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A B S T R A C T   

Isolines Topology Design (ITD) is an iterative algorithm for use in the topological design of two-dimensional (2D) 
continuum structures using isolines. This paper presents an extension to this algorithm for topology design of 2D 
continuum structures under the influence of buckling. Topology design has been used to obtain the lightest 
structure that can support the loading conditions without failure, with optimal designs typically consisting of 
slender members. In many cases, instability (or buckling) of the slender compressive members may occur at load 
levels below those predicted using a stress-based failure criteria. Although topology optimization is often used in 
the conceptual phase of the design, the influence of buckling has a significant impact on the features and per
formance of the final structure. This article presents an alternative approach to incorporate the buckling effect 
into the ITD algorithm for the design of 2D continuum structures. The concept consists of transforming the 
buckling topology optimization problem into a conventional von Mises stress-based topology design problem at 
each iteration using the shape of the buckling mode of the structure obtained by the eigenvalue analysis. Three 
examples are presented to show the viability and effectiveness of the alternative approach implemented into the 
ITD algorithm. The effect of the displacement factor ratio value on the first critical load of a resulting designs was 
studied. The resulting designs presented are in good agreement with those from the literature. The main 
conclusion is that the alternative approach can maximize the first critical load of a design subject to final volume 
constraints if the associated stiffness loss can be assumed.   

1. Introduction 

The topology optimization (TO) problem is normally formulated in 
terms of compliance minimization (Ooms et al. (2023) [1]), which is an 
important parameter of structural performance. However, lightweight, 
sparse, or slender structures are characterized by multiple objectives or 
constraints, and several aspects must be considered in their designs, such 
as: strength (Wang et al. (2022) [2]), natural frequency (Zhang et al. 
(2020) [3]), stability (Hajlaoui et al. (2021) [4], Liang and Li (2022) [5], 
Ngoc et al. (2022) [6], Guo et al. (2022) [7], Jiang et al. (2023) [8]), 
manufacturing requirements (Ebeling-Rump et al. (2021) [9]), un
certainties (Li et al. (2022) [10], Li et al. (2023) [11]), etc. 

Generally, the purpose of structural optimization is to obtain the 
lightest structure that can support the loading conditions without fail
ure. Minimum weight structures typically consist of slender members 
(trust- or beam-like elements) or thin panels which are subjected to 
uniaxial tensile or compressive loads. In many cases, instability (or 

buckling) of the slender compressive members may occur at load levels 
below those predicted by the stress-based failure criteria. This limits the 
capacity of the structure to carry the load and may affect its safety. 

Buckling TO (BTO) consists of obtaining the optimal material layout 
of a structure that also considers the buckling effect. Although TO is 
often used in the conceptual phase of the design, the influence of 
buckling has a significant impact on the features and performance of the 
final structure. Compared to conventional TO, BTO is more computa
tionally expensive, mainly due to the calculation of the buckling loads at 
each optimization iteration. 

Large-scale engineering structures, such as bridges, electric trans
mission towers, high-rise buildings, giant boom cranes, etc., are often 
made from slender members in such a way that the volume of material in 
the optimal structure consists of only a very small fraction of the total 
volume of the original design domain. These optimal light and sparse 
structures require just the right amount of material for load support 
which generally makes their components slender and consequently 
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more prone to buckling. The buckling phenomenon is a crucial factor 
that may define the safety level of a structure. Due in part to this, 
buckling topology optimization has attracted more attention in recent 
years. 

Buckling has been considered in both truss and continuum TO. For 
truss TO, the design space typically consists of a fixed set of nodes 
connected by many pin-jointed truss members, known as a ground 
structure. Member cross-sections are usually the design variables, which 
can be reduced to zero to allow a change in topology. Local Euler 
buckling constraints can be specified on each member, although a 
modification of the design space is often required to handle disconti
nuities when member areas are reduced to zero (Rozvany (1996) [12]). 
For continuum structures, it can be difficult to consider local buckling 
behaviours with Euler-type constraints, since it is very difficult to 
identify discrete structural members, their geometrical properties, and 
their end support conditions (Rahmatalla and Swan (2003) [13]). 

Considerable efforts have been made in the last 20 years to develop 
methods to solve the optimization problem considering the buckling 
effect. Buckling optimization of continuum structures has attracted 
considerable attention in recent years, being an active and challenging 
research area. 

Rahmatalla and Swan (2003) [13] proposed a continuum topology 
optimization methodology suitable for finding optimal forms of large- 
scale sparse structures. Since the need to avoid long compressive 
spans can be critical in determining the optimal form of such structures, 
a formulation was used in which the structure was modelled as a linear 
elastic continuum subjected to design loads and optimized to maximize 
the minimum critical buckling load. 

Kemmler et al. (2005) [14] focused on large deformations and sta
bility in topology optimization. The instability condition was incorpo
rated into the design process as an inequality constraint with the critical 
load level determined directly. To reduce the imperfection sensitivity, a 
geometrically modified structure was also introduced which included 
the imperfection shape. 

Browne et al. (2012) [15] proposed a method to find solutions of 
large-scale binary programming problems where the calculation of de
rivatives is very expensive. The method was applied to a weight mini
mization TO problem with compliance and buckling constraints. 

Bochenek and Tajs-Zielińska (2015) [16] introduced a new approach 
to the TO of columns against instability. The idea was to replace a 
conventional maximization of a buckling load by a locally formulated 
topology optimization problem based on compliance minimization. 

Luo and Tong (2015) [17] investigated topology design optimization 
for maximizing critical buckling loads of thin-walled structures using a 
Moving Iso-Surface Threshold (MIST) method. Linear buckling optimi
zation was conducted to maximize the critical buckling load factor for a 
thin-walled structure subjected to either compressive forces or pre
scribed compressive displacements. 

Gao et al. (2017) [18] presented an adaptive continuation method 
for BTO of continuum structures using the Solid Isotropic Material with 
Penalization (SIMP) method. For optimization problems of minimizing 

Fig. 1. Schematic view of procedure to incorporate the buckling effect into the 
optimization process: (a) Original structure with applied load; (b) Buckled 
structure showing the magnitude of the critical load 

(
Pcr,1

)
and displacement 

vector (dn); (c) New modified geometry of the structure with applied critical 
load ready for topology optimization. 

Fig. 2. Schematic view of the procedure to obtain the modified structural geometries. Node i location in: (a) Structure represented with eight finite elements; (b) 
Buckling mode shape; (c) Modified structural geometry with positive modification vector ( d ); (d) Modified structural geometry with negative modification vec
tor ( − d ). 
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structural compliance subjected to constraints on material volume and 
buckling load factors, it was found that the conflict between the struc
tural stiffness and stability requirements may have an adverse impact on 
the performance of the optimization algorithms. An automatic scheme 
for adjusting the penalization parameter was introduced to address this 

Fig. 3. Flow chart of modified ITD algorithm to carry out buckling topology 
optimization. 

Fig. 4. Design domain for the clamped column loaded at the centre of the 
top edge. 
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Fig. 5. Final designs for the clamped column for a volume fraction of Vf/V0 = 0.5. Effect of different dr values on the optimal design: (a) 0, (b) 0.01, (c) 0.025, (d) 
0.05, (e) 0.1, (f) 0.125, (g) 0.15, (h) 0.2, (i) 0.25, (j) 0.3. 
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Fig. 6. First lowest buckling mode shapes for the optimal columns of Fig. 5 with dr values of: (a) 0, (b) 0.01, (c) 0.025, (d) 0.05, (e) 0.1, (f) 0.125, (g) 0.15, (h) 0.2, (i) 
0.25, (j) 0.3. 
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conflict and generate better designs. 
Ferrari et al. (2018) [19] presented an efficient solution method for 

structural topology optimization aimed at maximizing the fundamental 
frequency of vibration. The proposed method relies on replacing the 
eigenvalue problem with a frequency response one, which can be tuned 
and efficiently solved by a multilevel procedure. 

Townsend and Kim (2019) [20] applied the Level Set Method (LSM) 
to the buckling behaviour of shell structures. They used a sequential 
level set TO method that was shown to naturally avoid the issues related 
to mode ordering and if required, is capable of simultaneously 
increasing multiple buckling loads at once. 

Dalklint et al. (2021) [21] demonstrated how a strain energy tran
sition approach can be used to remove artificial buckling modes that 
often occur in stability constrained topology optimization problems. 

Ferrari et al. (2021) [22] presented a 250-line Matlab code for to
pology optimization for linearized buckling criteria. The code was 
conceived to handle stiffness, volume and buckling load factors either as 
the objective function or as constraints. The efficiency and flexibility of 
the code were demonstrated over a few structural design examples. 

Hajlaoui et al. (2021) [4] proposed in their work a simple and effi
cient solid shell element formulation using First-order Shear Deforma
tion Theory (FSDT) and a special representation of transverse shear 
strains imposed on the strain-compatible part for thermal buckling 
analysis of Functionally Graded Material (FGM) shells. 

Liang and Li (2022) [5] reformulated the Koiter-Newton method to 

have the capability of the geometrically nonlinear thermal–mechanical 
buckling analysis. The biggest innovation of this contribution is the 
conversion of initial temperature effects to be an extra independent 
degree of freedom in the thermal–mechanical reduced-order model, by 
means of the novel Koiter theory. 

Ngoc et al. (2022) [6] used an adaptive mapping technique to 
examine multiscale bucking optimal topology for structural coating. The 
Adaptive Geometric Components (AGCs) include a framework of macro- 
sandwich bars representing a macrostructure with a solid coating and a 
group of micro-solid bars representing the nonuniform concurrent at the 
microstructural scale. 

Guo et al. (2022) [7] presented a new reliability-based topology 
optimization model under buckling and compliance constraints to deal 
with the uncertainties incurred by Young’s modulus and load variations, 
which aims to minimize the manufacturing cost under reliability and 
stability requirements. To combine the multiple constraints to a single 
smooth and differentiable constraint, a Kreisselmeier-Steinhauser ag
gregation function was used. 

Jiang et al. (2023) [8] proposed an algorithm for topology optimi
zation for minimum compliance with material volume and buckling 
constraints under design-dependent loads was developed. The structural 
topology optimization problem was solved using the SIMP method along 
with a pressure boundary searching scheme based on the Distance 
Regularized Level Set Evolution (DRLSE) model to deal with design- 
dependent loads. 

The novelty of this work corresponds with extending the isolines 
topology design (ITD) algorithm of Victoria et al. (2009) [23], by 
incorporating a new approach that considers buckling effect into the 
design of two-dimensional (2D) continuum structures. This is achieved 
by transforming the buckling topology design problem into a stress- 
based design problem at each iteration using the shape of the buckling 
mode of the structure obtained by the eigenvalue analysis. Three ex
amples are presented to show the viability and effectiveness of incor
porating this approach into the ITD algorithm. 

2. Fixed grid finite element analysis 

The fixed grid (FG) finite element (FE) analysis (FEA) method of 
García-Ruiz and Steven (1999) [24] was used in this work. In FG-FEA, 
the elements are in a fixed position in space and have the real struc
ture superimposed on them. This means that there are elements which 
lie inside (I), outside (O), or on the boundary (B) of the structure. 

The elasticity modulus for O elements is given by Eq. (1) 

EO = EI × rfg (1)  

where EI is the elasticity modulus for an element inside, and rfg is the 
fixed grid ratio. The value of EO plays a crucial role to avoid the 
appearance of spurious modes. A large value rfg > 10− 3 can result in 
non-realistic high stiffness of void elements. Conversely, a small value of 
rfg < 10− 9 can be insufficient to avoid the issue of spurious modes (see 
Section 2.1) and introduces ill-conditioned problems in stiffness matrix 
(Zhou (2004) [25], Lindgaard and Dahl (2013) [26] and Gao and Ma 
(2015) [27]). So from the literature, appropriate fixed grid ratio values 
to use should be in the range: 10− 6 < rfg < 10− 3. 

The ANSYS program [28] was used to implement the FG method by 
using the PLANE182 FE. This element is defined by four- or three-nodes 
and has two translation degrees of freedom at each node. The element 
has plasticity, hyperelasticity, stress stiffening, large deflection, and 
large strain capabilities. The ANSYS keyoptions used were: enhanced 
strain formulation (to prevent shear locking in bending-dominated 
problems); plane stress with thickness; and pure displacement formu
lation. A full review of this element can be found in [28]. 

Although PLANE182 performance may be lower in comparison to 
other more sophisticated finite elements (e.g., PLANE183), it is 
compensated by its simplicity, computational cost, and adaptability 

Table 1 
Comparison of the first eigenvalue (λ1), maximum total displacement 

(
dt,max

)

and compliance (C) values for the optimal columns obtained for a volume 
fraction of Vf/V0 = 0.5 and different dr values.  

ANSYS Eigenvalue analysis Static analysis  

dr λ1 dt,max(mm) C(MNmm) 
Initial 5.906 8.484 8.484 
0.000 0.837 13.56 13.56 
0.010 2.371 13.74 13.74 
0.025 3.757 13.85 13.85 
0.050 4.215 14.24 14.24 
0.100 4.409 14.62 14.62 
0.125 4.569 14.99 14.99 
0.150 4.626 15.11 15.11 
0.200 4.682 16.07 16.07 
0.250 4.700 16.89 16.89 
0.300 4.726 17.13 17.13  

Fig. 7. Plot of the first eigenvalue and compliance versus displacement factor 
ratio for the optimal columns. 
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Fig. 8. Design domain for the clamped columns loaded in compression at the centre of the top edge: (a) Luo and Tong (2015) [17], (b) Ferrari et al. (2021) [22].  

Fig. 9. Final column designs: (a) 6 by 1 for a volume fraction of Vf/V0 = 0.5, (b) 2 by 1 for a volume fraction of Vf/V0 = 0.25 resulting from this work.  
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(triangular shape version) to complex geometries such as the deformed 
shapes associated with buckling modes. 

2.1. Spurious modes 

A spurious mode is a buckling mode where the displacements cor
responding to nodes connected to non-void elements are all zero. A 
common problem in topology optimization which considers the effect of 
buckling is the appearance of spurious modes in the void regions. There 
are five common solutions that can be used to resolve this issue:  

1) Modifying the stresses of the void elements. Neves et al. (2002) [29] 
set artificially to zero all stresses in the elements with a volume 
fraction below a certain threshold.  

2) Modifying the stiffness of the void elements. Neves et al. (1995) [30] 
ignored the stress stiffness matrices of elements in void regions. This 
cut-off method can produce oscillations in the optimization process, 
which in turn can lead to convergence difficulties. Bendsøe and 
Sigmund (2004) [31] proposed the use of different penalty schemes 
for element stiffness matrices and stress stiffness matrices.  

3) Removing completely the void elements, except for void elements 
located on the border of the structure. These elements are necessary 
for the optimization algorithm to grow a structure into the void. 
Otherwise, this method can produce erroneous solutions (Pedersen 
(2000) [32]).  

4) Element removal with reintroduction: originally proposed by Bruns 
and Tortorelli (2003) [33] and enhanced by Behrou et al. (2021) 
[34] where void elements are removed from the analysis, and arti
ficial nodal boundary conditions are added to supress the degrees of 
freedom surrounded by these elements. The material may be rein
troduced into the domain of removed elements, freeing degrees of 
freedom that were temporarily constrained.  

5) Pseudo buckling modes identification. Pseudo modes have two 
important characteristics: 1) Eigenvalues with values close to zero, or 
alternatively considerably smaller than those of the real modes; 2) 
The deformation mainly occurs in low-density regions. Therefore, 
the modal strain energy in low-density regions has a major contri
bution to the total modal strain energy. Based on the second char
acteristic, Gao and Ma (2015) [27] proposed to divide the modal 
strain energy of a mode into two parts, one from the low-density 
regions and the other from the rest of the structure. When the 
modal strain energy of low-density regions is greater than a threshold 
value, the corresponding mode is considered a pseudo mode; 
otherwise, the mode is treated as real. 

From these five common solutions to the issue of identifying spurious 
modes, the work of Gao and Ma (2015) [27] was implemented in this 
work and consists of comparing the strain energy of the void region (SEv)

with that of the real region (SEr) multiplied by the threshold spurious 
parameter δsp (Eq. (2)). If the comparison is greater or equal, the mode is 

Fig. 10. First lowest buckling mode shapes for the optimal columns shown of Fig. 9: (a) 6 by 1 for a volume fraction of Vf/V0 = 0.5, (b) 2 by 1 for a volume fraction 
of Vf/V0 = 0.25. 

Table 2 
Comparison of the first eigenvalue (λ1) for the columns of aspect ratio 6 and 2 by 
1.  

ANSYS λ1 

Aspect ratio Final volume fraction Initial New approach [17] [22] 

6 by 1  0.50  5.25  4.18  4.04  – 
2 by 1  0.25  1.39  8.41  –  8.53  

Fig. 11. Design domain for the short cantilever fully clamped along the left 
edge loaded at the centre of the free end. 
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defined as spurious and therefore disregarded. 

SEv ≥ δsp × SEr (2)  

SEv =
∑

SEe
o  

SEr =
∑

SEe
i,b  

where SEv and SEr are the strain energy of the void and real regions, SEe
o 

(out element strain energy), SEe
i,b (in/boundary element strain energy), 

and δsp is the threshold spurious parameter with a value between 0 and 
1. 

3. Topology design of continuum structures incorporating 
buckling effects 

The topology design of structures is very often based only on strength 
and/or stiffness considerations. However, a structure may become un
stable before the strength and stiffness criteria are violated. 

3.1. Linear and non-linear buckling analysis 

Linear buckling of structural members is the most straightforward 
form of buckling analysis. One major drawback of linear buckling 
analysis is that no information is obtained on the behaviour of the 
structure. For more accurate critical load estimates, a non-linear analysis 
is required [21]. However, the simplicity and lower computational cost 
of buckling eigenvalue analysis remains relevant in the preliminary 
stages of the design of a structure [20,21]. Consequently, in most BTO 
literature, linear buckling analysis is used to generate optimal designs 
[16, 17, 18, 19, 21, 22, 27, Ferrari and Sigmund (2019) [35]]. 

3.2. Linear buckling analysis 

The linear buckling analysis is governed by the eigenvalue problem 
of Eq. (3) 
(
K+ λjKσ

)
uj = 0(j = 1,⋯, J) (3)  

where K is the elastic stiffness matrix, Kσ is the stress stiffness matrix, J 
is the number of buckling modes to extract, λj is the j-th eigenvalue and 
uj is the j-th displacement eigenvector. 

The total number of eigenpairs to extract was determined by Eq. (4) 

J = max(jns + 3, nearestint(1.25 × jns) ) (4)  

where ns means non-spurious, jns is the first j-th non-spurious mode. The 
initial value of jns = 1 is assumed. 

In this work, the ANSYS program [28] was used to carry out the 
linear buckling analysis. From a structural engineer’s perspective, the 
first lowest non-spurious eigenpair 

(
λjns , ujns

)
is the critical mode, and 

therefore this was used to drive the design process. The ANSYS 
eigensolver used for mode extraction [28] consists of a subspace method 
with auto-shift technique to improve the accuracy, robustness, and ef
ficiency of the algorithm (Wilson and Itoh (1983) [36]). 

3.3. New approach to incorporate buckling effect into the design of 2D 
continuum structures using the ITD algorithm 

To incorporate the buckling effect into the design of 2D continuum 
structures, the buckling topology design problem is transformed into a 
stress topology design problem using the shape of the buckling mode of 
the structure obtained by eigenvalue analysis at each iteration. To 
achieve this, a linear buckling analysis of the structure (Fig. 1a) is car
ried out to determine the critical load 

(
Pcr,1

)
and its associated mode 

Fig. 12. Final optimal designs for the short cantilever with a final volume fraction of Vf/V0 = 0.2, showing the effect of different dr values on the optimal design: (a) 
0, (b) 0.005, (c) 0.01, (d) 0.015, (e) 0.02. 
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shape, represented by the mode shape displacement vector (dn) in 
Fig. 1b. The coordinates of the original structure are then modified by 
the product of a displacement factor ( dr ) with the mode shape 
displacement vector (dn), (Fig. 1c). In a 2D continuum, the mode shape 
can be either as calculated or in the opposite direction, as these are 
interchangeable. This then requires the coordinates of the original 
structure to be modified twice, using both of these instances of the mode 
shape. To these two slightly different structures, the first critical buck
ling load is applied so that topology optimization can then be carried 
out. This is achieved in the ITD algorithm by overlaying the criterion 
distribution obtained from the static analyses, which is analogous to the 
AND/OR operator applied by Xie and Steven (1994) [37], Young et al. 
(1999) [38], or Victoria et al. (2010) [39]. 

The criterion used by ITD algorithm [23] for topology optimization is 
the von Mises stress (σvM), which for a 2D continuum domain is calcu
lated using Eq. (5). 

Fig. 13. First lowest buckling mode shapes for the optimal cantilevers of Fig. 12 with dr values of: (a) 0, (b) 0.005, (c) 0.01, (d) 0.015, (e) 0.02.  

Table 3 
Comparison of the first eigenvalue (λ1), maximum total displacement 

(
dt,max

)

and compliance (C) values for the optimal short cantilever obtained for a volume 
fraction of Vf/V0 = 0.2 and different dr values.  

ANSYS Eigenvalue analysis Static analysis  

dr λ1 dt,max(mm) C(MNmm) 
Initial 32.04 11.06 5.528 
0.000 1.771 38.26 19.13 
0.005 2.049 38.68 19.34 
0.010 2.079 39.58 19.79 
0.015 2.649 39.98 19.99 
0.020 3.124 40.05 20.02  

Fig. 14. First eigenvalue and compliance versus displacement factor ratio for 
the optimal short cantilevers. 
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σvM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
x + σ2

y − σxσy + 3τ2
xy

√

(5)  

where σx, σy, and τxy are the normal and shear stresses, respectively. 

3.4. Determining the coordinates of the modified structure from the 
buckling mode shape 

To include the buckling effect in the topology design process using 

the ITD algorithm, the modification vector ( d ) is calculated using Eq. 
(6). Two modified structural geometries are then generated by firstly 
adding the modification vector ( d ) and then its negative ( − d ) to the 
coordinates of the nodes of the finite element mesh that represent the 
structure using Eq. (7). 

d = dn × dr × max(L,H) (6)  

XMod = XOrg ± d (7) 

Fig. 15. Design domain for the beam clamped at the two vertical edges and loaded at the centre of the top edge.  

Fig. 16. Clamped beam final designs for a volume fraction of Vf/V0 = 0.1. Effect of different dr values on the optimal design: (a) 0, (b) 0.01, (c) 0.02, (d) 0.04.  
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where dn is the normalized displacement vector of the buckling mode 
shape with a maximum magnitude of 1, dr is the displacement factor, L 
(length) and H (height) are the largest horizontal (L) and vertical (H)

dimensions of the design domain, XOrg are the original coordinates of the 
FE mesh representing the structure and XMod are the new modified co
ordinates of the FE mesh representing the two modified structures. 

A schematic representation of the procedure to generate the two 
modified structural domains is given in Fig. 2. It shows how this is 
achieved for the ith node of a simple rectangular beam which for 

simplicity is modelled using eight finite elements. 

4. The ITD algorithm incorporating buckling effect 

The procedure for implementing into the ITD algorithm [23] buck
ling effect consists of solving a problem of maximizing the critical load 
for a given volume by a sequence of topology design problems until the 
desired final volume is reached. In each iteration, the buckling problem 
is transformed into a stress topology design problem. 

In the ITD algorithm, the topology and shape of the design changes 
iteratively, by continually adding and removing (where the criterion 
distribution is less than the minimum criterion level) material depend
ing on the shape and distribution of the contour isolines of the required 
structural behaviour. 

The ITD algorithm to incorporate buckling effect into the topology 
design of 2D continuum consists of the following 11 steps. A schematic 
representation is given in Fig. 3.  

(1) Define the structure characteristics: geometry, design and non- 
design domains, material properties, loads and supports.  

(2) Specify the fixed grid mesh: number of finite elements, element 
type, and fixed grid ratio. 

Table 4 
Comparison of the first eigenvalue (λ1), maximum total displacement 

(
dt,max

)

and compliance (C) values for the optimal beams obtained for a volume fraction 
of Vf/V0 = 0.1 and different dr values.  

ANSYS Eigenvalue analysis Static analysis  

dr λ1 dt,max(mm) C(MNmm) 
Initial 259.5 3.531 1.765 
0.000 0.817 25.62 12.81 
0.010 1.128 25.75 12.87 
0.020 1.636 32.33 16.16 
0.040 4.036 38.44 19.22  

Fig. 17. First lowest buckling mode shapes for the optimal beams obtained with dr values: (a) 0, (b) 0.01, (c) 0.02, (d) 0.04.  
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(3) Specify the optimization parameters: final design volume 
(
Vf
)
, 

total number of iterations (ni), and displacement factor ratio (dr).  
(4) Carry out a static analysis.  
(5) Carry out an eigenvalue buckling analysis.  
(6) Select the first lowest non-spurious buckling mode, calculate the 

modification vector (d) using Eq. (6) and using Eq. (7) generate 
the two modified structural geometries. 

(7) Carry out a static FEA for each of the modified structural geom
etries X(d)

Mod and X(− d)
Mod . Calculate the criterion distribution (von 

Mises stress in this work), for both cases (σd and σ− d, 
respectively).  

(8) Overlay the resulting von Mises stress distributions from the two 
modified structural geometries using Eq. (8). 

σ = max(σd, σ− d) (8)    

(9) Determine the target volume using Eq. (9), where Vi is the design 
volume in the ith iteration. 

Vi = Vi− 1

(
ni − i

ni

)

+Vf

(
i
ni

)

(9)    

(10) Carry out topology optimization of the overlayed von Mises stress 
distribution (σ) for the target volume (Vi).  

(11) If the total number of iterations has been reached, stop the design 
process, otherwise, increment the iteration number by 1 and go to 
step 3. 

5. Examples 

To demonstrate the ability of the ITD algorithm to incorporate the 
buckling effect, three examples were studied and are presented here, 
these are the: (1) clamped column loaded in compression at the centre of 
the top edge; (2) short cantilever loaded in bending at the centre of the 
free end; and (3) clamped beam loaded at the centre of the top edge. For 
these examples, the ANSYS program [28] FE were used, specifically the 
degenerated triangular shape option (by collapsing an element edge) of 
the four-node plane stress quadrilateral element with two degrees of 
freedom in each node and four Gauss points. The elasticity modulus was 
210 GPa, the Poisson’s ratio was 0.3, the fixed grid ratio used was rfg =

10− 4, and the applied force value was chosen so that the first eigenvalue 
was in the range of 0 < λ1 < 5 for the optimal designs. In all 

computations λjns > 0 was specified and the threshold spurious param
eter was set to δsp = 0.5. 

5.1. Clamped column loaded in compression at the centre of the top edge 

The dimensions of the column of Fig. 4, are 6 m high, 1 m wide, and 
0.01 m thick. The design domain was divided into 480 × 80 
quadrilateral-shaped areas. To prevent excessive deformation of finite 
elements, each area was sub-divided using four triangular finite ele
ments by introducing a node at the centroid of the area, generating a 
total FE mesh of 1920 × 320 elements. A vertical force of 2 MN was 
applied at the centre of the top edge in the downward direction and the 
column was fully clamped along the bottom edge. The final volume 
fraction was set to be Vf/V0 = 0.5. To identify which values of the 
displacement factor ratios dr to use, the following ten values were 
investigated: dr = 0,0.01,0.025,0.05,0.1,0.1250.15,0.2,0.25,0.3. 

Fig. 5 shows the resulting final designs for each value of the 
displacement factor ratio dr. When buckling is not considered (dr = 0), 
the optimal design is a column with a uniform cross-section (Fig. 5(a)). 
For values of dr > 0 (Fig. 5(b) to 5(j)), in addition to the axial 
(compression) stress, bending stresses are induced, which as they in
crease with increasing values of dr, have the effect of generating a more 
complex bracing system. Fig. 6 shows the first lowest buckling mode 
shape for the final designs of the columns represented in Fig. 5 obtained 
with the ANSYS buckling solver. 

Table 1 lists the first eigenvalue obtained by the eigenvalue analysis, 
and the maximum total displacement and the compliance obtained by 
the ANSYS static analysis when the optimal columns (Fig. 5) are sub
jected to the applied force from Fig. 4. 

The optimum design when buckling is not considered is given in 
Table 1 corresponding to Fig. 5(a) (dr = 0) and clearly shows that it is 
the least stable design with all the material distributed along the load 
transfer path. As the value of the displacement factor ratio is increased, 
the level of structural stability increases. For the cases of dr = 0.125,
0.15,0.2, 0.25,0.3 (Fig. 5(f) to 5(j)) a greater fraction of material is 
distributed in the form of internal bracings, which makes it possible to 
increase the buckling load value without considerably increasing the 
value of the maximum total displacement and the compliance. 

The evolution of the first eigenvalue and the compliance versus 
displacement factor ratio for the optimal columns is shown in Fig. 7. 

As can be seen in Fig. 7, when the displacement factor ratio is 
increased the eigenvalue and compliance are also increased. 

In the range of 0 ≤ dr ≤ 0.05 the eigenvalue increases rapidly. In the 
range 0.05 ≤ dr ≤ 0.15 the increase is more progressively and for values 
greater than dr ≥ 0.15 the eigenvalue converges smoothly. The 
compliance always increases and more rapidly for dr ≥ 0.15. From these 
results, it is clear that there is a direct link between increasing the first 
eigenvalue and also increasing the compliance of the structure. So 
similarly to the conclusion reached by Gao et al. (2017) [18], the 
optimal design requires a fine balance between the stiffness (inverse of 
compliance) and stability (critical load) requirements of the structure. 

The results from this work are compared with two equivalent ex
amples from the literature, the 6 by 1 column of Luo and Tong (2015) 
[17], Fig. 8(a) and the 2 by 1 column of Ferrari et al. (2021) [22], Fig. 8 
(b). The finite element used was the four-node plane stress quadrilateral- 
shaped element with two degrees of freedom in each node and four 
Gauss points. 

The column [17] is 600 mm high, 100 mm wide and 4 mm thick, it 
was divided using a 240 × 40 FE mesh with E = 70GPa, Poisson’s ratio 
ν = 0.3, rfg = 10− 9 and Vf/V0 = 0.5. A vertical concentrated force of 30 
kN was applied at the centre of the top edge. The column [22] is 2 units 
high, 1 unit wide and 1 unit thick, it was divided using a 480 × 240 FE 
mesh with E = 1, rfg = 10− 6 and Vf/V0 = 0.25. A distributed load of 1 ×
10-3 along a 1/15 length was applied at the centre of the top edge. Both 
columns were fully clamped along the bottom edges. For both examples, 

Fig. 18. First eigenvalue and compliance versus displacement factor ratio for 
the optimal clamped beams. 
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the displacement factor ratio dr = 0.3 was used. 
Fig. 9 shows the resulting topologies for the 6 by 1 (Fig. 9(a)) and 2 

by 1 (Fig. 9(b)) columns resulting from this work. Note that, the topol
ogy shown in Fig. 9(b) was obtained by starting with the initial design 
volume fraction of Vf/V0 = 0.3 shown as the shaded section in Fig. 8(b) 
and maximizing the critical load to achieve a final volume fraction of Vf/

V0 = 0.25. 
Fig. 10 shows the first lowest buckling mode shape for the final 

design of the columns of Fig. 9, these were obtained using the ANSYS 
buckling solver. 

The first eigenvalues corresponding to the optimal columns from 
Fig. 9(a) and 9(b) are given in Table 2. 

The resulting designs generated from this work are in good agree
ment with those obtained by [17,22] with differences in the value of the 
first eigenvalue (Table 2) less than 3.5% for the 6 by 1 and 1.5% for the 2 
by 1 columns. 

5.2. Short cantilever loaded in bending at the centre of the free end 

The dimensions of the short cantilever of Fig. 11, are 1.6 m long, 1 m 
high and 0.01 m thick. The design domain was divided into 96 × 60 
quadrilateral-shaped areas with each area sub-divided using four 
triangular finite elements by introducing a node at the centroid of the 
area, generating a total FE mesh of 384 × 240 elements. A vertical force 
of 1 MN was applied at the centre of the free end in the downward di
rection and the cantilever was fully clamped along the left edge. The 
final volume fraction was set to be Vf/V0 = 0.2 so that buckling was 
prominent in the solution. To identify which values of the displacement 
factor ratios dr to use, five values of displacement factor ratio were 
investigated: dr = 0,0.005,0.01, 0.015, 0.02. 

Fig. 12 shows the resulting designs for each value of the displace
ment factor ratio dr. Fig. 12(a) corresponds with the optimal design with 
no buckling effect (dr = 0). The topology consists of a symmetrical eight- 
bar truss design. As dr is slightly increased dr = 0.005, Fig. 12(b), and 
dr = 0.01, Fig. 12(c) similar topologies are obtained. When dr reaches 
the value of dr = 0.015, Fig. 12(d) there is a slight change in the to
pology as a thinner tension bar is replaced by two bars with a fork-shape, 
which reduce the length of the external bars acting in compression. 
Fig. 12(e) shows the optimal design for dr = 0.02. The topology changed 
considerably and suggests a non-symmetrical twelve-bar truss design, 
with two chains of three bars under compression and three chains of two 
bars under tension. The bars in compression are shorter and wider with 
varying cross section that those in tension. 

Fig. 13 shows the first lowest buckling mode shape for the final 
design of the short cantilevers of Fig. 12, these were obtained using the 
ANSYS buckling solver. 

Table 3 lists the first eigenvalue obtained using the eigenvalue 
analysis, and the maximum total displacement and the compliance ob
tained using the ANSYS static analysis when the optimal short cantile
vers (Fig. 12) are subjected to the applied force from Fig. 11. 

Compared with the optimal design with no buckling effect (dr = 0), 
Fig. 12(a), the major topology changes seen in Fig. 12(d) and 12(e) 
reduce the buckling length of the longer compression bars increasing the 
eigenvalue by 49.6% and 76.4%, although the compliance is only 
increased by 4.5% and 4.68%. 

The evolution of the first eigenvalue and the compliance versus 
displacement factor ratio for the optimal short cantilevers is shown in 
Fig. 14, where it can be observed that as the displacement factor ratio is 
increased the eigenvalue and compliance also increase. The eigenvalue 
increases and more rapidly for dr ≥ 0.01. The compliance increases 
rapidly for dr ≤ 0.01 and converges gradually by dr = 0.02 due to the 
significant change in the topology of the design. 

5.3. Clamped beam loaded at the centre of the top edge 

The dimensions of the clamped beam of Fig. 15, are 4 m long, 1 m 

high, and 0.01 m thick. The design domain was divided into 120 × 30 
quadrilateral-shaped areas with each area sub-divided using four 
triangular finite elements by introducing a node at the centroid of the 
area, generating a total FE mesh of 480 × 120 elements. A vertical force 
of 1 MN was applied at the centre of the top edge in the downward di
rection and the beam was fully clamped at the two vertical edges. The 
final volume fraction was set to be Vf/V0 = 0.1. To identify which values 
of the displacement factor ratios dr to use, these four values were 
investigated:.dr = 0,0.01,0.02,0.04 

Fig. 16 shows the resulting designs for each value of the displace
ment factor ratio dr with Table 4 listing the first eigenvalue obtained by 
the eigenvalue analysis, the maximum total displacement and the 
compliance obtained by the static analysis when the optimal beams of 
Fig. 16 are subjected to the applied force from Fig. 15. 

Fig. 17 shows the first lowest buckling mode shape for the final de
signs of the clamped beam loaded at the centre of the top edge of Fig. 16, 
these were obtained using the ANSYS buckling solver. 

Fig. 16(a) corresponds with the optimal design with no buckling 
effect (dr = 0) and is the classic solution with two slender bars of uni
form cross-section in compression connected to the lower corners. As dr 

is increased to dr = 0.01, Fig. 16(b), the topology is similar to Fig. 16(a), 
but with a non-uniform cross-section. Increasing dr further to dr = 0.02, 
results in the topology of Fig. 16(c) which has a slight change as the 
optimal design continues to have two bars in compression but two thin 
bars in tension were introduced to reduce the buckling length of the 
compressed members. In Fig. 16(d) (dr = 0.04) the optimal topology 
changes completely and the resulting design consists of two long bars in 
tension of uniform cross-section with two shorter bars in compression of 
variable cross-section that connects to the applied force. The optimal 
designs of Fig. 16(c) and 16(d) have similar topologies as those obtained 
in Ramm et al. (2000) [40], Ramm and Kemmler (2002) [41] and [14]. 
As was the case in the previous two examples, when the displacement 
factor ratio increases, the eigenvalue and compliance increase, Fig. 18. 
Note that compared with the results for the topology of Fig. 16(c), the 
major topology change seen in Fig. 16(d) correspond with a consider
able increase in the eigenvalue by 146.7% but with a slight increase in 
the compliance by 18.9% (Table 4). 

6. Conclusions 

This paper presents an extension of the isolines topology design (ITD) 
algorithm of Victoria et al. (2009) [23], by incorporating a new 
approach that incorporates buckling effect into the design of 2D con
tinuum structures. The approach consists of transforming the buckling 
topology design problem into a stress-based (von Mises) design problem 
at each iteration using the shape of the buckling mode of the structure 
obtained by the eigenvalue analysis. Three examples are presented to 
show the viability and effectiveness of incorporating this approach into 
the ITD algorithm. From the results obtained, three conclusions can be 
made: (1) The ITD algorithm was successfully extended to incorporate 
linear buckling effect using the new approach. The results from the ex
amples presented were in good agreement with those from the litera
ture; (2) Increasing the displacement factor ratio (dr) increases the 
magnitude of the critical buckling load but has a less significant effect on 
the stiffness of the resulting designs; (3) The value of the displacement 
factor ratio dr to use depends on two factors: (i) The predisposition of the 
structure to buckle and (ii) the elastic modulus of material used. Based 
on the examples used in this study, for case (i), if the structure has a high 
pre-disposition to buckle, typical values of dr to use are in the range dr =

0.01 − 0.05. If the structure has a moderate predisposition to buckle 
typical values of dr to use are in the range dr = 0.01 − 0.1. And for 
structures with a moderate predisposition to buckle typical values of dr 

to use are in the range dr = 0.01 − 0.3. For case (ii), since the elastic 
modulus affects both the stiffness of the structure and its ability to 
withstand buckling, using significantly different values of the elastic 
modulus will require different values of dr. As a rule of thumb, for values 
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of the elastic modulus significantly lower than those presented in this 
paper, will require lower values of dr in the range dr ≤ 0.01. 
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