalism has a fundamental commutation relation that allows us to move P operators to the

right of X operators:

PX= ω2XP−1. (15)

All XP operators have a unique vector representation with a phase component p ∈ Z2N, an X-component
x ∈ Z

n
2 and a Z-component z ∈ Z

n
N. The Z-component is modulo N, for instance, because PN = I. The XP

operator formed from these components is:

XPN (p|x|z) := ωp
∏

0⩽i<n

Xx[i]i Pz[i]i . (16)

Diagonal XP operators are those with a zero X-component. The vector form of XP operators allows us to
perform algebraic operations efficiently via componentwise addition and multiplication of
vectors—examples are given in table 4 of [14]. In particular, the action of an XP operator on a
computational basis element |e⟩ where e ∈ Z

n
2 is determined as follows:

XPN (p|x|z) |e⟩= ωp+2e·z|e⊕ x⟩ (17)

where N= 2t, we can determine the lowest level of the Clifford hierarchy at which a diagonal operator
B := XPN(0|0|z) occurs. Let g := GCD(N,z) be the GCD of N and each component of z. As N= 2t,g is a
power of 2 and B= XPN/g(p/g|0|z/g). Accordingly, B occurs at level t− log2(g) of the diagonal Clifford
hierarchy.

6
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Figure 1. Relationship between XP operator groups: here, XPn
N is the group of all XP operators of precision N on n qubits. The

stabiliser group ⟨SX,SZ⟩ of a CSS code is a subgroup of the logical XP identity group IXP which fixes all elements of the codespace
which, in turn, is a subgroup of the logical operators of XP form LXP.

Example 2.3 (determining Clifford hierarchy level of XP operators). Let t= 3 and B= XP8(0|0|4444), so
that g= GCD(8,4) = 4. Hence B= XP2(0|0|1111) = Z⊗4 and occurs at level t− log2(4) = 3− 2= 1 of the
Clifford hierarchy.

2.6. Logical identity and logical operator groups in the XP formalism
We now look at the logical group structure of a CSS code in the XP formalism with reference to the
definitions of logical operators in section 2.4. In the stabiliser formalism, a Pauli operator acts as a logical
identity if and only if it is in the stabiliser group ⟨SX,SZ⟩. In the XP stabiliser formalism, an XP operator may
act as a logical identity but not be in the stabiliser group—we will see an instance of this in example 3.1. The
logical XP identity group, IXP, are the XP operators of precision N which fix each element of the codespace.
The stabiliser group is a subgroup of IXP but may not be equal to it.

The logical XP operator group, LXP, are the XP operators of precision N that are logical B operators for
some unitary B acting on k qubits. Logical XP operators may have actions outside the Pauli group, and the
logical CZ01 operator of example 2.2 is an instance of such an operator. Logical identities are elements of LXP

that have a trivial action. The logical groups in the XP formalism are summarised in figure 1.

3. Logical operators composed of single-qubit phase gates

In this section, we present methods for identifying and testing logical operators composed of single-qubit
phase gates at a given level t of the Clifford hierarchy. Operators of this form can be identified with diagonal
XP operators of precision N= 2t. The algorithms in this section are of polynomial complexity in the code
parameters n,k, r (section 2.3), so they can be used on CSS codes with a large number of physical or logical
qubits.

This section is structured as follows. We first show how to calculate generators for the diagonal logical
identity XP group. This is an important first step for a number of our algorithms. We then demonstrate an
algorithm that searches for a diagonal XP operator with a desired logical action. Next, we set out an efficient
method for testing if a given diagonal XP operator is a logical operator on a CSS code. We then show how to
use this test to find all diagonal logical operators of XP form. Finally, we show how to express the action of a
diagonal logical XP operator in terms of a product of logical controlled phase operators. We use the
hypercube code of [22, 23] which has a rich logical operator structure an example throughout this section.
We also demonstrate the use of the algorithms on larger codes such as hyperbolic color codes [24], poset
codes [25] and triorthogonal codes [10].

3.1. Diagonal logical XP identity group generators
Calculating generators for the logical identity group of a CSS code is an important first step for several of the
algorithms discussed in this paper. An algorithm for determining the logical identity group is set out in
section 6.2 of [14]. Here, we present a simplified version for CSS codes.

Due to the discussion in section 2.4, a diagonal logical identity operator fixes all |euv⟩ in the canonical
codewords of equation (7). Now let N := 2t and let B := XPN(2p|0|z) be a diagonal XP operator. Using
equation (17), the action of B on the computational basis vector |euv⟩ is B|euv⟩= ω2p+2euv·z|euv⟩. Considering
the action of B on |e00⟩= |0⟩, we see that p= 0 mod 2N. As ω2N = 1, B applies a trivial phase to |euv⟩ if and

7
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only if euv · z= 0 mod N. We can find all such solutions by taking the kernel of a suitably constructed
matrix modulo N. This is done via theHowell matrix form [26] which is a generalisation of the reduced row
echelon form for modules over rings such as ZN. The notation kerZN(EM)means the Howell basis of the
kernel of the matrix EM modulo N.

Algorithm 1. Logical identity group generators.

Input:
1. The X-checks SX and X-logicals LX of a CSS code (section 2.3);
2. The desired level of the Clifford hierarchy t (section 2.1).

Output: a matrix KM whose rows are the Z-components of a set of generators for the diagonal logical identity XP group
of precision N= 2t (section 2.6).

Method:
1. Let EM be the binary matrix whose rows are the euv := uSX + vLX of equation (7);
2. Let N := 2t and calculate KM := kerZN(EM) in Howell matrix form;
3. Return KM.

Because EM has 2r+k rows, the complexity of the logical identity algorithm is highly sensitive to the
number of X-checks r and logical qubits k. However, due to proposition E.13 of [14], we only need to
consider euv where wt(u)+wt(v)⩽ t to determine the logical identity group up to level t of the Clifford
hierarchy. Hence, we only require [r+k

t ] :=
∑

0⩽j⩽t (
r+k
j ) rows from EM. Hence, the dimensions of the key

matrix EM scale asO((k+ r)t × n). As we require only a single kernel calculation for the algorithm the time
complexity as defined in table 1 isO((k+ r)tn2).

Example3.1 (logical identity algorithm—hypercube code). In this example, based on [22, 23] and illustrated
in Figure 2, qubits reside on the eight vertices of a cube. The single X-check is the all-ones vector indicating
an X operator on all vertices of the cube:

SX =
(

11111111
)

. (18)

The three X-logicals are weight four vectors associated with three faces meeting at a point which we write in
the notation of section 2.3 as follows:

LX =





01010101
00110011
00001111



 . (19)

We calculate the Z-checks by applying equation (6) and find that the Z-checks also correspond to faces:

SZ := kerZ2

(

SX
LX

)

=









10010110
01010101
00110011
00001111









. (20)

This process is exactly the same as finding the diagonal logical identities at level t= 1 as outlined in section 3.1.
In this case, EM has r+ k= 1+ 3= 4 rows and the logical identities are the kernel of EM modulo 2. Now
applying the logical identity algorithm at level t= 3, EM has 15 rows representing the sum modulo 2 of up to
three rows from SX and LX. Taking the kernel of EM modulo N= 23 = 8, we find:

KM := kerZ8 (EM) =









22222222
04040404
00440044
00004444









. (21)

The rows of KM are the Z-components of diagonal XP operators which act as logical identities, and form a
generating set of all such operators of precision N. For instance, the operator XP8(0|0|22222222) = S⊗8 acts
as a logical identity, but is not in the stabiliser group ⟨SX,SZ⟩. An interactive version of this example is in the
linked Jupyter notebook.

8
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Figure 2.Hypercube code of dimension 3: qubits reside on the vertices of a cube. The blue-coloured X-logicals are associated with
the 2D faces, whilst the X-check is associated with the single 3D volume. The red-coloured Z-checks are associated with the 2D
faces.

3.2. Algorithm 2. search for diagonal XP operator by logical action
We now demonstrate a method that searches for diagonal logical operators of XP form with a desired action.
Aside from verifying if a CSS code has a transversal implementation of a particular logical operator, this is a
useful method for cross-checking other algorithms.

Algorithm 2. Search for diagonal XP operator by logical action.

Input:
1. The X-checks SX and X-logicals LX of a CSS code (section 2.3);
2. A level-t controlled-phase operator B on k qubits (section 2.1) such that B|0⟩= |0⟩.

Output: a diagonal XP operator of precision N= 2t which acts as a logical B operator or FALSE if this is not possible.

Method:
1. For v ∈ Z

k
2 calculate the phase qv ∈ ZN such that B|v⟩= ω

2qv |v⟩;
2. Form the matrix EB that has rows of form (−qv|euv) where euv := uSX + vLX;
3. Calculate the kernel KB := kerZN(EB);
4. If there is an element (1|z) ∈ KB then z is the Z-component of a logical B operator B := XPN(0|0|z). This is

because (1|z) · (−qv|euv) = 0 mod N ⇐⇒ euv · z= qv mod N for all euv, which corresponds to the action
of a logical B operator on the codewords |v⟩L.

The above algorithm requires that B|0⟩= |0⟩. If this is not the case, let B|0⟩= ωp|0⟩, run the algorithm
using B ′ := ω−pB and adjust for phase on the result. The results of the algorithm are dependent on the
choice of basis for the span ⟨LX⟩ (see section 2.3).

The logical action search algorithm involves finding the kernel of a matrix EB of dimension
2r+k × (n+ 1). Hence the complexity of the algorithm is sensitive to the number of logical qubits k and
independent X-checks r, but can be reduced as follows. Due to proposition B.1, where N= 2t the dot
product euv · z can always be written as a ZN linear combination of terms of form eu ′v ′ · z where
wt(u ′)+wt(u ′)⩽ t. Hence, we only need to consider euv where wt(u)+wt(v)⩽ t and qv where wt(v)⩽ t.
The number of rows required in EB is therefore [k+r

t ] where [
r
t] :=

∑

0⩽j⩽t (
r
j). Hence, the dimensions of the key

matrix EB scale asO((k+ r)t × n) and as we require only a single kernel calculation for the algorithm the
time complexity as defined in table 1 isO((k+ r)tn2).

Example 3.2 (search for diagonal XP operator by logical action). The linked Jupyter notebook illustrates the
operation of the search algorithm on the hypercube code of example 3.1. Users can enter the desired logical
operator to search for in text form—for example CZ[1,2], S[1] or CCZ[0,1,2]. The script either returns a
diagonal XP operatorwith the desired logical action, or FALSE if there is no such operator.We find logical oper-
ators CZ12 = XP8(0|0|02060602) and CCZ012 = XP8(0|0|13313113) but no solutions for transversal logical S
operators.

3.3. Logical operator test for diagonal XP operators
We now present an efficient method for determining whether a given diagonal XP operator acts as a logical
operator on a CSS code, which relies on a commutator property of logical operators. This is used to find a
generating set of all diagonal logical XP operators of a given precision and to check the results of other
algorithms.

9
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Due to proposition E.2 of [14], an XP operator B acts as a logical operator on the codespace if and only if
the group commutator with any logical identity A is again an element of the logical identity group IXP
(see 2.6). That is:

[[A,B]] := ABA−1B−1 ∈ IXP,∀A ∈ IXP. (22)

When B := XPN(0|0|z) is diagonal and A := XPN(0|x|0) is non-diagonal, by applying the COMM rule of
table 4 in [14] we have:

[[A,B]] = XPN (2x · z|0| − 2xz) . (23)

As B is a diagonal operator, we only need to consider commutators with non-diagonal elements of the logical
identity group. In proposition B.2 we show that this reduces to finding z ∈ Z

n
N such that for all X-checks x,

both x · z= 0 mod N and 2xz ∈ ⟨KM⟩ZN where KM is a generating set of Z-components of the diagonal
logical identities as defined in section 3.1 and ⟨KM⟩ZN the row span of KM over ZN.

As 2xz and N are both divisible by 2, we apply the method of section 2.5 and see that the group
commutator must be at most a level t− 1 Clifford hierarchy operator. For instance, for t= 2,N= 4 logical
operators must commute up to level t= 1,N= 2 logical identities which are the Z-checks (see example 3.1).
This observation either eliminates the need to calculate the logical identities (for t⩽ 2) or reduces the
complexity of calculating them (the number of rows in the matrix EM of section 3.1 is a polynomial of
degree t).

The dimensions of the matrix KM scale asO(n× n) and checking whether a vector is in the span of ⟨KM⟩
involves the calculation of a Howell normal form. We requireO(r) characteristic matrix operations for the
algorithm where r is the number of independent X-checks, so the time complexity isO(rn3). We may need to
first run the diagonal logical identity algorithm of section 3.1 at level t− 1.

Algorithm 3. Logical operator test for diagonal XP operators.

Input:
1. The X-checks SX of a CSS code (section 2.3);
2. The matrix KM corresponding to the Z-components of the level t− 1 diagonal logical identity generators
(section 3.1);

3. A diagonal XP operator B= XPN(0|0|z) on n qubits of precision N= 2t (section 2.5).

Output: TRUE if B acts as a logical operator on the code or FALSE otherwise.

Method:
1. For each row x of SX:
(a) Check if x · z= 0 mod N; and
(b) Check if 2xz is in the rowspan of KM over ZN;
(c) If either is not the case, return FALSE.

2. Return TRUE.

Example 3.3 (logical operator test). In this example, we apply the logical operator test to the logical CZ12

found for the hypercube code in example 3.2. As CZ12 := XP8(0|0|02060602), we let z= 02060602. Let x=
11111111 corresponding to the single X-check. We calculate the group commutator C := (2x · z|0| − 2xz).
We find that x · z= 16= 0 mod 8 and −2xz= 04040404 mod 8. Referring to example 3.1, we see that this
vector is a row of KM. As both x · z= 0 mod 8 and −2xz ∈ ⟨KM⟩ZN , C is a logical identity. Accordingly, we
have verified that CZ12 is a diagonal logical operator on the code. Applying the method of section 2.5, we note
that CZ12 is at level 2 of the Clifford hierarchy and the group commutator C is at level 1.

3.4. Diagonal logical XP operator group generators
We now show how to apply the test for diagonal logical XP operators of section 3.3 to find all diagonal logical
operators of XP form for a CSS code.

10
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Algorithm 4. Diagonal logical XP operator group generators.

Input:
1. The X-checks SX of a CSS code (section 2.3);
2. The desired level of the Clifford hierarchy t (section 2.1);
3. The matrix KM corresponding to the Z-components of the level t− 1 diagonal logical identity generators

(section 3.1).

Output: a matrix KL over ZN representing the Z-components of a generating set of diagonal logical operators
of XP form (section 2.6).

Method:
1. For each X-check x ∈ SX, find solutions z ∈ Z

n
N such that both x · z= 0 and 2xz ∈ ⟨KM⟩ZN . Details of solving

within these constraints are set out in section B.3. Denote the solutions CommN(KM,x);
2. Find the intersection of all such solution sets KL :=

∩
x∈SX

CommN(KM,x). The method for determining
intersections of spans over ZN is covered in appendix A.4 of [14];

3. Return KL.

The rows of KL correspond to the Z-components of a generating set of the logical XP group (section 2.6),
which includes the logical identity XP group. Determining the logical action of the operators is discussed in
section 3.5.

The dimensions of the key matrices CommN(KM,x) scale asO(n× n) and determining intersections of
spans involves the calculation of a matrix kernel. We requireO(r) characteristic matrix operations for the
algorithm where r is the number of independent X-checks giving a time complexity ofO(rn3).

3.5. Determine action of diagonal logical XP operator
Here we demonstrate an algorithm expressing the action of a diagonal logical XP operator in terms of logical
controlled-phase operators. This is important because the algorithm in section 3.4 does not yield any
information on the action of the resulting diagonal logical operators.

Algorithm 5. Determine action of diagonal logical XP operator.

Input:
1. The X-logicals LX of a CSS code (section 2.3) with k logical qubits;
2. A diagonal XP operator B of precision N := 2t that acts as a logical operator on the code (section 2.4).

Output: a diagonal Clifford hierarchy operator B on k qubits representing the logical action of B.

Method:
1. Let V := {v ∈ Z

n
2 : wt(v)⩽ t};

2. For each v ∈ V, calculate qv such that B|vLX⟩= ω
qv |vLX⟩;

3. Loop over each v ∈ V ordered by weight. For any v≼ u ∈ V \ {v}, update qu := (qu− qv) mod 2N;
4. Return B :=

∏
v∈VCPN(qv,v) in terms of the vector form of controlled-phase operators of section 2.2.

The above algorithm involves calculatingO(kt) phase components qv, and this is sufficient due to
proposition B.1. Hence the size of the matrix required to calculate the phase components isO(kt × n). The
algorithm involves a single pass through the list of phases, so we requireO(1)matrix operations for the
algorithm giving time complexity ofO(ktn2). A naive approach which calculates the phase applied to each
codeword would involve calculatingO(2k) such phase components, and would be impractical for CSS codes
with a large number of logical qubits.

The results of the algorithm are dependent on the choice of basis for the span ⟨LX⟩ (see section 2.3).

Example 3.4 (action of diagonal logical XP operators—hypercube codes). In this example, we apply the
method of section 3.4 to the hypercube code of example 3.1 at level t= 3. The output of the method of
section 3.4 is a set of length 8 vectors over Z8 corresponding to Z-components of diagonal logical XP oper-
ators. Using the method of section 3.5, we obtain the following list of logical actions corresponding to the
Z-components:

11
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Figure 3. Diagonal logical operators of hypercube code of dimension 3: logical XP operators returned by the method of
section 3.4 are plotted on the cube. We note that Clifford hierarchy level 1 logical Z operators have support on 1D edges, level 2
CZ operators have support on 2D faces and level 3 CCZ operators have support on the entire 3D cube.

z Logical action Clifford level
00000044 Z0 1
00000404 Z1 1
00040004 Z2 1
00002662 CZ01 2
00260062 CZ02 2
02060602 CZ12 2
13313113 CCZ012 3

In figure 3 we display the resulting logical operators on the cube and notice that that the Clifford hierarchy
level of the logical operator corresponds to the dimension of the support of the operator. An interactive version
of this example is available in the linked Jupyter notebook.

Example3.5 (hyperbolicquantumcolor codes andposet codes). In the linked Jupyter notebook,we illustrate
the application of the method of section 3.4 to codes that have a large number of logical qubits. We choose
examples of self-orthogonal codes that are known to have transversal implementations of diagonal level 2
Clifford hierarchy logical operators.

Hyperbolic quantum colour codes [24] involve constructing codes from tessellations of the 2D hyperbolic
plane. The tessellations are formed from polygons with an even number of edges, and each vertex is shared
by three such polygons. We place a qubit on each vertex of the tessellation. For each polygonal face, we have
an X-check corresponding to the adjacent vertices. The Z-checks are the same as the X-checks. Applying the
method of section 3.4, we find that the codes have a transversal level 2 logical operator with actionwhich can be
expressed as a product of controlled-Z operators. We illustrate two examples of such tesselations in figure 4.

There are various methods in the literature for constructing classical self-orthogonal codes and these can
also be used to make quantum codes with Z-checks which are the same as the X-checks which we expect to
have transversal level 2 diagonal logical operators. In [25], self-orthogonal codes are constructed from partially
ordered sets (posets). Analysing poset codes using ourmethods, we see that they have transversal level 2 logical
operators with actions which can be expressed as products of S and CZ operators.

Example 3.6 (triorthogonal codes). For triorthogonal codes [10], there is always a logical operator of form
T⊗k := UT⊗n where U is a product of CZ and S operators and k is the number of logical qubits of the code.
In the linked Jupyter notebook, we apply the method of section 3.4 to find generating sets of diagonal logical
operators for the 38 triorthogonal code classes in table II of [27]. In this example, we consider codes with k= 3
logical qubits (this choice can be modified by the user).

Applying our method, we see that the logical operator structure of triorthogonal codes varies widely. In
some cases, the code has a transversal logical Ti operator for each logical qubit 0⩽ i < k. For most of the

12
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Figure 4. {8,3} Hyperbolic colour codes: above are tessellations corresponding to two hyperbolic colour codes from example 3.5.
The [[56,14,6]] code is not globally three-colourable as there is no valid colour assignment for faces 2 and 4 in the diagram above.
Each code has a transversal level 2 diagonal logical operator whose action is a product of logical CZ operators.

codes, we find a logical T⊗k operator of XP form. The exceptions are codes which require the application of
CZ operators to form T⊗k, and so would not be identified by our method. We do not see any instances of
logical CCZ or CS operators.

4. Transversal logical operators composed of multi-qubit controlled-phase gates

In the previous section, we have shown how to find a generating set of all logical operators of a CSS code that
can be constructed from single-qubit phase gates at any level of the Clifford hierarchy. This relied on
representing operators composed of single-qubit phase gates as diagonal XP operators. In this section, we
show how to find all transversal (depth-one) logical operators of a CSS code composed of multi-qubit
controlled-phase gates. The method relies on representing controlled-phase operators acting on a codespace
as diagonal XP operators acting on a larger Hilbert space via an embedding operator.

The structure of this section is as follows. We first introduce phase-rotation gates and discuss some of
their elementary properties. We then prove a duality result that transforms controlled-phase operators to
phase-rotation operators and vice versa. Hence phase-rotation gates are an alternative generating set for
diagonal Clifford hierarchy gates. We then describe an embedding operator from the codespace into a larger
Hilbert space such that phase-rotation operators in the codespace correspond to diagonal XP operators in
the embedded codespace. As a result, any diagonal Clifford hierarchy operator can be represented as a
diagonal XP operator in the embedded codespace.

Finally, we demonstrate an algorithm that searches for transversal logical operators composed of single-
and multi-qubit controlled-phase gates for a given CSS code. Such implementations are depth one and use
operators with bounded support size and so have fault-tolerant properties. Logical operators of this type
have recently been studied in [12, 13, 28] and we provide examples of the application of the algorithm to
codes in these papers.

4.1. Phase-rotation operators
Phase-rotation operators are single or multi-qubit diagonal gates that form an alternative generating set for
the diagonal Clifford hierarchy operators of section 2.1. Phase-rotation operators are defined as follows. Let
A := XP2(0|0|v) be a tensor product of Z operators and let ω := exp(πi/N). Let A±1 := (I±A)/2 be the
projectors onto the±1 eigenspaces of A and let q ∈ Z2N. The phase-rotation operator is:

RPN (q,v) = exp

(

qπ i

N
A−1

)

. (24)

This form is similar to the Pauli product rotations of [29] and operators of this type arise as fundamental
gates in nuclear magnetic resonance (NMR) [30] and quantum dot systems [31]. In proposition A.4, we
show that the action of RPN(q,v) on the computational basis element |e⟩ for e ∈ Z

n
2 is:
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RPN (q,v) |e⟩=
{

ωq|e⟩ if e · v mod 2= 1

|e⟩ otherwise.
(25)

We can express the phase applied more concisely as follows:

RPN (q,v) |e⟩= ωq·sv(e)|e⟩where sv (e) :=
⊕

i≼v

e [i] . (26)

Single qubit phase gates of precision N in this notation are of form Pi = RPN(2,bni ) where b
n
i is the length n

binary vector which is all zero, apart from component i which is one.
Where the precision and number of qubits are fixed, we use a more concise notation for phase-rotation

operators analogous to the notation for controlled-phase operators. For example, on n= 3 qubits, the
following are examples of precision N = 8 operators: RRZ012 := RP8(8,111),RS01 := RP8(4,110),
T0 = RP8(2,100).

4.2. Duality of controlled-phase and phase-rotation operators
In proposition A.5, we prove a duality result that allows us to convert vector form controlled-phase operators
to products of phase-rotation operators and vice versa:

CPN

(

2wt(v),v
)

=
∏

0̸=u≼v

RPN

(

2 · (−1)wt(u)−1
,u
)

; (27)

RPN (2,v) =
∏

0̸=u≼v

CPN

(

2 · (−2)wt(u)−1
,u
)

. (28)

In section 2.2, we saw that operators of form CPN(2wt(v),v) with wt(v)⩽ t and N := 2t generate the level t
diagonal Clifford hierarchy operators. As a consequence of the duality result, phase-rotation operators of
form RPN(2,v) where wt(v)⩽ t are an alternative generating set. In the linked Jupyter notebook we show
that RS01 = CZ01S1S2 = RS301Z1Z2 by applying the duality result twice—hence phase-rotation operators may
have more than one vector representation.

4.3. Embedded code method
The embedded code method involves constructing an embedding operator on the codespace of a CSS code
such that phase-rotation operators in the original codespace correspond to diagonal XP operators in the
embedded codespace. The embedding technique is similar to the one used to represent weighted hypergraph
states in section 5.4 of [14]. We first define the embedding operator in terms of its action on computational
basis states, then show how to extend it to phase rotation operators and strings of Pauli X operators. As an
example, we show how the embedding operator transforms repetition codes.

4.3.1. Action of embedding operator on computational basis states and CSS codespaces
LetMn

t be the matrix whose rows are the binary vectors of length n of weight between 1 and t. Let V be a

matrix whose rows are a subset of the rows ofMn
t . We define the embedding operator EV :Hn

2 →H|V|
2 that

has the following action on computational basis vectors |e⟩,e ∈ Z
n
2 :

EV|e⟩= |eVTmod 2⟩. (29)

Now let SX,LX be the X-checks and X-logicals of a CSS code C on n qubits (see section 2.3). The image of the
codespace of C under EV is the codespace of the embedded code CV defined as follows:

• X-checks SVX := SXVT

• X-logicals LVX := LXVT

• Z-checks SVZ := kerZ2

(

SVX
LVX

)

.

Providing V is full rank, the X-checks and X-logicals of the embedded code are independent (for instance if
V includes all rows of In). We will show that phase-rotation operators acting on the codespace correspond to
diagonal XP operators in the embedded codespace. Because operators of form RPN(2,v) for v ∈Mn

t and
N= 2t generate all controlled-phase operators of level t on n qubits (see section 4.2), choosing V=Mn

t

allows any such operator to be represented. By limiting V to a subset ofMn
t , we can place restrictions on the

phase-rotation operators we wish to work with in the embedded codespace. For instance, we can allow only
nearest neighbour interactions for a lattice-based code or cater for ZX symmetries and qubit partitions as
discussed in [12, 13].
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4.3.2. Action of embedding operator on phase-rotation and Pauli X operators
We now demonstrate an extension of the embedding operator EV to phase-rotation and Pauli X operators
which acts as a group homomorphism. A group homomorphism must respect commutation relations, and
this is much simpler to achieve for phase-rotation operators than for controlled-phase operators. In
proposition A.7, we prove the following commutation relation for controlled-phase and Pauli X operators:

CPN (q,v)Xi =

{

XiCPN (−q,v)CPN (q,v⊕ bni ) if v [i] = 1

XiCPN (q,v) otherwise.
(30)

In equation (30), bni is the binary vector of length n which is zero apart from entry i which is one. Extending
this to arbitrary strings of X operators we obtain the following:

CPN (q,v)XP2 (0|x|0) = XP2 (0|x|0)
∏

0≼u≼xv

CPN

(

q · (−1)wt(xv)+wt(u)
,v⊕ u

)

. (31)

In proposition A.6, we prove the much simpler commutation relation for phase-rotation operators which
corresponds closely to the commutation relation for XP operators in equation (15):

RPN (q,v)Xi =

{

ωqXiRPN (−q,v) if v [i] = 1

XiRPN (q,v) otherwise.
(32)

The relation in equation (32) also implies that for any V⊂Mn
t , we have closure under conjugation with any

Pauli X string, which is not the case for controlled-phase operators.
Now consider the group XRPV

N generated by operators of form ωI, Xi and RPN(2,v) for v a row of V.

Elements of XRPV
N can be written in terms of components p ∈ Z2N, x ∈ Z

n
2 and the vector q ∈ Z

|V|
N indexed

by rows of V such that:

XRPV
N (p|x|q) := ωp

∏

0⩽i<n

Xx[i]i

∏

v∈V

RPN (2q [v] ,v) . (33)

We define an embedding map for XRP operators with respect to V as follows:

EV
(

XRPV
N (p|x|q)

)

:= XPN
(

p|xVT|q
)

. (34)

In proposition B.4, we show that the embedding operator EV respects group operations and so acts as a
group homomorphism. As a result, we can use the diagonal logical identity and logical operator algorithm in
sections 3.1 and 3.4 to find logical operators in the embedded codespace. The results can be interpreted as
phase-rotation operators in the original codespace. One application of this method is to better understand
what kinds of coherent noise a CSS code is inherently protected against as in [32]. The logical identity group
of the embedded code represents the correlated noise that the code protects against up to configurable
constraints (for example connectivity and the level of Clifford hierarchy).

Another consequence of the embedded code technique is that for CSS codes, any logical operator B which
can be written as a product of single or multi-qubit phase rotation gates has a logical action in the Clifford
hierarchy, even where the precision N is not a power of 2. To see this, note that the proof of proposition B.4
does not rely on N being a power of 2. Hence, we can construct the embedded code using the method
outlined above. The embedded code is a CSS code with a transversal logical operator BV composed of
single-qubit phase gates of precision N. Due to [21], BV is a product of Clifford hierarchy phase and has
logical action within the Clifford hierarchy. The result follows because the logical actions of B and BV are the
same.

Example 4.1 (embedding the repetition code). In this example we show how to construct an embedded code
based on the repetition code. For example, let SX be the check matrix of the classical repetition code on three
bits and let LX be a weight one vector. This forms a CSS code C with:

SX :=

(

110
011

)

, (35)

LX :=
(

001
)

. (36)
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Let V :=M3
2 be the matrix whose rows are binary vectors of length 3 and weight 1 or weight 2. The embedded

code CV is defined by setting SVX := SXVT and LVX := LXVT so that:

VT :=





100110
010101
001011



 , (37)

SVX := SXV
T =

(

101101
011110

)

, (38)

LVX := LXV
T =

(

001011
)

. (39)

Applying the method of section 3.4, we find that the embedded code has a logical S operator given by
SV := XP4(0|0|113133) = S0S1S32S3S

3
4S

3
5. In the original codespace, this corresponds to the following product

of phase-rotation gates (section 4.1):

S := RP4 (2,100)RP4 (2,010)RP4 (6,001)RP4 (2,110)RP4 (6,101)RP4 (6,011) . (40)

In the linked Jupyter notebook, users can verify that using a repetition code on d bits andV=Md
t thematrix

whose rows are binary vectors of length d ofweight between 1 and t, the embedded code has a transversal logical
phase gate at level t of the Clifford hierarchy.

4.4. Algorithm 6. depth-one logical operators
We now show how to find the transversal logical operators composed of single and multi-qubit diagonal
Clifford hierarchy gates (i.e. depth-one circuit implementations where each physical qubit is involved in at
most one gate) for a CSS code. It relies on the method of representing phase-rotation operators on a
codespace as XP operators in an embedded codespace of section 4.3.

Algorithm 6. Depth-one logical operators.

Input:
1. The X-checks SX and X-logicals LX of a CSS code (section 2.3);
2. The desired level t of the Clifford hierarchy (section 2.1).

Output: a depth-one implementation of a logical controlled-phase operator at level t, or FALSE if there is no such
implementation.

Method:
1. Use the embedding V=Mn

t —all binary vectors of length n of weight between 1 and t;
2. For the embedded code CV (section 4.3), calculate KL the rows of which are the Z-components of a generating
set of the diagonal logical XP operator group (section 3.4);

3. For each row of KL, determine the logical action and the level of the Clifford hierarchy (section 3.5);
4. From the rows of KL, choose a vector z corresponding to a logical operator at level t of the Clifford hierarchy.

If there is no such operator, return FALSE. Otherwise, perform the following steps:
(a) Remove z from KL;
(b) For each element q of the rowspan of KL over ZN, check if z ′ := (q+ z) mod N represents a depth-one

operator at level t of the Clifford hierarchy (using the methods of sections 2.5 and 3.5). If so, return z ′;
(c) If no depth-one operator is found, go to step 4.

When the CSS code has a known symmetry, we can search for depth-one logical operators more
efficiently by modifying the embedding operator. The depth-one algorithm can take as input a permutation
of the physical qubits in cycle form such that the cycles partition the n physical qubits. Let c= (c1, c2, . . . , cl)
be a cycle in the permutation and let bnc be the length n binary vector which is zero apart from the
components i ∈ c that are one. The rows of the embedding matrix V are the vectors bnc for the cycles c in the
permutation.

The algorithm as outlined above yields logical operators composed of physical phase-rotation gates. To
search for logical operators composed of controlled-phase gates, transform the matrix KL by using the
duality result of section 4.2. In this case, due to the commutation relation in equation (31), we need to ensure
that for all v ∈ V any length n binary vector whose support is a subset of the support of v is also in V—that is
if v ∈ V and u≼ v then u ∈ V.

Note thatMn
t has [

n
t] :=

∑

1⩽j⩽t (
n
j) rows. Hence, the dimensions of the key matrix KL areO(nt × nt).

Where there are no depth-one logical operators at level t, the algorithm checks all possible linear
combinations of KL. Hence, the worst-case time complexity of the algorithm is exponential in the number of
rows of KL and we would generally apply the algorithm only to small codes of around 30 physical qubits. As
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an illustration, for t= 2 and n= 30,Mn
t has 465 rows, but for n= 100,Mn

t has 5050 rows. In appendix B.4 we
describe a method for more efficiently exploring the search space.

Example 4.2 (depth-one algorithm). In the linked Jupyter notebook, we illustrate the depth-one search
algorithm for small codes. For a given code and a desired level of the Clifford hierarchy t, the output is a
logical operator with a depth-one circuit implementation whose logical action is at level t of the diagonal
Clifford hierarchy, or FALSE if no such operator exists. This is done with no knowledge of the logical action of
the operator or symmetries of the code. For example, we identify the depth-one implementation of the logical

S0S
3
1 of the 2D toric code as discussed in [11–13]. Users can also apply the algorithm to Bring’s code which

is a 30-qubit LDPC code discussed in [12] and various examples of morphed codes which are discussed in
[28]. Users can also choose to use a known symmetry of the code to speed up the search—this can be used for
instance to verify the partitioned logical operators of the symmetric hypergraph product codes of [13].

5. Other applications of embedded codes

In this section, we discuss other applications of the embedded code method of section 4.3. We first show that
for any CSS code with k logical qubits and any diagonal Clifford hierarchy operator B on k qubits, we can
write a closed-form expression for a logical B operator on the codespace composed of phase-rotation gates
(see section 4.1). As a consequence, the embedded code has a logical B operator composed of single-qubit
phase gates. This leads to a method of generating CSS codes that have transversal implementations of any
desired diagonal logical Clifford hierarchy operator.

5.1. Canonical implementations of logical controlled-phase operators
Here, we show how to implement a desired logical controlled-phase operator on an arbitrary CSS code via a
canonical form composed of the phase-rotation gates of section 4.1. We demonstrate implementations of
logical S,T,CZ and CS operators using the 2D toric code as an example. As the canonical implementation is
in terms of phase-rotation operators, we can apply the embedded code method of section 4.3 and implement
the logical operator in the embedded codespace using single qubit phase gates. We use this fact to generate
families of CSS codes that have transversal implementations of a desired logical controlled-phase operator
using single-qubit phase gates. The methodology is illustrated in figure 5.

5.2. Canonical form for logical phase operators
In the proposition below, we show that logical phase operators have a particularly simple form in terms of
the phase-rotation gates of section 4.1.

Proposition 5.1 (canonical logical P operator). Let zi ∈ Z
n
2 be the Z-component of a logical Zi operator

Zi := XP2(0|0|zi). The operator Pi := RPN(2,zi) is a logical Pi operator.

Proof. The action of a Pi operator on a computational basis element |v⟩ where v ∈ Z
k
2 can be written Pi|v⟩=

ω2v[i]|v⟩. Let C :Hk
2 →Hn

2 be the encoding operator C|v⟩= |v⟩L for v ∈ Z
k
2. From equation (8), Pi is a logical

Pi operator if PiC = CPi. Hence:

CPi|v⟩= ω2v[i]|v⟩L =
∑

u∈Z
r
2

ω2v[i]|euv⟩ (41)

= Pi|v⟩L =
∑

u∈Z
r
2

Pi|euv⟩. (42)

Hence, we require Pi|euv⟩= ω2v[i]|euv⟩. Set the precision N = 2, and we have Zi|euv⟩= (−1)v[i]|euv⟩. Applying
equation (17), we have Zi|euv⟩= XP2(0|0|zi)|euv⟩= (−1)euv·zi |euv⟩. Therefore, euv · zi mod 2= v[i]. Now
consider the action of Pi := RPN(2,zi) on |euv⟩ using proposition A.4:

RPN (2,zi) |euv⟩= ω2(euv·zi mod 2)|euv⟩= ω2v[i]|euv⟩, (43)

as required for Pi to act as a logical P operator.

Using the duality of RP and CP operators of section 4.2, we can write Pi as a product of CP gates:

Pi := RPN (2,zi) =
∏

0̸=u≼zi

CPN

(

2 · (−2)wt(u)−1
,u
)

. (44)

As N= 2t, any terms with wt(u)> t disappear. Hence the support of the CP gates in the implementation are
of maximum size t. The implementation may not be transversal, as a qubit may be acted upon by more than
one gate.
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Figure 5. Logical operators of CSS codes and embedded codes: a CSS encoding maps k logical qubits into n physical qubits via
C :Hk

2 →Hn
2 , which takes computational basis elements |v⟩ to codewords |v⟩L. Consider a level-t controlled-phase operator B

acting onHk
2. An operator B acting onHn

2 is a logical B operator if BC = CB. We show how to construct a canonical logical B
operator B from level-t phase-rotation gates. Let V be the matrix whose rows are length n binary vectors representing the support

of the controlled-phase operators making up B. The embedded codespace is formed by applying the embedding EV :Hn
2 →H

|V|
2

which takes the computational basis element |e⟩ to |eVT mod 2⟩. This enables us to construct a logical B operator BV on the
embedded codespace from single qubit phase gates.

Example 5.1 (logical phase operators of the 2D toric code). We illustrate the canonical form of logical
controlled-phase operators by considering the 2D toric code. Using the XP operator notation of equation (16),
let Z0 := XP2(0|0|z0),Z1 := XP2(0|0|z1) be logical Z operators on logical qubit 0 and 1 respectively with
d := wt(z0) = wt(z1)⩾ 3. Applying equation (44) and using the notation of equation (1) for controlled-phase
operators, the canonical forms for the logical S and T operators on qubit 0 are as follows:

S0 := RP4 (2,z0) =
∏

0 ̸=u≼z0

CP4
(

2 · (−2)wt(u)−1
,u
)

(45)

=
∏

u≼z0
wt(u)=2

CP4 (−4,u)
∏

u≼z0
wt(u)=1

CP4 (2,u) (46)

=
∏

i<j≼z0

CZij

∏

i≼z0

Si (47)

T0 := RP8 (2,z0) =
∏

0 ̸=u≼z0

CP8
(

2 · (−2)wt(u)−1
,u
)

(48)

=
∏

u≼z0
wt(u)=3

CP8 (8,u)
∏

u≼z0
wt(u)=2

CP8 (−4,u)
∏

u≼z0
wt(u)=1

CP8 (2,u) (49)

=
∏

i<j<k≼z0

CCZijk

∏

i<j≼z0

CS−1
ij

∏

i≼z0

Ti (50)

These results hold for any CSS code with wt(z0)⩾ 3, as no other special properties of the toric code have been
used.

5.3. Canonical form of logical phase-rotation and controlled-phase operators
We now generalise the method in section 5.2 and show how to implement logical phase-rotation operators
for CSS codes using physical phase-rotation gates. Let LZ be the k× n binary matrix representing logical Z
operators such that LZLTX mod 2= Ik where k= |LX|. This means that XP2(0|0|zi) anti-commutes with
XP2(0|xj|0) if and only if i= j. Let u be a binary vector of length k. In proposition B.5 we show that the
following is a logical phase-rotation operator:

RPN (2,u) := RPN (2,uLZ) (51)

By the duality result of section 4.2, we can write logical phase-rotation operators as follows:

CPN

(

2wt(v),v
)

:=
∏

0 ̸=u≼v

RPN

(

2 · (−1)wt(u)−1
,u
)

(52)

=
∏

0̸=u≼v

RPN

(

2 · (−1)wt(u)−1
,uLZ

)

(53)

This in turn can be converted into products of physical controlled-phase gates by applying the duality result a
second time.
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Algorithm 7. Canonical logical controlled-phase operators.

Input:
1. The Z-logicals LZ of a CSS code (see above);
2. A level-t diagonal Clifford hierarchy operator B on k qubits (section 2.1).

Output: a logical B operator (section 2.4) on the code composed of physical phase rotation gates (section 4.1) with
maximum support size t.

Method:
1. Express B=

∏
uRPN(qu,u) as a product of phase rotation gates using the duality result of section 4.2 where N= 2t

and u ∈ Z
k
2;

2. The operator B=
∏
uRPN(qu,uLZ) is a logical B operator;

3. Apply the duality result of section 4.2 twice to express B as a product of phase-rotation gates of maximum support
size t.

Example 5.2 (logical controlled-phase operators of toric code). We now demonstrate a canonical imple-
mentation of a logicalCZ operator on the 2D toric code of example 5.1 composed of physical controlled-phase
gates. Using equation (53) and the fact that RP4(2,z0) =

∏

i<j≼z0
CZij

∏

i≼z0
Si from example 5.1:

CZ01 := CP4 (4,11) (54)

=
∏

0̸=u≼11

RP4
(

2 · (−1)wt(u)−1
,uLZ

)

(55)

= RP4 (−2,z0 ⊕ z1)RP4 (2,z0)RP4 (2,z1) (56)

=





∏

i<j≼z0⊕z1

CZij

∏

i≼z0⊕z1

Si





−1



∏

i<j≼z0

CZij

∏

i≼z0

Si









∏

i<j≼z1

CZij

∏

i≼z1

Si



 . (57)

We can choose logical Z operators for the 2D toric code such that supp(z0)∩ supp(z1) = ∅. In this case, all S
operators in equation (57) cancel, as do any CZ operators which lie entirely on the support of either z0 or z1,
and so we have:

CZ01 :=
∏

i≼z0,j≼z1

CZij. (58)

This is an instance of claim 2 in [33] for logical multi-controlled-Z operators. Our method applies to arbitrary
diagonal Clifford hierarchy logical operators and we can also show:

CS01 := CP8 (4,11) (59)

=
∏

0 ̸=u≼11

RP8
(

2 · (−1)wt(u)−1
,uLZ

)

(60)

=
∏

i≼z0,j≼z1

CSij
∏

i≼z0,j<k≼z1

CCZijk

∏

i<j≼z0,k≼z1

CCZijk (61)

Note that the number of physical gates used in the implementation is O(dt). As we are not guaranteed that
supp(z0)∩ supp(z1) = ∅ for arbitrary CSS codes, the above identities are not completely general. In the linked
Jupyter notebook, users can calculate identities of this kind for any desired CSS code for any diagonal Clifford
hierarchy logical operator.

5.4. Constructing a CSS code with a desired diagonal logical Clifford hierarchy operator
In this section, we apply the canonical logical operator form of section 5.3 to generate a CSS code with a
transversal implementation of a desired logical controlled-phase operator using single-qubit phase gates.
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Table 2. Parameters of CSS codes generated by the embedded code method when searching for implementations of logical operators
based on the toric code of distance d. For a logical operator acting on k qubits, we use a k-dimensional toric code.

Logical S Logical CZ Logical T Logical CS Logical CCZ

d n dX dZ n dX dZ n dX dZ n dX dZ n dX dZ

2 1 1 1 4 2 2 1 1 1 12 6 2 8 4 2
3 6 3 2 15 4 3 1 1 1 33 14 2 63 16 3
4 6 3 2 16 4 4 14 7 2 64 22 2 64 16 4
5 15 5 3 35 6 5 15 7 3 155 40 3 215 36 5
6 15 5 3 36 6 6 35 15 2 228 52 4 216 36 6
7 28 7 4 63 8 7 36 15 3 385 76 4 511 64 7
8 28 7 4 64 8 8 92 29 3 512 92 5 512 64 8
9 45 9 5 99 10 9 93 29 3 819 126 5 999 100 9
10 45 9 5 100 10 10 165 45 4 1020 146 6 1000 100 10

Figure 6. CSS code with transversal logical controlled-S operator: the [[12,2,2]] code of example 5.3 is formed from two [[8,3,2]]
hypercube codes of example 3.1 joined at a common face, with additional three-body Z-checks. Similarly, the [[14,1,2]] code with
a transversal logical T operator is formed from three [[8,3,2]] codes joined pairwise at faces and sharing a common edge.

Algorithm 8. Constructing CSS codes with a desired diagonal logical Clifford hierarchy operator.

Input: a controlled-phase operator B on k qubits (section 2.1) and a target distance d.
Output: a CSS code with a logical B operator (section 2.4) composed of single-qubit phase gates.

Method:
1. Let C be a k-dimensional toric code of distance d. We construct the stabiliser generators of C using the total

complex of the tensor product of k classical repetition codes on d bits (see section II.D of [34]). The resulting CSS
code has k non-overlapping logical Z operators of weight d;

2. Find the canonical implementation of B=
∏
v∈VRPN(qv,v) composed of phase-rotation gates of maximum

support size t using algorithm 7;
3. Remove any elements of V where qv = 0 and apply the embedding EV to find the X-checks and X-logicals of the

embedded code CV as in section 4.3;
4. The resulting code has a logical B operator BV composed of level-t phase gates acting on the embedded codespace.

Example 5.3 (constructing CSS codes with transversal logical controlled phase operators). In table 2, we
list the parameters of CSS codes with transversal implementations of various target logical controlled phase
operators using the method in section 5.4. The CSS codes are generated from toric codes as follows. For a
target operator acting on k logical qubits, we use a k-dimensional toric code. We generate a series of codes
by increasing the distance d of the toric code. Looking at the CZ column we have a family of [[4m2,2,2m]]
codes with a transversal CZ operator, the first member of which is the [[4,2,2]] code of example 2.2. Looking
at the CCZ column, we have a family of [[8m3,3,2m]] codes which have a transversal CCZ operator, the first
member of which is the hypercube code of example 3.1. The six-qubit code in the S column is the six-qubit
code discussed in example 4.1. The 15-qubit code in the T column is the 15-qubit Reed–Muller code. The first
entry in the CS column is the [[12,2,2]] code with the following X-checks and X-logicals which is illustrated
in figure 6:
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SX :=

(

111100001111
000011111111

)

; LX :=

(

010101010101
001100110011

)

. (62)

An interactive version is available in the linked Jupyter notebook.

6. Conclusion and open questions

We have presented efficient new methods to identify and test diagonal logical operators on CSS codes using
both single- and multi-qubit diagonal Clifford hierarchy gates as building blocks. In addition, we provided a
technique for generating CSS codes with implementations of any desired diagonal Clifford hierarchy logical
operator using single-qubit phase gates. The methods generalise to non-CSS stabiliser codes as demonstrated
in appendix C. The algorithms are available in a GitHub repository and are intended to be of benefit to
researchers in understanding the logical operator structure of stabiliser codes.

Our methods rely on representing diagonal Clifford hierarchy operators as diagonal XP operators. Our
algorithms use the vector representation of XP operators and linear algebra modulo N, and so have reduced
computational complexity compared to existing work in this area.

The ability to represent diagonal Clifford hierarchy operators as XP operators may have a number of
other possible applications. Custom design of CSS codes for devices that have known coherent noise models
is one possibility. If the noise can be represented as a series of multi-qubit diagonal operators, we could
design a CSS code where these operators are in the logical identity group and so mitigate coherent noise. The
simulation of quantum circuits could be another application. A circuit composed of multi-qubit diagonal
operators, such as those used for measuring the stabiliser generators of a CSS code, could be amenable to
simulation using XP representations of the gates used. As any diagonal Clifford hierarchy operator can be
represented as a diagonal XP operator, there could also be implications for computational complexity theory.
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Appendix A. Controlled-phase and phase-rotation operators

In this appendix, we give the detailed proofs of results relating to controlled-phase and phase-rotation
operators. The action and duality property of these operators derive from sum/product duality properties for
binary vectors and binary variables, and we start by proving these results. We then prove results relating to
phase-rotation operators. We first show that phase-rotation operators can be written as a sum of projectors.
This allows us to calculate the logical action of phase-rotation operators. We then prove the duality result
between controlled-phase and phase-rotation operators. Finally we prove the key commutation relations for
phase-rotation and controlled-phase operators.

A.1. Product/sum duality results for binary vectors and variables
Proposition A.1 (sum/product duality of binary vectors). Let L be a binary matrix with rows xi for 0⩽ i < r
and v a binary vector of length r. Define:

sv (L) :=
⊕

i≼v

xi; (63)

pv (L) :=
∏

i≼v

xi. (64)
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Then over the integers:

sv (L) =
∑

0̸=u≼v

(−2)wt(u)−1pu (L) ; (65)

2wt(v)−1pv (L) =
∑

0̸=u≼v

(−1)wt(u)−1 su (L) . (66)

Proof. Restatement of proposition E.10 of [14].

Proposition A.2 (sum/product duality of binary variables). Let e be a vector of r binary variables and let v a
binary vector of length r. Define:

sv (e) :=
⊕

i≼v

e [i] ; (67)

pv (e) :=
∏

i≼v

e [i] . (68)

Then over the integers:

sv (e) =
∑

0̸=u≼v

(−2)wt(u)−1 pu (e) ; (69)

2wt(v)−1pv (e) =
∑

0̸=u≼v

(−1)wt(u)−1 su (e) . (70)

Proof. Application of proposition A.1 with L the single-column matrix eT.

A.2. Phase-rotation operators
Proposition A.3 (projector form of RP operators). Phase-rotation operators can be written in terms of
projectors A±1 := (I±A)/2:

RPN (q,v) := exp

(

qπ i

N
A−1

)

= A+1 +ωqA−1. (71)

Proof. Because A−1 is a projector, Am
−1 = A−1 for integersm> 0. Also A0

−1 = I= A+1 +A−1. Hence:

exp((qπ i/N)A−1) = I+A−1

∑

m>0

(qπ i/N)m /m! (72)

= A+1 +A−1

∑

m⩾0

(qπ i/N)m /m! (73)

= A+1 + eqπ i/NA−1. (74)

Proposition A.4 (action of RP operators). The action of a phase-rotation operator on a computational basis
element |e⟩ where e ∈ Z

n
2 and ω := exp(π i/N) is:

RPN (q,v) |e⟩=
{

ωq|e⟩ if e · v mod 2= 1

|e⟩ otherwise.
(75)

Proof. Straightforward application of projector form of phase-rotation operators in proposition A.3.

A.3. Duality of controlled-phase and phase-rotation operators
The proposition below allows us to express controlled-phase operators (section 2.1) as products of
phase-rotation operators (section 4.1) and vice-versa.

Proposition A.5 (duality of controlled-phase and phase-rotation operators). For N= 2t and u,v binary
vectors of length n the following identities hold:

RPN (2,v) =
∏

0̸=u≼v

CPN

(

2 · (−2)wt(u)−1
,u
)

(76)

CPN

(

2wt(v),v
)

=
∏

0̸=u≼v

RPN

(

2 · (−1)wt(u)−1
,u
)

. (77)
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Proof. Using equation (26) and the notation of proposition A.2, we can write RPN(2,v)|e⟩= ω2sv(e)|e⟩. From
proposition A.2, we have 2sv(e) =

∑

0̸=u≼v 2 · (−2)wt(u)−1pu(e).

Similarly, from equation (2), we can write CPN(2wt(v),v)|e⟩= ω2wt(v)pv(e)|e⟩ and due to proposition A.2,
we have 2wt(v)pv(e) =

∑

0̸=u≼v 2 · (−1)wt(u)−1su(e).
Hence the phases applied on the RHS and LHS are the same and the result follows.

A.4. Commutator relations for controlled-phase and phase-rotation operators
In this section, we prove the commutation relations for Pauli X operators with controlled-phase operators
(section 2.1) and phase-rotation operators (section 4.1).

Proposition A.6 (commutator relation for phase-rotation operators). Let Xi denote a Pauli X operator on
qubit i. The following identity applies for phase-rotation operators:

RPN (q,v)Xi =

{

ωqXiRPN (−q,v) if v [i] = 1

XiRPN (q,v) otherwise.
(78)

Proof. If v[i] = 0, the support of the operators do not overlap and hence the operators commute and the
second case follows.

For the case where v[i] = 1, let bni be the length n vector which is zero apart from component i which is
one. Then, for a computational basis vector |e⟩, we have:

RPN (q,v)Xi|e⟩= RPN (q,v) |e⊕ bni ⟩ (79)

=

{

|e⊕ bni ⟩ if (e⊕ bni ) · v= 0 mod 2

ωq|e⊕ bni ⟩ otherwise.
(80)

ωqXiRPN (−q,v) |e⟩=
{

ωq|e⊕ bni ⟩ if e · v= 0 mod 2

ωqω−q|e⊕ bni ⟩ otherwise.
(81)

Since, by assumption v[i] = 1, e · v= 0 mod 2 ⇐⇒ (e⊕ bni ) · v= 1 mod 2. Hence, the action on computa-
tional basis vectors is identical and the result follows.

Proposition A.7 (commutation relation for controlled-phase operators).

CPN (q,v)Xi =

{

XiCPN (q,v) if v [i] = 0

XiCPN (−q,v)CPN (q,v⊕ bni ) otherwise
(82)

where bni is the length n binary vector which is zero apart from component i which is one.

Proof. If v[i] = 0 then CPN(q,v) has no support in common with Xi so the operators commute. Now assume
v[i] = 1 then the operator on the LHS acts on the computational basis element |e⟩ as follows:

CPN (q,v)Xi|e⟩= CPN (q,v) |e⊕ bni ⟩ (83)

=

{

ωq|e⊕ bni ⟩ if v≼ (e⊕ bni )
|e⊕ bni ⟩ otherwise.

(84)

Since by assumption v[i] = 1, a phase of ωq is applied ⇐⇒ v≼ (e⊕ bni ) ⇐⇒ e[i] = 0 AND (v⊕ bni )≼ e.
Now consider the RHS and assume e[i] = 0 AND (v⊕ bni )≼ e. In this case, we do not have v≼ e because
v[i] = 1 but e[i] = 0. Hence:

XiCPN (−q,v)CPN (q,v⊕ bni ) |e⟩= ωqXiCPN (−q,v) |e⟩ (85)

= ωqXi|e⟩= ωq|e⊕ bni ⟩. (86)

We now show that all other cases result in a trivial phase. Assume e[i] = 1AND (v⊕ bni )≼ e. In this case, v≼ e
and so:

XiCPN (−q,v)CPN (q,v⊕ bni ) |e⟩= ωqXiCPN (−q,v) |e⟩ (87)

= ωqω−qXi|e⟩= |e⊕ bni ⟩. (88)

Now assume that (v⊕ bni )≼ e is not true. In this case, we can never have v≼ e and so neither of the
controlled-phase operators apply a phase, regardless of the value of e[i]. Hence the LHS and RHS have the
same action on computational basis elements and the result follows.
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Example A.1 (commutation relation for controlled-phase operators). Using proposition A.7, we can con-
jugate controlled-phase operators by strings of X operators and vice versa.We first computeCS01X1CS

−1
01 where

CS01 is a controlled-S operator on qubits 0 and 1. Using the notation of equation (1):

CS01X1CS
−1
01 = CP8 (4,11)X1CP8 (−4,11) (89)

= X1CP8 (−4,11)CP8 (4,10)CP8 (−4,11) (90)

= X1CP8 (−8,11)CP8 (4,10) (91)

= X1CZ01S0 (92)

Wenow compute (X0X1X2)CCZ012(X0X1X2)
−1. Using equation (31)with x= v= 111, and lettingw := u⊕ v:

(X0X1X2)CCZ012 (X0X1X2)
−1

= XP2 (0|111|0)CP8 (8,111)XP2 (0|111|0) (93)

=
∏

u≼111

CP8
(

8 · (−1)3+wt(u)
,v⊕ u

)

(94)

=
∏

0⩽wt(w)⩽3

CP8 (8,w) (95)

= CP8 (8,0)
∏

0<wt(w)⩽3

CP8 (8,w) (96)

=−Z0Z1Z2CZ01CZ02CZ12CCZ012 (97)

Interactive versions of these examples are available in the linked Jupyter notebook.

Appendix B. Additional details for logical operator algorithms

This appendix provides further details on the various logical operator algorithms. We first prove results that
reduce the complexity of the logical action and logical operator test algorithms of sections 3.2, 3.3 and 3.5.
We then show how to calculate valid z vectors that result in diagonal operators that commute with the
X-checks up to a logical identity for use in section 3.4. We then demonstrate a method for more efficiently
searching for depth-one logical operators composed of multi-qubit controlled phase gates for use in
section 4.4. We then show that the embedding operator of section 4.3 acts as a group homomorphism on the
group generated by phase-rotation and Pauli X operators. Finally, we show that the canonical form of
section 5.3 results in a logical operator with the required action.

B.1. Reducing complexity of logical action algorithms
In this section we show how to reduce the complexity of algorithms which work with the logical action of
diagonal XP operators on the canonical codewords. If B := XPN(0|0|z) is a diagonal logical operator of
precision N := 2t, then the action of B on the computational basis vectors euv := uSX + vLX making up the
canonical codewords of equation (7) can be written as B|euv⟩= ω2euv·z|euv⟩. In the proposition below, we
show that the phase component euv · z is completely determined by terms of form eu ′v ′ · z where
wt(u ′)+wt(v ′)⩽ t. As a result, when working with logical actions, we do not need to consider all 2k+r of
the euv vectors, just a limited set which is of size polynomial in k and r. This reduces the computational
complexity of the algorithms in sections 3.2 and 3.5.

Proposition B.1. Let N := 2t and z ∈ Z
n
N. The phase component euv · z can be expressed as a ZN linear

combination of eu ′v ′ · z where wt(u ′)+wt(v ′)⩽ t.

Proof. Let GX :=

(

SX
LX

)

and let a := (u|v). Noting that euv = aGX = sa(GX) and applying proposition A.1 we

have:

aGX = sa (GX) =
∑

0̸=b≼a

(−2)wt(b)−1pb (GX) . (98)

Terms with wt(b)> t disappear moduloN= 2t. Using the linearity of dot product and expressing the pb(GX)
in terms of sc(GX):
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aGX · z mod N=









∑

0 ̸=b≼a
wt(a)⩽t

(−2)wt(b)−1pb (GX)









· z mod N (99)

=









∑

0 ̸=b≼a
wt(a)⩽t

(−2)wt(b)−1
∑

0̸=c≼b

(−1)wt(c)−1 sc (GX)









· z mod N (100)

=









∑

0 ̸=b≼a
wt(a)⩽t

(−2)wt(b)−1
∑

0̸=c≼b

(−1)wt(c)−1 cGX · z









mod N. (101)

As wt(c)⩽ wt(b)⩽ wt(a)⩽ t, the result follows.

B.2. Test for diagonal logical XP operators
In this section, we prove that the algorithm in section 3.3 correctly identifies diagonal logical operators of XP
form. We first show that if the group commutator of an operator B with each of the logical identities A1,A2 is
a logical identity, then the group commutator of the product A1A2 is a logical identity.

Proposition B.2 (commutators of logical identities). Let IXP be the logical identity group as defined in
section 2.6 and let A1,A2 ∈ IXP. Let B be an XP operator such that [[A1,B]] and [[A2,B]] ∈ IXP. Then
[[A1A2,B]] ∈ IXP.
Proof. As IXP is a group, A1,A2 ∈ IXP =⇒ [[A1,A2]] ∈ IXP. Hence we can write A1A2 = CA2A1 for some
C ∈ IXP. Calculating [[A1A2,B]], for some C,C ′,C ′ ′ ∈ IXP:

[[A1A2,B]] = A1A2BA
−1
2 A−1

1 B−1 (102)

= A1

(

A2BA
−1
2 B−1

)

BA−1
1 B−1 (103)

= A1CBA
−1
1 B−1 (104)

= C ′A1BA
−1
1 B−1 (105)

= C ′C ′ ′ ∈ IXP. (106)

We now show that for a diagonal XP operator B, it is sufficient to check group commutators with the
r := |SX| operators of form XPN(0|xi|0) where xi are the rows of the X-checks SX.
Proposition B.3. Let C be a CSS code with X-checks SX and logical identity XP group IXP of precision N. Let
B := XPN(0|0|z) be a diagonal XP operator. B is a logical operator if and only if [[XPN(0|xi|0),B]] ∈ IXP for all
rows xi of SX.

Proof. B is a logical operator if and only if [[A,B]] ∈ IXP for all A ∈ IXP. If B is a logical operator then
[[XPN(0|xi|0),B]] ∈ IXP because XPN(0|xi|0) ∈ IXP.

Conversely, assume [[XPN(0|xi|0),B]] ∈ IXP for all rows xi of SX. Let KM be the matrix whose rows are a
generating set of the Z-components of the logical identities as defined in section 3.1. Any logical identity A can
be written as a product of terms of form XPN(0|xi|0) and XPN(0|0|zj) where zj is a row of KM. By assumption,
[[XPN(0|xi|0),B]] ∈ IXP and [[XPN(0|0|zj),B]] = I. Due to proposition B.2, the commutator of the product is
a logical identity and the result follows.

B.3. Algorithm to determine commutators of a given X-check
In the method of section 3.4, for a given X-check x ∈ SX we seek all Z-components z ∈ Z

n
N such that the

group commutator [[XPN(0|0|z),XPN(0|x|0)]] is a logical identity. This reduces to solving for z such that
both x · z= 0 mod N and 2xz ∈ ⟨KM⟩ZN where the rows of KM are the Z-components of the diagonal logical
identities as in section 3.1. In this section, we show how to solve for these constraints using linear algebra
modulo N. The method is as follows:

Without loss of generality, reorder qubits so that the firstm components of x are one and the remaining
n−m components are zero. In the matrices of form (a|b) below, the first component hasm columns
corresponding to the non-zero components of x, the next n−m columns correspond to the zero
components of x. For v ∈ ZN, let v · 1 := (

∑

0⩽i<n v[i]) mod N.

25



New J. Phys. 25 (2023) 103018 M AWebster et al

1. The vector 2xz is of the form (2u|0) where u is of lengthm and the row span of C0 := (2Im|0) over ZN

represents all vectors of this form.
2. Group commutators which are also logical identities are in ⟨C0⟩ZN

∩⟨KM⟩ZN and a Howell basis C1 is
calculated via the intersection of spans method in appendix 4.1 of [14].

3. The rows of C1 are of form (u|0) ∈ ⟨KM⟩ZN for u divisible by 2 modulo N. Now let v := u/2. Because
2(v+N/2) = 2v= u mod N, (v · 1) mod N is either 0 or N/2. Adjust themth component of v by
subtracting (v · 1) mod N. Let C2 be the matrix formed from rows of form (v|0).

4. Adding pairs of N/2 to the firstm components does not change 2xz or x · z mod N. Let A be Im−1 with a
column of ones appended. Add the rows (N/2 ·A|0) to C2.

5. Columns i where x[i] = 0 can have arbitrary values, as these do not contribute to 2xz or x · z. Add the
rows (0|In−m) to C2.

6. Return qubits to their original order. The valid Z-components are given by the row span of C2 over ZN.

B.4. Algorithm for depth-one operators
In the depth-one algorithm, we find transversal logical operators by starting with a level-t logical XP
operator acting on the embedded codespace, then multiplying by all possible elements of the diagonal logical
XP group of the embedded code. If the order of the diagonal logical XP group is large, this method can be
computationally expensive. In this section, we demonstrate an algorithm for more efficiently exploring the
search space and checking if an operator acting on the embedded codespace acts transversally on the
codespace. We use the residue function defined in equation 142 of [14]—we say that z ′ = ResZN(KL,z) if:

HowZN

(

1 z
0 KL

)

=

(

1 z ′

0 K ′
L

)

(107)

The input to this algorithm is the following:

• A binary matrix V for the embedding operator EV;
• AmatrixKL representing theZ-components of the generators of the diagonal logical XP group of the embed-
ded code (see section 3.4).

• A row vector z of KL which represents the Z-component of a non-trivial logical operator at level t of the
diagonal Clifford hierarchy acting on the embedded codespace. This corresponds to a product of phase-
rotation gates acting on the original codespace.

The output is a depth-one implementation of a non-trivial logical operator at level t of the diagonal Clifford
hierarchy, or FALSE if no such operator exists. The algorithm method is as follows:

(1) Remove z from KL;
(2) Let todo be a list containing only the all ones vector of length |V|. The vectors a in todo have columns

indexed by rows of V and represent partial partitions of the n qubits. The value of a[v] encodes the
following information:

• 0: supp(v) is not a partition;
• 1: whether supp(v) is a partition has not yet been determined;
• 2: supp(v) is a partition. For depth-one operators, any u with overlapping support (i.e. u · v⩾ 0 is not
a partition).

(3) While todo is not empty:
(a) Pop the vector a from the end of todo;
(b) Reorder the columns of z and KL by moving the columns with a[v] = 0 to the far left, the columns

with a[v] = 1 to the middle and the columns with a[v] = 2 to the far right.
(c) Calculate z ′ := ResZN(KL,z). If z ′[v]> 0 for any v where a[v] = 0 then the partition is not valid.

This is because taking the residue will eliminate the leftmost entries of z if possible by adding rows
of KL;

(d) If the partition is valid, find the first v such that z ′[v]> 0 and a[v] = 1;
(e) If there is no such v, we have a depth-one implementation. Return the qubits to their original order

and return z ′;
(f) Otherwise, let a1 be the same as a but where a[v] = 2 and a[u] = 0 for all u such that u · v> 0. Let a2

be the same as a but with a[v] = 2. The vectors a1 and a2 represent the two possible scenarios where
either v is or is not a partition—append them to todo;

26



New J. Phys. 25 (2023) 103018 M AWebster et al

(g) Return to step 3.
(4) Return FALSE as all possible configurations have been explored.

The above algorithm yields depth-one operators composed of physical phase-rotation gates. If
implementations using physical controlled-phase gates are required, convert z and KL to controlled-phase
representations using the method in section 4.2. If we require a logical operator with exactly the same action
as the original operator with Z-component z, substitute the Z-components of the diagonal logical identity
generators KM of section 3.1 for KL.

B.5. Representation of controlled-phase operators as XP operators via embedding operator
In this section we prove that the phase-rotation operators of section 4.1 acting on a codespace correspond to
diagonal XP operators in the embedded codespace defined in section 4.3.2. We do this by demonstrating that
the mapping of phase-rotation operators acting on the codespace to XP operators in the embedded
codespace of section 4.3.2 is a group homomorphism.

Proposition B.4 (embedding operator induces a group homomorphism). The embedding operator EV
defined as follows is a group homomorphism between XRPV

N and XP |V|
N :

EV
(

XRPV
N (p|x|q)

)

:= XPN

(

p|xVT|q
)

. (108)

Proof. We prove this by considering generators of the group XRPV
N. Let b

n
i be the length n binary vector

which is zero apart from component i which is one and consider Xi,Xj for 0⩽ i, j < n:

EV
(

XiXj

)

= EV
(

XRPV

(

0|bni + bnj |0
))

(109)

= XPN
(

0|
(

bni + b
n
j

)

VT|0
)

(110)

= XPN(0|(bni VT|0)XPN(0|(bnj VT|0) (111)

= EV (Xi)EV
(

Xj

)

. (112)

By a similar argument, EV
(

RPN(2,u)RPN(2,v)
)

= EV
(

RPN(2,u)
)

EV
(

RPN(2,v)
)

for u,v ∈ V. Where X oper-
ators precede diagonal operators we have:

EV (XiRPN (2,v)) = EV
(

XRPV

(

0|bni |b|V|v
))

(113)

= XPN

(

0|bni VT|b|V|v
)

(114)

= EV (Xi)EV (RPN (2,v)) (115)

where diagonal operators precede X operators, we first consider the case where v[i] = 0. In this case, the oper-
ators commute so we can swap the order of operators so that the X operators precede the diagonal operator.
Now consider the case v[i] = 1 where the operators do not commute:

EV (RPN (2,v)Xi) = EV
(

ω2XiRPN (−2,v)
)

(116)

= XPN

(

2|bni VT| − b|V|v
)

(117)

Due to the commutation relation of equation (15) and because (bni V
T)b|V|v = b|V|v when v[i] = 1:

EV (RPN (2,v))EV (Xi) = XPN

(

0|0|b|V|v
)

XPN

(

0|bni VT|0
)

(118)

= XPN

(

2|bni VT| − b|V|v
)

(119)

= EV (RPN (2,v)Xi) . (120)

Because group operations are preserved for generators of the group, the embedding is a grouphomomorphism.
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B.6. Canonical form of logical phase-rotation operators
In this section, we show that the canonical form of logical phase-rotation operators discussed in section 5.1
acts as a logical operator as claimed.

Proposition B.5 (logical phase rotation operator). Let LZ be a binary matrix representing the Z-components
of logical Z operators such that LTZLX = Ik and let w be a binary vector of length k.

The operator RPN(2,wLZ) acts as a logical RPN(2,w) operator.

Proof. This can be seen by considering the action of the operator on the computational basis element |euv⟩
where euv := uSX + vLX. From the argument in proposition 5.1, euv · zj mod 2= 1 ⇐⇒ v[j] = 1. Hence:

euv ·





⊕

j≼w

zj



 mod 2= 1 ⇐⇒
⊕

j≼w

v [j] = 1 (121)

⇐⇒ v ·w mod 2= 1. (122)

Hence, the phases applied by the operators are the same and the result follows.

Appendix C. Application of methods to non-CSS stabiliser codes

In this work, we have focused on identifying diagonal logical operators for CSS codes in the form defined in
section 2.3. In this section, we show how to find diagonal logical operators for arbitrary non-CSS stabiliser
codes. We will prove the following main proposition:

Proposition C.1 (mapping non-CSS stabiliser codes to CSS codes). Let C be the codespace of a Pauli
stabiliser code on n qubits. There exists a CSS code on n qubits with codespace C ′ such that C= DQC ′ where
Q := XP2(0|q|0), q is a length n binary vector and D is a diagonal level 2 Clifford operator. Furthermore, a
diagonal operator B is a logical B operator of C ′ if and only if QBQ−1 is a logical B operator of C.

The CSS code C ′ in proposition C.1 may have different error correction properties to C (i.e. weight of
stabiliser generators and logical operators), but allows us to determine the diagonal logical operator structure
of C. In this section, we first introduce some background material on non-CSS stabiliser codes. CSS codes of
the form of section 2.3 have diagonal stabiliser generators with zero phase components and non-diagonal
stabiliser generators with zero phase and Z-components. This is not the case for arbitrary stabiliser codes,
and we show how to eliminate these components in two steps to yield the operators Q and D in the above
proposition. We illustrate proposition C.1 by applying it to the perfect five-qubit code of [35].

C.1. Background on non-CSS codes
Arbitrary Pauli stabiliser codes have stabiliser generators from the Pauli group ⟨iI,X,Z⟩⊗n = XPn

2 . A method
of determining a canonical set of independent stabiliser generators, logical X and logical Z operators is given
on page 477 of [36]. Let SX and SZ be the canonical stabiliser generators and let LX be the canonical logical X
operators. Elements of SZ may have signs of±1 and elements of SX may have non-trivial phase and
Z-components. For proposition C.1, we require that C ′ := (DQ)−1C is stabilised by diagonal generators
with trivial phase components and non-diagonal generators with trivial phase and Z-components.

We now set out a canonical form for the codewords of the stabiliser code C. Let r be the number of
operators in SX and k the number of operators in LX and let v ∈ Z

k
2. Let q be a binary vector of length n such

that B|q⟩= |q⟩ for all B ∈ SZ. Define LvX :=
∏

i≼vLX[i] where LX[i] is the ith operator in LX . Due to the
arguments in sections 4.2 and 6.2 of [14], the following codewords span the codespace C and define the
encoding map C of C (section 2.4):

|v⟩L =
∑

u∈Z
r
2

SuXL
v
X|q⟩. (123)

We now discuss how the codewords and logical operators of a stabiliser code C transform when the
codespace is acted upon by a unitary operator U. The codewords of the transformed code C ′ := UC are given
by U|v⟩L so the encoding map of C ′ is given by UC. The operator A is a logical identity of C if and only if
UAU−1 is a logical identity of C ′. This is because:

(

UAU−1
)

U|v⟩L = UA|v⟩L = U|v⟩L. (124)
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As the stabiliser generators SX and SZ are elements of the logical identity group, they also update via
conjugation. The operator B is a logical B operator on C if and only if UBU−1 is a logical B operator on C ′

because for all logical identities A of C the requirements of sections 3.3 and 2.4 are met as follows:

[[

UBU−1,UAU−1
]]

= U
[[

B,A
]]

U−1;and (125)
(

UBU−1
)

UC = UBC = (UC)B. (126)

C.2. Eliminating phase components from diagonal stabiliser generators
We now show how to find the vector q in equation (123) which allow us to eliminate signs from the diagonal
stabiliser generators of the non-CSS code C via conjugation by the operator Q := XP2(0|q|0).

The canonical diagonal stabiliser generators SZ are of form XP2(2pi|0|zi) where pi ∈ Z2 and zi ∈ Z
n
2 . Let

Es be the binary matrix with rows of form (pi|zi) and let Ks := kerZ2(Es). If pi = 1 for any i, the top row of Ks

is of form (1|q) and satisfies pi + q · zi = 0 mod 2 for all i. Now let Q := XP2(0|q|0) then we also have
QXP2(2pi|0|zi)Q= XP2(2pi + 2q · zi|0|zi) = XP2(0|0|zi). Hence conjugation by Q eliminates the phase
components of the diagonal stabiliser generators as required. As Q is non-diagonal, the diagonal logical
operators and identities may update on conjugation by Q.

C.3. Eliminating phase and Z-components from non-diagonal stabiliser generators
We now show how to find a diagonal level 2 Clifford operator D from proposition C.1 which allows us to
eliminate the phase and Z-components of the non-diagonal stabilisers SX . Let |S⟩ be the state stabilised by
the set of n independent operators SX,SZ and LX . We can write |S⟩ as follows:

|S⟩=
∑

u∈Z
r
2,v∈Z

k
2

SuXL
v
X|q⟩=

∑

v

|v⟩L. (127)

Let SX and LX be the binary matrices formed from the X-components of SX and LX respectively. Using the
terminology of proposition 5.1 of [14], |S⟩ is an XP state of precision N = 2 and so is a weighted hypergraph
state of form:

|S⟩= D
∑

u,v

|uSX + vLX + q⟩= DQ
∑

u,v

|uSX + vLX⟩. (128)

The operator D is a product of diagonal level 2 Clifford operators and can calculated via the method in
algorithm 5.3.1 of [14]. Now let C ′ be the CSS code specified by the X-checks SX and X-logicals LX. Due to
section 2.3, codewords of C ′ are of form |v⟩ ′L :=

∑

u |uSX + vLX⟩ and so the codewords of C can be written:

|v⟩L = DQ
∑

u

|uSX + vLX⟩= DQ|v⟩ ′L. (129)

Hence, C= DQC ′ as required. Transforming a CSS code C ′ by the diagonal operator D has no effect on the
diagonal stabiliser generators, logical identities or logical operators. However, it can increase the weight of
non-diagonal stabiliser generators and logical X operators, and so increase the code distance.

Example C.1 (perfect five-qubit code). Let C be the perfect five-qubit code of [35] with stabiliser generators
and logical X operator as follows:

S :=









XZZXI
IXZZX
XIXZZ
ZXIXZ









; X := ZIIZX. (130)

Let C ′ be the CSS code with X-checks and X-logicals:

SX :=









10010
01001
10100
01010









; LX :=
(

00001
)

. (131)

We find that D= CZ01CZ12CZ23CZ01CZ34CZ40 satisfies C= DC ′ using the conjugation rule CZ01X0CZ01 =
X0Z1. Whilst C has distance 3, C ′ has distance 1. In the linked Jupyter notebook, users can use the above
method to find D,Q and C ′ for various non-CSS stabiliser codes from www.codetables.de.
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