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Abstract—Human trust plays a crucial role in Human-Machine
Interactions (HMIs) within autonomous systems. This paper
delves into the factors that influence human trust in machines,
including varying error rates and types made by the machine,
as well as the human’s ability to intervene and rectify errors.
To explore these factors, we conducted three scenarios involving
a simulated claw robot navigating through multiple objects to
detect and locate a target object. The first scenario examined the
effect of changing error rates on human trust in the machine. In
the second scenario, we investigated how variability in speed and
accuracy of reaching the target impacted human trust. Lastly,
we explored whether human trust in the machine changed when
individuals had the capability to intervene and correct severe
errors made by the machine. We then proposed a regression
model to estimate human trust. Our results showed that human
trust is significantly affected by changes in error rates. Our
participants reported a higher trust on robot with low speed but
higher accuracy in performing the task than the robot with high
speed but lower accuracy. Interestingly, the ability to intervene
and correct the robot’s errors improved the participants’ trust
in the robot. Our regression result showed that we can estimate
trust using different type of errors committed by machine which
can be applied in real world scenarios.

Index Terms—human-machine interactions (HMIs), error
rates, target identification, trust, computational modelling, ma-
chine or robot action perceptions

I. INTRODUCTION

The concept of human trust in machines can have different

interpretations and implications depending on the discipline or

field of human activity. Trust holds distinct conceptual mean-

ings in various contexts, such as interpersonal relationships,

organizational dynamics, and interactions between humans

and machines [1]–[3]. In addition, trust components can be

dispositional, situational, and learned [2]. Dispositional trust

is a trust component that is dependent on demographic such

as gender or culture, whereas situational and learned trust are

described as trust components that are dependent on time

varying factors such as task difficulty, self-confidence, and

experience [2].

Beyond these literal definitions, human trust in machines

has been described by many authors as an essential factor

that establishes team relationships between humans and their

machine partners [3]–[8]. In a recent study, Aiken et al.

demonstrated that understanding a robot’s limitations, not its

task intentions, can promote a user’s assistance in maintaining

a level of confidence and reliability on the robot [9]. However,

the impact of a robot’s errors or mistakes with respect to the

nature of the task also has a significant effect on human trust

in the robot [10]. A related research study has revealed that

robot’s sensitivity to its mistakes and its ability to apologize

or recover from such mistakes can impact on human trust in

the robot [11]. Furthermore, human perceptions of the severity

of the robot’s errors also have different level of influences on

human trust in the robot [12]. While some individuals might

consider specific errors to be severe and attach high importance

to them under certain conditions, others may see the same

errors as minor and attach less importance [12].

Recent studies investigated factors affecting human trust in

machine in different scenarios. One of such examples was

demonstrated by Ahmad et al. in a study to investigate the

relationship between a humans’ cognitive load, trust, and an-

thropomorphism during human-robot interaction. The authors

created a ”Matching the pair game” where the participant

would play with one of two types of robot called the ’Husky’

and ’Pepper’ [13]. Pepper exhibited a humanoid appearance

while Husky possessed machine like features. Their goal was

to understand human trust in the robots, as a teammate,

in a game-playing situation that demanded a high level of

cognitive load. Using a humanoid versus robot paradigm, they

investigated the impacts of physical anthropomorphism while

testing the impacts of robots error rates on human trust to the

robots. Their results demonstrated that there was an inversely

proportional relationship between trust and cognitive load [14].

This result suggested that as the amount of cognitive load

increased in the participants, the level of their trust decreased

[13]. Interestingly, Husky was perceived as more trustworthy

than Pepper when it was depicted as featuring a low error-rate

teammate [14]. Conversely, the participants perceived that the

Pepper robot was more trustworthy than the Husky robot when

high error rates were featured [13].

In a related study, by Jung et al. the authors used an

experiment with human-like features to investigate human trust

in machine in non-reciprocal interactions. They developed six



externally and internally machine agents in a decision making

task where participants played a game with three human face

agents and three robotic face agents with different risk taking

personalities [14]. The agents’ risk taking personalities were

rated with different scores. The agents can present any of

the scores as risk taking personality to the participant as a

choice during the game. The participant would simultaneously

play the game with the two agents and rate their level of

confidence or trust in each of the agents (human face or robotic

face) based on the the risk taking personalities presented by

them at various stages during the game. Results from this

study demonstrated that participants earned more trust in the

agents with a human face than the agents with a robotic face

[14]. Furthermore, Peter de Vries et al. also used a computer-

based route planner to study the effects of errors on control

allocation, the role of trust, and self-confidence in a domain

route planning system. In this study, participants completed ten

route-planning trials in manual mode, and ten in automatic

mode [15]. Results from their analysis showed that having

higher automation error rates yielded lower human trust in

the system [15]. However, compared to the automatic mode,

high manual error rates resulted in a less reduction in levels

of self-confidence [15].

Errors committed by machines are common and cannot be

underestimated in research relating to trust in human-machine

interactions (HMI). Some errors can be perceived significant,

capturing the user’s attention and requiring attention to address

them. However, certain errors may be minor and not raise any

concerns for the user. Regardless of the severity of the errors,

effective collaboration between machines and users relies on

trust and understanding to achieve the desired goal. Humans

can only trust partners they understand and believe in. Machine

errors primarily depend on factors such as faulty algorithms

and the complexity of the assigned tasks. Therefore, under-

standing the severity, causes, and occurrences of errors is

crucial when investigating human trust in machines.

The possibilities of developing a generalized trust model for

assessing human trust to machine across disciplines have been

questioned and investigated by several researchers. Answers to

these questions have not yielded the desired results because

different individuals and organisations demand the use of

autonomous machines for different reasons and specific pur-

poses. To build effective trust relationships between humans

and their machine partners, individuals or organisational needs

must be factored into human machine trust relationships [3],

[4]. This is important to avoid misuse and disuse of the

system and foster harmonious working relationships between

users of machines and their partners [4]. For instance, people

who are not aware of the exact performance levels of their

machine partners often experience a mismatch in expectations

[3], [4]. Detecting this mismatch as it affects human trust

in machine remains a fundamental issue that needs to be

addressed. Research investigating human trust to machine

according to industrial and organisational needs have not fully

been explored and a lot more is still required in this area.

Importantly, there is a need to conduct research within real-

world scenarios, particularly in relation to autonomous systems

[1].

Therefore, in this paper, we investigated factors affecting

human trust in machine using a simulated robotic arm mim-

icking a factory machine navigating through multiple objects

to detect and locate a target object. These factors include

different error rates and error types committed by the robot

as well as the ability of the human to intervene and correct

the errors while performing the given task. We examined these

factors in three scenarios each having a different number of

runs. The details of the designed scenarios and blocks are

described in the subsequent sections. Our aims are: firstly,

to examine the effect of changing error rate on human trust

to the machine. Secondly, to investigate how variability in

speed and accuracy of reaching the target impacted human

trust. Lastly, we explored whether human trust in the machine

changed when individuals had the capability to intervene and

correct severe errors made by the machine. We then proposed

a regression model to estimate human trust.

II. METHOD

A. Participants

Ten adult participants at an average age of 27 years were

recruited for this study. The study was approved by the Au-

tomatic Control and Systems Engineering ethics committee at

the University of Sheffield. The participants provided written

informed consent to attend the study. On arrival at the Lab,

participants were asked to seat in front of a computer screen

and told to observe the movements of a simulated robotic arm

in a factory task. They were instructed to read and follow the

instructions on the computer screen as they observe the task.

B. Task

To achieve the above mentioned aims, we designed an

experiment mimicking a simulated robotic arm in a factory,

navigating through different objects to identify and pick up a

target object. As can be seen in Fig. 1, at the beginning of

the task (run), the program automatically sets a blue ball as

a target destination and the robotic claw appears a maximum

distance of three red balls away from it. The aim of the robot

would be to move towards the blue target ball, reach the target

ball and grasp it.

In total, there are six possible movements that the robot

can make; three correct and three incorrect movements. The

movements are described as being correct if the robot arm

moves towards a designated target location (i.e. MTT- Moved

Towards Target), reaches the target location ( i.e. TR- Target

Reached), or identifies the correct target (i.e. CTI- Correct

Target Identified), as can be seen in Fig 1. Consequently, the

robot commits an error when it moves away from the target

(i.e. Moving Away- MA), reach the target but steps off (i.e.

Stepped Off the Target- SOT) or identifies or grasps any of

the red balls which are the wrong target locations (i.e. Wring

Target Identified- WTI). The robot’s three correct and three

incorrect movements can be seen in Fig 1.



The run finishes when the robotic claw grasps either the blue

ball or one of the red balls. The robotic claw then resets for a

new run or task to begin. This process is repeated until a set

number of runs are completed. The claw executed about 105

runs through out the entire experiment. The program repeats

for a maximum number of five runs before a participant can

select a key, between 1 to 5 from the computer key board, to

register his or her level of trust in the perceived actions of the

claw. Keys 1 to 5 represent a scale of low, medium, and high

level of trust respectively. For instance, a participant might

select key 1 to mean he has low level of trust in his or her

observed actions of the robot, or key 3 for medium-level trust,

or 5 as high level trust as the case may be. This process is

repeated until all the runs are performed and the participants

finished observing the task in all the scenarios.

Fig. 1. Screen shots of the robotic claw performing the task in the experiment.
The top 8 screenshots show an example of an experiment run, where the robot
performs different correct and incorrect movements until it reaches the target.

C. Experiment

The experiment was conducted in a quiet room. The partic-

ipants were asked to turn off their mobile phones to avoid dis-

tractions while attending to the experiment. As can be seen in

Fig. 2, the experiment consisted of three scenarios, with three

TABLE I
PRESET ERROR RATE PROBABILITIES OF THE THREE TYPES OF ERRORS

ACROSS THE THREE BLOCKS IN SCENARIO ONE

No. of Blocks MA Errors SOT Errors WTI Errors

Block 1 0.10 0.20 0.10

Block 2 0.25 0.20 0.10

Block 3 0.40 0.20 0.10

blocks for the first scenario and two for the last two scenarios.

Each participant observed a minimum number of six out of the

seven blocks of the experiment. In total, all the participants

completed 105 runs in the experiment. To avoid biasing their

judgments, we did not inform them on how the experiment

was designed or its aim. To make them focus their attention

on the task, we told them to critically observe the robot’s

movements/actions by counting the number of observed errors.

At the end of the experiment, important information about the

claw movements and participant’s reported levels of trust were

recorded for further analysis according to our hypothesis.

Fig. 2. Summary of experimental block flow diagram.

1) Scenario One: The goal of this scenario is to investigate

how changing the error rates can affect the human trust in the

machine. For this purpose, we designed three blocks of robot

actions, each lasting 3 minutes. In this scenario, we set the

probabilities of the MA errors as 0.10, 0.25 and 0.40 across

the three blocks respectively and fixed the probabilities of

SOT and WTI errors at 0.20 and 0.10 respectively. As earlier

explained in the preceding section, the aim of this section is to

see how variations in MA errors across different blocks could

affect human trust to the machine. As can be seen in Table

VI, we manipulated our design such that only MA errors vary

across the blocks while SOT and WTI errors were set to occur

at constant probability rates. This was to ensure that changes in

the reported trust levels in the robot are as a result of changes

in MA errors.



TABLE II
PRESET ERROR RATE PROBABILITIES OF THE THREE TYPES OF ERRORS

ACROSS THE TWO BLOCKS IN SCENARIO TWO

No. of Blocks MA Errors SOT Errors WTI Errors

Block 1 0.30 0.30 0.10

Block 2 0.10 0.10 0.50

TABLE III
PRESET ERROR RATE PROBABILITIES OF THE THREE TYPES OF ERRORS

ACROSS THE TWO BLOCKS IN SCENARIO THREE

No. of Blocks MA Errors SOT Errors WTI Errors

Block 1 0.40 0.20 0.10

Block 2 0.40 0.20 0.10

2) Scenario Two: Our goal here is to investigate changes

in human trust in a machine when we alter the machine

priority between speed and accuracy in identifying the target.

The robot operates at low speed and high accuracy when the

probability of MA error is high but the probability of SOT

and WTI errors are low. On the other hand, the robot acts on

a high speed but low accuracy when the probability of MA is

low but the probability of the WTI and SOT errors are high.

To achieve this, we defined two blocks of experiments, each

three minutes long with the probabilities of the errors set as

MA = 0.30, SOT = 0.30 and WTI = 0.10 in the first block, and

the error probabilities set at MA= 0.10, SOT = 0.10 and WTI

= 0.50 in the second block. The robot functions on low speed

and high accuracy in the first block while in the second block,

it operates on high speed but low accuracy. As can be seen

in Table II, in the first block, we assigned WTI error to 0.10

to allow the robot to commit less of the WTI errors so that

accuracy of correctly selecting the targets can be prioritized.

In the second block, we changed the probability of WTI error

to 0.50 to prioritize speed. We also increased the probabilities

of MA and SOT errors from 0.1 to 0.30 in the second block

to reduce the speed in reaching the target.

3) Scenario Three: Our goal in this scenario is to inves-

tigate the effect of allowing human intervention to change

the machine’s action on human trust in the machine. For this

purpose, in this scenario, the participant can intervene each

time the robotic claw commits WTI error by clicking a key

on the computer keyboard. As a result, the run is paused and

a text is displayed on the computer screen, acknowledging the

participant’s invention and asking the participant to press a

key to allow the robot to perform another action. We used

two blocks of errors and set the probability of errors in both

blocks as MA = 0.40, SOT = 0.20 and WTI = 0.10. Here the

same probabilities of errors are set in both blocks. In summary,

compared to the first two scenarios, in the this scenario we

allow participant(s) to correct WTI errors committed by the

robot.

D. Error Rate Calculation

The error rates of the three types of errors across all the

scenarios and blocks were calculated as follows:

MArate =
No(MA)

No(MA) + No(MTT) + No(WTI)
, (1)

SOTrate =
No(SOT)

No(SOT) + No(CTI)
, (2)

WTIrate =
No(WTI)

No(WTI) + No(MA) + No(MTT)
, (3)

where No(X) denotes the number of errors for error (X). Fol-

lowing the experiment, we verified that the observed error rates

in the experiment were consistent with the preset probabilities

selected for each block.

E. Method of Analyses

To ensure that our analyses is in line with our design

hypothesis, we recorded the reported trust from participants

every one minute in each block across the three scenarios. We

compared the average recorded trust values against error rates

in each block. We also investigated if there are correlations

between the average trust values and the error rates of the

different types of errors across the blocks in all the scenarios.

To investigate how error rate would change human trust

in the machine, we conducted Pearson correlation between

average value of reported trust and MA errors obtained from

scenario one.

To verify the impacts of speed or accuracy on human trust

to the machine, in scenario two, we recorded average values

of reported trust in the first and second blocks respectively

and conducted paired t-test analyses to investigate the average

difference between trust in the first and second block.

In scenario three, we conducted Pearson correlation analyses

between average values of reported trust and WTI errors across

all the blocks.

Finally, to develop a model that can estimate trust in all the

three scenarios, we pooled together total number of reported

trust from all the participants across all the three scenarios

and regressed them with all the numbers of errors used for

our analyses in each of the investigated scenarios.

III. RESULTS

A. Scenario One Results

TABLE IV
PEARSON’S CORRELATION RESULTS OF SCENARIO 1. N REFERS TO THE

TOTAL NUMBER OF REPORTED TRUST VALUES ACROSS ALL PARTICIPANTS.

MA Errors SOT Errors WTI Errors

Pearson Correlation (r) -.493** -.057 .001

p-value (2-tailed) .000 .585 .992

N 94 94 94

To ensure that the MA errors vary significantly across the

blocks while the SOT and the WTI errors do not, according

to our experimental design, we conducted a paired t-test to

compare the mean difference between the number of errors



TABLE V
PAIRED T-TEST RESULTS OF TRUST MEAN VALUES ACROSS THE BLOCKS

IN SCENARIO 2

No.of Blocks MA SOT WTI (Trust Mean) S.E

LS/HA (Block 1) 0.30 0.30 0.10 3.38 0.263

HS/LA (Block 2) 0.10 0.10 0.50 2.50 0.327

across all the blocks. As expected, our results showed signif-

icant differences between the mean values of the MA errors

across the three blocks (p-value < 0.05). However,the mean

values of SOT and WTI errors across all the blocks did not

show any significant difference (p-value> 0.05).

Following the above-mentioned paired t-test results, we

further investigated how the changes in MA affected trust in

the robot. We pooled together the MA error rates in each one

minute before the trust was reported, and performed Pearson’s

correlation analysis between reported trust values and MA

values. Our results showed a significant negative correlation

between number of MA errors and reported values of trust

from all the participants, r = −0.493 and p-value < 0.001.

This result explains that as the machine commits more of MA

errors, participants trust to the machine decreases.

B. Scenario Two Results

To examine how speed or accuracy can affect human trust

in the machine, we conducted a paired t-test analysis to

compare the mean values of reported trust between block one

(the low speed but high accuracy condition) and block two

(where the machine exhibited high speed but low accuracy

in getting to the target). Our results showed, on the average,

that participants experienced significantly higher trust in the

robot with lower speed but higher accuracy than the robot

with higher speed but lower accuracy. For the low speed but

high accuracy block, the mean value of reported trust was 3.38,

and standard Error (SE) was 0.263, whereas the high speed but

low accuracy block recorded a mean trust of 2.50,and standard

error of 0.327,(t(7) = 2.966, p-value < 0.05).

This result further tells us that participants had a signifi-

cantly higher trust in the robot when it maintains low speed

but high accuracy than when the robot is very fast to execute

the task but commits a lot of mistakes. To investigate which

error type(s) contributed to changes in reported trust across

the blocks, we pooled together all the reported values of

trust and all values of WTI errors in the two blocks and

performed Pearson’s correlation analysis between trust and

WTI errors. Our results showed again that WTI errors had

a significant negative correlation with reported trust across the

two blocks,(r = −.481, p-value = 0.001).

We performed Pearson’s correlation analysis between trust

against MA and SOT errors across the two blocks. Our

results did not show any significant correlation between trust

values and values of MA and SOT errors respectively, p-

values> 0.05. This result tells us that even though the robot

committed other types of mistakes like the MA and the SOT

errors, WTI errors was the one contributing significantly to

the changes in human trust in the robot.

C. Scenario Three Results

TABLE VI
PEARSON’S CORRELATION RESULTS OF SCENARIO 3

MA Errors SOT Errors WTI Errors

Pearson Correlation .133 .451 -.434

Sig. (2-tailed) .599 .060 .072

N 18 18 18

To investigate human trust to the robot in human’s ability to

correct the most important errors of the robot, we performed

Pearson correlation analysis between trust and WTI errors for

six participants who completed scenario three. Four of the

participants did not participate in this part of the experiment.

Unlike scenario two, our results showed that there is no

significant relationship between reported values of trust and

values of WTI errors, p-values > 0.05. This result illustrates

that WTI errors have no significant impact on human trust on

the robot if human can correct them. It may further suggest

that humans regained their trust in the robot as a result of

their ability to successfully collaborate with the robot to jointly

achieve a setup goal to a logical end.

D. Estimating Human Trust Using Regression Analysis

Following the results of our correlation analysis between

reported values of trust and different error rates in all the sce-

narios, we pooled all the values of error rates from scenarios

one and two, and regressed them with actual values of reported

trust across both scenarios. Our regression result showed that

we can estimate trust using MA and WTI errors respectively

(F3, 43) = 8.084, (B1 = -5.515, B3 = -3.507, t = 10.474, p-

value <0.001), R2 = 0.361.

However, the rate of the SOT errors is not significantly cor-

related with trust, p-value>0.05. This result is as expected, as

the rate of SOT errors did not show, in our correlation results,

any significant relationship with trust in all the scenarios.

IV. CONCLUSION

According to our study, human perceptions of machine

behaviour differ from person to person. Our results also

suggest that human trust is significantly affected by changes

in error rates. For example, changes in rates of the MA errors

in case scenario one had a significant negative correlation

with reported trust values, while SOT and WTI errors which

rates are relatively constant did not exhibit any significant

relationship with reported trust values. In addition, this result

reveals that participants had higher trust on robot with low

speed but higher accuracy in performing the task than the robot

with high speed but lower accuracy. Furthermore, our results

did not show any significant correlation between mean values

of trust and error rates when humans intervened to correct

severe errors (WTI) committed by the robot. In other words,

the ability of participants to correct severe errors of the robot



increased their trust or confidence on the robot’s ability to

successfully carry out the task.

Finally, in this study, our research focus was on human

trust behaviour in response to different erroneous actions of

machine. However, we did not investigate the variations in

trust value across participants and/or over the time. In future,

it would be interesting to use physiological signals, such as

brain signals, to measure trust in machine more accurately,

objectively and continuously.
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