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ABSTRACT ARTICLE HISTORY
This paper examines different geographically weighted (GW) Received 6 May 2023
approaches for calculating spatially distributed measures of accu- Accepted 19 September 2023

racy / uncertainty, consolidating current approaches and proposing KEYWORDS

2 new ones. GW frameworks use a moving window or kernel to Classification accuracy;
extract and weight data subsets, from which local (ie spatially geographically weighted
distributed) statistics or metrics are calculated. A validation dataset regression; logistic
with hard and soft classifications is used to illustrate the regression; fuzzy
approaches. It contains observed field survey data (also commonly classification
derived from higher resolution imagery), and predicted data from a

fuzzy c-means classification. The hard classes were used to estimate

spatially distributed measures of overall, user's and producer's

accuracies in two ways. First, by conceptualising them as probabil-

ities to be estimated from generalised linear regression models

(GLMs), extended into Geographically Weighted GLMs. Second, by

constructing local GW correspondence matrices and then calculat-

ing local accuracy measures from these. The soft classes were used

to calculate per-class measures of fuzzy certainty from the absolute

difference between predicted and observed fuzzy memberships.

Then, a novel fuzzy certainty logic is proposed and used to create

fuzzy confusion matrices and per-class measures of fuzzy omission

and commission error, supporting measures of fuzzy user's and

producer's certainties. These were extended to the GW case to

generate spatially distributed measures. Finally, the soft classifica-

tions were conceptualised as compositional data and measures of

difference were estimated using Aitchison distances. In each case,

the local hard and soft accuracy and certainty measures were

interpolated over a 1 km grid to estimate accuracy surfaces. The

context for this review is the increasing operational use of training

and validation data, often with high numbers of records, containing

both hard and soft classes. The data and R code used to undertake

all the analyses in this paper are provided, supporting more

nuanced analyses of such data.
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1. Introduction

Without accuracy assessment the map is just a pretty picture, an untested hypothesis (verbatim
quote of Giles Foody, International Symposium on Spatial Data Quality, La Grande Motte,
France, 29 September 2015, but probably referencing McRoberts (2011))

This paper synthesizes geographically weighted (GW) methods for reporting and map-
ping the spatial distribution of classified remotely sensed (RS) data accuracy. It combines
a number of inter-related concepts around accuracy in remote sensing and GW models:

e Classification accuracy in remote sensing provides a measure of the degree to which
a sample of the classified data agrees with the reference data (Congalton 1991).

e Sample locations (pixels) should be selected under a probability-based sample
design (Olofsson et al. 2014).

¢ At those locations, accuracy is quantified by comparing the predicted class (as
generated by the classification algorithm applied to the RS data) (e.g. k-means,
c-means, random forest, etc.) with the observed reference class that is deemed to
be of higher quality in some way. The observed data are often from higher resolution
imagery (Tsutsumida et al. 2020).

e Measures of overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA)
are generated from cross tabulations of predicated against observed class. These
describe probabilities and as such can also be generated from generalized linear
regression models (GLMs) (Comber 2013).

e Standard accuracy measures provide only global or whole map (Openshaw 1996)
accuracies and do not describe any spatial variation in accuracy. However, it is well
known that errors are frequently concentrated in certain areas (i.e. are localized)
(Congalton 1988).

¢ GW models generate spatially distributed outputs. The best known is geographically
weighted regression (GWR - Brunsdon, Fotheringham, and Charlton (1996)). The GW
framework uses a moving window to extract and weight data subsets, and create
a series of local models, that are combined into a GW model (Gollini et al. 2015).

¢ GWR has a GLM form that can be used to generate geographically weighted general-
ized linear regression models (GW-GLM) (Nakaya 2015) and the GW framework can
also be used to calculate other user defined local metrics (e.g. Comber and Harris
(2018)).

This paper links these concepts and describes methods for generating local measures of
spatially distributed accuracy and certainty to augment current approaches. It extends
from hard or crisp classifications, in which each image pixel or object is allocated to
a single class, to soft or fuzzy classifications. These contain pixel-level probabilities (or
fuzzy class memberships) for each class, potentially indicating sub-pixel composition or
classification uncertainty. The paper draws together developments in GW accuracy,
describes two novel approaches for quantifying soft classification accuracy (fuzzy accu-
racy and compositional accuracy) and applies these under GW interpolation frameworks.
The context for this work is the increasing interest in local accuracy measures — how and
where classification accuracy varies — and the enhanced ability to generate such measures
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due to increased use of high-resolution data to train and validate coarser resolution RS
data of greater coverage. Such training/validation data overcomes concerns about the
value of interpolated accuracy measures when estimated from a small number of obser-
vations (Foody 2022). Each approach is explored using the same validation dataset. The
data and R code used to generate all the results and figures are at https://github.com/
lexcomber/GWAcc.

2. Data

A single land cover validation dataset is used to demonstrate the approaches. It covers an
area around Tripoli in Libya as described in Comber et al. (2012), although it has been
subsequently modified. It contains the predicted hard land cover class and soft land cover
class proportions from a fuzzy c-means classification (Wang 1990) of SPOT (Systéme Pour
I'Observation de la Terre) resampled to 30 m for 210 locations. It also contains the
observed hard class and soft class proportions at each location collected via field survey
as the reference data. In order to generate spatially distributed measures of accuracy, a 1
km interpolation grid was defined to provide a spatial framework over which local
accuracy measures were estimated. This size was arbitrarily chosen to provide a balance
between spatial detail and computational efficiency. The validation data locations and the
1 km interpolation grid are shown in Figure 1.

2.1. Hard classification data

The cross-tabulation of the predicted and observed hard classes is shown in Table 1, with
OA, a kappa estimate, and UAs and PAs for each of the five classes. This is variously
referred to as the error matrix, the confusion matrix or the correspondence matrix. OA
describes the proportion of observations correctly predicted. UA is the complement of the
Commission error of the remote sensing class. It is the probability that the class predicted
by the remote sensing analysis will be found in the observed data. PA is the complement
of the Omission error of the remote sensing class. It describes the probability of the true
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Figure 1. The locations of the validation points, a 1 km interpolation grid and Tripoli highlighted in
red.
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Table 1. The correspondence matrix between predicted (rows) and observed (columns) land cover
class, with user’s and producer’s accuracies. Overall accuracy: 0.733; kappa estimate: 0.665.

B G u Vv w User's Producer’s
1. Bare Ground 19 5 5 4 3 0.528 0.864
2. Grazing Land 2 30 0 12 9 0.566 0.769
3. Urban 1 0 35 2 2 0.875 0.778
4. Vegetation 0 3 4 42 1 0.840 0.689
5. Woodland 0 1 1 1 28 0.903 0.651

observed class being found in the remote sensing analysis. Kappa estimates of accuracy
provide an overall measure of accuracy informed by the probabilistic agreement and the
expected disagreement between predicted and observed classes, although they are now
somewhat discredited (Foody 2020; Pontius and Millones 2011). An overview of these
measures derived from the correspondence matrix is comprehensively described in
Congalton (1991).

2.2. Soft classification data

Soft classifications provide a measure of the uncertainty in the classification. A standard
classification generates probabilities of the pixel belonging to each class based on the
distance of the pixel to each class centre (whether unsupervised or supervised).
Alternatively, soft classification generates measures of the partial membership of each
pixel to each class, under a fuzzy approach (Fisher and Pathirana 1990), or sub-pixel
proportions under a compositional approach (Wang, Shi, and Atkinson 2014). The valida-
tion dataset contains observed and predicted sets of soft classifications. These are shown in
Figures 2 and 3 respectively. There are large differences in the spatial distributions of the
predicted and observed soft class values caused by differences in how they were
recorded: continuous predicted values were from a fuzzy c-means classification and the
observed values were from a field survey in which class proportions were recorded in
units of 7 of a pixel.

Urban Observed Vegetation Observed Woodland Observed

@
" r4
Grazing Land Observed Bare Ground Observed o 010
® 025
® o050
® o7
©® o9
® 10

Figure 2. The observed soft class memberships.
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Figure 3. The predicted soft class memberships.

3. Working with hard classes
3.1. Accuracy as GLM and GW-GLM probabilities

Overall, user’'s and producer’s accuracies are probabilities and can therefore be derived
from generalized linear regression models (GLMs) with logistic form (Comber 2013). This is
because of the allocation of each pixel to one observed class and one predicted class,
allowing the validation data to be recast as True (1) or False (0) and thus probabilistic
accuracy measures to be calculated.

OA can be estimated using a GLM, applied to a single vector of 1s indicating the same
class is present in both the observed and validation data, Os otherwise. This is regressed
against an explanatory variable of 1 (i.e. an intercept term) and returns a single coefficient
estimate, By. The OA probability is computed from antilogs (exp) of By generated by the
logistic GLM, as follows:

_ oy ePBo)
P(OA_1)_H_TPE’30)

Effectively this is the probability that the observed class and the predicted class are the
same. It can be derived from the cross tabulation in Table 1, where the 154 diagonal
elements are indicated as 1 out of total count of 210, with the 56 off-diagonal elements
indicated as 0. The result is a probability that observed class equals predicted class (i.e.
OA) of 0.733 (154 / 210).

Equation 1 can be written in a different way by defining a logit function to transform
any coefficient 8 (Equation 2), creating a regression model (Equation 3), and then applying
the logit transform to calculate OA (Equation 4):

(1

logit(B) = % @
In(=2—) =B, 3)
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P(OA = 1) = logit(B,) (4)

where, p is the probability that OA = 1, and S, is the intercept term as before. The use of
Equation 2 and the form of Equation 4 are important, as below they will be expanded to
describe GW models.

For UA and PA, consider a subset of the validation data pertaining to the class of
Grazing Land. It can be represented by two similarly ordered binary vectors of 210
elements, with the observed (reference) vector having 39 elements indicated as True (1)
and the predicted (classified) vector having 53. User’'s accuracy can be estimated as
follows:

Py = 1) = logit(By + B1x1) (5)

where P(y = 1) is the probability that the observed class, y, is correctly predicted by the
classified data, x;, B, is the intercept term and B3, is the slope. The result describes the
probability that the observed data equals 1, given that the predicted data equals 1, which
in this case is 0.57.

Inverting the response and explanatory variables in Equation 3 calculates producer’s
accuracy:

P(x = 1) = logit(Bo + B1y1) Q)

where P(x = 1) is the probability that the classified class is correctly predicted by the
observed data, y1, B, is the intercept term and B, is the slope. The result describes the
probability that the predicted data equals 1, given that the observed data equals 1 and
the producer’s accuracy for Grazing Land is 0.77.

Having outlined the calculation of accuracy probabilities derived from the cross-
tabulation using logistic regression models, it is now possible to consider the geographi-
cally weighted extensions to these. Geographically weighted regression (GWR) is similar in
form to ordinary regression but uses a moving window or kernel under which local
models, such as a logistic regression, are computed (Brunsdon, Stewart Fotheringham,
and Charlton 1996; Fotheringham, Brunsdon, and Charlton 2002; Nakaya et al. 2005). This
can be done at discrete locations through the study areas such as the validation locations
as in Figure 1, but it is often more informative to estimate these over an interpolation
surface such as the 1 km grid shown in Figure 1. The GWR form of the regression models
described in Equations 4, 5, and 6 were extended to the spatial case in the following way:

P(OA = 1),y = logit(Bow,v,)) )
P(y = 1)(u,-,w) = /Ogit(BO(UhVi) +Bixaww) ®)
P(x = 1)(uf,w) = /Ogit(BO(Uf,Vi) + B1Y‘|(u,»,v,v)) ©)

where (u;, v;) are vectors of two-dimensional coordinates describing the location of each
observation i in the validation dataset or the interpolation grid.

In a GW approach, a moving window or kernel is used to generate weighted data
subsets from which local models are constructed at discrete locations: the data are
subsetted and weighted such that data points further away from the kernel centre
contribute less to the local model. The weight, w;, associated with each location (uj, v;)
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is a decreasing function of d;, the distance from the centre of the kernel to (u;, v;). A typical
kernel function is the bisquare kernel - see Gollini et al. (2015) for details of kernels in GW
models. For a given bandwidth b, this is defined in Equation 10.

wij = { (- () e <o (10)

0 otherwise.

where d;; is the distance from the kernel centre to the data point j and the weights w;; for
each data point i change for each location.

It is important to note that all GW models require a kernel bandwidth. This describes
the size of the moving window (fixed distance bandwidth) or the proportion of the data
points used in each local calculation (adaptive distance bandwidth). The bandwidth
defines the degree of smoothing in the outputs. All implementations of GWR have
procedures for bandwidth optimization to determine the bandwidth that optimizes
error or fit, such as leave-one-out-cross validation or metrics like AIC (Akaike 1998). In
this paper, bi-square kernels with adaptive distances (specifying a proportion of data
points rather than fixed distances) were used throughout and these were optimized to
minimize root mean square prediction error. Bandwidths are reported in proportions
throughout the paper, and where percentages (of data points) are used, these are clearly
indicated. Geographically weighted GLMs (GW-GLMs) were implemented using the spgwr
R package (Bivand et al. 2020).

Summaries of the distributions of the local GW-GLM derived OA, UAs and PAs, and their
adaptive bandwidths (expressed as proportion of the total number of data points), are
shown in Tables 2, 3, and 4. The global accuracy measures from Table 1 are included for

Table 2. A summary of the local measures of overall accuracy generated by the GW-GLM models, with
the adaptive bandwidth and the global overall accuracy measure.
Min. 1st Qu. Median Mean 3rd Qu. Max. Bandwidth Global
0.649 0.705 0.746 0.74 0.777 0.814 0.819 0.733

Table 3. A summary of the local measures of user’s accuracy generated by the GW-GLM models, with
the adaptive bandwidths and the global user’s accuracy measures.
Min. 1st Qu. Median Mean 3rd Qu. Max. Bandwidths Global

1. Bare Ground 0.489 0.502 0.506 0.519 0.542 0.559 1.000 0.528
2. Grazing Land 0.453 0.518 0.597 0.611 0.671 0.912 0.624 0.566
3. Urban 0.641 0.842 0.887 0.861 0.909 0.929 0.681 0.875
4. Vegetation 0.770 0.823 0.840 0.839 0.857 0.880 0.995 0.840
5. Woodland 0.861 0.869 0.891 0.901 0.937 0.952 1.000 0.903

Table 4. A summary of the local measures of producer’s accuracy generated by the GW-GLM models,
with the adaptive bandwidths and the global producer’s measures.
Min. 1st Qu. Median Mean 3rd Qu. Max. Bandwidths Global

1. Bare Ground 0.855 0.862 0.866 0.866 0.869 0.883 1.000 0.864
2. Grazing Land 0.117 0.648 0.760 0.748 0.876 0.978 0.376 0.769
3. Urban 0.592 0.730 0.763 0.755 0.797 0.826 0.833 0.778
4. Vegetation 0.620 0.686 0.705 0.708 0.727 0.812 0.843 0.689

5. Woodland 0.504 0.624 0.658 0.669 0.719 0.818 0.800 0.651
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Bandwidth = 0.82 Bandwidth = 0.62 Bandwidth = 0.38

Overall “ User's _ Producer's _

065 0.70 0.75 0.80 05 06 0.7 08 0.9 025 0.50 0.75

Figure 4. Spatially distributed overall accuracy, and user’s and producer’s accuracies for Grazing Land
from a GW-GLM.

comparison. There are a number of interesting observations when the bandwidths and
the distribution summaries are examined:

e Overall accuracy (Table 2) has some degree of spatial variation and high bandwidth
indicating that 82% of the observations were used in each local OA model. The inter-
quartile range indicates the spatial homogeneity of OA in this case.

e For user’s accuracy (Table 3), there is very little variation in accuracy for Bare Ground,
Vegetation Woodland as reflected in the narrow inter-quartile ranges and large
bandwidths all around 100% of the data points. (Note that in these cases the spatial
variation is driven by the weighting function). The UAs for Grazing Land show some
spatial variation with important differences in its inter-quartile ranges, suggesting
that this accuracy are highly localized. Urban has a narrow range and a small
bandwidth, suggesting some spatial variation.

e The producer’s accuracies (Table 4) are interesting. Here, the bandwidth does not
universally indicate the amount of spatial heterogeneity in the accuracy measure:
despite moderately high bandwidths (80% of the data points) there is considerable
variation in Urban and Woodland as well as in Grazing Land (low bandwidth).

The spatial variation of the GW accuracy measures can also be further explored by
mapping them. OA with UA and PA for Grazing Land are shown in Figure 4. Here, higher
values of PA and UA are found in the centre and north of the study area, areas with low
levels of observed and predicted Grazing Land, and areas of higher PA are found in the
south and west.

3.2. GW correspondence matrices

An alternative approach for estimating local measures of OA, UA and PA is to construct
local correspondence matrices (cross-tabulations) of observed and predicted values.
Comber et al. (2017) describe the use of geographically weighted correspondence
matrices (GWCM), with functionality provided by the gwxtab R package (https://
github.com/chrisbrunsdon/gwxtab). Here, a GWCM was constructed at each location
in the 1 km grid from which probability-based accuracy measures were then computed
directly.


https://github.com/chrisbrunsdon/gwxtab
https://github.com/chrisbrunsdon/gwxtab
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Figure 5. Two example locations for which geographically weighted grids are determined.

Table 5. The GWCM for point 1, with predicted (rows) and observed fuzzy class
(columns). The values indicate GW pixel counts.

B G u \' w
1. Bare Ground 1.83 1.16 0.03 0.00 0.63
2. Grazing Land 0.00 3.61 0.00 1.41 1.10
3. Urban 0.00 0.00 0.60 0.04 0.96
4. Vegetation 0.00 0.28 0.93 4.84 0.26
5. Woodland 0.00 0.00 0.00 0.89 1.04

The GWCM approach, through the gwxtab package, is to construct spatial cross
tabulation functions that are parameterized with the predicted and observed data, and
then used to create local GWCM:s for a given bandwidth and location. This process is best
illustrated through examples. Figure 5 shows two locations on the 1 km of the grid. The
spatial cross-tabulation function generates geographically weighted correspondence
matrices for those locations as shown in Tables 5 and 6 using an adaptive bandwidth of
30% of the data points. These show the geographically weighted cross-tabulation counts
of pixels at each location. Note that the bandwidth for GWCM construction cannot be
optimized and instead has to be selected by the user.

The bandwidths determined in the GW-GLM approach above and the interpolation grid
were passed to the GWCM function to generate GW correspondence matrices at each
location from which local measures of GW OA, UA, PA and kappa accuracy were calculated.
Summaries of the distributions of local geographically weighted OA and kappa accuracy are
shown in Table 7, and the GW UAs and PAs for each class are in Tables 8 and 9 respectively.
The OA, UA and PA results are exactly the same as those from the GW-GLM in Tables (2-4).
Although the kappa estimate has been criticized for its formulation, its embedded

Table 6. The GWCM for point 2, with predicted (rows) and observed fuzzy class
(columns). The values indicate GW pixel counts.

B G U Vv w
1. Bare Ground 2.15 0.00 1.68 0.05 0.00
2. Grazing Land 0.00 0.15 0.00 0.00 0.00
3. Urban 0.64 0.00 10.94 0.55 0.91
4. Vegetation 0.00 0.14 0.44 441 0.00

5. Woodland 0.00 0.00 0.59 0.00 3.63
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Table 7. The local overall and kappa accuracies from a GWCM under an adaptive bandwidth of 0.82,
with the global statistic.

Min. 1st Qu. Median Mean 3rd Qu. Max. Global
Overall 0.649 0.705 0.746 0.740 0.777 0.814 0.733
Kappa 0.543 0.627 0.675 0.669 0.717 0.757 0.665

Table 8. A summary of the local measures of user’s accuracy generated by the GW correspondence
matrix approach, with the adaptive bandwidths and the global user’s accuracy measures.
Min. 1st Qu. Median Mean 3rd Qu. Max. Bandwidths Global

1. Bare Ground 0.488 0.501 0.504 0.519 0.543 0.560 1.000 0.528
2. Grazing Land 0.453 0.518 0.597 0.611 0.671 0.912 0.624 0.566
3. Urban 0.641 0.842 0.887 0.861 0.909 0.929 0.681 0.875
4. Vegetation 0.770 0.823 0.840 0.839 0.857 0.880 0.995 0.840
5. Woodland 0.860 0.866 0.889 0.900 0.937 0.952 1.000 0.903

Table 9. A summary of the local measures of producer’s accuracy generated by the GW correspon-
dence matrix approach, with the adaptive bandwidths and the global producers’s accuracy measures.

Min. 1st Qu. Median Mean 3rd Qu. Max. Bandwidths Global

1. Bare Ground 0.855 0.862 0.866 0.866 0.869 0.883 1.000 0.864
2. Grazing Land 0.117 0.648 0.760 0.748 0.876 0.978 0.376 0.769
3. Urban 0.592 0.730 0.763 0.755 0.797 0.826 0.833 0.778
4. Vegetation 0.620 0.686 0.705 0.708 0.727 0.812 0.843 0.689
5. Woodland 0.504 0.624 0.658 0.669 0.719 0.818 0.800 0.651

assumptions and difficulties in its interpretation (Foody 2020; Pontius and Millones 2011), it
is included here to illustrate how non-GLM related metrics can also be calculated from the
correspondence matrix.

3.3. Summary of GW accuracy for hard classes

Two approaches for generating GW measures accuracy are described, based on local GW
GLMs and local GW correspondence matrices. Both generate the same results - compare
Tables 3 with 8 and Tables 4 with 9. The logic for this equality is as follows: the weighted
subsets of binary variables that are passed to the GW-GLM are effectively the inputs into
a 2 by 2 correspondence table of counts for each class. The locally weighted subsets of
these used to create each local model in the GW-GLM approach are effectively the same
subsets that are used to construct the local GW correspondence matrices, given the same
bandwidth and weighting function.

Each approach has a distinct advantage over the other. The GWCM is more flexible as it
can accommodate any measure derived from the correspondence matrix. For example,
Pontius and Millones (2011) and Pontius Jr and Santacruz (2014) describe a number of
metrics including composite measures of accuracy. These have been included in the
diffeR package (Pontius and Santacruz 2015) and applied in the paper by Comber et al.
(2017). However, unlike GW-GLM approach, there is not an obvious method to determine
optimal bandwidths for the GWCMs. This is a critical point. It means that the scales of
heterogeneity have to be determined elsewhere (such as in a GW-GLM) or are user
defined, which is problematic. By way of example, Figure 6 shows two spatially varying
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Figure 6. Two examples of overall allocation difference estimates from GW correspondence matrices
with different bandwidths.

overall allocation difference measures (Pontius and Santacruz 2015) generated under an
adaptive kernel using 30% of the data points (a reasonable configuration in many GW
analyses) and an adaptive bandwidth using 82%, determined optimally for the GW-GLM
OA measure. These two maps provide very different representations of the spatial varia-
tion of the same accuracy measure, with the larger bandwidth generating a higher values
and potentially a spatially smoother results. One obvious option is to determine band-
widths using a GW-GLM and then use the GWCM to calculate an appropriate bandwidth
for the desired local metric (if it is not OA, UA or PA).

4. Working with soft classes

In hard classifications, each pixel is uniquely defined as belonging to one class only. There
are many embedded assumptions associated with hard classification and Fisher (1997)
provides a thoughtful discussion of these. Soft classifications contain measures of propor-
tion, membership or probability for each class, summing to 1 for each pixel. They capture
some of the uncertainty associated with hard classifications, which may be due to the
mismatch between pixel resolution and the granularity of the process being monitored
(i.e. sub-pixel processes) or due to the differences in the spectral characteristics of the
pixel relative to the classes. By capturing the uncertainty and the inherent properties of
the image pixel in remote sensing outputs, soft classifications can provide more repre-
sentative measures of the real world. As a result, the remote sensing community is
increasingly interested in working with the uncertainty captured by soft classifications
(Alshari and Gawali 2021; Atkinson 2005; Khatami, Mountrakis, and Stehman 2017b). In
the subsections below, the pixel is considered as a fuzzy object, with partial membership
to each class and then as compositional data, indicating the fractions of different classes
within the pixel. The concept of compositional data is well developed in some areas of
science and is starting to gain traction in the remote sensing community (Zakeri and
Mariethoz 2021).

4.1. GW fuzzy certainty |

A fuzzy classification is one that allows for classified objects (pixels or parcels) to have
partial memberships to the set of all possible classes. These are similar to the probabilities
generated, for example, from a k-means or maximum likelihood classifier, and are often



6244 A. COMBER AND N. TSUTSUMIDA

Table 10. Summaries of the distribution of the GW fuzzy certainty for each class, with optimized kernel
bandwidths.

Min. 1st Qu. Median Mean 3rd Qu. Max. Bandwidths
1. Bare Ground 0.722 0.887 0.929 0913 0.953 0.978 0.076
2. Grazing Land 0.744 0.790 0.823 0.832 0.868 0.941 0.076
3. Urban 0.722 0.887 0.929 0913 0.953 0.978 0.076
4. Vegetation 0.818 0.824 0.833 0.834 0.844 0.851 0.405
5. Woodland 0.865 0.865 0.869 0.868 0.871 0.872 0.776
Grazing Land: Bandwidth = 0.08 Vegetation: Bandwidth = 0.4
Certainty
0.90
0.85
0.80
0.75
0.70

Figure 7. The spatial distributions of the fuzzy certainty of Grazing Land and Vegetation.

used as proxies for fuzzy class memberships. The critical advance by Comber et al. (2012)
was to create Geographically Weighted measures of fuzzy accuracy or more correctly
fuzzy certainty. They used a GW framework to compute local measures of difference for
each class at each location. If y is the observed fuzzy membership and x is the predicted
fuzzy membership, at any given location (u;, v;), the fuzzy certainty for any given class u(z)
can be obtained from the complement of the absolute difference between the two fuzzy
memberships:

I-l(z)(u,-,v,-) =1- abs(y(u,-,v,) - X(u,,v,-)) (1 1)

The quantity u(z) can take any value in the range 0 to 1, with 0 corresponding to a hard
classification agreement and 1 corresponding to hard classification disagreement
between the observed reference classes and the predicted mapped classes.

The values of u(z) for each location are regressed against unity (1) using an OLS
regression under a GW kernel over the 1 km interpolation grid. This is a standard GWR
(Brunsdon, Stewart Fotheringham, and Charlton 1996), generating coefficient esti-
mates that describe the pre-class spatial variation in fuzzy certainty. The kernel
bandwidth can be optimized and the results are summarized in Table 10. What is
interesting is the high degree of correspondence between the predicted and observed
fuzzy measures and the relatively narrow spatial variation of these irrespective of the
bandwidth, which in some cases are very small (8% of the data). It is possible to map
these as is done for the Grazing Land and Vegetation classes in Figure 7, which have
very different optimized bandwidths and distributions. When these are considered in
the context of the distributions in Figures 2 and 3, Grazing Land has low fuzzy
certainty values in areas of dense predicted and observed validation data, whereas
this is not the case for Vegetation, which has much lower spatial variation in fuzzy
certainty values.
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4.2. GW fuzzy certainty Il

It is possible to take a more informed and nuanced approach to fuzzy accuracy by
extending the logic proposed by Fisher et al. (2006) for fuzzy change into fuzzy
accuracy. The change matrix is a direct corollary of the correspondence matrix as it
compares two sets of observations collected at the same locations. Fisher et al. (2006)
describe the construction of a fuzzy change matrix from the class memberships values
observed at Time 1 and Time 2 and evaluate fuzzy change using the concept of
bounded difference to determine per-class measures of fuzzy loss and fuzzy gain. If the
change matrix is composed of rows describing classes at Time 1 and columns at Time
2 then fuzzy loss equates to the sum of the row-wise off diagonal elements for each
class, and fuzzy gain to the sum of column-wise off diagonal elements. These concepts
of change from Fisher et al. (2006) can be extended to fuzzy accuracy and uncertainty
as follows:

e Fuzzy producer’s certainty is the complement of fuzzy Omission error, defined as
fuzzy memberships that were not recorded (omitted) in the predicted fuzzy mem-
berships from the remote sensing analysis. It is calculated from 1 - (fuzzy Omission
error) from the column-wise off diagonal elements in the fuzzy correspondence
matrix, for each class. This is the corollary of fuzzy gain.

e Fuzzy user’s certainty is the complement of fuzzy Commission error, defined as fuzzy
memberships recorded in the predicted fuzzy memberships but not found in the
observed memberships from the field survey. It is calculated from 1 - (fuzzy
Commission error) from the row-wise off diagonal elements in the fuzzy correspon-
dence matrix for each class. This is the corollary of fuzzy loss.

These fuzzy certainties can be determined by adapting the logics of bounded difference,
fuzzy loss and fuzzy gain. It also is possible to extend these to a GW framework to
generate spatially distributed measures. This is entirely novel and is reported for the
first time in this paper.

The fuzzy change analysis in Fisher et al. (2006) reasons with continuously valued fuzzy
maps that represent each land cover class at T; (Time 1) and at T, (Time 2). These are
recorded as a real number, y, between 0 and 1, indicating the degree to which each object
(pixel) matches a land cover type in each time period. Fuzzy change can be recast as fuzzy
certainty, such that the mapped predicted membership from the remote sensing classifi-
cation are compared with the reference observed land cover fuzzy memberships from the
field survey. Following Fisher et al. (2006) we can denote these as Pred and Obs (predicted
and observed memberships), instead of T; and T, respectively. To determine certainty
measures, a novel fuzzy set logic has to be established. For the fuzzy certainty matrix, the
logic of populating the cells in the fuzzy correspondence matrix is variable.

For the leading diagonal elements, the logic can be expressed as those elements where
the land cover class is C; in Pred and C; at Obs: i.e. the intersection of the two fuzzy sets.
The normal intersection operator for fuzzy sets takes the minimum of the two fuzzy
membership values, u (Zadeh 1965), as in Equation 12.

u(CiPred, C;Obs) = min(u(C;Pred), u(C;Obs)) (12)
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For example, if the membership of C; in Pred is 0.5 and C; at Obs of 0.6, the membership of
the intersect will be 0.5. As P. Fisher et al. (2006) notes with respect to fuzzy change, the
use of the minimum operator ‘is reasonable as the lower value records the amount
unchanged’ (Fisher et al. 2006, 165).

The off-diagonal elements of the fuzzy correspondence matrix need to be treated in
a different way and the logic is different. It involves consideration of two different fuzzy
classes C; in Pred and C; in Obs. These elements can be interpreted as the intersection of
the two fuzzy land cover types, C;Pred and CjObs, where i#j, or as the intersection of the
fuzzy producer’s certainty in C; and the fuzzy user’s certainty in C; across the two
measurements, Pred and Obs. Fisher et al. (2006) undertake some investigation of different
fuzzy loss and gain approaches in the context of fuzzy change and noted that the
Bounded Difference between two fuzzy sets is ‘the simplest operator for which the results
make the most sense’ (p166) when used to compute fuzzy loss and fuzzy gain.

This approach to fuzzy change is transposed to fuzzy accuracy. Here, evaluation of the
difference between observed and predicted fuzzy objects incorporates a boundary term,
defined as the  min(u(G,Pred),u(C;,0bs))  for loss/Commission  and
min(u(Cy, Obs), u(Cy, Pred) for gain/Omission. Fuzzy Commission Error (the complement
of fuzzy user’s certainty) and Fuzzy Omission Error (the complement of fuzzy producer’s
certainty) are defined with bounded difference as follows:

u(OmissionCy) = max(0, u(—Cy, Pred) + min(u(Cy, Obs), u(Cy, Pred)) — 1)  (13)

u(CommissionCy) = max(0, min(u(Cy, Pred), u(Cy, Obs)) + u(—=Cy, 0bs) — 1) (14)

From these fuzzy producer’s certainty and fuzzy user's certainty are taken from the
complements of fuzzy omission and commission, respectively. Set operations defined in
this way can be used to create the fuzzy correspondence matrix, with measures of per
class fuzzy user’s or Commission errors and producer’s or Omission errors. If the predicted
class membership Pred are rows in the correspondence matrix, then the upper off-
diagonal elements in a fuzzy correspondence matrix describe fuzzy commission errors
(false positives). Similarly, if the observed class membership Obs are columns in the
correspondence matrix, then the lower off-diagonal elements in a fuzzy correspondence
matrix describe fuzzy omission errors (false negatives).

The fuzzy correspondence matrix in Table 11 indicates the uncertainty in the soft
validation data. This showsfor example, that 6.2 pixels of Grazing Land in the predicted
data from remote sensing (rows) were observed in the Bare Ground class (via field survey),
and that 5.2 pixels observed in the field survey of Urban were found in the Woodland
remote sensing class. The overall patterns are similar to those in Table 1, the standard

Table 11. Summaries of the distribution of the GW fuzzy certainty for each class, with optimized kernel
bandwidths.

B G U v w Omission Commission
1. Bare Ground 26.907 0.545 1.865 1.100 1.421 20.370 4.931
2. Grazing Land 6.220 26.840 0.250 0.918 1.197 11.723 8.585
3. Urban 1.714 1.154 22.198 2.744 0.803 10.775 6.415
4. Vegetation 5.377 4,651 3.449 35.275 2.040 10.375 15.516

5. Woodland 7.060 5.374 5211 5.613 25.774 5.461 23.257
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Grazing fuzzy correspondence: BW = 0.23 Woodland fuzzy user's certainty: BW = 0.34

0.85 0.90 0.75 0.80

Figure 8. Examples of fuzzy correspondence and fuzzy user’s certainties.

correspondence matrix, but with the uncertainty in the hard classification now explicitly
represented. Note that the sum of values in the fuzzy correspondence matrix is 196, less
than the 210 observations, due to the bounded difference operations as discussed in
Fisher et al. (2006). The fuzzy omission and commission uncertainties summarized in
Table 11 show the sums of the off-diagonal row and column elements of the fuzzy
correspondence matrix.

It is possible to extend the measures from the fuzzy correspondence matrix to the GW
case by extracting the per class fuzzy overall certainty, user’s and producers’ certainties
from the measures of fuzzy correspondence, omission and commission, respectively.
A GWR can be used to generate spatially distributed estimates of these over the 1km
interpolation grid. Investigation of the interpolated results indicate higher variations in
fuzzy correspondence for Grazing Land and in fuzzy user’s certainty for Woodland. These
are shown Figure 8 with similarities to the fuzzy certainty in Figure 7 for Grazing Land but
with a narrower range in the fuzzy correspondence. Generally, much lower variation was
found than in the previous fuzzy certainty analysis, and little variation was found in the
fuzzy producer’s certainties.

4.3. GW compositional error

A final approach is to consider the soft classification values as compositional data. These
are counts or measurements that are a proportion of some whole (Aitchison 2005).
Examples include soil composition described in percentages of Sand, Silt, and Clay,
measures of chemical concentrations in water samples in parts per million (ppm), or the
proportions of the population in different age categories. In a remote sensing context, the
class probabilities or memberships generated as part of a standard remote sensing image
classification can be considered as compositional data. The soft class values are commonly
conceived as the probability of each pixel belonging to each class, or in a fuzzy approach
as the measure of the partial membership of the pixel to each class. In this case, the
Observed and Predicted soft classes in the validation dataset can consider as composi-
tional data because they are direct measures of the composition of the pixel area: the
areal class membership from a field survey and from a fuzzy c-means classification
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algorithm (Wang 1990). However, class probabilities can be treated in the same way
(Tsutsumida et al. 2020).

There is a long literature on the analysis of compositional data. Much of it considers the
difficulties in applying standard statistical approaches to such data, which frequently use
Euclidean distances in a multi-variate feature space to generate similarity measures. These
are confounded when calculated over a compositional attribute space, with issues asso-
ciated with scale, perturbation, permutation variance and sub-compositional dominance.
To overcome this, a number of different distance metrics have been proposed, one of
which is Aitchison distance (Aitchison 1982). This was developed to support the measure-
ment of difference between two compositions, such as the predicted and observed soft
classes in the validation dataset. It has recently been applied to examine class proportions
within the remote sensing domain (Tsutsumida et al. 2020; Zakeri and Mariethoz 2021)
and is extended here. In overview, Aitchison distance is the Euclidean distance between
centred log-ratio (clr) transformed compositions. When Euclidean distances are calculated
from cir-transformed data, then the problems associated with standard statistical
approaches are overcome. The clr transformation is undertaken as follows for a set of
compositional data, x:

X1 Xn
cr(x) = |log—...log (15)
g(x) 9(x)
where x; to x, are the counts or proportions in the compositional data and g(x) is the
geometric mean across all observations. If the observed and predicted class membership
values are converted in this way, then the Aitchison distance in the two composite
measures can be calculated using a standard Euclidean distance:

pred.obs = \/ (cIr(Obs) — clr(Pred))? (16)

Aitchison distance requires non-zero values. To handle this, a small term is added to all
observations in the data, in this case 0.01. In standard computational approaches, missing
values are imputed in Aitchison distance analyses, but this is not correct for this data: zero
data values are not missing, rather the feature was not found to be present. The addition
of this term will change the value of the Aitchison distance and the results of the clr log
transformation, but the key consideration is that compositional data reflect relative
magnitudes and thus interest is in relative and not absolute differences. The
robCompositions R package (Templ, Hron, and Filzmoser 2011) was designed specifically
for the statistical analysis of compositional data. It includes an Aitchison distance function
which undertakes the operations in Equations 15 and 16.

The Aitchison distance can be calculated for all locations collectively (dpreq obs) and
individually for each location i (dpred, 0bs,) Which, if added up, sum to the overall Aitchison
distance. These are shown in Table 12.

Table 12. A summary of the Aitchison distance distribution when calculated for each observation in
the validation data, and the overall Aitchison distance value.
Min. 1st Qu. Median Mean 3rd Qu. Max. Overall
0.01 1.28 4.61 3.87 58 8.51 811.89
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Figure 9. The Geographically weighted Aitchison distance (1), with the point values.

It is possible to generate a GW estimation of Aitchison distance locally by interpolating
these measures over the 1 km grid using GWR. A GW kernel bandwidth was optimally
determined and the result is mapped in Figure 9. This shows the lower distances between
observed and predicted soft classifications to be in the south and west of the study area
and to the centre immediately below Tripoli. The points indicate how the underlying data
(Aitchison distance values at each of the 210 sample locations) generate these local
variations in the interpolated surface. There are some similarities with the kappa distribu-
tions in Figure 6 under a bandwidth of 30% of the data points.

Figure 9 shows the interpolated Aitchison distance measure over the 1 km grid. An
alternative is to calculate the Aitchison distance metric itself using a geographically
weighted framework, as first done by Tsutsumida et al. (2020). In this local GW,
Aitchison distance measures are computed from weighted data subsets at each location.
Bespoke GW code was created to do this and the result is shown in Figure 10. This is
somewhat different to Figure 9 with the differences in spatial pattern due to differences in
the calculation of local Aitchison: Figure 9 shows interpolated values calculated from
single data points, while Figure 10 shows values calculated from local data subsets. The
difference in absolute values reflects the number of observations used to calculate each
local Aitchison distance measure.

4.4. Summary of GW certainty for soft classes

The different approaches to soft classification have at their core an acknowledgement of
the concept of the mixed pixel (Fisher 1997). They recognize that the area covered by
a pixel may be composed of a mix of land covers or may have different properties to the
exemplar classes in the training data. They do not accept the pixel allocation to the class
with the largest sub-pixel area or largest probability. Instead, soft and compositional
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Figure 10. The Geographically weighted Aitchison distance (lI).

approaches explicitly try to capture and reason with the classes that are present or
probable, either through the idea of a pixel having partial probabilities for multiple classes
or through the pixel being composed of multiple classes.

In the first fuzzy analysis, as reported in Comber et al. (2012), per-class surfaces of fuzzy
certainties were generated. These were calculated from the absolute difference in fuzzy
membership between predicted and observed for each class, for each validation location.
The difference measures were then interpolated (regressed against 1) over the 1 km grid,
using Geographically Weighted Regression (Brunsdon, Stewart Fotheringham, and
Charlton 1996), for which an optimal bandwidth was determined (see Table 10), and
the complement of the GW coefficient estimate was mapped (see Figure 7).

The second fuzzy analysis is entirely novel. It extended the application of fuzzy set
theory to consider the difference between two fuzzy sets in relation to accuracy (or more
correctly certainty), using the bounded difference and the fuzzy boundary. It transposed
the logic of fuzzy change from Fisher et al. (2006) for quantifying fuzzy loss and fuzzy gain
over time, to fuzzy certainty in order to quantify fuzzy commission and omission errors.
These were used to construct a fuzzy correspondence matrix (Table 11) that summarized
the classification uncertainty, and to map fuzzy correspondence and user’s certainty
shown for Grazing land and Woodland, respectively, in Figure 8.

A final and novel soft accuracy analysis considered the predicted and observed soft
classes as fractions in a compositional analysis. The concept of compositional data is
widely applied in other areas of science but has rarely been adopted in remote sensing,
with only a few examples (e.g. Tsutsumida et al. (2020); Zakeri and Mariethoz (2021)). In
compositional analysis, the aim to compare the overall composition of two observations
or samples, and Aitchison distance (Aitchison 1982) provides a method for overcoming
the problems with standard distance measures. This was calculated for each observation
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and interpolated using a GWR as shown in Figure 9, showing very similar patterns to the
fuzzy correspondence in Figure 8.

The critical decision about whether to adopt a fuzzy analysis over one grounded in
compositional analysis, probably depends on whether the single fuzzy set (for example of
Grazing Land) is the focus of the analysis or whether it is the overall composition of the
observations that is of the primary interest (see Tsutsumida et al. (2019)).

5. Discussion

A number of approaches for generating spatially distributed accuracy from interpolated
model-derived accuracies can be found in the literature. For example, Khatami,
Mountrakis, and Stehman (2017a) investigated accuracy models of spatial and spectral
properties and different interpolation functions, Ebrahimy et al. (2021) interpolated the
outputs of a random forest model to predict mis-classifications from the spectral proper-
ties of the pixel relative to the class label, and in earlier work, Brown, Foody, and Atkinson
(2009) investigated the effectiveness of different classification models in predicting
accuracy and uncertainty. The effectiveness of such model-based approaches is driven
by universal validation data characteristics: higher sample numbers generate better
results and different classification algorithms and interpolation functions are more or
less suited to the task in hand and the local environment. The same rubrics apply to the
GW interpolation models described here.

This document has illustrated five different approaches for generating local measures
of accuracy and certainty under some kind of geographically weighted framework. The
approaches were grouped into to those that handle hard, single class allocations and
those that accommodate soft, fuzzy, probable or compositional class measures. All of the
approaches construct local measures of accuracy of some kind that were interpolated
over a 1 km grid. The need for an interpolation framework is because of the desire to
examine the spatial properties of accuracy over the entire study area and the nature of
validation data sample. The validation data used in this paper are sparse, containing
observations collected at only 210 locations but it provides a transparent walk-through of
the different approaches. Many remote sensing accuracy assessments have a greater
number of validation points containing the observed or true class as generated from
higher resolution RS data (e.g. Tsutsumida et al. (2020)), and allowing soft land cover
probabilities, memberships or compositions to be included in the reference data. This in
turn provides opportunities to quantify the accuracy and uncertainty using the hard and
soft GW approaches described in this paper, overcoming concerns about the value of
interpolated accuracy measures when estimated from validation data with a small num-
ber of observations (Foody 2022).

Approaches for working with hard classifications (Section 3) are grounded in
a conceptualization that sees each pixel as belonging to a single class, and the aim of
classification is to allocate the pixel to the correct class. The objective in these cases is to
determine the accuracy of that allocation. A GW framework was used to generate
geographically weighted overall, user's and producer’s accuracies, extending from the
probabilities in the correspondence matrix, to a binomial GLM regression and then to
a Geographically Weighted GLM regression (Comber 2013), generating local accuracy
measures at each of the 210 validation data locations. The optimized GW bandwidths and
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the interpolation of the local measures over a 1 km grid to provide explicit measures of
the degree of spatial non-stationarity in the accuracy measures. The advantages of this
approach is that it has clear links to a well-established theoretical framework for GLMs and
to a degree for GWR-based approaches (Fotheringham, Brunsdon, and Charlton 2002).
The limitation is that it can only be used to generate probability-related measures under
a GLM and not other measures such as kappa.

The second part of Section 3 created local GW correspondence matrices at each
validation location (Comber et al. 2017). However, there is no way to determine the
optimal GW kernel bandwidth for the GWCM approach. This is a critical issue as the kernel
bandwidth determines number of observations used in local model and thus the degree
of smoothing in the outputs, with smaller bandwidths typically associated with greater
local variation than larger ones. Here, the optimized bandwidths from the GW-GLM were
passed to the GWCM functions and local measures of overall, user’s, producer’s and kappa
accuracies were estimated. The overall, user’s and producer’s accuracies were shown to be
the same as those generated using a GW-GLM. The advantages of GW correspondence
matrices is that they allow the local form of any measure derived from the correspon-
dence matrix to be calculated. For example, Comber et al. (2017) estimated a range of GW
accuracy measures from Pontius Jr and Santacruz (2014) and Pontius Jr and Millones
(2011). Its limitations are that bandwidths have to be specified and these need to be
sufficiently large to avoid NA’s values in the local correspondence matrices (for example,
an adaptive bandwidth of 15% of the data points was found to fail for some local accuracy
measures using this data).

Section 4 describes approaches for examining soft classification validation data. This
represents a different conceptualization to that of hard classification. Hard approaches
inherently assume that there is true single class to be allocated to each pixel, and the
purpose of classification is to determine the class to which the pixel is allocated. Soft
classifications seek to accommodate the mixed pixel, recognizing that the pixel areas may
be composed of different land covers (sensu Fisher (1997)), or the ambiguity in class
allocation and the degree to which the properties of the pixel match those of the defined
classes. In both cases, the aim is to analyse the soft class probabilities or memberships
rather than removing the uncertainty. This is increasingly of interest to the remote sensing
community Silvdn-Cérdenas and Wang (2008); Khatami, Mountrakis, and Stehman
(2017a); Zakeri and Mariethoz (2021).

This paper illustrated fuzzy approaches grounded in per-class membership differences
and in the logic of fuzzy set intersection. The first approach computed measures of per
class fuzzy certainty from the complement of the absolute difference between the
observed and predicted fuzzy memberships. These were then interpolated using a GWR
(Brunsdon, Stewart Fotheringham, and Charlton 1996) with the bandwidths determined
optimally. Considerable variation in these was found across the classes, indicating differ-
ent spatial variation in the relationship between predicted and observed fuzzy member-
ship values. The fuzzy accuracy measures were generally high, indicating the similarity of
the values collected in the field with those predicted by the remote sensing analysis.
A second entirely novel GW fuzzy analysis transposed methods for quantifying fuzzy
change from Fisher et al. (2006) into fuzzy certainty. It defined set operations for handling
the intersection of different fuzzy membership values through the concept of bounded
difference. These were used to construct a fuzzy correspondence matrix to capture the
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magnitudes and directions of the uncertainty. The correspondence matrix diagonals were
determined through the minimum operator, and the off-diagonals by transposing the
concepts of bounded difference and fuzzy boundary (as used to for measures of fuzzy loss
and fuzzy gain in Fisher et al. (2006)), to fuzzy commission and omission, and thus fuzzy
user’s and producers certainty. A GWR was used to interpolate fuzzy accuracy measures.
The advantage of these approaches is that they provide more comprehensive measures of
the certainty/uncertainty contained in the data. However, this requires
a conceptualization of land cover objects captured through remote sensing as being
inherently mixed and a rejection of the hard, crisp approach to classification.

A final analysis of the soft classification data was also undertaken by conceptualizing
the probabilities and fuzzy memberships as compositional data (Tsutsumida et al. 2020;
Zakeri and Mariethoz 2021). Methods for analysing differences in compositional data have
been developed in domains that routinely work with count or measurement data, that are
proportions of some whole. The key issue is the problem of using Euclidean distance in
standard statistical measures of similarity, and a number of alternative metrics have been
devised. Aitchison distance (Aitchison 1982) is one such measure and uses centred log-
ratio transformation of the data. GW Aitchison distance was estimated in two ways, with
different results: first, by calculating Aitchison distance from each of the 210 observations
individually and then interpolating over the 1 km grid using a GWR; second by using a GW
kernel to create a weighted data subset at each location from which a GW Aitchison
distance was estimated, before interpolating over the grid. The differences reflect the
different inputs used in each local model. The advantages of this approach are that it has
a strong theoretical background in the biological and geological sciences, and there are
a number of commonly used distance-based metrics for quantifying compositional data
differences (e.g. chi-squared) as well those related to individual compositional elements
(classes). These can easily be incorporated directly within either framework. The limita-
tions of this approach are first that these are novel measures for the remote sensing
community and may not be intuitively understood and they require a bandwidth to be
defined, rather than determined optimally. Second, a more theoretically rigorous
approach to handling zero values needs to be established. Future work will explore this
approach and how to handle compositional data in more depth.

The key issues in all of the GW approaches relate to 1) whether the validation
datasets contains sufficient observations, and 2) whether a GW kernel bandwidth can
be optimized or has to be user specified. The Libyan validation data contains 210
observations. It is small, probably too small for robust inferences, but it is manage-
able and supports transparent GW model creation and evaluation. A related critical
considerationfor example, when quantifying and interpolating class-specific mea-
sures, is whether the sample is sufficient across each class. This should probably
be considered alongside the bandwidth - optimized or not (see below) — as this
defines the number of observations used in each local metric. In practice, these
issues are increasingly overcome with the use of high volume training and validation
datasets. However, regardless, kernel size or bandwidth is a critical GW consideration
as it defines the number of data points used in each local calculation and controls
the degree of smoothing in the outputs, and thus the amount of spatial variation in
them. Table 13 summarizes the ability to optimize bandwidths in the various GW
approaches described in this paper. For those approaches where optimization is not
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Table 13. A summary of the GW accuracy approaches, their underlying models and
their ability to optimize GW kernel bandwidths.

GW accuracy model Underlying GWR model Bandwidth optimisation
GW-GLM Generalized GWR Yes
GWCM None No
GW Fuzzy certainty | GWR Yes
GW Fuzzy certainty Il GWR Yes
GW Aitchison Distance GWR Yes

possible, bandwidth needs to be specified by the user, and justified in some way. In
GWCM models, for example, the bandwidths were taken from the GW-GLM analysis,
suggesting that a combination of GW accuracy evaluations may support these user
choices.

6. Conclusions

There are opportunities to move beyond whole map (Openshaw 1996) accuracy measures
in remote sensing, such as those reported in and derived from the standard correspon-
dence matrix (e.g. overall, user’s, producer’s and kappa accuracies). The approaches
described in this paper demonstrate how data collected as part of standard remote
sensing training and validation exercise, can be used to generate spatially explicit mea-
sures of accuracy for hard classifications. It also extends these to the soft, probabilistic or
fuzzy case. A critical observation is that the interpolated approaches to local accuracy
reported here require validation data to be collected under an appropriate sampling
framework following best practice recommendations (Olofsson et al. 2014; Stehman 2009)
and may require considerable ground reference data for the local accuracy measures to
be of value (Foody 2022). Whilst historically, the collection of soft validation data, usually
through field survey in the manner reported in Comber et al. (2012), was complicated and
required considerable effort and GPS precision, the situation is different now: with the
increased availability of high resolution remote sensing data, it is quite common for
training and validation data to be collected from remote sensing data of higher spatial
resolution (and thus assumed quality) than the image to be classified. The result is that
soft measures of probability or composition are now routinely available in training and
validation data, opening up the opportunity to explore the classification uncertainties to
a greater thematic and spatial depth. The methods described in this paper support these
explicit spatial investigations of error, accuracy and uncertainty.
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