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Abstract

Model comparison is a prerequisite task for several other
model management tasks such as model merging, model
differencing etc. We present a novel approach to efficiently
compare models using programs written in a rule-based
model comparison language. As the comparison is done at
the model element level, and each element needs to be tra-
versed and compared with its corresponding elements, the
execution of these comparison algorithms can be compu-
tationally expensive for larger models. In this paper, we
present an efficient comparison approach which provides
an automated rewriting facility to compare (both homoge-
neous and heterogeneous) models, based on static program
analysis. Using this analysis, we reduce the search space by
pre-filtering/indexing model elements, before actually com-
paring them. Moreover, we reorder the comparison match
rules according to the dependencies between these rules to
reduce the cost of jumping between rules. Our experiments
demonstrate that the proposed model comparison approach
delivers significant performance benefits in terms of execu-
tion time compared to the default ECL execution engine.
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1 Introduction

While there is increased adoption of Model-Driven Engi-
neering (MDE) principles, tools and technologies in indus-
try [10], going forward scalability of these tools remains
one of the key challenges [9]. To enable the use of MDE in
large-scale applications it is essential to make MDE tools
and technologies scalable. Model management languages
are often interpreted and hence slower compared to general-
purpose programming languages [22]. So, optimising these
model management languages can deliver performance ben-
efits on the top of already provided underlying dedicated
task-specific support.
Model comparison is usually a prerequisite to various

other key model management activities such as model differ-
encing, model versioning, etc. It involves establishing match-
es/correspondences between elements of two models. There
are different possible ways to compare models, such as tradi-
tional text-based comparison, comparison based on unique
identifiers, model-to-model (M2M) transformation to estab-
lish comparison as in [11], or to use a dedicated comparison
language, such as the Epsilon Comparison Language (ECL),
which supports specifying matching criteria. Such model
comparison can be computationally very expensive because
each element of the first model needs to be traversed and
compared to a corresponding element of the second model,
which does not scale well.

In this paper, we introduce an efficient model compari-
son approach based on static program analysis and auto-
mated program rewriting. We have developed a prototype
implementation of the proposed approach that can rewrite
ECL programs, which operate on models with Ecore-based
metamodels. According to the current ECL engine, all el-
ements of one type are compared against the elements of
their matching type based on the provided comparison logic
by the developer. Using program analysis, we pre-filter the
elements to be compared, index them and then compare
the pre-filtered instances rather than all instances. These
pre-filtered elements are automatically embedded into the
original ECL program, using program rewriting, and exe-
cuted using the traditional ECL engine. Also, we ensure that
all the rules that are needed for the execution of a particular
rule have already been executed, by reordering the rules,
to avoid extra overhead of finding the appropriate rule to
invoke. The output of an ECL program is a match trace that
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contains all the established results of matches between ele-
ments of two models. Our approach yields a reduced match
trace, by omitting any unsuccessful matches, whenever it
was possible to identify these beforehand through program
analysis.

Our proposed approach has shown performance gains up
to 95% in terms of execution time in the experiments we
have conducted.
The rest of the paper is structured as follows: Section 2

presents the background concepts, tools and technologies
used for the implementation of the proposed approach, fol-
lowed by a running example. Section 3, presents the overview
of the proposed comparison optimisation approach and then
discusses each component step-by-step. Experiments, case
studies and the obtained results are presented and analysed
in Section 4. Section 5 discusses the relevant state-of-the-
art in the field of model comparison optimisation and static
analysis. Finally, Section 6 concludes the paper and presents
direction for future work.

2 Background & Motivation

This section provides the background concepts and a brief
overview of the technologies used to implement the proposed
approach. It also presents a running example which will be
used to motivate this work.

2.1 Model Comparison

Model comparison is one of the fundamental model man-
agement tasks, usually a prerequisite for other tasks such as
versioning, model merging, model differencing and model
transformation testing. Model comparison establishes corre-
spondences between matching elements of two models[14].
Such comparison can be performed both on homogeneous
and heterogeneous models. One example scenario could be
to identify matching elements before merging two models.
Such correspondences can also be used to test model-to-
model transformation pairs (source and corresponding tar-
get elements). Moreover, model comparison can be used in
order to establish matching elements before calculating the
differences between two models.

2.2 Epsilon

Epsilon [4] is a family of task-specific languages for per-
forming several model management tasks, such as model
merging (Epsilon Merging Language - EML [17]), model
validation (Epsilon Validation Language - EVL [1]), model-
to-model transformation (Epsilon Transformation Language
- ETL [18]) and pattern matching (Epsilon Pattern Language
- EPL [15]). All these languages extend a core language, the
Epsilon Object Language (EOL) [16], which provides imper-
ative constructs such as loops, conditionals and operations
(both built-in and user-defined). All languages of Epsilon

support managing models from a number of modeling tech-
nologies (and their respective persistence formats), through
a uniform interface, the Epsilon Model Connectivity (EMC)
layer [5].

The reason for choosing Epsilon as the basis of this work
is twofold. Firstly, Epsilon provides a dedicated language
for model comparison. Secondly, the developed optimisation
facilities can be leveraged by a wide range of modelling tech-
nologies, as Epsilon supports languages like EMF, Simulink
and XML, and can be further extended toworkwith currently
unsupported technologies using its EMC layer.

2.3 Epsilon Comparison Language

The Epsilon Comparison Language (ECL)1 is a hybrid rule-
based dedicatedmodel comparison language, provided by the
Epsilon framework. ECL lets developers specify custom com-
parison algorithms in a rule-based script to identify matching
elements between homogeneous and heterogeneous mod-
els. An ECL program contains a number of MatchRules and
optional pre and post-block(s) executing before and after
the rules respectively. A MatchRule enables developers to
specify comparison logic between model elements at a high
level of abstraction. MatchRules consist of a declared name
along with two parameters (left and right) to specify the
types of elements they can compare. A MatchRule can also
optionally extend a number of match rules and can be la-
belled as abstract, lazy and/or greedy using corresponding
annotations.

• An abstract match rule must be extended by other
MatchRules. Abstract match rules cannot be invoked
standalone, they get invoked only when the rules that
extend them are invoked.
• A lazy match rule will get executed only when it
is required by another MatchRule, using the matches

operation.
• A greedy match rule is executed for all pairs that
have a kind-of relationship with the types specified by
the left and the right parameters of the MatchRule.

The execution engine automatically evaluates non-abstract,
non-lazy match-rules in two passes, starting with the order
in which they appear.

2.4 Motivating Example

In this paper, as a running example, we consider comparing
class diagrams with sequence diagrams. Figure 1 is illustrates
the metamodel of a class diagram language. The class dia-
gram shows a structural view of the system containing the
classes, their attributes and their operations.

Then we consider a metamodel of a sequence diagram, an
excerpt of which is shown in Figure 2. Sequence diagrams
show the interaction between objects of a system - its in-
tended behaviour.

1https://www.eclipse.org/epsilon/doc/ecl/
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1 model Left driver EMF{

2 nsuri = "sd"

3 };

4

5 model Right driver EMF{

6 nsuri = "cd"

7 };

8

9 rule Lifeline2Class

10 match l : Left!Lifeline

11 with r : Right!Class {

12 compare : l.type = r.name

13 }

14

15 rule Message2Operation

16 match l : Left!Message

17 with r : Right!Operation {

18

19 compare : l.`operation` = r.name

20 and (l.`to`.matches(r.class) or l.`to`.

matches(r.class.superTypes)) and l.

parameters.matches(r.parameters)

21 }

22

23 rule Param2Param

24 match l: Left!Parameter

25 with r: Right!Parameter {

26

27 compare : l.name = r.name and l.type = r.

type.name

28 }

29

30 operation String matchOperation(others :

Collection <Right!Operation >) : Boolean

{

31 return others.exists(o|o.name = self);

32 }

Listing 1. Example ECL script before optimisation

Type

+ name: EString

Model

+ name: EString

Class

+ isAbstract: EBoolean

Parameter

+ name: EString

Operation

+ name: EString

DataType

0..1  returnType

1  type

1..*parameters

1..* operations

1..* classes

Figure 1. An excerpt of the Class Diagram metamodel

Now, as a sequence diagram depicts the interaction be-
tween objects and a class diagram represents the classes and

their features, we can establish correspondences between
the two, which can be used for downstream activities such
as validation, model merging etc.

1 model Left driver EMF {

2 nsuri = "sd"

3 };

4

5 model Right driver EMF {

6 nsuri = "cd"

7 };

8

9 pre {

10 var Lifeline2ClassMap = Right!Class.all.

mapBy(param|param.name);

11 var Message2OperationMap = Right!

Operation.all.mapBy(param|param.name)

;

12 var Param2ParamMap = Right!Parameter.all.

mapBy(param|param.name);

13 }

14

15 rule Lifeline2Class

16 match l : Left!Lifeline

17 with r : Right!Class

18 from : Lifeline2ClassMap.get(l.type) ?:

Sequence {}{

19 compare : true

20 }

21

22 rule Param2Param

23 match l : Left!Parameter

24 with r : Right!Parameter

25 from : Param2ParamMap.get(l.name) ?:

Sequence {}{

26 compare : true and l.type = r.type.

name

27 }

28

29 rule Message2Operation

30 match l : Left!Message

31 with r : Right!Operation

32 from : Message2OperationMap.get(l.`

operation`) ?: Sequence {} {

33 compare : true and (l.`to`.matches(r.

class) or l.`to`.matches(r.class.

superTypes)) and l.parameters.

matches(r.parameters)

34 }

35

36 operation String matchOperation(others :

Collection(Right!Operation)) : Boolean

{

37 return others.exists(o : Right!Operation|

o.name = self);

38 }

Listing 2. Example ECL script after optimisation
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Table 1.Match trace produced from the execution of Listing 1 on the models in Figure 3 and Figure 4

S # Left Right Matching

1 Lifeline (qa: User) Class (User) True

2 Lifeline (qa: User) Class (ATM) False

3 Lifeline (qa: User) Class (Card) False

4 Lifeline (hsbc: ATM) Class (User) False

5 Lifeline (hsbc: ATM) Class (ATM) True

6 Lifeline (hsbc: ATM) Class (Card) False

7 Message (enterPin) Operation (verifyPin) False

8 Message (enterPin) Operation (dispenseCash) False

9 Message (enterPin) Operation (enterPin) True

10 Message (enterPin) Operation (depositCash) False

11 Message (enterPin) Operation (withdrawCash) False

12 Message (enterPin) Operation (activate) False

13 Message (verifyPin) Operation (verifyPin) True

14 Message (verifyPin) Operation (dispenseCash) False

15 Message (verifyPin) Operation (enterPin) False

16 Message (verifyPin) Operation (depositCash) False

17 Message (verifyPin) Operation (withdrawCash) False

18 Message (verifyPin) Operation (activate) False

Lifeline

+ name: EString

+ type: EString
Message

+ operation: EString

SequenceDiagram

+ name: EStringlifelines

from

to

Parameter

+ name: EString

+ type: EString
parameters

messages

1..*
1

1..*

1

0..*

1

Figure 2. An excerpt of the Sequence Diagram metamodel

A custom comparison algorithm written in ECL is shown
in Listing 1. For this comparison, we have the following basic
criteria:

• A lifeline matches a class when the type of the lifeline
is the same as the name of the class in class diagram.
• A message matches an operation when the operation
of themessage is the same as the name of the operation.
Also, the class corresponding to the “to" lifeline of the

:User

enterPin

:ATM

verifyPin

Figure 3. Sequence Diagram of ATM

message or one of its supertypes should contain the
operation.
• The parameters of the message need to be matched
with the parameters of the operation.

We discuss some builtin operations supported by ECL and
EOL that are used in the running example.
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EOL supports a safe navigation operator ?., for making
the null checks more concise. The use of the safe naviga-
tion operator is shown in the listing below, where we re-
turn someProperty if the a has a non-null value and returns
anotherProperty if a contains a null value. var result = a?.

someProperty?.anotherProperty;

Map (mapBy(iterator : Type | expression)) is a function that
returns a map containing the results of the expression as
keys and the respective items of the collection or collections
of elements as values.

ECL provides a built-in operation matches(right :Any) for
model elements and collections.When invoked, thematches()

operation returns the cached result, if the elements have been
already matched, otherwise, it finds rules that can compare
the elements, executes them, and returns the result. In this
ECL program, we have three match rules: Lifeline2Class (Line
9-13), which compares the type of lifeline to the class name
(Line 12), Message2Operation, which compares the operation
ofMessagewithOperation name (Line 20).Message2Operation

also compares whether the operation’s owner class is the
same as the to (Lifeline) of theMessage. Finally, Param2Param

compares the name and type of the parameters of both mod-
els (Line 27).

User

enterPin()

depositCash()

withdrawCash()

ATM

verifyPin()

dispenseCash()

operates

Card

activate()

owns

Figure 4. Class Diagram of ATM

As an example, let us consider matching a class diagram of
an ATM system as shown in Figure 4) with its corresponding
sequence diagram as shown in Figure 3. If we execute the
ECL program (Listing 1) over these two models it would
produce the match trace shown in Table 1. As we can see, it
returns all matches of each element with its corresponding
type and a boolean indicating if the element were matched
or not.

The default execution engine of ECL will compare each in-
stance of the left parameter (i.e., Lifeline) to all the instances
of the right parameter (i.e., Class). The complexity of this
rule here would be O(M×N), if there are M number of Life-
lines and N number of Classes. Using program analysis, we
could index the instances by analysing these compare blocks

as shown in Listing 2. Considering example sequence and
class diagrams in Figure 3 and Figure 4, as there are 2 Life-
lines and 3 Classes so there will be 6 matches for the rule
Lifeline2Class. In the rule Lifeline2Class, we can filter the
Class instances only keeping ones where the name of the
class is equal to the type of the Lifeline. These indices can be
pre-computed once, and then used as required. This could
reduce the complexity to O(M), considering the complexity
of the hash function to be O(1). Again considering the ex-
ample models, if we execute Listing 2, the resultant match
trace would be the same as shown in Table 2. This can be
observed that there are only two matches for the same Life-
line2Class rule. Hence, the idea of this work is to analyse the
ECL matching program and to automatically replace it with
an efficiently rewritten program, to reduce the complexity
of (some of) the comparisons.

3 Proposed Approach

In this section, we present proposed approach, an overview
of which is illustrated in Figure 5. The idea is to optimise
ECL matching programs automatically using program anal-
ysis. The developer writes the comparison algorithm in ECL
to compare two models, say left and right. The expected
outcome is a match trace resulting from computing the com-
pare block of each match rule. The match trace contains a
number of matches, each match contains the two objects
that were matched and a boolean to indicate if the match
was successful or not. So using the proposed optimisation
approach we generate a match trace, which is a reduced or
pre-filtered version, containing a significantly smaller num-
ber of unsuccessful matches. We have hence reduced the
search space, making the comparison faster. This is because
we do not compare all instances of left parameter to all in-
stances of right parameter (which is done in existing ECL
execution), rather we compare instances of left parameter to
pre-filtered/pre-indexed instances of the right parameter.

The first step in our proposed approach is the 1 static
analyser, a block used to populate the Abstract Syntax Tree
(AST) of the ECL matching program, with the respective
type information. This type resolved AST is then used for

two purposes: i) For the 2 dependency graph extractor, a
block that extracts the dependencies between different match
rules of an ECL program by analysing compare blocks and
matches() operations. Dependency here means that if a rule
MRx invokes another rule MRy then the rule MRx would
be dependent on MRy. The dependency graph is then used

by the 4 rule scheduler to efficiently reorder the execu-
tion of rules. So that if a rule invokes another rule like in
Line 20 of Listing 1, rule Message2Operation is dependent
on rule Lifeline2Class and Param2Param. Both the rules on
which Message2Operation is dependent should be executed

before the execution of Message2Operation. ii) For the 3
optimisable rule detector, a block for program analysis to
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Table 2.Match trace produced from the execution of Listing 2 on the models in Figure 3 and Figure 4

S # Left Right Matching

1 Lifeline (qa: User) Class (User) True

2 Lifeline (hsbc: ATM) Class (ATM) True

3 Message (enterPin) Operation (enterPin) True

4 Message (verifyPin) Operation (verifyPin) True

Left
Model

Left
Metamodel

ECL
Comparison

Script

Abstract

Syntax
Tree

Type-
resolved

AST
Rewriter

Dependency
Graph

Generator

Static Analyser
Rewritten

Comparison

ECL Engine
Reduced/Pre-
filtered Match

Trace

1

2

co
nf

or
m

s 
to

Optimisable
Rule Detector

3

Right
Model

Right
Metamodel

co
nf

or
m

s 
to

Rule Scheduler

4

5

Input
Artefacts

Output
Artefacts

Proposed
Components

Existing
Components

Le
ge

nd

ECL 
Static

Analyser

EOL 
Static

Analyser

Extends

Figure 5. An overview of the proposed approach

identify the match rules which can be optimised based on
the expressions in compare block. Here, optimisable rules
mean the rules which are matching two elements on the
basis of a specific property and can be indexed. So, this step
identifies optimisable match rules along with the specific

property name. Finally, 5 the rewriter block will replace
the original program with a rewritten optimised program
along with the new order of the match rules. This optimised
comparison program will then be executed by the existing
ECL engine. The resultant match trace would be a subset
of the trace that would have been produced by the original
comparison program. This subset trace would exclude the
matches which would not satisfy the domain (an EOL expres-
sion to narrow the search space), while including all positive
matches.

3.1 Static Analysis

Static analysis is the first step of our proposed approach
workflow. It analyses the ECL program’s abstract syntax tree

(AST) and computes the types of all expressions in it. This
type information is extracted using metamodel introspection,
type resolution and type inference. ModelDeclarationState-

ments in Lines (1-3 and 5-7) in Listing 1 actually access the
metamodel structure and help retrieve the types and their
hierarchy available in the metamodel. To statically analyse
ECL programs, we extended the already available EOL static
analyser 2 by adding language specific support (e.g. analysing
MatchRules, compare blocks etc.). The resolved types of var-
ious constructs in Listing 1 are shown in Table 3. The
outcome of the static analyser block is a type-resolved AST,
which is just the input AST with its nodes populated with
their respective types.

3.2 Dependency Graph

When matches() operation is invoked, it returns the cached
result, if the elements have been already matched. Other-
wise, it finds the rule comparing the same two elements and

2https://github.com/epsilonlabs/static-analysis
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Table 3. Resolved types of various constructs in Listing 1

Line# Expression Resolved Type

13 l Left!Lifeline

14 r Right!Class

15 l.type String

15 r.name String

19 l Left!Message

20 r Right!Operation

21 l.operation String

21 r.operations CollectionkRight!Operation>

21 r.superTypes.operations CollectionkRight!Operation>

29 l.parameters CollectionkLeft!Paramter>

29 r.parameters CollectionkRight!Paramter>

33 l Left!Parameter

34 r Right!Parameter

36 l.name String

36 r.type.name String

Message2Operation

Lifeline2Class Param2Param

Figure 6. Dependency graph of Listing 1

then returns its results. Due to these rule invocations, rules
can be dependent on one another. These dependencies can
be extracted by the help of the type resolved AST, as done
for model-to-model transformations in [8]. To construct a
dependency graph, we create a vertex for each MatchRule

declared in the ECL program. If a rule MRx has a statement
in its compare block that calls a matches() operation which
invokes another rule, say MRy. The resolution of which rule
is invoked by the matches() operation is done by finding the
rule where the type of the left and right parameters of rule
is the same as the type of the target and parameter expres-
sions of the matches() operation. Then, we create an edge
from the vertex corresponding to MRx, to the vertex corre-
sponding to MRy. If there are multiple rules invoked by the
matches() operation, we create multiple edges fromMRx. For
example, as in rule Message2Operation Line 19 of Listing 1
there is a call to the matches() operation with l.to (resolved
type: Lifeline) as the target expression and r.class (resolved
type: Class). This means that this matches operation call will

invoke a rule which is matching Lifeline with Class i.e., rule
Lifeline2Class. So, we create an edge fromMessage2Operation

to Lifeline2Class as shown in Figure 6. The reason for extract-
ing the dependency graph is to reorder the rules in a way
that if MRx is invoked by a rule MRy then MRy is scheduled
before MRx. When x.matches(y) is called in ECL, if x and y
have not already been matched, the ECL engine needs to
find rule(s) that can match them, invoke these rules and re-
turn the result to matches(...). This can have a non-negligible
cost for large models and sets of match rules. By reordering
rules to maximise the number of pairs of x and y that have
been already matched before x.matches(y) is called, we re-
duce that cost of jumping between rules. This rescheduling
can help improve performance, because it can reduce the
number of attempts needed to find the appropriate rules to
invoke. Any rule invocation using a matches() operation can
use the cached results in the match trace, if the rules have
been reordered properly. We do not create an edge when a
rule invokes itself, as it does not affect the reordering for
which we extract dependency graph. However, ECL provides
a mechanism to avoid an infinite loop, in case of a cyclic invo-
cation of a rule i.e., two rules implicitly invoking each other.
ECL maintains a temporary trace along with the primary
trace. In a primary trace the matching value is added after
the execution of compare block, while the matching value
is set to true in the temporary trace before the execution
of the compare block. In case of another attempt to match
elements from already invoked rules, these rules would not
be re-invoked. Finally, the temporary trace is reset when a
top-level rule returns.

3.3 Identifying Optimisable MatchRules

This is the third step of the approach that takes in a type-
resolved AST as an input with the aim to identify the rules
which can be optimised. By optimisable rules, we mean the
rules which are comparing the elements of the two models
based on a specific property. This is done by traversing the
compare block of each MatchRule and finding expressions
where two elements are compared on the basis of a specific
property or attribute. Currently, the rewriting approach only
considers equality operators, as checking for name/id-like
attribute equality is very common in model matching in our
experience, but it can be extended to support other operators
in the future too. In this case, the elements can be indexed
based on that property. The process for identifying such op-
timisable rules is specified in Algorithm 1. The algorithm
traverses a set of Match rules and its compare block. Then, in
a compare block all DOM elements are traversed to identify
cases where a PropertyCallExpression is used within an Equal-
sOperatorExpression and it records the relevant Match rules
and properties in a HashMap for later use in indexing. With
one exception, if there is a logical operator between equals
expression, we just record the index if it is an and operator.
For instance, in Listing 1 Line 12 the rule Lifeline2Class is
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comparing the Lifeline from Sequence diagram to Class from
Class diagram on the basis of the property name, in this class.
So the Algorithm 1, would return the hashmap containing
rule Lifeline2Class with the respective property “name".

Algorithm 1 Algorithm for Identifying optimisable rules

1: Let ικ = HashMapkrule, NameExpression>
2: for all Matchrules νΨ do

3: Visit all DOM elements (ΨΨη) of compare block of
νΨ

4: if ΨΨη instanceof PropertyCallExpression and
!(ικ.contain(νΨ)) then

5: κνΨθο ← ΨΨη.parent
6: if κνΨθο instanceof EqualsOperatorExpression

then

7: κνΨθο ← κνΨθο.parent
8: if κνΨθο instanceof OperatorExpression then

9: if κνΨθο instanceof AndOperatorExpression
then

10: op← νΨ and elem.NameExpression

11: end if

12: else

13: op← νΨ and elem.NameExpression

14: end if

15: end if

16: end if

17: end for

3.4 Program Rewriting

The final step is the rewriting phase illustrated in Algo-
rithm 2, now that we have all the program analysis in place.
As discussed in the previous step, we have identified the
optimisable rules say MR1, MR2.., MRn along with the spe-
cific properties say p1, p2.., pn on the basis of which we are
comparing the elements in the compare block. We index all
instances of the right parameter of the identified rule MRn

on the basis of the respective property pn. This is done using
a built-in method called mapBy (Line 10 in Listing 2), which
returns a map containing the results of the parameter expres-
sion as keys and the respective items of the target collection
as values. ThemapBy operation is called with all instances of
the identified rule’s right parameter and assigned to a newly
declared variable (Line 4-10 of Algorithm 2). The naming
convention of these variables is the rule name concatenated
with the string “Map". So, a Map for the rule Lifeline2Class
will be called as Lifeline2ClassMap (Line 11 of Algorithm 2).
These variable statements are then added to the pre block of
the ECL program (Line 13 of Algorithm 2). The Pre block is a
set of EOL statements that are executed before the execution
of match rules in ECL. This can be seen in Listing 2 (Line
10-12).

The next step is to utilise these pre-computed hashmaps
(indices). For this, we have added the facility of specifying

domains in ECL. Each parameter in an ECL rule can define
a domain, which is an EOL expression that yields a set of
model elements, allowing the developers to narrow down the
search space. We support two types of domains in ECL. Static
domains which are computed once for one match rule and
are independent of bindings of the other parameter of the
MatchRule. Static domains are denoted by the “in" keyword)
and dynamic domains which are recomputed every time the
other parameter value is changed. Dynamic domains are
dependent on the other parameter values and are denoted
by the “from" keyword. So we use these hashmap variables
added in the pre block, as a dynamic domain for the right pa-
rameter of the correspondingMatchRule. For instance in Line
18 of Listing 2, we retrieve the value from the corresponding
hashmap i.e., Lifeline2ClassMap using the left parameter’s
compared property (identified in the previous step) as a key.
Hashmaps return null values if they don’t contain the

mapping for a particular key, so to cater for possible null
pointer exceptions, we use a safe navigation operator. The
use of the safe navigation operator is shown in Line 18 of
Listing 2, where we return an empty Sequence if the get()
operation returns a null value. var result = a?.someProperty?.

anotherProperty;

If a is not null, someProperty would be assigned to result,
otherwise, anotherProperty would be assigned.

The last step of the rewriting phase is to rewrite the order
of the rules as described in the Rule Scheduler step. The
reordering is done on the basis of the dependency graph as in
Figure 6, so that dependency-free rules can be executed first
and then the ones dependent on them. Now, instead of the
ECL engine executing the original program written by the
developer, as listed in Listing 1, the automatically rewritten
program as in Listing 2 will be executed. During execution,
to minimize the storage of unnecessary unsuccessful match
traces, only the unsuccessful traces that are required based
on the dependency graph (i.e., if there are no corresponding
matches() calls are saved.

4 Evaluation

In this section, we first present the experimental setup, in-
cluding the case study and the models used for our bench-
marks, and then we present the results of the conducted
experiments. Finally we conclude the section by analysing
and then stating any threats to the validity of the presented
results.

4.1 Experimental Setup

To evaluate the proposed approach, we measured the exe-
cution time of the original ECL programs using the existing
ECL engine with the rewritten ECL programs (also using the
existing ECL engine). Since Epsilon already supports parallel
execution of ECL programs, we conducted all these experi-
ments with the parallel execution mode. Program rewriting
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Algorithm 2 Algorithm for Program Rewriting

1: Let ικ = HashMap of rules with the corresponding prop-
erties as in Algorithm 1

2: sv = Dependency Graph
3: for all νΨ in ικ do

4: Construct property call expression (κΦΨ)
5: target← type of right parmeter of νΨ
6: property← all
7: Construct operation call expression (ιΦΨ
8: target← κΦΨ
9: operation← mapBy
10: expression← ικ.get(νΨ)
11: declare variable () with name

νΨ.getName()+"Map"
12: ← ιΦΨ
13: add  to pre block
14: add domain block with expression

.get(leftParameter.property)
15: end for

16: reorder rules according to topological order of sv

with the help of dependency graph, identifies the indepen-
dent rules that can be executed in parallel. First, wemeasured
the execution time for running the comparison programwith
the existing ECL engine (without any optimisations) in par-
allel mode and we refer this as ECL in all the results tables
and graphs. Second, we use the proposed approach to auto-
matically rewrite the ECL program (as described in Section 3
and execute the rewritten program using the existing ECL
engine in parallel mode. We refer to this as Optimised ECL

in the results tables and graphs.

Table 4. Sizes of the models used for benchmarking

ID

No of model elements

OO DB OO+DB Seq Class Class+Seq

1 287 184 471 305 356 661

2 357 229 586 417 356 773

3 427 274 701 417 469 886

4 497 319 816 342 356 698

5 567 364 931 342 356 698

6 637 409 1046 305 469 774

7 707 454 1161 342 469 811

4.1.1 Case Study &Models. For evaluating our approach,
we used two case studies: one is the class and sequence di-
agram comparison as shown in Listing 1, the second is the
comparison of object oriented (OO) models with database
(DB) models. We have used the class and sequence diagram

models of different sizes conforming to these metamodels
publicly available on GitHub [13]. OO & DB are the syn-
thetic models generated in [8]. The number of elements of
different models are mentioned in Table 4. The point to note
is that the sizes of the models that we are using are not very
large but the comparison of these models still becomes com-
putationally very expensive. Hence, a notable performance
gain can be observed in these models.

1 rule Class2Table

2 match l : OO!Class

3 with r : DB!Table{

4

5 compare : l.name = r.name

6 }

7

8 rule Attribute2Column

9 match l : OO!Attribute

10 with r : DB!Column

11 {

12 compare : l.name = r.name and l.owner.

matches(r.table)

13 }

Listing 3. ECL comparison program for OO-DB models

To compare OO models with DB ones, we used a simple
comparison algorithm (depicted in Listing 3) to establish
matches between tables and classes, when their names are
same. In the second rule, we compare attributes with columns
on the basis of the property name, and also whether they
belong to same class and table respectively. This example
is quite simple but we have used this as a case study to
show the substantial performance benefits observed even
for simpler matching programs, with increasing model sizes.
The comparison program in Listing 3 would be optimised
and rewritten as represented in Listing 4.

4.1.2 Correctness. As the approach is based on automatic
rewriting of the program, it is crucial that the rewritten pro-
gram preserves the semantics of the original program. To
ensure this, we use equivalence testing to compare the match
trace for both the original and the rewritten programs. We
used several ECL comparison programs mined from GitHub
to compare models both conforming to same and different
metamodels and then compared their output match traces.
Mostly, comparison programs available on GitHub were com-
paring models from the same modelling language. We veri-
fied that the number of successful matches in both the op-
timised and the unoptimised version remained the same,
as shown in Table 5 and 6. While the number of success-
ful matches are the same, one can observe the difference
in number of unsuccessful matches in the Table 5 and 6.
This is because of the successful pre-filtering/pre-indexing
in the proposed approach. We filter some of the instances
which, using the static program analysis, can be categorised
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as unsuccessful, before actually running the comparison al-
gorithms.

1 pre {

2 var Class2TableMap = DB!Table.all.mapBy(

param|param.name);

3 var Attribute2ColumnMap = DB!Column.all.

mapBy(param|param.name);

4 }

5

6 rule Class2Table

7 match l : OO!Class

8 with r : DB!Table

9 from : Class2TableMap.get(l.name) ?:

Sequence {} {

10 compare : true

11 }

12

13 rule Attribute2Column

14 match l : OO!Attribute

15 with r : DB!Column

16 from : Attribute2ColumnMap.get(l.name) ?:

Sequence {} {

17 compare : true and l.owner.matches(r.

table)

18 }

Listing 4. ECL rewritten program for OO-DB models

4.1.3 Machine Specification. The set of evaluation ex-
periments presented in this paper were performed on a Mac-
BookPro @ M2 Core i7, 24 GBs of RAM, Mac operating
system Ventura version 13.0, and Java 17 on JDK 17.0.6 with
JVM MaxHeapSize 6GBs.

4.2 Results

In this section, we present the results from the conducted
experiments. Table 7 presents the execution time in millisec-
onds for the OO and the DBmodel comparison, and the Class
and Sequence Diagram model comparison respectively. This
execution time also includes the time taken for indexing.
The rewriting and reordering of rules are done before the
execution and takes negligible amount of time (≈2ms). The
results can also be visualised for the OO & DB comparison
in Figure 7 and the Class and Sequence diagram in Figure 8.

Table 7. Execution time of existing ECL and optimised ECL,
in ms

ID

OO - DB CL - SEQ

ECL Optimised ECL Optimised

1 1962 535 3287 196

2 3488 781 3109 194

3 6745 1238 3894 205

4 14051 1735 4046 188

5 22044 1924 4286 287

6 31611 3705 4342 199

7 52159 4520 5050 250
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Figure 7. Comparison of Execution time in OO DB Compar-
ison

As seen in Table 4, the OO and the DB models are of
increasing sizes, while this is not the case with the Class and
Sequence Diagram models. Keeping these sizes of models
in mind, we can see a continuous rise in performance gain
as the model size increases (Figure 7). While in Figure 8, we
can see almost a constant performance gain compared to
the existing ECL engine. This suggests that our performance
benefits are proportional to model size.

This performance gain is achieved by reducing the search
space needed for matching. We can clearly observe in the
match traces produced for both case studies in the Tables Ta-
ble 5 and Table 6 that the number of unsuccessful matches
are significantly reduced in our proposed approach.
Another important factor to notice here is that this ap-

proach might not bring performance benefits when compar-
ing very small models. As the proposed approach provides
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Table 5.Match Trace of Class and Sequence Diagram Comparison

ID ECL (All) Optimised (All) ECL (Successful) Optimised(Successful)

1 29400 92 38 38

2 29400 92 38 38

3 33700 78 0 0

4 33284 54 0 0

5 33284 54 0 0

6 33700 78 0 0

7 38100 208 72 72

Table 6. Match Trace of OO and DB Comparison

ID ECL (All) Optimised (All) ECL (Successful) Optimised(Successful)

1 18060 4120 60 60

2 28200 6400 75 75

3 40590 9180 90 90

4 55230 12460 105 105

5 72120 16240 120 120

6 91260 20520 135 135

7 112650 25300 150 150
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Figure 8. Comparison of Execution time in Class Sequence
Diagram Comparison

a caching mechanism, the optimization indeed comes at
the expense of increased memory footprint. As the size of
the computed caches can be estimated from the number of

rules/indexed properties in a straightforward manner. Pre-
computing the indices (as mentioned in the program rewrit-
ing section) has an overhead, which is paid off for larger
models, and we expect to see a much clearer improvement
in performance when it comes to larger models.

4.3 Threats to Validity

A primary threat to the validity of the results presented
here, is that the measured performance may be particular
to the models that were created for the tests, to the kind
of model, or to the comparison programs that were pro-
posed. A key challenge identified in MDE research is a lack
of publicly accessible real-world models [20]. Although we
used both synthetic models in the OO-DB case studies and
publicly available models for the class and sequence dia-
grams one, this can still affect the measured performance
benefits. To further generalise the results, we would need to
perform experiments with different models and comparison
programs as well as with different modeling technologies
such as Simulink and CDO to demonstrate the scalability of
our proposed approach, especially for larger models.

As the rewriting is based on static analysis, we recommend
explicitly stating the types of the constructs wherever possi-
ble, to allow accurate type resolution and enable automated
rule optimisation (as described in Section 3).
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5 Related Work

Model comparison deals with finding similarities and differ-
ences between elements of differentmodels. This comparison
can be done on the basis of structure, semantics and metrics
etc., [12]. In the context of this paper we will be stating the
use of program rewriting in optimisation and also the state
of the art that involves structural model comparison.

Program rewriting has proven to be beneficial for various
optimization purposes, as demonstrated in [24] where it was
utilized for optimizing type level model queries. Addition-
ally, rewriting has played a crucial role in translating EOL
expressions to Viatra for incremental evaluation [6], as well
as converting them to MySQL queries for efficient execution
on relational databases [7].
It has been demonstrated in [23] that conventional text-

based comparison and differencing techniques are insuffi-
cient for model comparison due to the structured nature of
models.
Model-to-model transformations have shown to be used

for comparing models as in [11]. As M2M languages are not
tailored for model comparison task and hence generally very
verbose as M2M languages do not have constructs tailored
for model comparison activities.
Change-based model comparison was presented in [25]

where the comparison is done only for the model elements
that have been changed since the previous version which is
quite efficient compared to state-based comparison.
EMF Compare [2] & EMF Diff Merge[3] are two tools

available to compare and then merge two models. EMF Com-
pare uses built-in heuristics formodel element references and
attribute values while a tailored language like ECL lets you
write custom matching rules for different model elements.

There are other comparison approaches as shown in [21]
that demonstrates comparison between different UML mod-
els but the approach is only limited to models conforming
to a single metamodel. Additionally as mentioned in [14],
most similarity-based approaches such as SiDiff [23] and
DSMDiff [19], have limited support when it comes to hetero-
geneous models which is supported by ECL, where one can
specify complex matching algorithms for models conforming
to different metamodels.

6 Conclusions & Future Work

We have presented an approach for efficiently comparing
models using programs written in rule-based model compar-
ison language. This efficient comparison approach incorpo-
rates an automatic rewriting facility to speed up the model
comparison (both homogeneous and heterogeneous) based
on static analysis. The rewriting automatically extracts dy-
namic domains to provide pre-filtering of model elements
before actually comparing them. Additionally, static analy-
sis also helps reorder the rules based on the dependencies
identified between these match rules through the creation of

a dependency graph. This enables us to execute independent
rules before those dependent on them, optimizing the com-
parison process by reducing the cost of jumping between
comparison rules. Through experiments, we demonstrate
that our approach significantly improves execution time
compared to the default ECL execution engine, providing
substantial performance benefits.

In future work, the proposed approach can be potentially
used to provide correspondence between models from het-
erogeneous modelling technologies. For instance, it can fa-
cilitate the comparison between Simulink models and EMF
models. Moreover, this automatic domain rewriting facility
can be integrated with other rule-based languages such as
Epsilon’s pattern matching language (EPL).

Acknowledgments

This research is supported by the Lowcomote project, funded
by the EuropeanUnion’s H2020 Research and Innovation Pro-
gramme under the Marie Skłodowska-Curie GA n°813884.

References
[1] 2022. Epsilon Validation Language. https://www.eclipse.org/epsilon/

doc/evl/. [Online; accessed 29-April-2022].
[2] 2023. Eclipse EMF Compare. https://projects.eclipse.org/projects/

modeling.emfcompare. [Online; accessed 10-April-2023].
[3] 2023. EMF DiffMerge. https://wiki.eclipse.org/EMF_DiffMerge. [On-

line; accessed 10-April-2023].
[4] 2023. Epsilon. https://www.eclipse.org/epsilon/. [Online; accessed

26-March-2023].
[5] 2023. Epsilon Model Connectivity Layer. https://www.eclipse.org/

epsilon/doc/emc/. [Online; accessed 26-March-2023].
[6] Qurat Ul Ain Ali, Benedek Horváth, Dimitris Kolovos, Konstanti-

nos Barmpis, and Ákos Horváth. 2021. Towards Scalable Valida-
tion of Low-Code System Models: Mapping EVL to VIATRA Pat-
terns. In 2021 ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems Companion (MODELS-C). 83ś87.
https://doi.org/10.1109/MODELS-C53483.2021.00019

[7] Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis. 2020.
Efficiently Querying Large-Scale Heterogeneous Models. In Proceed-

ings of the 23rd ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems: Companion Proceedings (Virtual
Event, Canada) (MODELS ’20). Association for Computing Machin-
ery, New York, NY, USA, Article 73, 5 pages. https://doi.org/10.1145/

3417990.3420207

[8] Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis. 2022. Se-
lective Traceability for Rule-Based Model-to-Model Transformations.
In Proceedings of the 15th ACM SIGPLAN International Conference on

Software Language Engineering (Auckland, New Zealand) (SLE 2022).
Association for Computing Machinery, New York, NY, USA, 98ś109.
https://doi.org/10.1145/3567512.3567521

[9] Antonio Bucchiarone, Jordi Cabot, Richard F Paige, and Alfonso Pieran-
tonio. 2020. Grand challenges in model-driven engineering: an analysis
of the state of the research. Software and Systems Modeling 19, 1 (2020),
5ś13.

[10] Justin Cooper, Alfonso De la Vega, Richard Paige, Dimitris Kolovos,
Michael Bennett, Caroline Brown, Beatriz Sanchez Piña, and Hora-
cio Hoyos Rodriguez. 2021. Model-Based Development of Engine Con-
trol Systems: Experiences and Lessons Learnt. In 2021 ACM/IEEE 24th

International Conference on Model Driven Engineering Languages and



Towards Efficient Model Comparison using Automated Program Rewriting SLE ’23, October 23ś24, 2023, Cascais, Portugal

Systems (MODELS). 308ś319. https://doi.org/10.1109/MODELS50736.

2021.00038

[11] Marcos Didonet Del Fabro and Patrick Valduriez. 2007. Semi-Automatic
Model Integration UsingMatching Transformations andWeavingMod-
els. In Proceedings of the 2007 ACM Symposium on Applied Computing

(Seoul, Korea) (SAC ’07). Association for Computing Machinery, New
York, NY, USA, 963ś970. https://doi.org/10.1145/1244002.1244215

[12] Lucian Gonçales, Kleinner Farias, Murilo Scholl, Toacy Oliveira, and
Mauricio Veronez. 2015. Model Comparison: a Systematic Mapping
Study. https://doi.org/10.18293/SEKE2015-116

[13] Faezeh Khorram, Masoumeh Taromirad, and Raman Ramsin. [n. d.].
SeGa4Biz: Model-Driven Framework for Developing Serious Games
for Business Processes. ([n. d.]).

[14] Dimitrios S. Kolovos. 2009. Establishing Correspondences between
Models with the Epsilon Comparison Language. InModel Driven Archi-

tecture - Foundations and Applications, Richard F. Paige, Alan Hartman,
and Arend Rensink (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 146ś157.

[15] Dimitris S Kolovos and Richard F Paige. 2017. The epsilon pattern
language. In 2017 IEEE/ACM 9th International Workshop on Modelling

in Software Engineering (MiSE). IEEE, 54ś60.
[16] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2006. The

epsilon object language (EOL). In European conference on model driven

architecture-foundations and applications. Springer, 128ś142.
[17] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2006.

Merging models with the epsilon merging language (eml). In Model

Driven Engineering Languages and Systems: 9th International Confer-

ence, MoDELS 2006, Genova, Italy, October 1-6, 2006. Proceedings 9.
Springer, 215ś229.

[18] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2008. The
epsilon transformation language. In Theory and Practice of Model Trans-

formations: First International Conference, ICMT 2008, Zürich, Switzer-

land, July 1-2, 2008 Proceedings 1. Springer, 46ś60.

[19] Yuehua Lin, Jeff Gray, and Frédéric Jouault. 2007. DSMDiff: a differenti-
ation tool for domain-specific models. European Journal of Information

Systems 16, 4 (2007), 349ś361.
[20] José Antonio Hernández López and Jesús Sánchez Cuadrado. 2021. To-

wards the Characterization of Realistic Model Generators using Graph
Neural Networks. In 2021 ACM/IEEE 24th International Conference on

Model Driven Engineering Languages and Systems (MODELS). 58ś69.
https://doi.org/10.1109/MODELS50736.2021.00015

[21] Dirk Ohst, Michael Welle, and Udo Kelter. 2003. Differences between
Versions of UML Diagrams. SIGSOFT Softw. Eng. Notes 28, 5 (sep 2003),
227ś236. https://doi.org/10.1145/949952.940102

[22] Massimo Tisi, Salvador Martínez, and Hassene Choura. 2013. Parallel
execution of ATL transformation rules. In Model-Driven Engineering

Languages and Systems: 16th International Conference, MODELS 2013,

Miami, FL, USA, September 29–October 4, 2013. Proceedings 16. Springer,
656ś672.

[23] Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. 2007.
Difference computation of large models. In Proceedings of the the 6th

joint meeting of the European software engineering conference and the

ACM SIGSOFT symposium on The foundations of software engineering.
295ś304.

[24] Qurat Ul Ain Ali, Dimitris Kolovos, and Konstantinos Barmpis. 2021.
Identification and Optimisation of Type-Level Model Queries. In
2021 ACM/IEEE International Conference on Model Driven Engineer-

ing Languages and Systems Companion (MODELS-C). 751ś760. https:

//doi.org/10.1109/MODELS-C53483.2021.00121

[25] Alfa Yohannis, Rodriguez Hoyos Rodriguez, Fiona Polack, and Dimitris
Kolovos. 2019. Towards Efficient Comparison of Change-BasedModels.
Journal of Object Technology 18, 2 (July 2019), 7:1ś21. https://doi.org/

10.5381/jot.2019.18.2.a7 The 15th European Conference on Modelling
Foundations and Applications.

Received 2023-07-07; accepted 2023-09-01


	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Model Comparison
	2.2 Epsilon
	2.3 Epsilon Comparison Language
	2.4 Motivating Example

	3 Proposed Approach
	3.1 Static Analysis
	3.2 Dependency Graph
	3.3 Identifying Optimisable MatchRules
	3.4 Program Rewriting

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results
	4.3 Threats to Validity

	5 Related Work
	6 Conclusions & Future Work
	References

