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ABSTRACT

The widening gap between compute performance and I/O perfor-

mance on modern HPC systems means that writing checkpoints to

a parallel file system for fault tolerance is fast becoming a bottleneck

to high-performance. It is therefore vital that software is engineered

such that it can achieve the highest proportion of available per-

formance on the underlying hardware; and this is a burden often

carried by I/O middleware libraries. In this paper, we outline such

an I/O library based on a Log-structured Merge Tree (LSM-Tree),

not just for metadata, but also scientific data. We benchmark its

performance using the IOR benchmark, demonstrating 2.4 to 76.7×

better performance than alternative file formats, such as ADIOS2,

HDF5, and IOR baseline when running on a Lustre Parallel File Sys-

tem. We further demonstrate that when our LSM-Tree I/O library

is used as a storage layer for ADIOS2, the resulting I/O library still

outperforms the default ADIOS2 implementation by 1.5×.
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1 INTRODUCTION

Between 2008 and 2022, the compute performance of the #1HPC sys-

tem grew from a PetaFLOP/s (IBM Roadrunner1) to an ExaFLOP/s

(Frontier2). During the same time period, the headline I/O band-

width to the parallel file system grew from 216 GB/s on Roadrunner3

1https://www.top500.org/lists/top500/2008/06/
2https://www.top500.org/lists/top500/2022/06/
3https://www.krellinst.org/doecsgf/conf/2009/pres/barney.pdf
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in 2008 to 10 TB/s for the SSD tier and 5.5 TB/s for the HDD tier in

Frontier4 in 2022. This translates to approximately 46.3× and 25.5×

growth respectively for I/O bandwidth, two orders of magnitude

less than the compute growth of 1074.1× during the same time.

Figure 1 shows how the headline compute performance and par-

allel file system performance has grown on the #1 system between

2008 and 2023, as we moved from Petascale to Exascale. While

compute performance has continued to approximate Moore’s law,

doubling approximately every 18 months, I/O performance has only

doubled approximately every 3 years. Many applications previously

considered to be compute- or memory-bound, are fast becoming

I/O-bound.

Approximately 75-80% of HPC I/O is checkpoint data, which are

bursty, immutable, and write-once-read-rarely [3, 40]. Real world

examples include checkpoint sizes on the Titan supercomputer

ranging from 0.83 GB for VULCAN, up to 160 TB for CHIMERA [43].

Many pre- and post-Exascale systems4 add NVMe SSDs as part

of their storage tiering. Due to SSDs constraints such as cost and

more importantly write endurance, HDDs are still foundational

building blocks. For example, Frontier5 has 11.5 PB of NVMe SSD

Storage vs. 700 PB HDD Storage.

In this paper we introduce LSMIO, an I/O library based on a

log-structured merge tree (LSM-Tree). Our hypothesis is that using

4https://www.hpe.com/psnow/doc/a00062172enw
5https://www.nextplatform.com/2021/05/21/first-look-at-frontier-supercomputers-
storage-infrastructure

Figure 1: CPU and I/O performance growth between the start

of the PetaFLOP era and the ExaFLOP era



SC-W 2023, November 12–17, 2023, Denver, CO, USA Serdar Bulut and Steven A. Wright

an LSM-Tree for the scientific data write-path, not just for meta-

data, provides better performance ś measured by utilisable write

bandwidth ś as the number of compute nodes increases and as

available I/O capacity per node decreases. This paper then com-

pares our library to different I/O libraries targeted at the writing of

checkpoint data from compute nodes to the storage layer, such as

the Lustre file system. Specifically, this paper makes the following

contributions:

• We present LSMIO, an I/O library that leverages an LSM-

Tree-based backing store implementation with 3 different

interfaces: a C++ IOStream-like API (FStream API), a K/V

interface that the library itself also uses internally, and an

ADIOS2 API through ADIOS2’s plugin mechanism;

• We demonstrate that our LSMIO library performs signif-

icantly better than the baseline IOR-benchmark once the

number of compute nodes passes the Lustre stripe count;

• We then demonstrate that our LSMIO library’s write perfor-

mance is significantly better than ADIOS2 and, furthermore,

performs an order of magnitude better than HDF5;

• Finally, we evaluate the read performance of our library,

showing that the read performance exceeds IOR baseline

and HDF5, and is on average within 23.3% of ADIOS2’s read

performance.

The remainder of this paper is structured as follows: Section 2

outlines the background and related work for this study; Section 3

provides an overview of our proposed I/O library; Section 4 shows

the evaluation of our library against the IOR baseline as well as

alternatives, such as HDF5 and ADIOS2; finally, Section 5 concludes

this paper.

2 BACKGROUND AND RELATED WORK

The end of Dennard scaling around 2008 has meant that as clock

rates have ceased to increase, performance increases instead require

more cores and denser chips [6]. More components and higher den-

sity results in more failures. Mean Time Between Failures (MTBF)

has reduced from days to minutes, where the estimated MTBF is 17

minutes for a system with 100,000 nodes [36]. This translates into

a 20× increase in failure rate when an application moves from 10K

to 22K CPU cores [5]. With more failures, more proactive and re-

medial actions are needed [29]. One such fault tolerance technique

is checkpointing ś enabling recovery with rollback [13].

Checkpointing comes with an associated overhead and this over-

head is linearly proportional to the checkpointing size and I/O

latency, and inversely proportional to the I/O bandwidth [37]. If

the checkpointing time is close to the MTBF then an HPC system

spends most of its time doing checkpoint and restart, effectively

making little or no progress [6].

2.1 Checkpoint I/O Improvements

To reduce the checkpointing overhead numerous mechanisms have

been proposed. One of the early mechanisms is reducing the block-

ing time for checkpointing by making it asynchronous, or using

a faster tier in-between to reduce the time for checkpointing [13].

Other earlier mechanisms include reducing the checkpointing data

size by using application-level checkpointing instead of system-

/user-level checkpointing, performing incremental checkpointing,

compression, memory exclusion, decimation, interpolation or tim-

ing such that the checkpoint size will be the smallest during the

life of the application [13, 23, 47]. There are several novel methods

introduced for incremental checkpointing [1, 20, 31, 32]

Buffering checkpoint data into RAM and then to the local disk

was introduced by Plank et al. as early as in 1993 [30]. Making this

write from RAM to disk asynchronously was introduced later by

Li et al. in 1994 [20]. To improve the reliability of using local RAM

as a checkpoint location, numerous methods have been introduced

such as utilizing neighbor RAMs by mirroring or for parity (one

dimensional, XOR or RAID-5) and DSM (Distributed Shared Mem-

ory) with distributed log updates [10, 11, 38, 39]. Novel approaches

have been introduced for writing checkpoint data to local disks of

HPC nodes such as using striping, staggering, as well as distributed

RAID [7, 16, 30, 42].

Checkpoint data can also be stored at partner/neighbor disks

using FTC-Charm++ [48]. Additionally, these neighbor nodes can

be used as data transfer nodes as well as next in the data life cycle,

such as compressing the data before the data is sent to the next

layer in a tiered storage hierarchy [2, 35]. Alternatively, the local

SSDs could be considered as burst buffers, or neighbor nodes could

be leveraged as intermediary nodes [2, 46]. However, in the case

of SSDs there needs to be additional optimizations to improve SSD

endurance [43].

Multi-level checkpointing could traverse full storage tiering all

the way from local RAM to local disk to neighbor nodes (RAM,

CPU, Network, and Disk) and to a central Parallel File System (PFS).

The Scalable Checkpoint/Restart (SCR) library from the Lawrence

Livermore National Laboratory is one such system and its successor

CRUISE/SCR adds memory spill support [27, 33].

Aggregation of checkpoint files using collective I/O dates back

to 1999 by ROMIO [41]. Charm++ implements similar capability

as well [26]. LACIO aggregates and later re-orders/swaps blocks

to align with the PFS [8, 9]. T3PIO introduces HPC auto-tuning

capability of the Lustre stripe count and the number of collective

I/O writers to the PFS [24].

The file layout on a PFS also impacts the performance due to how

both metadata and scientific data are laid out, and what their update

patterns are on the PFS. Hence, if the number of nodes to number

of checkpoint files ratio is greater than 1 the data performance

improves at the expense of additional metadata operations [3, 45].

PLFS solves this problem by representing itself as an N-to-1 file

but implementing an N-to-N mapping on the actual PFS while

managing the metadata implosion by slab allocation [4].

There are multiple popular file formats which primarily try to

solve ease of use and portability challenges of input and output for-

mats, which also can be used for checkpointing such as HDF5 [17]

and NetCDF [19], which also support collective I/O [14]. PLFS also

integrates with and can be a backend layer for HDF5 [25].

ADIOS has incorporated a lot of the ideas mentioned previously,

including N-to-1 to N-to-N file mapping, in-memory data aggrega-

tion, and buffering with the option of per group of processes within

a host not just for all nodes [21, 22]. ADIOS2 significantly outper-

forms other file formats such as PNetCDF by more than 10× in I/O

throughput as parallelism increases [18]. ADIOS2 has demonstrated

over 30× and 10× I/O performance improvements at approximately
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30 GB/s over their default implementations for S3D (96K cores) and

PMCL3D (30K cores) [21].

2.2 LSM-Tree

Our proposed approach is to optimize the checkpoint writes such

that they appear as sequential access to the disk which then en-

ables maximum throughput on HDDs. An LSM-Tree is such an

in-memory and on-disk data structure that we believe could be

beneficial for checkpoint writes.

At its essence the log-structured merge-tree is a disk-based data

structure that buffers and aggregates updates and then writes multi-

page blocks to new locations on a disk optimized for sequential

disk access, which later can be read in a way similar to a merge

sort [28]. This was inspired by the log-structured file system, created

by Rosenblum and Osterbout, hence the origin of the name log-

structured merge-tree [34].

This aggregation and buffering enables large sequential writes

because the data is packaged together to be written in contiguous

multi-page disk blocks at a very high throughput on HDDs, as HDD

performance is typically measured in sequential write throughput.

To make writes more durable and avoid a data loss due to this

aggregation and buffering in memory, a write-ahead log file (a

sequential log file containing a full history of the updates) is used

until the data is flushed from memory to disk.

The in-memory data structure represents both the last 𝑁 updates

of the data before they are written to disk, as well as the metadata

of the on-disk files in the LSM-Tree. The former is referred as the C0

tree. When the data becomes large enough, the sorted data migrates

to the tree on disk, which is referred as the C1 tree. The leaf nodes

in C1 are never edited in-place but instead new ones are added as

part of an asynchronous rolling-merge process where the old ones

are deleted afterwards. To help contain the number of leaf nodes of

the tree on disk as it gets larger, there can be more than one level

of on-disk representation (i.e., C1, C2, ..., CK) where the size of the

on-disk files increase at each successive level. These C0 and C1..K

trees are referred as the MemTable and the Sorted-String-Table

(SSTable) files in the popular implementations of this concept such

as LevelDB and its fork RocksDB [12, 15]. We can, for example,

create one such data structure for each rank in an MPI application.

Figure 2 illustrates this data flow in details.

While this is likely to improve write performance, reads of suffi-

ciently old entries are likely to be slower due to the merge-sort of

several files in the C1 tree from disk. Here the sufficiency is where

the data is already migrated from C0 to C1. This makes the LSM-

Tree implementation ideal for low read-to-write ratio data store

use cases as well as when reads in the use case have a bias towards

recent writes. Both are primary characteristics of checkpoint data.

3 LSMIO

3.1 LSMIO Library

To test our LSM-Tree hypothesis we have created an I/O library

called LSMIO, which provides three different interfaces: a K/V inter-

face, a C++ IOStream-like API (FStreamAPI), and finally an ADIOS2

Plugin. Figure 3 shows the architecture of our LSMIO library.
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Figure 3: LSMIO Architecture

3.1.1 LSM-Tree Store: To evaluate our hypothesis, we base our

LSMIO library on an existing implementation of an LSM-Tree store.

We evaluated two of the most popular LSM-Tree implementations:

LevelDB and RocksDB. Both implement full lifecycles of reads and

writes, including a batch interface, customizations including buffer

size, and threading options. However, our implementation uses

RocksDB since it provides more customization options such as

disabling the write-ahead log, which LevelDB does not.

To customize RocksDB to the specification required as a building

block, we made the following changes:

• Disabled write-ahead log

• Disabled compression

• Disabled caching

• Disabled compaction

• Exposed an option to write either synchronously or asyn-

chronously

• Exposed an option to use MMAP

• Exposed options to customize buffer size and inherit the

value from ADIOS2 configuration when used as a plugin

• Exposed an option to change block size

We do not believe we need the write-ahead log capability for the

checkpoint data use case because a write-barrier could be explic-

itly called by the user; ADIOS2 already provides such an API call.
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Alternatively, LSMIO calls the write-barrier implicitly at the end of

the checkpoint file write.

Fundamentally, the exact functionality needed to validate the

hypothesis at a high-level are:

• Ability to manage the MemTable in RAM

• Ability to write/read immutable SSTables on disk

3.1.2 Local Store: This is the layer that encapsulates the LSM-Tree

implementation using an internal K/V interface (i.e. get, put, delete)

which additionally defines the interface for some of the primary

building methods:

• All of the customizations mentioned for the underlying LSM-

Tree earlier in this section are implemented here.

• When using LevelDB, buffering and aggregation is imple-

mented using the WriteBatch interface since LevelDB does

not allow disabling the write-ahead log file to stop triggering

a disk write for writes. In the RocksDB implementation, the

WriteBatch interface is not required.

• A write barrier is implemented by flushing the aggregation

buffer as well as triggering a flush in the underlying LSM-

Tree implementation.

• A single thread is configured for flushing writes.

Table 1 highlights some of the key functions in the LSMIO Store

classes with LevelDB and RocksDB backends.

3.1.3 MPI:. WeuseMPI to implement anMPI barrier for our bench-

marks. In the future, we will be able to implement a collective I/O

capability for the HPC environment in this layer, where, for exam-

ple, a single LSM-Tree store could be created for all or a group of

nodes participating in checkpointing.

3.1.4 LSMIO Manager: The LSMIO manager manages the local

store as well as the MPI integration. It also provides the function-

ality for the external K/V interface with needs such as an append

function, enabling MPI options, multiple put methods for different

data types, performance counters, and an optional factory method

Table 1: Summary of the key functions in the Local Store.

Method Description

startBatch() Start batching if the underlying con-

crete implementation (e.g. LevelDB)

needs it and uses a protected data struc-

ture to manage batching.

stopBatch() Stop batching and flushes the writes

if the underlying concrete implementa-

tion needs it and uses a protected data

structure to manage batching.

get(...) Get a value from the local database

using a key. Always executed syn-

chronously.

put(...) Write a value locally for the key passed.

If the key exists, overwrite it. Has the

option to execute asynchronously.

append(...) Append the value locally to the existing

value of the key passed. Can be synchro-

nous or asynchronous.

del(...) Delete the value locally given by the key.

Can be synchronous or asynchronous.

writeBarrier(...) Flush all buffered writes to disk. Block

until flushing to disk is done.

to manage the object instance for the caller. Table 2 lists some of

the key functions in the LSMIO manager class.

3.1.5 K/V API:. This is the external K/V interface that applications

can use to integrate with the LSMIO library. In our current imple-

mentation, this is the LSMIO manager itself as we have chosen to

avoid another layer of abstraction at the expense of cleanliness.

This API could be extended in the future to introduce additional
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Table 2: Summary of the key functions in the LSMIO Man-

ager.

Method Description

get(...) Get the value for the key passed. Always

synchronously.

put(...) Write the value locally or remotely (in

the case of collective I/O) for the key

passed. Can be synchronous or asyn-

chronous.

append(...) Append the value locally or remotely

(collective I/O) to the existing value of

the key passed. Can be synchronous or

asynchronous.

del(...) Delete the value locally or remotely (col-

lective I/O) given by the key. Can be

synchronous or asynchronous.

writeBarrier(...) Flush all buffered writes to disk locally

or remotely (collective I/O).

functionality, such as using batch reading to improve the read per-

formance.

3.1.6 FStream API:. To do basic validations, we implement a C++

file stream API similar to C++’s IOStream libraries, including a

factory method. In essence this becomes a user-space POSIX imple-

mentation that requires the developer to develop and link it to their

application at compile time. In future, this layer could be linked

at runtime using LD_PRELOAD (cf. [44]). Some of the key functions

exposed by our IOStream-like API are shown in Table 3.

Table 3: Summary of the key functions in the FStream API.

Method Description

... Example implementations of the meth-

ods: open, read, write, seekp, tellp,

rdbuf, fail, good, flush, and close

similar to the C++ stream API, but us-

ing the LSMIO store.

initialize(...) A static method to initialize an LSMIO

store for FStream API to write to and

read files from.

cleanup(...) A static method to close the LSMIO

store that FStream API was using for

file read and write.

writeBarrier(...) A static method to flush all the pending

writes to disk. Blocks until flushing is

done.

3.1.7 ADIOS2 API:. ADIOS2 provides an extensibility mechanism

called łPluginž where a developer can implement a custom back-

end for ADIOS2 without the ADIOS2 users needing to make any

changes to their applications. Our ADIOS2 plugin enables applica-

tions that use ADIOS2 to use our library by simply updating their

XML configuration file, which is read at the start of their application.

Our plugin is implemented using LSMIO’s external K/V interface.

The ADIOS2 API provides a richer API for users, including addi-

tional data types. When implementing multi-dimensional writes as

an ADIOS2 plugin we use a simple serialization into a string to be

stored in the lower layers of our stack.

Figure 4 provides an in-depth view of the library’s internal func-

tionality.

4 EVALUATION

In this section we first conduct a baseline performance comparison

between standard I/O and our LSMIO library using IOR, an I/O

benchmark commonly used in parallel file system performance

studies6. We then compare our LSMIO library against similar file

I/O libraries such as HDF5 and ADIOS2. Additionally, we compare

the performance of our LSMIO library through the ADIOS2 plugin

interface against ADIOS2’s BP5 file format. Finally, we compare the

read performance of our library against the IOR baseline, HDF5,

and ADIOS2.

We run our experiments on the University of York’s Viking clus-

ter. Relevant specification details can be found in Table 4. We run

each test 10 times, with the Lustre stripe size ∈ {64KB, 1MB}, and

stripe count ∈ {4, 16}. We then choose the maximum I/O bandwidth

values for all cases in our evaluation and hence, in the plots. Differ-

ent stripe sizes and counts show similar results and thus we include

a representative subset of the results in this section for brevity.

4.1 Write Benchmarks: Baseline IOR vs. LSMIO

We start our analysis by establishing a baseline of performance

on Viking’s Lustre File system using the standard IOR benckmark.

We run our benchmarks on the cluster using concurrency up to 48

nodes. As seen in Figure 5, the write performance scales linearly

for IOR as long as the number of nodes in the simulation are less

than the Lustre stripe count. After that threshold, the write per-

formance dramatically drops by as much as 6.2×. Evaluations with

different block-sizes exhibits similar behavior though there is an

improvement from 64K to 1M by as much as 4.9× as the concur-

rency increases. We then perform the same simulation including

the same block-sizes and the same concurrency using our LSMIO

6https://wiki.lustre.org/IOR

Table 4: Technical specification for the University of York’s

Viking system

Viking

Processor Intel Xeon 6138

CPU speed 2.0 GHz

Cores per node 40

Nodes 137

Memory 192 GB

File System Lustre

Lustre OSTs 45

OST h/w 10 × 8TB 7,200 RPM NLSAS

Lustre OSSs 2
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library. Even though our library does not perform as well as IOR

at low levels of concurrency, it continues to scale and surpasses

IOR baseline by as much as 23.1× when the concurrency (or the

number of nodes) peaks at 48. This gives us sufficient confidence in

our approach to begin comparing it to commonly used I/O libraries

such as HDF5 and ADIOS2.

4.2 Write Benchmarks: LSMIO vs. HDF5 and

ADIOS2

IOR provides a built-in mechanism to benchmark an HPC file sys-

tem using an HDF5 formatted file. As seen in Figure 6, writing

an HDF5 file is significantly slower than the IOR baseline by any

where between 2.6× and 48.1×. Different block-sizes show similar

behavior, though we observe up to 9.9× difference within HDF5

performance going from 64K to 1M after concurrency surpasses

the Lustre stripe count.

The ADIOS2 library is increasingly being used by new HPC

applications. To compare the performance of our library to ADIOS2,

we configure ADIOS2 to use approximately the same parameters as

LSMIO including the same in-memory buffer size of 32 MB. While

the IOR baseline starts strongly as long as the concurrency is less

than the Lustre stripe count, writing an ADIOS2 file continues to
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Figure 6: Comparison of HDF5 and ADIOS2 to LSMIO, with

Lustre stripe count 4 and sizes 64K and 1M

scale and easily surpasses the IOR baseline by as much as 10.7×

when the concurrency reaches 48 nodes.

When we compare both to LSMIO, there is a dramatic perfor-

mance difference between LSMIO and ADIOS2 as well as between

ADIOS2 and HDF5. Writing an ADIOS2 file easily outperforms

HDF5 by as much as 35.3× when the concurrency reaches 48 nodes.

Similarly, the LSMIO implementation continues to scale and sur-

passes HDF5 by more than 76.7× and ADIOS2 by more than 2.4×

when the concurrency (or number of nodes) reaches 48.

4.3 Write Benchmarks: LSMIO Plugin vs.

ADIOS2

ADIOS2 provides a plugin interface to augment its storage layer.

The advantage of this is that an application built using ADIOS2

can use a plugin with no code changes, i.e., with just an XML

configuration change, which is read by ADIOS2 during its start

up sequence. With that we can repeat our experiments using our

LSMIO-based plugin for ADIOS2, allowing users to make use of

our library without any code changes.

We ensure that LSMIO and ADIOS2 use the same configura-

tion parameters, such as the in-memory buffer in our benchmark

experiments. As with our previous experiments, we repeat our

runs with different block-sizes, but we note that the difference in

performance is negligible. All LSMIO implementations, as well as
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Figure 7: Comparison of ADIOS2 to LSMIO baseline and

LSMIO Plugin, with Lustre stripe count 4, sizes 64K and 1M

ADIOS2, continue to scale as the number of nodes in the simulation

increases.

As seen in Figures 7 and 8, the performance of the LSMIO plugin

for ADIOS2 lands approximately in the middle between ADIOS2

and our base LSMIO implementation. The performance gain from

ADIOS2 to our LSMIO plugin is as high as 1.5× and from our LSMIO

plugin to the LSMIO baseline is approximately 1.5× as the concur-

rency (or number of nodes) reaches 48. Namely, the performance

gain by using the LSMIO directly is higher than using it through the

ADIOS2 plugin due to the constraints that ADIOS2 brings in. We

believe that this performance differential is caused by: (i) additional

layers of abstraction introduced by ADIOS2, (ii) the strong typing in

ADIOS2 compared to the byte-array representation used by LSMIO,

and (iii) an inefficiency in memory management inside our plugin

implementation compared to using LSMIO directly.

4.4 Write Benchmarks: Collective I/O

Another important part of the analysis is comparing the benchmark

results when collective I/O is enabled. IOR has built-in capabilities

to benchmark using collective I/O for its baseline tests as well as

HDF5 tests. At the present time we do not have a collective I/O

implementation of our LSMIO library. However, we are able to

compare LSMIO baseline to IOR and HDF5 with collective I/O in

Figure 9.
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Figure 8: Comparison of ADIOS2 to LSMIO baseline and

LSMIO Plugin, with Lustre stripe counts 4 and 16, size 64K

Collective I/O does provide significant performance improve-

ment to IOR’s default implementation, improving the baseline per-

formance by as much as 12.1×. However, the collective I/O improve-

ment for HDF5 is not particularly significant. When the concur-

rency is lower, collective I/O improves HDF5 performance by 2×

on average; as the concurrency increases collective I/O reduces

HDF5’s performance by as much as 2.5×.

LSMIO baseline continues to outperform IOR’s default imple-

mentation with or without collective I/O. In the latter case, LSMIO

outperforms IOR with collective I/O by as much as 2.2× as the

concurrency peaks.

4.5 Read Benchmarks

Our library focuses primarily on improving the performance of

write operations. In doing so, the synchronous and point-lookup na-

ture of the read requests negatively impacts the read performance of

the LSM-Tree implementation. Hence, as seen in Figure 10, ADIOS2

achieves the highest read performance, and its performance scales

well with increases in concurrency.

In the case of IOR, read performance also scales as concurrency

increases. However, IOR’s read performance is significantly worse

than ADIOS2, and drops by as much as 18.6× when collective I/O

is enabled.

LSMIO significantly outperforms the IOR baseline by about 5.5×

when the concurrency peaks.
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Figure 9: Comparison of IOR baseline and HDF5 using Col-
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When comparing different file formats, HDF5 continues to strug-

gle against the other formats in performance on the read side as

well. IOR baseline outperforms HDF5 by as much as 125.2× and

LSMIO baseline outperforms HDF5 by as much as 687.2× as the

concurrency peaks.

Maintaining the same pattern from the write benchmarks, the

performance gain by using the LSMIO directly is higher than using

it through the ADIOS2 plugin due to the constraints that ADIOS2

brings in.

5 CONCLUSION

As we enter the Exascale era of HPC, compute has outgrown I/O by

orders of magnitude. Given that as much as 75-80% of HPC I/O is

checkpoint related, improving the performance of checkpoint I/O

is of utmost importance to ensure it does not become a bottleneck.

In this paper we have introduced an I/O library, called LSMIO,

which is based on an LSM-Tree for the scientific data write-path.

Our implementation is backed by the RocksDB LSM-Tree imple-

mentation, which is highly customizable and enables us to tailor it

to our needs.

Our evaluation of LSMIO has demonstrated that we can improve

performance ś measured by utilisable write bandwidth ś by as

much as 23.1× from the baseline, as the number of compute nodes

increases while available I/O capacity per node is decreasing. We

subsequently compared our library to different I/O libraries targeted
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Figure 10: Comparison of IOR baseline with or without Col-

lective I/O, HDF5, and ADIOS2 to LSMIO baseline and LSMIO

plugin, with Lustre stripe count 4 and size 64K

at the writing of checkpoint data from compute nodes to the storage

layer, such as the Lustre file system.

We have demonstrated that our library’s write performance is

better than the leading HPC I/O library, ADIOS2, by around 2.4×

and HDF5 by as much as 76.7× on our evaluation system. We have

additionally developed an LSMIO plugin backend for ADIOS2 that

allows users of ADIOS2 to start using LSMIO without any code

changes ś with a small performance penalty when compared to

LSMIO alone, but still up to 1.5× the write performance of the

default ADIOS2 implementation.

When we incorporate collective I/O into the IOR baseline and

HDF5 benchmarks, it improves their performances by as much as

12.1× and 2× respectively. However, LSMIO continues to outper-

form IOR with collective I/O by as high as 2.2× as the concurrency

increases.

Finally, we evaluated the read performance of our library and

compared it to the other file formats: ADIOS2 and HDF5. Although

the performance of LSMIO is on average 23.3% below that of ADIOS2,

our library still performs significantly better than IOR with and

without HDF5.

5.1 Future Work

This paper outlines our initial implementation and investigation

into LSM-Trees for the scientific data write path. Currently this
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has only been evaluated on a single HPC cluster using the Lustre

file system; wider evaluations are required on alternative HPC

file systems, and larger Lustre installations. Testing on differently

constructed and configured file systems might highlight additional

opportunities to optimize the I/O performance of the write-path.

In addition, we are considering adding a collective I/O capability

usingMPI to our library.We anticipate this boosting its performance

further.

The work presented in this paper has been collected using the

IOR benchmark only, likely representing a łbest casež for I/O oper-

ations. The I/O operations in more representative scientific applica-

tions are likely to elicit different performance characteristics, and so

there are ongoing efforts to embed our library in real applications.

In addition, to improve the read-performance in real applications,

we will explore sequential or batch read of the variables from the

LSM-Tree into memory instead of random reading of each key for

the data. To improve the write-performance of the ADIOS2 plugin

implementation for our LSMIO library, we will improve its memory

management such that it behaves similarly to when the LSMIO

library is called directly.
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A APPENDIX

A.1 Artifact Description

A.1.1 HPC: OS.

• Linux: Flight Direct 2018.3 (Based on CentOS Linux 7 (Core))

A.1.2 HPC: Modules Loaded.

• data/HDF5/1.10.7-gompi-2020b

• compiler/GCC/11.3.0

• devel/CMake/3.24.3-GCCcore-11.3.0

• mpi/OpenMPI/4.1.4-GCC-11.3.0

• lib/zlib/1.2.12-GCCcore-11.3.0

• lib/lz4/1.9.3-GCCcore-11.3.0

• lib/libunwind/1.6.2-GCCcore-11.3.0

• devel/Boost/1.79.0-GCC-11.3.0

A.1.3 Programming Languages.

• LSMIO: C++ 17 (required)

A.1.4 Library Dependencies: Manually Added.

• git clone https://github.com/gflags/gflags.git

• branch master

• commit a738fdf9338412f83ab3f26f31ac11ed3f3ec4bd

• git clone https://github.com/google/googletest.git

• branch main

• commit e9fb5c7bacc4a25b030569c92ff9f6925288f1c3

• git clone https://github.com/google/glog.git

• branch master

• commit 674283420118bb919f83ceb3d9dee31ef43ff3aa

• git clone https://github.com/fmtlib/fmt.git

• branch master

• commit f6276a2c2b76c54c3a659d5fee5557c7bec95a0c

• git clone https://github.com/ornladios/ADIOS2.git

• branch release_29

• commit 03552904256f9430ecff31033c1c6bb05a364d45

• git clone https://github.com/google/leveldb.git

• branch main

• commit fb644cb44539925a7f444b1b0314f402a456c5f4

• git clone https://github.com/facebook/rocksdb.git

• branch 8.1.fb

• commit 7d2d9518fbcc72d21cb0a4a7397de0b5ab576a17

A.1.5 Binary Dependencies: Manually Added.

• git clone https://github.com/hpc/ior.git

• branch main

• commit c2386ed7b85559030ef20dc68cd7ed75afdc244e

A.1.6 Benchmarking Parameters. For all benchmarks all the block-

sizes mentioned in Section 4 are used.

• IOR/baseline and IOR/HDF5 benchmarks: We set transfer-

size equal to the block-size.

• ADIOS2 benchmarks used the same parameters as IOR. Ad-

ditionally, ADIOS2 specific parameters were:

ś BufferChunkSize = 32MB

ś StripeSize = MinDeferredSize (Transfer size values used

from IOR)

ś Asynchronous writes enabled

• LSMIO/baseline as well as the LSMIO/plugin in ADIOS2

benchmarks: We used the same parameters and in some

cases translated from ADIOS2 such as BufferChunkSize.

For all benchmarks we configured our HPC environment to run

each task on a separate physical node:

• --ntasks=<concurrency: number of tasks>

• --nodes=<concurrency: number of tasks>

• --ntasks-per-node=1

• --ntasks-per-socket=1

• --cpus-per-task=1

A.1.7 Measurements. IOR is the benchmark referenced by the Lus-

tre file system. We used it as the baseline and for the HDF5 mea-

surements.

For LSMIO measurements we started measuring right after the

first MPI barrier and before the first I/O operation until after the

last I/O operation and a second MPI barrier. We used a monotonic

clock and relied on the steady_clock implementation by GCC C++.

In addition,

• For the ADIOS2 library ś including when LSMIO plugin is

used ś we called PerformPuts() and then close()

• For LSMIO baseline, we sent the last DB::Put() call which

triggers an automatic flush.
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