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The transition from foraging to farming was a key turning point in ancient socio-economies. Yet, the

complexities and regional variations of this transformation are still poorly understood. This multi-

proxy study provides a new understanding of the introduction and spread of early farming,

challenging the notions of hierarchical economies. The most extensive biological and biomolecular

dietary overview, combining zooarchaeological, archaeobotanical, dietary stable isotope and pottery

lipid residue analyses is presented, to unravel the nature and extent of early farming in the 3rd

millennium cal BCE in the northeast Baltic. Farming was introduced by incoming Corded Ware

cultural groups (CWC), but some dietary segregation existed within these communities, with some

having more access to domesticates, others incorporating more wild resources into their diet. The

CWC groups coexisted in parallel with local hunter–fisher–gatherers (HFG) without any indication

of the adoption of domesticates. There was no transition from foraging to farming in the 3rd

millennium cal BCE in the NE Baltic. Instead, we see a complex system of parallel worlds with

local HFGs continuing forager lifeways, and incoming farmers practising mixed economies, with

the continuation of these subsistence strategies for at least a millennium after the first encounter

with domesticated animals.

1. Introduction
The introduction of farming has been considered one of the key elements of ancient subsistence changes

and human–animal interactions. Recent research has disputed the notion of universal and linear

economic change [1–6], highlighting the importance of deeply contextualized regional studies for

revealing the diversity by which people ‘transitioned’ or adopted their subsistence strategies.

The roots of European agriculture go back to the Levant some 11 000 years ago, where it emerged

from the local adoption of some native plants and animals, a process lasting more than a millennium

[7,8]. The spread of early farming to other parts of Europe has been explained through the exchange

of ideas (cultural diffusion) or population replacement [9]. The arrival of farming in the east Baltic

(nowadays Lithuania, Latvia, Estonia, Finland) has been directly related to the latter, i.e. arrival of

Corded Ware cultural groups (CWC) in the 3rd millennium cal BCE [10–16], with their migratory

steppe-related ancestry [17–19] and burial customs, as well as material culture differing from the local

hunter–fisher–gatherer (HFG) populations [20–23]. Yet, the biological legacy and the aftermath of the

arrival of early farming in the east Baltic, set in the context of local forager communities, northern

climatic conditions with dense woodland and aquatic landscapes, abundant wild resources and

missing indigenous species suitable for domestication, has remained ambiguous. Recent biomolecular

findings have confirmed that the introduction of new, domesticated species took place from the 3rd

millennium cal BCE onwards [6,24–26], but we lack clarity concerning the extent and character that

the subsistence and gross diet actually changed and for whom.

The goal of this study is to disentangle the complexity of early farming livelihood among CWC

groups and assess its impact on local HFG populations in northern latitudes beyond the 56th parallel

north, focusing on Estonian and Latvian (labelled as northeast Baltic from here onwards) 3rd

millennium cal BCE material. To do so, we bring together an exceptional combination of a new

bioarchaeological dataset covering human bone collagen stable isotope and pottery lipid residue

analyses, zooarchaeological records together with recent direct accelerator mass spectrometry (AMS)

radiocarbon dates, as well as archaeobotanical information from previous studies. Our findings show

multifaceted regional adaptive strategies revealing both segregated dietary practices and mixed

economy during the introductory phase of early farming, clearly deviating from the grand-scale

narratives of linear and hierarchical models of ancient subsistence change.

We use the more general term ‘farming’, rather than ‘agriculture’, referring mostly to animal

husbandry, not necessarily including the element of crop cultivation, although in the context of the

northeast Baltic early farming seems to mostly rely on stockbreeding. The term ‘domesticates’

indicates the species (both plant and animal) that rely on human input in their growth cycle and

survival. The 4th–3rd millennium cal BCE is traditionally classified as Neolithic in the northeast

Baltic, whereas the majority of the period is characterized by pottery-using HFG lifeways. By HFG
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populations, we refer to local forager groups with different regional and/or cultural affiliations: mostly

Typical/Late Comb Ware groups (3900–1800 cal BCE, the two ceramic types are often chronologically

difficult to separate without direct dating; hence here collated as Comb Ware culture (CMC)), but also

the users of regional Porous (3300–1800 cal BCE, a specific pottery group defined in Latvian

archaeology from the Lake Lubāns region) and Lubāna (2600–1500 cal BCE) pottery types in Latvia.

By CWC (2800–2000 cal BCE), we refer to archaeological complexes which differ from both earlier and

contemporaneous ones: individuals interred in burials with a distinctive (mostly) crouched body

position and associated grave goods, such as Corded Ware pottery, various stone axes and adzes, flint

knives, both domesticated and wild animal bones and tools made from them; but also the users of

Corded Ware pottery, which is a clearly distinguishable 3rd millennium cal BCE ceramic type [27]

(figure 1).

2. Results

2.1. Early domesticated animal bone and plant records
Faunal remains from CWC settlements are scarce and highly fragmented, often mixed with preceding

and later materials. In Estonia, early domesticated livestock has been mostly identified in CWC burial

contexts [12], where they are found either as unprocessed animal remains or worked bones (i.e. tools

or their preceding blanks). In Latvia, besides at least one chisel made from an undated sheep/goat

bone from Zvejnieki CWC burial no. 137 [28,29], the earliest domesticates have been suggested based

on their find context from the 4th and 3rd millennia cal BCE settlements of Zvidze, Kreiči, Sārnate,

Abora I, Lagaža and Eiņi [10,11,30]. However, since all are multi-period sites without direct AMS

radiocarbon dates, this evidence remains inconclusive.

A range of new radiocarbon AMS dates from a selection of domesticated animal bones from several

CWC contexts shows that the introduction of early domesticates in the northeast Baltic took place

between 2730 and 2490 cal BCE (modelled starting time, 95.4%; figure 2 and table 1; see also electronic

supplementary material, table S1). Although the aurochs (Bos primigenius; the ancestor of the domestic

cattle) were commonly found across Europe [33], their population in Estonia receded by the 3rd

millennium cal BCE, and there are no traces of local domestication of the aurochs or interbreeding

with imported domestic cattle [34,35]. Hence the dated specimen must be the domesticated congener.

(a) (b)

(d )

(c)

Figure 1. (a) Map of the analysed sites in this study, and (b) an example of a CWC burial Sope B I, Estonia. (c) Examples of CWC
pottery: a beaker from the Narva-Jõesuu IIB burial ground (Estonia) and two fragments of Estonian-type Corded Ware pots from the
Lemmetsa I settlement (Estonia) and (d ) early domesticates’ bones found as grave goods from the Sope B I burial. Note that the
Abora I settlement also includes other Porous and Lubāna pottery types besides the CWC vessels.
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The two sheep/goat samples from the Sope B I burial were subjected to zooarchaeology by mass

spectrometry (ZooMS) analysis [36] to clarify the species, but the results were unsuccessful (electronic

supplementary material, table S2). These two samples are from different skeletal elements, and their

dates represent a single event statistically (2840–2490 cal BCE; χ2-test d.f. = 1; T = 0.113; T’(5%) = 3.841,

with an overall agreement index (Acomb) 130%), hence they could belong to the same individual. As

the taxonomic differentiation between the domestic pig (Sus domesticus) and wild boar (Sus scrofa) is

impeded by bone morphology [12,37], all the suids dating around 2880–2350 cal BCE are cautiously

identified as Sus sp., although the possibility of domesticated suids has been suggested for the Loona

settlement specimen [34].

In terms of domesticated plants, cereal-type grains have not been identified from any CWC context in

the northeast Baltic. Single grains of barley (Hordeum vulgare) and possibly einkorn (Triticum monococcum)

have been reported from the Kreiči settlement in Latvia [38]. However, the site was excavated in the

1950s, its contexts are partially mixed with finds from the 5th to 2nd millennium cal BCE, perhaps

even later, while the grains are no longer available for direct AMS dating [39]. A barley grain and an

impression of another cereal grain have previously been documented in relation to a CWC sherd from

the Iru settlement [11,40], but the sherd and the grain are unfortunately lost, making any further

analysis impossible. A potential cereal grain imprint, most likely Hordeum vulgare, was noted in a

Lubāna type sherd from the Abora I settlement during sampling for organic residue analysis reported

in this article, but the foodcrust has not been directly dated.

The scarcity of macrobotanical remains has instigated the extensive use of pollen data for

reconstructing early cereal cultivation in the northeast Baltic [10,11,41]. Cereal-type pollen grains

identified as unspecified cereal (Cerealia-type), barley (Hordeum-type), wheat (Triticum-type) and oat

(Avena-type) have been previously noted from a few sites from the 7th millennium cal BCE (electronic

sequence [Amodel:93]

boundary start animal husbandry

phase dated animals

R_Date Sope I (UBA-40305) [A:108]

R_Date Sope I (UBA-45549) [A:99]

R_Date Ardu II (UBA-38464) [A:115]

R_Date Sope I (UBA-40304) [A:105]

R_Date Mülleri Field (UBA-45532) [A:104]

R_Date Kunila (UBA-45542) [A:48]

R_Date Kunila (UBA-45547) [A:107]

R_Date Kunila (UBA-45543) [A:106]

R_Date Loona (Ua-4825) [A:113]

boundary end of the beginning of animal husbandry

4000 3500 3000 2500 2000 1500

modelled date (BCE)

Figure 2. The AMS dates of early domesticates from the northeast Baltic. Calibrated with OxCal 4.4.4. using IntCal20 atmospheric
curve [31], all the dates are rounded by 10. For data, table 1.
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Table 1. An overview of the AMS radiocarbon dates of the earliest domestic livestock in Estonia. All finds, besides Loona, are associated with CWC contexts. Calibrated with OxCal 4.4.4 using IntCal20 atmospheric curve
[31], all the dates are rounded by 10.

species arch. site site type (burial) sample ID

skeletal element (U,
unworked; P,
pretreated tool blank) 14C lab no. 14C dating BP cal BCE (95.4%) reference for 14C date

Ovis aries/Capra hircus Sope burial (B I) AI 2607 Os coxae (U) UBA-40305 4057 ± 27 2840–2490 this study

Ovis aries/Capra hircus Sope burial (B I) AI 2607: 2 Radius (P) UBA-45549 4073 ± 36 2840–2490 this study

Bos taurus Ardu burial (II) AI 3499: 66 Os coxae (U) UBA-38464 4034 ± 41 2850–2460 this study

Sus sp. Sope burial(B I) AI 2607: 3 Tibia (P) UBA-40304 3964 ± 28 2580–2340 this study

Sus sp. Tallinn Müller’s Field

(Pärnu Rd. 37, 41)

settlement AI 8244 Scapula (U) UBA-45532 3970 ± 35 2580–2340 this study

Sus sp. Kunilaa burial AI 3989/AZ-3 Ilium (U) UBA-45542 3830 ± 29 2460–2140 this study

Sus sp. Kunilaa burial AI 3898/AZ-6 Ilium + ischium (U) UBA-45547 3889 ± 36 2470–2200 this study

Sus sp. Kunilaa burial AI 3989/AZ-4 Ischium (U) UBA-45543 3883 ± 32 2470–2210 this study

Sus sp.b Loona settlement AI 4129 Unknown Ua-4825 4050 ± 80 2880–2350 Lõugas

et al. 1996 [32]
aExact burial affiliation unknown.
bSpecimen absent from the collections.

royalsocietypublishing.org/journal/rsosR.Soc.OpenSci.10:230880 5
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supplementary material, table S3). Yet, the overall number of samples (and sites) reporting finds of

cereal-type pollen remains low up until the beginning of the 4th millennium BCE. An abrupt increase

in both sample and site frequency and overall number of cereal-type pollen grains is visible in both

Estonia and Latvia from ca 3500 cal BCE onwards, whereas in the following millennium the pollen

evidence stabilizes or even shows some regression [42]. Gradual increase of open landscapes together

with slightly growing evidence of cereal-type pollen finds has been recorded from the beginning of

the 2nd millennium cal BCE onwards [41,43].

However, several methodological peculiarities like the uncertainties of dating, pollen identification

and estimating pollen source area [39,44,45] must be considered. Most importantly, pollen taxonomy

is not directly compatible with conventional botanical taxonomic precision, and one pollen type can

include pollen from plants belonging to different species, families or sometimes even genera [46].

Most cereals commonly grown in Europe produce pollen identifiable to the level of pollen type—

hence the Hordeum-type, Triticum-type, Avena-type and Cerealia-type identifications—and all these

types include some species of wild grasses [42,47,48]. Among such wild grass species are several

members of the grass family (e.g. Elymus arenarius, Glyceria fluitans, Bromus inervis) common in the

northeast Baltic, which produce pollen grains with similar size and/or surface structure to those of

the cereals. Hence, arguing for early crop cultivation based solely on pollen findings remains

uncertain, and we currently lack supportive evidence from other proxies to substantiate that

domesticated plants were part of the main subsistence strategy in the 3rd millennium cal BCE.

2.2. Stable isotopes from human bone collagen
The collagen stable isotope analysis (SIA; raw data reported in electronic supplementary material, table

S5) contains all the individuals directly dated to the 3rd millennium cal BCE from Estonia (n = 10) and

Latvia (n = 17). Besides these, the Abora I site includes directly dated individuals (n = 13), 20

specimens found as loose human bones (n = 11) and intact burials (n = 9) all found from the settlement

layer dated to ca 3400–1900 cal BCE [49,50]. The dataset also entails an infant and adult female from

the Selgas double grave, and burial 307 from Zvejnieki due to their characteristic traits for CWC

burials. This results in a total of 49 individuals, with either single or multiple skeletal elements being

analysed, and thus represented by 65 samples of both adult and non-adult values. Since the collagen

yield together with carbon and nitrogen percentage inclusion was inconsistently reported in previous

studies, we use the C : N ratio falling between 3.1 and 3.5 in this study (electronic supplementary

material, table S5) as a quality criterion for collagen preservation [51,52].

The human bone collagen SIA values display considerable heterogeneity among the 3rd millennium cal

BCE populations (figure 3a), with values ranging from −24.9‰ to −15.7‰ for δ13C, and +8.9‰ to +17.8‰

for δ15N. The statistical comparison of CMC, CWC and Abora I SIA values shows significant differences

(Mann–Whitney pairwise test all p-values < 0.05), but due to the small number of CMC samples this

must be taken with caution, whereas the difference holds for the Abora I and CWC individuals. The

CWC burials have a narrower range of values (δ13C range −23.5‰ to −19.1‰, δ15N+ 8.9‰ to +11.8‰;

see electronic supplementary material, table S4), which is indicative of protein intake from terrestrial

sources. The consumption of terrestrial foods is indirectly evidenced by the overlapping paired AMS

dates of terrestrial animals and humans from the Ardu II and Sope B I burials (electronic

supplementary material, figure S1), showing that humans do not have apparent ages caused by a

reservoir offset. Multiple samples are available for three CWC individuals—Ardu I, Kunila I and Sope B

I—which permits us to track the dietary protein intake changes in an individual’s lifetime. For Sope B I

and Kunila I, the dietary change is negligible (less than 1‰), but Ardu I displays elevated δ13C and

δ15N values in adulthood (based on comparing SIA results from molars and the rib; figure 3a).

In contrast to the CWC individuals, there is considerable intra-site variability in the SIAvalues among

the 33 individuals from Abora I. Here the δ13C values range from −24.8‰ to −20.5‰, and δ15N from

+9.7‰ to +17.8‰, whereas the remarkably high δ15N value (+17.8‰) from burial 8 l belongs to a

non-adult aged 1 ± 2 months [50] and is indicative of weaning. There is no significant chronological or

burial practice (crouched versus supine position versus loose human bones) based difference in the

Abora I cohort (Mann–Whitney pairwise test p-values ranging from 0.14 to 0.98). From the CMC

group, the Tamula individuals had higher δ15N values and lower δ13C values indicating a reliance on

freshwater resources, whereas the Tamula XXII individual demonstrated low lifetime intra-individual

dietary changes. The HFG female from Naakamäe (Saaremaa island) with a maximum date range

between 2910 and 2490 cal BCE (reservoir effect (RE) corrected, 95.4% probability [32,53]), stands out
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for her high δ13C and δ15N values, being the only individual in our dataset with a clear focus on marine

foodstuffs.

2.3. Pottery lipids
A total of 178 samples from CMC and CWC pottery from 18 sites in Estonia and Latvia were subject to

organic residue analysis (ORA). Of these, 111 samples are from CMC and 67 from CWC vessels. This

dataset is further supplemented by 15 Porous and six Lubāna-type ceramic samples from Latvia,

resulting in a total of 199 samples, of which 113 are reported here for the first time. The biomarker

and isotope results of ORA from all samples are reported in electronic supplementary material, table

S6, whereas the results from previous publications [25,63,64] were included in the dataset only if both

biomarker and compound specific isotope data was available.

To trace early farming through ORA, δ13C measurements from the two major fatty acids, C16:0 and

C18:0, are highly informative for distinguishing freshwater and marine organisms, porcine and

ruminant fats, and most importantly dairy products [65–67]. As domesticated and wild ruminants are

isotopically inseparable, the detection of dairy fats remains the major indicator of exploiting

domesticated ruminant species and their products.

A Mann–Whitney U-test for the isotopic measurements of the δ13C16:0 and δ13C18:0 fatty acids in the

CMC (n = 93) and CWC (n = 64) samples shows differences between the two groups ( p-value < 0.029 for

both), with the average values for δ13C16:0 and δ13C18:0 ranging between −28.6 ± 2.5‰ and −28.0 ± 2.6‰

for the CMC, and −29.4 ± 2.3‰ and −29.8 ± 3.0‰ for the CWC samples. The δ13C results (figure 3c) from

CWC, show the clear inclusion of dairy products in seven (potentially eight) CWC vessels, being the

earliest evidence of dairy fats in the northeast Baltic. This number should be considered as a

minimum, as mixing dairy with other products might result in isotopic values outside the dairy

ellipses, also into the ruminant region [68]. Notably, all the dairy samples are from the north and
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Figure 3. Summary of biomolecular dietary results from the 3rd millennium cal BCE northeast Baltic. (a) plot of human bone
collagen stable isotope data, (b) with an example of a typical CWC burial, Ardu I. Note that the Ardu I individual is displayed
with connected data points showing intra-individual dietary change (the higher δ13C and δ15N values are from adulthood).
Data derive from this study and previous publications [12,18,32,50,53–59]. (c) δ13C values of mid-chain-length fatty acids (C16:0
and C18:0) extracted from Estonian and Latvian (pre-)3rd millennium cal BCE CMC (i), CWC (ii) and other 3rd millennium cal
BCE regional wares from Abora I (iii) with full aquatic biomarkers indicated by filled symbols. The reference ranges presented
in C (i-iii), calculated at 68% confidence, were derived from data obtained from the tissues of modern animals, mostly from
the Baltic region [60–62].
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northeast part of Estonia, with none from the inland sites sampled. There is one sample from Abora I

plotting between the dairy and ruminant ellipses, but it also includes the full suite of aquatic

biomarkers, which might hint at mixing dairy products with other substances with more depleted

δ13C16:0 values.

Despite the first detection of dairy fats in this region, aquatic biomarkers from either marine or

freshwater organisms indicate that different aquatic products were processed in both CMC

(40 samples out of 93) and CWC vessels (22 samples out of 64) as well as in other regional wares

(15 samples out of 18; figure 3c). These specific biomarkers include ω-(ο-alkylphenyl)alkanoic acids

with carbon atoms ranging from C16 to C20/22, formed during the heating of long-chain

polyunsaturated fatty acids of aquatic organisms, together with one or more of the isoprenoid fatty

acids (phytanic, pristanic and 4,8,12-trimethyltridecanoic (TMTD)) [69,70], with further support by the

ratios of 3S,7R,11R,15-phytanic acid (SRR) and 3R,7R,11R,15-phytanic acid (RRR) diastereomers [71].

Hence we have clear evidence for initial dairy production/storage, but also for the consumption of

aquatic substances, suids and ruminants throughout the 3rd millennium cal BCE.

3. Discussion
Comparison of different dietary proxies—zooarchaeological, archaeobotanical, SIA and ORA—provides a

more cohesive picture of the arrival, nature and spread of early farming in the northeast Baltic. In contrast

to the northwest Baltic [72], the scarce macrobotanical and pollen data show an absence of considerable

crop cultivation in the northeast Baltic during the 3rd millennium cal BCE. Plant consumption here was

rather tuned towards wild species [16,73], although tentative experimenting with crop cultivation cannot

be entirely excluded [74]. The oldest directly dated cereal grains in the northeast Baltic are from the 2nd

millennium cal BCE [39,72,75,76], while crop cultivation at that time is also supported by continuous

Cerealia pollen records [77,78] and the establishment of the first field systems [21].

Early farming in the northeast Baltic was based on animal husbandry, pioneered by CWC

communities who introduced domesticates during the first half of the 3rd millennium cal BCE, and is

comparable to the dates for early domesticates from the southeast Baltic [79]. In Finland, the earliest

cattle find is from the 2nd millennium cal BCE [80], although a goat hair found from the

Perttulanmäki CWC burial might also support an earlier arrival time of domesticates [81]. However,

domesticated animals start to dominate the faunal record in the northeast Baltic only around 1000 cal

BCE [12,30,34,82].

The introduction of domesticates is unlikely to have transformed the economies of everyone living in

the northeast Baltic during the 3rd millennium cal BCE. The individuals afforded CWC burial form an

isotopically narrow and homogeneous group (figure 3a) most probably relying on terrestrial resources,

similar to CWC individuals from Lithuania and Central Europe [2,83]. By contrast, the other

contemporaneous human remains display very diverse foodways (figure 3a) from strongly aquatic

diets, mixed aquatic/terrestrial diets and more terrestrial orientated diets.

At the finer scale of culinary practices, pottery ORA shows the combination of domesticated, wild

terrestrial and aquatic resources among the CWC populations (figure 3c). Dairy was identified in

seven CWC samples (ca 10% of analysed CWC samples) from four coastal/estuarine sites, whereas in

at least two of those the consumption of other (wild) resources, including aquatic, is evident. Hence

CWC populations in the northeast Baltic were relying on a mixed economy with parallels from

Lithuanian and Finnish 3rd millennium BCE contexts [6,24,26,84]. Similar tendencies have been also

highlighted in the development of early farming in the northwest Baltic [85–87] and Central Europe [88].

The variations in 3rd millennium cal BCE subsistence systems outlined in this study might have

different analytical, regional and socio-cultural explanations. The pottery ORA reflects the dietary

practices of wider communities, while SIA shows the dietary history of single individuals (CWC

burials) preserved to this day. We can hypothesize that the discrepancy between the CWC vessels’

ORA (mixed economy) and CWC burial SIA results (mostly terrestrial diet) might point to different

dietary availability and/or preferences among different CWC groups.

The individuals from the traditional CWC burials display a rather homogeneous range of SIA values,

the vast majority of domesticated animal bones have been found in CWC burial contexts, while dairy

products are detected in CWC vessels from a limited number of coastal/estuarine sites. Therefore,

given that the pottery ORA and human bone collagen SIA data are contemporaneous, one possible

explanation is that in the introduction phase, domesticated species and their secondary products

might have been more accessible to certain subgroups of CWC people, who were afforded a specific
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burial rite. Alternatively, we might be witness to analytical constraints, as it must be acknowledged that

bulk SIA cannot trace the limited consumption of aquatic foods [89]. The inclusion of smaller proportions

of aquatic products into the diets of the individuals in CWC burials could be refined with compound

specific SIA of amino acids from bone collagen in the future [90]. Finally, the discrepancy between the

pottery ORA and human SIA values might also derive from specific culinary practices, i.e. aquatic

products being preferably processed in ceramic vessels, whereas a wider range of other foodstuffs

were both procured and consumed without the use of ceramic containers.

Nevertheless, CWC pottery ORA shows that the abundant wild resources of northern latitudes

offered optimal conditions for practising a mixed economy during the Mid-Holocene. Indeed, the

exploitation of wild resources was common among CWC populations from the very beginning [91],

with several CWC burials in the northeast Baltic including wild animal bones as well [12,79,92]. The

Ardu I CWC individual whose burial customs and childhood diet follow the characteristic CWC

traditions, serves as an intriguing example of dietary conversion from fully terrestrial to the mixed

economy and a shift towards consuming aquatic, possibly marine resources, in his adulthood

(figure 3a). The CWC early farmers were adaptive to different subsistence strategies, which might

have facilitated their movement into northerly latitudes, whereas the natural conditions in the

northeast Baltic probably provided favourable conditions for larger inclusion of forager subsistence

elements into their livelihood.

There was no transition from HFG to farming in the 3rd millennium cal BCE northeast Baltic. The

introduction of domesticates had little if any impact on local HFG groups, who continued to rely on

wild economies and show no signs of early farming through ORA of pottery or SIA of human bone

(figure 3). This proves the coexistence of parallel worlds, where farming and/or mixed economy-based

CWC groups resided together with the foragers for nearly a full millennium. Such a socio-economic

divide is perhaps also reflected by the ancient genomic data: the Tamula (south Estonia) and Naakamäe

3rd millennium cal BCE individuals following forager diets are affiliated with HFGs [17], whereas the

CWC populations show different genetic ancestry, originating from/related to the steppe region [18,56].

Similar cultural but also genetic divergence between foragers and early farmers has been established in

other parts of Europe across the so-called Neolithic transition [93–96]. However, the proportions of

CWC and local CMC populations among the 3rd millennium cal BCE in the northeast Baltic need

further investigations to determine the extent of population turnover prior to ca 2000 cal BCE [19].

The northeast Baltic 3rd millennium cal BCE data provides important insights for acknowledging the

complexity for HFG–farmer transitions. There was no single or linear pathway in the change of

subsistence systems, and we are very far from the hierarchical and ‘all-or-nothing’ conceptualization

when it comes to early farming practices [97–99]. In fact, the whole concept of ‘transition’ is erroneous

in the northeast Baltic context, as local HFGs remained true to their forager lifeways, which existed in

parallel with (segregated) farming pioneering, yet mixed economy CWC populations. There is

probably no total replacement of foraging by farming as the major source of food production in

northern latitudes (beyond the 56th parallel north), and future research should rather address the

economic dialogues between the wild and domesticated, as well as tackle the prolonged adaptation

and experimenting processes with several success–failure episodes over the following millennia.

4. Methods

4.1. Organic residue analysis: sample preparation
Majority of samples were prepared and analysed at the University of Tartu Archemy laboratory and

University of York BioArCh facility. Food crust adhered to pottery surfaces were removed using clean

scalpels. Ceramic powder samples were drilled using clean drill bits, discarding the upper surface

powder to avoid contamination. Lipids were extracted and derivatized (methylated) from ca 1 g of

ceramic powder and 20 mg of foodcrusts using acid-catalysed methylation following previously

reported procedure [61]. The samples were analysed with gas chromatography–flame ionization

detector (GC-FID) for lipid quantification, gas chromatography–mass spectrometry (GC-MS) for

general biomolecular characterization, and GC-MS in selected ion monitoring (SIM) mode targeting

aquatic biomarkers and GC–combustion–isotope ratio mass spectrometry (GC-C-IRMS) to determine

the δ13C values of C16:0 and C18:0 fatty acids.

A subset of samples (sample nos. 186–199 reported in electronic supplementary material, table S6)

was analysed at the University of Bristol, School of Chemistry using the previously reported
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simultaneous extraction and methylation protocol [100], followed by the analysis with high temperature

(HT) GC-FID, GC-MS and GC-C-IRMS.

4.2. Gas chromatography–flame ionization detector analysis
GC-FID analysis was conducted at the York BioArCh facility (University of York) using Agilent 7890 B

Series GC and DB1-HT polyimide-coated fused silica column (15 m × 320 µm × 0.1 µm; J&W Scientific,

Folsom, CA, USA). Injected sample size was 1 µl. The splitless injector was used at 300°C with helium

carrier gas. The temperature was set at 100°C for 2 min, with the gradient of 20°C min−1 up to 325°C

maintained for 3 min. Data were acquired using CHEMSTATION software.

In Bristol, the analyses were undertaken using an Agilent Technologies 7890A GC system and 100%

dimethyl polysiloxane-fused silica column (15 m× 320 µm× 0.1 µm; Restek, Rxi-HT). Injected sample size

was 1 µl. The on-column injector was used with helium carrier gas. The temperature programme was set

at 50°C for 2 min, followed by a gradient of 10°C min−1 up to 350°C, followed by a 10 min isothermal

hold. Data were acquired using HP ChemStation software (Rev. B.03.02 [341] Agilent Technologies).

4.3. Gas chromatography–mass spectrometry analysis
GC-MS was conducted at the Institute of Chemistry (University of Tartu) with Agilent 7890A Series gas

chromatograph and Agilent 5975C Inert XL mass-selective detector with a DB5-MS (5%-phenyl)-

methylpolysiloxane column (30 m × 0.25 mm× 0.25 µm). Injected sample size was 1 µl. The splitless

injector and interface were maintained at 300°C and 280°C, respectively, helium was used as the

carrier gas at a constant flow. The GC column was inserted directly into the ion source of the mass

spectrometer. The temperature programme was set as follows: 50°C for 2 min, thereafter a gradient of

10°C min−1 up to 325°C and kept there for 14.5 min. Compounds were identified with Agilent

Chemstation software using also NIST mass spectral library.

Additional dedicated GC-SIM method was used for detecting aquatic biomarkers as reported in

previous studies [61,101]. For this GC-MS equipped with a DB-23 (50%-cyanopropyl)-

methylpolysiloxane column (60 m × 0.250 mm× 0.25 µm; J&W Scientific, Folsom, CA, USA) was used.

Injected sample size was 1 µl. The oven temperature was set at 50°C for 2 min with an increase of the

temperature up to 100°C (10°C min−1). Thereafter, the temperature was raised by 4°C min−1 to 140°C,

then by 0.5°C min−1 to 160°C and, finally, by 20°C min−1 to 250°C where it was maintained for

10 min. The carrier gas used was helium with a flow rate of 2.4 ml min−1. The SIM mode was set to

target characteristic aquatic biomarkers’ ions groups: m/z 74, 87, 213, 270 for 4,8,12-

trimethyltridecanoic acid (TMTD), m/z 74, 88, 101, 312 for pristanic acid, m/z 74, 101, 171, 326 for

phytanic acid and m/z 74, 105, 262, 290, 318, 346 for the detection of ω-(o-alkylphenyl) alkanoic acids

of carbon lengths C16–C22 (APAA16–22). Additionally, two phytanic acid diastereomers (3S,7R,11R,15-

phytanic acid or SRR and 3R,7R,11R,15-phytanic acid or RRR) were separated for the calculation of

the percentage of SRR in total phytanic acid (SRR%) by integrating the m/z 101 ion [71].

GC-MS analysis in Bristol was performed using a Thermo-Finnigan Trace MS and introduced via a

PTV injector set to splitless mode onto an HP-1 fused silica capillary column (100%

dimethylpolysiloxane, 50 m × 0.32 mm× 0.1 µm; Agilent). Injected sample size was 1 µl, and helium

was used as a carrier gas at a constant flow. The temperature programme was set as follows: 50°C for

2 min, thereafter gradient of 10°C min−1 up to 300°C where it was held for 10 min. The MS was

operated in electron ionization (EI) mode at 70 eV, and acquired between m/z 50 and 650 at

1.7 scans s−1 in full scan mode. Data were acquired and analysed using XCalibur (v. 1.2).

4.4. Gas chromatography–combustion–isotope ratio mass spectrometry analysis
GC-C-IRMS analysis was conducted on acid-extracted (methylated) samples to determine the 13C/12C ratio

in two most abundant fatty acids (C16:0 and C18:0). At the York BioArCh facility, the samples were analysed

with two instruments: Delta V Advantage isotope ratio mass spectrometer (Thermo Fisher, Bremen,

Germany) linked to a Trace Ultra 1310 gas chromatograph (Thermo Fisher) with a GC Isolink II

interface (CuO combustion reactor held at 850°C); and with Isoprime 100 (Isoprime, Cheadle, UK)

linked with Agilent 7890B Series Gas Chromatograph (Agilent Technologies, Cheadle, Cheshire, UK)

with Isoprime GC5 interface (Isoprime Cheadle, UK, with CuO combustion reactor held at 850°C).

Parallel acquisition of the molecular data was achieved by deriving a small part of the flow to an ISQ
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mass spectrometer (Thermo Fisher) and Agilent 5975C inert XL mass-selective detector (MSD) equipped

with a quadrupole mass analyser (Agilent technologies, Cheadle, Cheshire, UK), respectively.

All fatty acid methyl esters (FAMEs) samples were diluted with n-hexane, and subsequently 1 µl of

each sample was injected into a DB-5MS UI fused-silica column (PN 122-5562UI; 60 m × 250 µm×

0.25 µm; J&W Scientific technologies, Folsom, CA, USA). The split/splitless injector was operated in

splitless mode. The temperature was set at 50°C for 0.5 min and raised by 25°C min−1 to 175°C, then

raised by 8°C min−1 to 325°C where it was held for 20 min. Ultra-high-purity-grade helium was used

as the carrier gas at constant flow (2.0 ml min−1). All samples were measured in duplicates.

Eluted products were combusted to CO2 and ionized in the mass spectrometer by electron impact. Ion

intensities of m/z 44, 45 and 46 were monitored in order to automatically compute the 13C/12C ratio of

each peak in the extracts. Computations were made with Isodat (v. 3.0; Thermo Fisher) and IonOS/

LyticOS software (Isoprime, Cheadle, UK) and were based on comparisons with a repeatedly

measured standard reference gas (CO2). The results from the analysis are reported in parts per

thousand (‰) relative to an international standard (V-PDB) and corrected for the carbon atom added

during methylation using a mass balance equation [102].

At Bristol the samples were analysed with Isoprime 100 (Isoprime, Cheadle, UK) linked with Agilent

7890A Series GC (Agilent Technologies, Cheadle, Cheshire, UK) via an Isoprime GC5 interface (Isoprime

Cheadle, UK; with furnace temperature of 850°C). The FAMEs were diluted with n-hexane and injected

(1 µl) into an HP-1 fused silica column with a dimethyl polysiloxane stationary phase (50 m×

0.32 mm× 0.17 µm; Agilent). The temperature programme was set at 40°C for 2 min and raised

10°C min−1 to 300°C where it was held for 10 min. Helium was used as a carrier gas at constant flow

(2.0 ml min−1). All analyses were conducted in duplicate. Following conversion to CO2 over copper

oxide pellets, ion intensities of m/z 44, 45 and 46 were monitored to determine 12C/13C, relative to the

repeatedly measured standard reference CO2 gas. Instrument performance was determined using an in-

house FAME mixture (C11:0, C13:0, C16:0, C21:0, C23:0) with known δ13C values, with an instrument

precision of ±0.3‰, determined via repeated analysis between samples. Data processing was carried out

using IonVantage (v. 1.5.6.0, Isoprime). δ13C values are reported in parts per thousand (‰) relative to

the international standard (V-PDB), and were corrected for the methyl group added during

derivatization via a mass balance equation [102].

4.5. Zooarchaeology by mass spectrometry analysis
ZooMS analysis was carried out following previously published protocols [103,104]. Bone chips

were demineralized in 0.5 M HCl and rinsed in 50 mM ammonium bicarbonate. The demineralized

bone chip was then gelatinized at 65°C for 1 h and the resulting supernatant was treated with

0.4 µg trypsin (Thermo Scientific Pierce Trypsin Protease). Enzymatic digestion took place at 37°C

for 18 h. The incubated samples were concentrated and desalted using C18 ZipTips (Thermo

Scientific Pierce C18 Tips) and eluted in a final solution of 50 µl of 50% acetonitrile and 0.1%

trifluoroacetic acid (TFA). Then 0.5 µl of the resulting solution was mixed with 0.5 µl of α cyano-4-

hydroxycinnamic acid solution (10 mg ml−1 in 50% acetonitrile and 0.1% trifluoroacetic acid) and

allowed to crystallize.

Samples were analysed at the Max Planck Institute for the Science of Human History using a Bruker

AutoFlex LRF Speed. The resulting spectra were peak picked with a signal to noise ratio of 3.5 after

baseline correction, smoothing and deisotoping with the default parameters and analysed with

flexAnalysis 3.4 (Bruker Daltonics) and mMass software [105]. The spectra were compared against a

reference library of known peptide markers [36,103,106,107]. The resulting spectra are provided (see

electronic supplementary material, Data ZooMS files) and peptide markers are reported following

standard nomenclature [108] (see electronic supplementary material, table S2).

4.6. Collagen stable isotope analysis
The SIA results presented in this paper derive mostly from published materials and thus are conducted at

different laboratories with different pretreatment protocols for collagen extraction. The extraction

methods and hardware used for analysis are described in the papers referred to in electronic

supplementary material, table S5.

The samples analysed in this study (burials from Sope, Ardu, Kunila) were analysed at the Archemy

Lab, University of Tartu (UT). Collagen was extracted using the modified Longin method following the

previously reported procedure [109]. Bone/tooth dentine samples were demineralized in 0.25 M
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hydrochloric acid (HCl) at room temperature for 48 h. The demineralized samples were rinsed with

deionized water, which was replaced with 0.01 M HCl solution, to be placed in the oven (58°C) for

16 h for gelatinization. The resulting solution was filtered with Whatman nitrocellulose membrane

filters with pore size 5 µm to remove any insoluble residue and freeze-dried. Stable carbon (δ13C) and

nitrogen (δ15N) isotopic values were measured with an automated carbon and nitrogen elemental

analyser isotope ratio mass spectrometer (EA-IRMS) in the Department of Geology, UT. Samples

were weighed as duplicates into tin capsules (approx. 1.0–1.2 mg) and combusted in a Thermo Flash

HT EA with introduction of separated N2 and CO2 to a Delta V plus via a ConFlo IV interface.

The data were calibrated against international standards from IAEA (for nitrogen IAEA N-1,

δ15NAIR= + 0.4‰, IAEA N-2, δ15NAIR= + 20.3‰, USGS25, δ15NAIR =−30.4‰, and for carbon IAEA

CH3, δ13CVPDB=−24.72‰, and IAEA CH6, δ13CVPDB=−10.449‰). The results are expressed using the

delta notation in per thousand (‰) [110] relative to the international marine limestone VPDB standard

for carbon and AIR for nitrogen. The long-term stability error for the isotope ratio measurements

determined from repeated measurements of international and laboratory standards was better than

±0.2‰ (1 s.d.) for nitrogen, and ±0.1‰ (1 s.d.) for carbon.

4.7. Accelerator mass spectrometry dating
Approximately 1 g of sample was removed from the animal bones and submitted to AMS radiocarbon

dating at the CHRONO Centre in Queen’s University Belfast. The obtained AMS dates were calibrated

with the OxCal 4.4.4., using the IntCal20 atmospheric calibration curve [31] and rounded by 10.
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