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Abstract
The constraint satisfaction problem (CSP) is among themost studied computational problems.
While NP-hard, many tractable subproblems have been identified (Bulatov 2017, Zhuk 2017)
Backdoors, introduced by Williams, Gomes, and Selman (2003), gradually extend such a
tractable class to all CSP instances of bounded distance to the class. Backdoor size provides
a natural but rather crude distance measure between a CSP instance and a tractable class.
Backdoor depth, introduced by Mählmann, Siebertz, and Vigny (2021) for SAT, is a more
refined distancemeasure,which admits the parallel utilization of different backdoor variables.
Bounded backdoor size implies bounded backdoor depth, but there are instances of constant
backdoor depth and arbitrarily large backdoor size. Dreier, Ordyniak, and Szeider (2022)
provided fixed-parameter algorithms for finding backdoors of small depth into the classes of
Horn and Krom formulas. In this paper, we consider backdoor depth for CSP. We consider
backdoors w.r.t. tractable subproblems C� of the CSP defined by a constraint language �,
i.e., where all the constraints use relations from the language �. Building upon Dreier et
al.’s game-theoretic approach and their notion of separator obstructions, we show that for
any finite, tractable, semi-conservative constraint language �, the CSP is fixed-parameter
tractable parameterized by the backdoor depth into C� plus the domain size. With backdoors
of low depth, we reach classes of instances that require backdoors of arbitrary large size.
Hence, our results strictly generalize several known results forCSP that are based on backdoor
size.
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1 Introduction

To face the NP-completeness of the Constraint Satisfaction Problem (CSP), much effort
has been spent in identifying polynomial-time solvable subproblems [1]. Tractability can be
reached by

1. restricting the constraint language in terms of limiting the relations allowed to be used
in constraints (e.g., [2–6]),

2. restricting thegraphical structureof howconstraints andvariables interact (e.g., [7–9]), or
3. restricting both language and structure with hybrid restrictions (e.g., [10–12]).

Some of the considered restrictions are gradual in the sense that they support an infinite
chain of classes C0 � C1 � C2 � . . . of instances, where each Ci can be solved in polyno-
mial time. When the order of polynomial bound on the solving time remains the same for
all the i = 0, 1, 2, . . . one speaks about fixed-parameter tractability (FPT) [13–17]. Most
structural restrictions like bounded treewidth or hypertree width are gradual by definition [9].
In contrast, language restrictions tend to be categorical by definition, as either an instance
belongs to a class C� defined by a tractable constraint language � or it does not.

However, by means of (strong1) backdoors introduced by Williams, Gomes and Sel-
man [18, 19], one can build a chain C� = C0 � C1 � C2 � . . . on top of such a class
defined by a language. A CSP instance belongs to Ci if there is a set of i variables, called
a backdoor, such that all possible instantiations of these variables move the instance into
the base class C� . The size of a smallest backdoor provides a distance measure between the
considered CSP instance and the base class.

The size of a smallest backdoor is a fundamental but still rather crude distance measure.
Samer and Szeider [20] therefore proposed backdoor trees, where one counts the number of
leaves of a decision tree ranging over all the variables of a backdoor; Ordyniak et al. [21]
obtained further fixed-parameter tractability results for backdoor trees. A backdoor of size k
over a Boolean domain can yield backdoor trees between k + 1 and 2k leaves, and so it is
more efficient to minimize the number of leaves than the size. Very recently, in the context of
SAT, Mählmann, Siebertz, and Vigny [22] proposed the concept of backdoor depth, which
extend backdoor trees by adding nodes where the tree branches into connected components.
The advantage of considering backdoors of small depth relies on the observation that if
an instance decomposes into multiple components, then each component can be treated
independently. This way, one is allowed to use in total an unbounded number of backdoor
variables. However, as long as the depth of the extended decision tree is bounded, one can
still utilize it for efficiently solving the instance. In the context of graphs, similar ideas are
used in the study of tree-depth [23, 24] and elimination distance [25, 26].

The challenging algorithmic question is to find a backdoor of small depth into a fixed base
class, if it exists. Mählmann et al. [22] gave an FPT algorithm for SAT with respect to the
base class C0 consisting of formulas without variables; any bounded-depth backdoor into that
class must contain all the variables of the instance. Already for this simple base class, there
are instances of bounded backdoor depth that cannot be efficiently solved by other known
methods. Previously [27], we extended this FPT result to bounded-depth backdoors into the
classes of Horn (CNF formulas where each clause contains at most one positive literal), dual
Horn (each clause contains at most one negative literal), and Krom formulas (each clause
contains at most two literals).

1 We focus only on strong backdoors and do not consider weak backdoors.
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Contribution.

In this paper, we provide the first positive algorithmic results for utilizing backdoors of
bounded depth for CSP. Our main technical result covers all base classes C� described by a
finite semi-conservative �. As our main result, we show the following (a formal statement is
Corollary 22).

For any finite, tractable, semi-conservative constraint language �, the CSP is fixed-
parameter tractable parameterized by the smallest depth of a backdoor into C� plus
the domain size of the instance.

Thus, we indeed have a chain C� = C0 � C1 � C2 � . . . on top of any such class C� , where
Ci contains instances with a backdoor of depth i , and where the order of the polynomial-time
algorithm for solving Ci is of the same order as the polynomial that bounds the solving time
for C� .

Backdoor depth can capture and exploit structure in CSP instances that is not captured
by any other known method. In the following, we list here some known CSP parameters that
admit fixed-parameter tractable CSP solving. For each of these parameters, there are CSP
instances for which the parameter can be arbitrarily large, but where �-backdoor depth is
bounded by a constant:

• backdoor size [28];
• backdoor depth for SAT [22, 27];
• backdoor size into heterogeneous and scattered base classes [28, 29];
• backdoor treewidth [30].

Please refer to the full version of a related paper [27, Appendix A] for a comprehensive
comparison of the above notions. We closely follow the approach we introduced there. On a
high level, we construct backdoors by simultaneously computing an upper bound in the form
of an approximate backdoor and a lower bound, using so-called obstructions, i.e., parts of
the instance that can be proven to be “far away” from the base class. As in our work on SAT,
we use two types of obstructions:

1. a slightly modified version of the obstructions trees that have been introduced by
Mählmann et al. [22] and

2. a new variant of separator obstructions that we introduced for SAT [27] to allow the
handling of base classes that admit arbitrary long paths (in the incidence graph of a CNF
formula).

This new variant of separator obstructions is tailor-made for CSP and base classes defined via
finite constraint languages. It allows us to improve the algorithm’s efficiency, from a triple-
exponential run-time dependency to a double-exponential run-time dependency on backdoor
depth.

We present our results using the game-theoretic framework for backdoor depth that we
introduced for SAT [27], which greatly simplifies the presentation of our algorithm.

A preliminary version of this paper has appeared at CP 2022 [31]. The main feature of
the current version is that it contains all the proofs, whereas due to space limitations, the
conference version of the paper was missing several proofs of crucial lemmas and theorems.
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2 Preliminaries

2.1 CSP

Let D be a set and n and n′ be non-negative integers. An n-ary relation on D is a subset of
Dn . For a tuple t ∈ Dn , we denote by t[i], the i-th entry of t , where 1 ≤ i ≤ n. For two
tuples t ∈ Dn and t ′ ∈ Dn′

, we denote by t ◦ t ′, the concatenation of t and t ′.
An instance of a constraint satisfaction problem (CSP) I is a triple 〈V , D,C〉, where V is

a finite set of variables over a finite set (domain) D, and C is a set of constraints.We assume
that D is given explicitly as a list of all domain values. A constraint c ∈ C consists of a
scope, denoted by V (c), which is an ordered list of a subset of V , and a relation, denoted
by R(c), which is a |V (c)|-ary relation on D; |V (c)| is the arity of c. To simplify notation,
we sometimes treat ordered lists without repetitions, such as the scope of a constraint, like
sets. For a variable v ∈ V (c) and a tuple t ∈ R(c), we denote by t[v], the i-th entry of
t , where i is the position of v in V (c). For a CSP instance I = 〈V , D,C〉 we sometimes
denote by V (I), D(I), and C(I), its set of variables V , its domain D, and its set of constraints
C , respectively. We usually assume, w.l.o.g, that each variable in V (I) appears in the scope
of at least one constraint in C(I). The size |I| of a CSP instance I is the sum of the sizes
of its constraints, where the size of a constraint of arity a with t tuples and domain size
δ is a log |V | + at log δ. A solution to a CSP instance I is a mapping τ : V → D such
that 〈τ(v1), . . . , τ (v|V (c)|)〉 ∈ R(c) for every c ∈ C with V (c) = 〈v1, . . . , v|V (c)|〉. A CSP
instance is satisfiable if and only if it has at least one solution.

Let V ′ ⊆ V and τ : V ′ → D. For a constraint c ∈ C , we denote by c[τ ], the constraint
whose scope is V (c) \ V ′ and whose relation contains all |V (c[τ ])|-ary tuples t such that
there is a |V (c)|-ary tuple t ′ ∈ R(c)with t[v] = t ′[v] for every v ∈ V (c[τ ]) and t ′[v] = τ(v)

for every v ∈ V ′ ∩ V (c). We denote the assignment τ : {x} → D with τ(x) = q simply by
x = q .

A constraint c ∈ C(I) of arity a is tautological if it contains all the |D|a possible tuples.
Obviously, removing a tautological constraint from a CSP instance does not change its satis-
fiability.We denote by I[τ ] the CSP instance with variables V \V ′, domain D, and constraints
C[τ ], where C[τ ] contains all non-tautological constraints c[τ ] for every c ∈ C . We would
like to point out that the removal of tautological constraints is important in the context of
backdoor depth as it makes the notion more powerful.

Let τ1 : V1 → D and τ2 : V2 → D be two assignments. We say that the two assignments
are compatible if τ1(v) = τ2(v) for every v ∈ V1∩V2. Moreover, if τ1 and τ2 are compatible,
we denote by τ1 ∪ τ2 the assignment τ : V1 ∪ V2 → D given by τ(v) = τ1(v) if v ∈ V1 and
τ(v) = τ2(v) if v ∈ V2.

The incidence graph of a CSP instance I is the bipartite graph GI whose vertices are the
variables and constraints of I, and where a variable x and a constraint c are adjacent if and
only if x ∈ V (c). Via incidence graphs, graph theoretic concepts directly translate to CSP
instances. For instance, we say that I is connected if GI is connected, and I′ is a connected
component of I if D(I′) = D(I), and where V (I′) and C(I′) are maximal subsets of V (I)
and C(I), respectively, such that GI is connected. Conn(I) denotes the set of connected
components of I. Occasionally, we will also consider the primal graph of a CSP instance I,
which has as vertex set V (I), and has pairs of variables adjacent if they appear together in
the scope of a constraint.

A constraint language � over a domain D is a set of relations over D. D(�) is the set
of all the elements appearing in the relations in �. We denote by arity(�) the maximum
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arity of any relation in �. C� denotes the class of CSP instances I with the property that
for each c ∈ C(I ) we have R(c) ∈ �. CSP(�) refers to the CSP with instances restricted
to C� . A constraint language � is tractable if CSP(�) can be solved in polynomial time, �
is linear-time tractable if CSP(�) can be solved in linear time.

� is semi-conservative (or 1-conservative) [32, 33], if for each q ∈ D(�) one can express
with� the unary constraint x = q; more precisely, there is a satisfiable instance Iq of CSP(�)

and a variable x ∈ V (Iq) such that for each solution τ of Iq we have τ(x) = q . Semi-
conservative constraint languages are very natural, as one would expect in any reasonable
practical settings that the unary relations are present. Indeed, some authors (e.g., [3]) even
define the CSP so that every variable can have its own set of domain values, making (semi-)
conservativeness a built-in property.

Aconstraint language� is closedunder assignments if for every constraint cwith R(c) ∈ �

and every assignment τ , it holds that R(c[τ ]) ∈ �. For a constraint language � we denote
by �∗ the smallest constraint language that contains � and is closed under assignments.

Lemma 1 ([33]) If a semi-conservative constraint language � is tractable, then �∗ is also
tractable.

Wewould like to point out that the original definition of a backdoor byWilliams et al. [18,
19] assumes the base class to be closed under assignments. Hence, it is natural to assume
this property in the context of backdoor depth, directly or indirectly by means of semi-
conservativeness of the considered language.

2.2 Backdoors

Backdoors are defined relative to some fixed base class C of instances of the problem under
consideration (i.e., CSP), for which satisfiability and membership in C are polynomial-time
decidable. In the context of CSP, we define a C-backdoor set of a CSP instance I as a set
B ⊆ V (I) of variables such that I[τ ] ∈ C for every τ : B → D(I ). For a constraint
language �, we usually denote the base class C� by � itself. Thus, for example, instead of
C�-backdoors, we talk of �-backdoors. If we know a C-backdoor set B of I, we can reduce
the satisfiability of I to the satisfiability of |D(I )||B| CSP instances in C. The challenging
problem is to find a C-backdoor set of a given instance that reduces the satisfiability problem
to instances from C.

3 Backdoor depth

Component backdoor treesgeneralize backdoor trees as consideredbySamer andSzeider [20]
by allowing an additional type of nodes, component nodes, where the current instance is split
into connected components. More precisely, let C be a class of CSP instances (called the base
class) and I a CSP instance. A component C-backdoor tree for I is a pair (T , ϕ), where T is
a rooted tree and ϕ is a mapping that assigns each node t a CSP instance ϕ(t) such that the
following conditions are satisfied:

1. For the root r of T , we have ϕ(r) = I.
2. For each leaf � of T , we have ϕ(�) ∈ C.
3. For each non-leaf t of T , there are two possibilities:

(a) D(I ) = {q1, . . . , qδ} and t has exactly δ children t1, . . . , tδ where for some variable
x ∈ V (ϕ(t)) we have ϕ(ti ) = ϕ(t)[x = qi ]; in this case we call t a variable node.
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(b) Conn(ϕ(t)) = {I1, . . . , Ik} for k ≥ 2 and t has exactly k children t1, . . . , tk with
ϕ(ti ) = Ii ; in this case we call t a component node.

Thus, a backdoor tree as considered by Samer and Szeider [20] is just a component backdoor
tree without component nodes. The depth of a backdoor is the largest number of variable
nodes on any root-leaf path in the tree.

The C-backdoor depth depthC(I) of an instance I into a base class C is the smallest depth
over all component C-backdoor trees of I . If C is defined in terms of a constraint language �,
we simply write depth�(I).

Alternatively, we can define C-backdoor depth recursively as follows:

depthC(I) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if I ∈ C;
1 + minx∈V (I ) maxa∈D(I ) depthC(I[x = a]) if I /∈ C and I

is connected;
maxI′∈Conn(I) depthC(I′) if I /∈ C and I

is not connected.

Lemma 2 Let � be a constraint language such that C� can be solved in timeO(nc) for some
constant c ≥ 1 and input size n. Assume we are given a CSP instance I whose size is m,
δ = |D(I )|, and a component �-backdoor tree (T , ϕ) of I of depth d. Then, we can solve I
in time O((δdm)c).

Proof We start by showing that
∑

�∈L(T ) |ϕ(�)| ≤ δdm, where L(T ) denotes the set of
leaves of T , using induction on d and m. The statement holds if d = 0 or m ≤ 1. We show
that it also holds for larger d and m. If the root is a variable node, then it has δ children
c1, . . . , cδ , and the subtree rooted at any of these children represents a component backdoor
tree for the CSP instance ϕ(ci ) of depth d − 1. Therefore, by the induction hypothesis, we
obtain that si = ∑

�∈L(Ti ) |ϕ(�)| ≤ δd−1m, for every subtree Ti rooted at ci . Consequently,
∑

�∈L(T ) |ϕ(�)| = ∑
1≤i≤δ si ≤ δδd−1m = δdm, as required. If, on the other hand, the root

is a component node, then its children, say c1, . . . , ck , are labeled with CSP instances of sizes
m1 + · · · + mk = m. Therefore, for every subtree Ti of T rooted at ci , we have that Ti is a
component backdoor tree of depth d for ϕ(ci ), which using the induction hypothesis implies
that

∑
�∈L(Ti ) |ϕ(�)| ≤ δdmi . Hence, we obtain

∑
�∈L(T ) |ϕ(�)| ≤ δdm in total.

To solve the CSP instance I, we first solve all CSP instances associated with the leaves
of T . Because, as shown above, their total size is at most δdm, this can be achieved in time
O((δdm)c), because C� can be solved in time O(nc) for some constant c ≥ 1 and input
size n. Let us call a leaf true/false if and only it is labeled by a satisfiable/unsatisfiable CSP
instance, respectively. We now propagate the truth values upwards to the root, considering
a component node as the logical and of its children, and the a variable node as the logical
or of its children. I is satisfiable if and only if the root of T is true. We can carry out the
propagation in time linear in the number of nodes of T , which is linear in the number of
leaves of T , i.e., at most δdm. ��

4 Technical overview

On a high level, the approach of our algorithm is similar to the approach we employed for
SAT [27]. The critical difference lies in the exact definition of separator obstructions in
Section 5, which we adapt to CSP and base classes defined via finite constraint languages.
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Apart from lifting the approach from SAT to CSP, our tailor-made separator obstructions
also allow us to obtain a more efficient algorithm. As our first order of business, we state an
equivalent formulation of backdoor depth using connector-splitter games, as we previously
introduced for SAT [27], allowing us to greatly simplify the exposition of our algorithm.

Definition 3 Let � be a finite constraint language that is closed under assignments and
let I = 〈V , D,C〉 be a CSP instance. We denote by Game(I, �) the so-called �-backdoor
depth game on I. The game is played between two players, the connector and the splitter.
The positions of the game are CSP instances. At first, the connector chooses a connected
component of I to be the starting position of the game. The game is over once a position in
the base class C is reached. We call these positions the winning positions (of the splitter). In
each round the game progresses from a current position J to a next position as follows.

• The splitter chooses a variable v ∈ V (J ).
• The connector chooses an assignment τ : {v} → D and a connected component J ′ of

J [τ ]. The next position is J ′.
In the (unusual) case that a position J contains no variables anymore but J is still not in C� ,
the splitter loses. For a position J , we denote by τJ the assignment of all variables assigned
up to position J .

The following observation follows easily from the definitions of the game and the fact that
the (strategy) tree obtained by playing all possible plays of the connector against a given
strategy for the splitter forms a component backdoor tree and vice versa. In particular, the
splitter choosing a variable v at position J corresponds to a variable node and the subsequent
choice of the connector for an assignment τ of v and a component of J [τ ] corresponds to a
component node (and a subsequent variable or leaf node) in a component backdoor tree.

Observation 4 The splitter has a strategy for the game Game(I, �) to reach within at most
d rounds a winning position if and only if I has a �-backdoor of depth at most d.

Backdoor depth games mean that we no longer have to explicitly construct a backdoor.
Instead, in Section 6, we compute winning strategies for the splitter, which appear to be
easier to reason about. Such a strategy can then be automatically converted into a backdoor
algorithm (Lemma 6).

We start by describing these so called splitter-algorithms and how they can be turned into
an algorithm to compute backdoor depth. The algorithms will have some auxiliary internal
state that theymodify with eachmove. Formally, a splitter-algorithm for a gameGame(I, �),
where � is a finite constraint language that is closed under assignments, is a procedure that

• gets as input a (non-winning) position J of the game, together with an internal state
• and returns a valid move for the splitter at position J , together with an updated internal
state.

Suppose we have a game Game(I, �) and some additional input S. For a given strategy of
the connector, the splitter-algorithm plays the game as one would expect: In the beginning,
an internal state is initialized with S (if no additional input is given, it is initialized empty).
Whenever the splitter should make its next move, the splitter-algorithm is queried using the
current position and internal state and afterwards the internal state is updated accordingly.

Definition 5 We say a splitter-algorithm implements a strategy to reach for a game
Game(I, �) and input S within at most d rounds a position and internal state with some
property if and only if initializing the internal state with S and then playing Game(I, �)

according to the splitter-algorithm leads—no matter what strategy the connector is using—
after at most d rounds to a position and internal state with said property.
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Using the following observation converts splitter-algorithms into algorithms for back-
doors. It builds backdoors by always trying out all the next moves of the connector.

Lemma 6 Assume there exists a function f (d, �) and a splitter-algorithm that implements
a strategy to reach for each game Game(I, �) and non-negative integer d within at most
f (d, �) rounds either a winning position or (an internal state representing) a proof that the
�-backdoor depth of I is larger than d.

Further assume this splitter-algorithm always takes at most O(|I|) time to compute its
next move. Then there exists an algorithm that, for a CSP instance I, a finite constraint
language � that is closed under assignments, and a non-negative integer d in time at most
|D(I )|2 f (d,�)O(|I |) either returns a component �-backdoor tree of depth at most f (d, �)

or concludes that the �-backdoor depth of I is larger than d.

Proof Assume we are given an instance I, a finite constraint language � that is closed under
assignments and a non-negative integer d .We compute a component�-backdoor tree of depth
at most f (d, �) by starting at the root and then iteratively expanding the leaves, using the
splitter-algorithm to compute the next variable to place into the backdoor. For each position
we reach, we store the internal state of the splitter-algorithm in a look-up table, indexed by
the position. This way, we can easily build the backdoor tree in a depth-first or breadth-first
way. If we encounter at any time an internal state representing a proof that the backdoor
depth of I is larger than d , we can abort. If this is not the case, then we are guaranteed that
every leaf represents a winning position and therefore an instance accepted by C� . We have
therefore found a component backdoor tree of depth at most f (d, �).

Without loss of generality, we can assume that I is connected. We need to expand the root
node I of the tree f (d, �) times.We show that expanding anode J in our tree i times takes time
at most |D(I )|2i c|J | for some constant c. To expand it a node J , we run the splitter-algorithm
in time c|J | to get the next variable. Then we enumerate all |D(I )| many assignments to this
variable. The instance splits after an assignment into some components J1, . . . , Jk with
|J1| + · · · + |Jk | ≤ |J |. By induction, we can expand component J j i − 1 times in time
|D(I )|2(i−1)c|J j |, getting a total run time of at most c|J | + D(I )

∑
j |D(I )|2(i−1)c|J j | ≤

c|J | + |D(I )|2i−1c|J | ≤ |D(I )|2i c|J |. ��

For improved readability, we may present splitter-algorithms as continuously running
algorithms that periodically output moves (via some output channel) and always immediately
as a reply get the next move of the connector (via some input channel). Such an algorithm
can easily be converted into a procedure that gets as input a position and internal state and
outputs a move and a modified internal state: The internal state encodes the whole state of
the computation, (e.g., the current state of a Turing machine together with the contents of
the tape and the position of the head). Whenever the procedure is called, it “unfreezes” this
state, performs the computation until it reaches its next move and then “freezes” and returns
its state together with the move.

Our main result is an approximation algorithm (Theorem 21) that either concludes that
there is no backdoor of depth d , or computes a component backdoor tree of depth at
most 2O(d). Using Lemma 6, we see that this is equivalent to a splitter-algorithm that plays
for 2O(d) rounds to either reach a winning position or a proof that the backdoor depth is
larger than d .

Here and in the following,we say that a constraint is�-bad for afinite constraint language�

if its relation is not in �; otherwise we say that the constraint is �-good. Note that if � is
closed under assignments, then a �-good constraint remains �-good even after assigning
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additional variables and a conversely a constraint that is �-bad in some subinstance obtained
by assigning some variables is also �-bad in the original instance.

Our proofs of high backdoor depth come in the form of so-called obstruction trees, which
have first been introduced byMählmann et al. [22]. These are trees in the incidence graph of a
CSP instance. Their node set therefore consists of both variables and constraints. Obstruction
trees of depth d describe parts of an instance for which the splitter needs more than d rounds
to win the backdoor depth game. For depth zero, we simply take a single �-bad constraint
that is not allowed by the base class. Roughly speaking, an obstruction tree of depth d > 0
is built from two “separated” obstruction trees T1, T2 of depth d − 1 that are connected by a
path. Because the two obstruction trees are separated but in the same component, we know
that for any choice of the splitter (i.e., choice of a variable v), there is a response of the
connector (i.e., an assignment of v and a component) in which either T1 or T2 is whole. Then
the splitter needs by induction still more than d − 1 additional rounds to win the game.

Definition 7 Let I be a CSP instance and � be a constraint language that is closed under
assignments. We inductively define �-obstruction trees T of increasing depth.

• Let c be a �-bad constraint of I. The set T = {c} is a �-obstruction tree in I of depth 0.
• Let T1 be a �-obstruction tree of depth i in I. Let β be a partial assignment of the

variables in I. Let T2 be an �-obstruction tree of depth i in I[β] such that that no variable
v ∈ V (I [β]) is contained both in a constraint of T1 and T2. Let further P be a path (in
the incidence graph) connecting T1 and T2 in I. Then T = T1 ∪ T2 ∪ V (P) ∪ C(P) is a
�-obstruction tree in I of depth i + 1.

Note that the idea behind the partial assignment β in Definition 7 is that it allows some
variables to appear in both T1 and T2 as long as those can be assigned in such a way (using β)
that T2 is still a �-obstruction tree of depth i in I[β]; please also refer to Fig. 1 for an
illustration of a �-obstruction tree.

The following central lemma now shows the most crucial property of obstruction trees,
namely, that they can be used to obtain lower bounds for the backdoor depth of aCSP instance.

Lemma 8 Let I be a CSP instance and � be a constraint language that is closed under
assignments. If there is a �-obstruction tree of depth d in I, then the �-backdoor depth of I
is at least d + 1.

To show Lemma 8, we will need the following three auxiliary lemmas.

Lemma 9 Let I be a CSP instance and � be a constraint language that is closed under
assignments. Let β be a partial assignment of the variables in I and T be a �-obstruction
tree of depth d in I[β]. Then, T is also a �-obstruction tree of depth d in I.

Proof Weuse induction on d . If d = 0, then there is a�-bad constraint c of I[β] such T = {c}.
Therefore, c is also a �-bad constraint in I and T is a �-obstruction tree of depth 0 in I.

Towards showing the induction step, let d > 0. Then there is a �-obstruction tree T1 in
I[β] of depth d − 1, an assignment β ′ of the variables in I[β] and a �-obstruction tree T2 in
I[β ∪β ′] of depth d − 1 such that no variable of I[β ∪β ′] is contained both in a constraint of
T1 and T2. Moreover, there is a path P connecting T1 and T2 in I. Because of the induction
hypothesis T1 is a �-obstruction tree in I of depth d−1 and T2 is a �-obstruction tree in I[β ′]
of depth d − 1. Moreover, no variable of I[β ′] is contained both in a constraint of T1 and a
constraint of T2, which implies that T is a �-obstruction tree in I of depth d; this is because
the variables in var(β) are neither in T1 nor in T2. ��
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Fig. 1 A �-obstruction tree of depth 2 consisting of T1 (given in blue), T2 (given in red), and the path P (given
in green). Note that T1, T2, and P are disjoint but their constraints can have common variables as long as each
of these variables allows for an assignment that keeps T2 intact. In the figure, the constraints of T1, T2, and P
share the variable v and setting v to 0 leaves T2 intact. Rectangles represent constraints, which can be either
�-good or �-bad, filled rectangles represent �-bad constraints, and circles represent variables

Lemma 10 Let I be a CSP instance and � be a constraint language that is closed under
assignments. A set T is a �-obstruction tree of depth d in I if and only if there is a component
I′ of I such that T is a �-obstruction tree of depth d in I ′.

Proof This follows because all variables and constraints belonging to T induce a connected
subgraph of I. ��
Lemma 11 Let I be a CSP instance and � be a constraint language that is closed under
assignments. Let T be a �-obstruction tree of depth d in I, v ∈ V (I) be a variable not
contained in any constraint of T , and τ be an assignment to that variable. Then, T is a
�-obstruction tree of depth d in I[τ ].
Proof Because v does not appear in any constraint of T all constraints of T in I are still
present in I[τ ] and have the same scope as in I; this also implies that every such constraint
is �-good (�-bad) in I if and only if it is in I[τ ]. Moreover, because every variable of T is
contained in some constraint of v, it also follows that v is not contained as a variable in T .
Therefore, T has the same variables and constraints in I as in I[τ ] andmoreover all constraints
remain the same, which shows the lemma. ��
We are now ready to show Lemma 8.

Proof of Lemma 8 Assume there exists a �-obstruction tree of depth d in I. We will show that
the connector has a strategy for the gameGame(I, �) to reach within i ≤ d rounds a position
J such that there is a �-obstruction tree in J of depth d − i . This allows the connector to
reach after d rounds a position that contains a �-obstruction tree of depth 0, i.e., a �-bad
constraint. Thus, the splitter has no strategy to win the game after at most d rounds and by
Observation 4, the statement of this lemma is proven.

We show the claim by induction on i . The claim trivially holds for i = 0. So suppose that
i > 0 and let J be the position reached by the connector after i − 1 rounds. Then, by the
induction hypothesis, J contains a �-obstruction tree T of depth at least d − i + 1 ≥ 1.

Since the depth is at least one, there further exist a �-obstruction tree T1 of depth d − i in
J , a partial assignment β of the variables in J , and a �-obstruction tree T2 of depth d − i in
J [β] such that that no variable v ∈ V (J [β]) is contained both in a constraint of T1 and T2.
Now, let v be the next variable chosen by the splitter. We distinguish the following cases:
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1. Assume v is not contained in any constraint of T1. Then, as the connector, we assign v

an arbitrary value. Let τ be this assignment. By Lemma 11, T1 is a �-obstruction tree of
depth d − i in J [τ ]. We choose the connected component J ′ containing T1 in J [τ ]. By
Lemma 10 T1 is also a �-obstruction tree of depth d − i in J ′.

2. Assume v is not contained in any constraint of T2. By Lemma 9, T2 is a�-obstruction tree
of depth d − i in J . We proceed analogously to the previous case, and reach a position
in which T2 is a �-obstruction tree of depth d − i .

3. Otherwise,v occurs both in a constraint ofT1 andT2. SinceT is a�-obstruction tree in J , it
follows byDefinition 7 that v /∈ V (J [β]) and therefore v ∈ V (β). The connector can now
choose the assignment v = β(v) for v. Because of Lemma 9, T2 is a�-obstruction tree of
depth d − i in J [v = β(v)]. Next, the connector chooses the component of J [v = β(v)]
containing T2. By Lemma 10, T2 is also a �-obstruction tree in this component. ��
Our splitter-algorithm will construct obstruction trees of increasing depth by a recursive

procedure (Lemma 20) that we outline now. We say a splitter-algorithm satisfies property i
if it reaches in each game Game(I, �) within gC(i, d) rounds (for some function gC(i, d))
either

1. a winning position, or
2. a position J and a �-obstruction tree T of depth i in I such that no variable in V (J )

occurs in a constraint of T , or
3. a proof that the �-backdoor depth of I is at least d .

A splitter-algorithm satisfying property d + 1 then directly implies our main result, the
approximation algorithm for backdoor depth, using Lemmas 8 and 6. Assume we have a
strategy satisfying property i − 1, let us describe how to use it to satisfy property i . If at any
point we reach a winning position, or a proof that the �-backdoor depth of I is at least d , we
are done. Let us assume this does not happen, so we can focus on the much more interesting
case 2).

We use property i − 1 to construct a first tree T1 of depth i − 1, and reach a position J1.
We use it again, starting at position J1 to construct a second tree T2 of depth i − 1 that is
completely contained in position J1. Since T1 and T2 are in the same component of F , we
can find a path P connecting them. Let β be the assignment that assigns all the variables the
splitter chose until reaching position J1. Then T2 is an obstruction tree not only in J1 but also
in I[β]. In order to join both trees together into an obstruction of depth i , we have to show,
according toDefinition 7 that no variable v ∈ V (I[β]) occurs both in a constraint of T1 and T2.
Since no variable in V (J1) occurs in a constraint of T1 (property i −1), and T2 was built only
from J1, this is the case. The trees T1 and T2 are “separated” and can be safely joined into a
new obstruction tree T of depth i (details also in proof of Lemma 20).

Finally, we need to ensure is that we reach a position J such that no variable in V (J ) occurs
in a constraint of T . This then guarantees that T is “separated” from all future obstruction
trees that we may want to join it with to satisfy property i + 1, i + 2 and so forth.

It is important to note here, that the exact notion of “separation” between obstruction
trees plays a crucial role and is one of the main differences between the approaches used by
Mählmann et al. [22] and Dreier et al. [27]. The former solve the separation problem in a
“brute-force” manner: If we translate their approach to the language of splitter-algorithms,
then the splitter simply selects all variables that occur in a clause of T . For their base class—
the classNull of formulas without variables—there are at most 2O(d) variables that occur in
an obstruction tree of depth d . Thus, in only 2O(d) rounds, the splitter can select all of them,
fulfilling the separation property. This completes the proof for the base class Null.
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However, already for backdoor depth to Krom formulas (or equivalently backdoor depth
to some finite constraint language of arity at most two), this approach cannot work since
obstruction trees for Krom formulas can have arbitrarily many clauses. We solve this issue
by adapting the separator obstructions from SAT [27] to CSP.We also exploit the fact that our
base classes have bounded arity (in contrast to, e.g., the class of Horn formulas) to simplify
their separator obstructions significantly. This allows us to drop the complexity for solving
CSP using backdoor depth from triple to double exponential in the backdoor depth.

5 Separator obstructions

Obstruction trees are made up of paths, therefore, it is sufficient to separate each new path P
that is added to anobstruction.Note that P canbe arbitrarily long and therefore the splitter can-
not simply select all variables in (constraints of) P . Instead, given such a path P that we want
to separate, we will use separator obstructions to develop a splitter-algorithm (Lemma 18)
that reaches in each game Game(I, �) within a bounded number of rounds either

1. a winning position, or
2. a position J such that no variable in V (J ) occurs in a constraint of P , or
3. a proof that the backdoor depth of I is at least d .

Informally, a separator obstruction is a sequence 〈P1, . . . , P�〉 of paths that form a tree T�

together with an assignment τ of certain important variables occurring in T�. The variables
of τ correspond to the variables chosen by the splitter-algorithm and the assignment τ cor-
responds to the assignment chosen by the connector. Each path Pi adds (at least one) �-bad
constraint bi to the separator obstruction, which is an important prerequisite to increase the
backdoor depth by growing the obstruction. Moreover, by choosing the important variables
and the paths carefully, we ensure that the tree T� has bounded maximum degree and that
every outside variable, i.e., any variable that is not an important variable assigned by τ , can
occur in at most four constraints of T�. Therefore assigning any outside variable can split T�

into only boundedly many parts. Together with the assignment τ , which we will use as a
guide for the connector for the variables inside the obstruction, this will allow us to show
that the connector can play in such a way that after every round at least a constant fraction of
the separator obstruction remains intact. This means a large separator obstruction is a proof
that the backdoor depth is larger than d .

To illustrate the growth of a separator obstruction (and motivate its definition) suppose
that our splitter-algorithm is at position J of the game Game(I, �) and already has built a
separator obstruction X = 〈〈P1, . . . , Pi 〉, τ 〉 containing �-bad constraints b1, . . . , bi ; note
that τ is compatible with τJ . If J is already a winning position, then we are done. Therefore,
J has to contain a �-bad constraint. Note that if J does not contain a variable that occurs in a
constraint of Ti , then J satisfies 2) of property i and we are done. Otherwise, let Y be the set
of all such variables in J and let bi+1 be a �-bad constraint in J that is closest to any variable
in Y . Note that it can happen that bi+1 is in Ti in which case, we let Pi+1 be the path that
only contains bi+1. Otherwise, let P be a shortest path from bi+1 to Y in J and let y ∈ Y be
the endpoint of P in Y . Let Pi+1 be the path that is equal to P if y ∈ Ti and otherwise Pi+1

is obtained from Pi after adding an edge from y to a constraint c in Ti such that y occurs in c.
Then, we extend our separator obstruction X by attaching the path Pi+1 to Ti (and obtain the
tree Ti+1). Our next order of business is to choose a bounded number of important variables
occurring on Pi+1 that we will add to X (or more precisly that will be added to the set of
variables assigned by τ ). Those variables need to be chosen in such a way that no outside
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variable can destroy too much of the separator obstruction. Apart from destroying the paths
of the separator obstruction, we also need to avoid that assigning any outside variable makes
too many of the �-bad constraints b1, . . . , bi+1 �-good. Therefore, a natural choice is all
variables of bi+1 to X , i.e., to make those variables important. The following lemma shows
that this is possible, because the number of those variables is bounded.

Lemma 12 Let I be a CSP instance and� be a finite constraint language. If I has�-backdoor
depth at most some integer d, then every constraint of I has arity at most d + arity(�).

Proof As stated in the preliminaries, we can assume that I does not contain any tautological
constraints. Given a non-tautological constraint c and a variable v ∈ V (c), then there always
exists a value x ∈ D(I ) such that c[v = x] also is non-tautological. Thismeans, the connector
has a strategy which guarantees that with each round of the game Game(I, �), c remains in
the game and the arity of c decreases at most by one.

Suppose that I contains a constraint c having arity larger than d + arity(�). Then the
connector can play such that after d rounds, c still has arity larger than arity(�) and therefore
still is �-bad. By Observation 4, I has backdoor depth larger than d . ��

The next thing that we need to ensure is that any outside variable can not destroy too many
paths. Note that by choosing a shortest path Pi+1, we have already ensured that no variable
occurs on more than two constraints of Pi+1 (such a variable would be a shortcut, meaning
Pi+1 was not a shortest path). Moreover, because Pi+1 is a shortest path from bi+1 to Ti , we
know that every variable that occurs on Ti and on Pi+1 must occur in the constraint c in Pi+1

that is closest to Ti , but not in Ti itself. Similarly, to how we dealt with the �-bad constraints,
we will now add all variables that occur in c to X . This ensures that no outside variable can
occur in both Ti and Pi+1 , which (by induction over i) implies that every outside variable
occurs in at most two constraints (either from Ti or from Pi+1). Finally, if the endpoint of
Pi+1 in Ti is a variable, we also add this variable to the separator obstruction to ensure that no
variable has degree larger than three in Ti+1 and therefore the deletion of any variable does
not split T into toomany parts. Note that we use Lemma 12 to bound the degree of constraints
for the same reason. This leads us to the following definition of separator obstructions (see
also Fig. 2 for an illustration).

Definition 13 Let X be a pair 〈〈P1, . . . , P�〉, τ 〉, where τ is a partial assignment to variables
of I and each Pi is a path in I such that Ti = ⋃

j≤i Pj is a tree for every i ∈ [1, �]. For every
i ∈ [2, �], let ei be the constraint in Pi that is closest to Ti−1; if such a constraint exists.
Then, X is a �-separator obstruction for I if there are constraints b0, . . . , b� and assignments
τ0, . . . , τ� such that:

• P1 is a shortest path between the two �-bad constraints b0 and b1 in I.
• For every i ∈ [1, �], τi is the restriction of τ to the set of variables Vi occurring in any

constraint of {b0, b1, b2, e2, . . . , bi , ei } and τ� = τ .
• For every i ∈ [1, �], if Gi denotes the subgraph of I induced by the vertex set of I[τi ]

together with C(Ti ), then for every i ∈ [2, �], bi is a �-bad constraint of I[τi−1] that is
closest to Ti−1 in Gi−1 and Pi is a shortest �-good path from bi to Ti−1 in Gi−1.

We define the size of X to be the number of leaves of T = T�.

We start by showing some simple but important properties of separator obstructions.

Lemma 14 Let � be a finite constraint language that is closed under assignments and let
X = 〈〈P1, . . . , P�〉, τ 〉 be a �-separator obstruction in I, then for every i ∈ [�]:
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Fig. 2 A separator obstruction containing three paths P1, P2, and P3. The figure shows the vertices and edges
of the incidence graph. Variables are represented by circles and constraints are represented by rectangles. Filled
variables are contained in V3 (all other variables are not) and filled rectangles are bad constraints (all other
constraints are good). Only the red, blue, and green variables and edges are part of the tree of the separator
obstruction, grey variables and edges are not part of the tree but are part of V3

(P1) Ti is a tree.
(P2) Every variable in Ti has degree at most 3.
(P3) Every variable v /∈ Vi is contained in at most two constraints of Ti and moreover

those constraints are consecutive in Ti .
(P4) Every variable v ∈ Vi \ Vi−1 is contained in at most 4 constraints of Ti .
(P5) If β is any assignment compatible with τ that does not assign any variable in Vi \Vi−1,

then bi is a �-bad constraint in I[β].
Proof (P1) holds trivially by induction because attaching a path to a tree results in a tree.

We show (P2) by induction on i . Again, we see that (P2) holds for i = 1. Let i > 1 and v

be the endpoint of Pi contained in Ti−1. Because of the induction hypothesis and because Pi
is a path, we obtain that all vertices in Ti (except possibly v) have degree at most 3. Moreover,
if v is a variable, then v /∈ Vi−1 because V (Pi ) is contained in I[τi−1]. Therefore, v is not the
endpoint of any path Pj for j < i (since otherwise v would be contained in e j and therefore
also in Vi−1), which shows that v has degree two in Ti−1 and hence v has degree at most 3
in Ti .

We also establish (P3) by induction on i . For i = 1, assume for contradiction that v

is adjacent to more than just two consecutive constraints of T1 = P1. Then v would be a
“shortcut” and P1 would not have been a shortest path, contradicting our choice of P1. Now
suppose that the claim holds for i − 1. Then, v is contained in at most two consecutive
constraints of Ti−1 and because Pi is a shortest �-good path, v is also contained in at most
two consecutive constraints of Pi . Moreover, because v /∈ Vi , it holds that if v is in some
constraint of Pi , it is not contained in ei . Therefore, if v were in some constraint of Pi and of
Ti−1 then v would be a “shortcut” from bi to Ti−1, skipping ei . This would be a contradiction
to our assumption that Pi is a shortest �-good path from bi to any vertex in Ti−1. Hence,
v is either contained in at most 2 consecutive constraints of Ti−1 but not contained in any
constraint of Pi or vice versa, which shows (P3).

Towards showing (P4), if i = 1, then because P1 is a shortest �-good path from b0 to b1,
v can occur in at most 2 consecutive constraints of P1. Moreover, if i > 1, then by (P3), it
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holds that v occurs in at most 2 consecutive constraints of Ti−1. Moreover, because Pi is a
shortest �-good path from bi to Ti−1, v can also occur in at most 2 consecutive constraints
of Pi . Therefore, v can occur in at most 4 constraints of Ti in total, as required.

Towards showing (P5), note that by the definition of a�-separator obstruction, it holds that
bi is a�-bad constraint in I[τi−1]. Let S be the scope of bi in I[τi−1]. Then, S ⊆ Vi \Vi−1 and
therefore S is also contained in the scope of bi in I[β], which implies (since β is compatible
with τ ) that bi is also �-bad in I[β]. ��

Our next aim is to show that separator obstructions—just like obstruction trees—can be
employed to obtain a lower bound on the backdoor depth of a CSP instance. For this it is
important to show that assigning a single variable cannot sufficiently destroy a separator
obstruction.

Note that Lemma 14 already provides a first step in this direction. In particular, (P3) limits
the influence of variables outside of V� to only two constraints and (P4) limits the influence of
variables inside V�, at least towards the part of the separator obstruction that was constructed
before the variable was added. To limit the influence of variables in V� also on the remaining
part of the separator obstruction, we show that even though these variables can appear in
arbitrary many constraints of the remaining part, their influence is still limited as long as we
only consider CSP instances obtained by assigning those variables according to τ .

Definition 15 Let X = 〈〈P1, . . . , P�〉, τ 〉 be a �-separator obstruction for I and let β be an
assignment that is compatible with τ . Moreover, let c be a constraint contained in T and let i
be minimal such that c is contained in Ti . We say that c is tainted by β, if V (β) contains a
variable v in the scope of c such that v /∈ Vi−1. Otherwise we say that c is untainted by β.
Similarly, we say that a subtree T ′ of T is untainted by β if so is every constraint of T ′ and
moreover V (β) does not contain a variable of T ′.

Lemma 16 Let � be a finite constraint language that is closed under assignments, let X =
〈〈P1, . . . , P�〉, τ 〉 be a�-separator obstruction in I, let β be an assignment that is compatible
with τ , and let T ′ be a subtree of T untainted by β. Then, I[β] contains T ′.

Proof Consider a constraint c of T ′. Because c is in T , c must appear on some path Pi and
moreover by the definition of a �-separator obstruction c appears in I[τi−1] and has some
scope S in I[τi−1]. Moreover, because c is untainted, it holds that S ∩ V (β) = ∅, which
implies that c appears with some scope containing S in I[β] and since c is not tautological
in I[τi−1] and β is compatible with τ , c is not tautological in I[β]. Therefore, all constraints
of T ′ appear in I[β] and since V (β) does not contain any variable of T ′, also all variables of
T ′ appear in I[β]. ��

We are now ready to show our main result of this subsection, namely, that separator
obstructions can be used to obtain lower bounds on the backdoor depth of a CSP instance.

Lemma 17 Let � be a finite constraint language that is closed under assignments and let I
be a CSP instance. If I has a �-separator obstruction of size at least n = (d + 2)(3+ 4(d +
arity(�)))d , then I has �-backdoor depth at least d.

Proof Let X = 〈〈P1, . . . , P�〉, τ 〉 be a �-separator obstruction for I of size at least n =
(d + 2)(3 + 4(d + arity(�)))d and let B = {b0, . . . , b�}.

Consider the following strategy S for the connector in the gameGame(I, �). Suppose that
we have reached position J in the game and suppose that the splitter chooses a variable v as
his next move. We distinguish the following two cases:

123



Constraints (2023) 28:450–471 465

1. If v /∈ V�, then the connector plays an arbitrary assignment α for v and chooses a
component of J [α] containing a subtree untainted by τJ ∪ α of T containing the largest
subset of B among all components of J [α].

2. If v ∈ V�, then the connector plays the assignment α(v) = τ(v) for v and chooses the
component of J [α] containing a subtree of T untainted by τJ ∪ α containing the largest
subset of B among all components of J [α].

Let J be a position reached in the game Game(I, �) against S at round i . We show
by induction on i that J contains a subtree of T untainted by τJ containing at least ni =
n/(3 + 4(d + arity(�)))i − 1 elements from B.

The claim clearly holds for i = 0 since the connector chooses the component of I con-
taining T . Moreover, for i > 0 let J ′ be the predecessor (position) of J in Game(I, �). By
the induction hypothesis J ′ contains a subtree T ′ of T untainted by τJ ′ containing at least
ni−1 = n/(3 + 4(d + arity(�)))i−1 − 1 elements from B. Let v be the variable chosen by
the splitter at position J ′ and let α be the assignment of v chosen by the connector.

If v /∈ V�, then it follows from Lemma 14 (P3) with i = � that v is contained in at most 2
constraints of T and therefore α can taint at most 2 constraints of T . Otherwise let 1 ≤ i ≤ �

be minimal such that v ∈ Vi . Assume for contradiction α taints a constraint c in T \ Ti . Then
let j be minimal such that c is contained in Tj . Obviously, j > i . But then v /∈ Vj−1, a
contradiction to our choice of i . This means α cannot taint any constraints in T \ Ti . Since
1 ≤ i ≤ � is minimal with v ∈ Vi , we have v ∈ Vi \ Vi−1 and by (P4) v is contained in at
most 4 constraints of Ti . This means α can taint at most 4 constraints of Ti . In total, α can
taint at most 4 constraints of T and therefore also of T ′. Further, since T ′ is untainted by τJ
and τJ ′ = τJ ′ ∪ α, the assignment τJ taints at most 4 constraints of T ′.

Moreover, because of Lemma 16 and the fact that τJ ′ ∪ α is compatible with τ , it follows
that every subtree of T ′ untainted by α is contained in some connected component of J ′[α].
Because of Lemma 14 (P2), we obtain that the variable v has degree atmost 3 in T ′.Moreover,
because of Lemma 12, we can assume that every constraint in T ′ has degree at most d +
arity(�), since otherwise I has �-backdoor depth at least d . Therefore, after removing the
at most 4 constraints together with the variable v from J ′, there is a component of J ′[α]
containing a subtree of T ′ untainted by τJ with at least (ni−1 − 5)/(3+ 4(d + arity(�))) =
ni−1/(3 + 4(d + arity(�))) − 5/(3 + 4(d + arity(�))) ≥ (n/(3 + 4(d + arity(�)))i−1 −
1)/(3 + 4(d + arity(�))) − 5/(3 + 4(d + arity(�))) ≥ n/(3 + 4(d + arity(�)))i − 1 = ni
elements of B. Since the connector will choose such a component this concludes the proof
of the claim.

Therefore, we obtain that if J is a position reached after i rounds in the gameGame(I, �)

against S, then J contains a subtree of T untainted by τJ containing at least ni = n/(3 +
4(d + arity(�)))i − 1 constraints from B. In particular, this implies that if J is a position
reached after d rounds against S, then J contains a subtree of T untainted by τJ containing
at least n/(3 + 4(d + arity(�)))d − 1 = d + 1 constraints from B. Finally, because of
Lemma14 (P5) at least one of these constraints is�-bad in J , which concludes the proof of the
lemma. ��

6 Winning strategies and algorithms

In this section, we will present our algorithmic results. In Section 4, we discussed that
separator obstructions are used to separate existing obstruction trees from future obstruction
trees. As all obstruction trees are built only from shortest paths, it is sufficient to derive a

123



466 Constraints (2023) 28:450–471

splitter-algorithm that takes a shortest path P and separates it from all future obstructions.
By reaching a position J such that no variable in V (J ) occurs in a constraint of P , we are
guaranteed that all future obstructions are separated from P , as future obstructions will only
contain constraints and variables from J .

Lemma 18 Let � be a finite constraint language that is closed under assignments. There
exists a splitter-algorithm that implements a strategy to reach for each game Game(I, �),
non-negative integer d, and shortest path P between two �-bad constraints in I within at
most (2 · arity(�) + d)(d + 2)(3 + 4(d + arity(�)))d rounds either:

1. a winning position, or
2. a position J such that no variable in V (J ) is contained in a constraint of P, or
3. a proof that the �-backdoor depth of I is larger than d.

This algorithm takes at most O(|I|) time per move.
Proof Let X = 〈〈P1, . . . , P�〉, τ 〉 be a �-separator obstruction for I and let τ ′ be a sub-
assignment of τ assigning at least all variables in V�−1. Then, we call X = 〈〈P1, . . . , P�〉, τ ′〉
a partial �-separator obstruction for I.

Consider the following splitter-algorithm, where for each position J of the game
Game(I, �), we additionally associate a partial �-separator obstruction denoted by X(J ) =
〈〈P1, . . . , P�〉, τJ 〉 with P1 = P to every position J . We set X(S) = 〈〈P〉,∅〉 for the starting
position S of the game.

Then, the splitter-algorithm does the following for a position J inGame(I, �). If X(J ) =
〈〈P1, . . . , P�〉, τJ 〉 and there is at least one variable in V� \ V�−1 (assuming that V0 = ∅)
that has not yet been assigned by τJ , then the splitter chooses any such variable. Otherwise,
X(J ) is a �-separator obstruction and we distinguish the following cases:

1. If there is a �-bad constraint in J that has a path to some vertex of T� in G�, then let b�+1

be a �-bad constraint that is closest to any vertex of T� in G� and let P�+1 be a shortest
path from b�+1 to some vertex of T� in G�. Note that 〈〈P1, . . . , P�, P�+1〉, τJ 〉 is a partial
�-separator obstruction for I. The splitter now chooses any variable in V�+1 \ V� and
assigns X(J ′) = 〈〈P1, . . . , P�, P�+1〉, τJ ′ 〉 for the position J ′ resulting from this move.

2. Otherwise, X(J ) can no longer be extended and either: (a) there is no �-bad constraint
in J , in which case we reached a winning position, i.e., we achieved case 1), or (b) every
�-bad constraint of J has no path to T� in G�, which implies that no variable of J is
contained in a constraint of T� and therefore also of P , i.e., we achieved case 2).

This completes the description of the splitter-algorithm. Moreover, if every play against the
splitter-algorithm ends after at most (2 · arity(�) + d)(d + 2)(3+ 4(d + arity(�)))d rounds,
every position is either of type i) or type ii) and we are done.

Otherwise, there is a position J that is reached after playing at least (2 · arity(�) +
d)(d + 2)(3 + 4(d + arity(�)))d rounds. Then, X(J ) has size at least (d + 2)(3 + 4(d +
arity(�)))d because the size of the �-separator obstruction increases by at least 1 after at
most 2 · arity(�) + d steps. This is because every time the �-separator obstruction increases
by 1, we only add the at most arity(�) + d + 1 variables of at most one �-bad constraint
bi (because of Lemma 12) and the at most arity(�) variables of the �-good constraint ei .
Therefore, it follows from Lemma 17 that I has �-backdoor depth at least d .

Finally, the splitter-algorithm takes time at mostO(|I|) per round since a �-bad constraint
that is closest to the current �-separator obstruction and the associated shortest path can be
found using a simple breadth-first search. ��
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Since selecting more variables can only help the splitter in achieving their goal, we imme-
diately also get the following statement.

Corollary 19 Consider a finite constraint language � that is closed under assignments, a
game Game(I, �) and a position J ′ in this game, a non-negative integer d and shortest path
P between two �-bad constraints in I. There exists a splitter-algorithm that implements a
strategy that continues the game from position J ′ and reaches within at most (2 · arity(�) +
d)(d + 2)(3 + 4(d + arity(�)))d rounds either:

1. a winning position, or
2. a position J such that no variable in V (J ) is contained in a constraint of P, or
3. a proof that the �-backdoor depth of I is larger than d.

This algorithm takes at most O(|I|) time per move.
As described at the end of Section 4, we can now construct in the following lemma

obstruction trees of growing size, using the previous corollary to separate them from potential
future obstruction trees.

Lemma 20 Let � be a finite constraint language that is closed under assignments. There is
a splitter-algorithm that implements a strategy to reach for a game Game(I, �) and non-
negative integers i and d with 1 ≤ i ≤ d within at most (2i+1 − 1)(2 · arity(�) + d)(d +
2)(3 + 4(d + arity(�)))d rounds either:

1. a winning position, or
2. a position J and a �-obstruction tree T of depth i in I such that no variable in V (J ) is

contained in a constraint of T , or
3. a proof that the �-backdoor depth of I is larger than d.

This algorithm takes at most O(|I|) time per move.
Proof Wewill prove this lemma by induction over i . Our splitter-algorithm will try construct
an obstruction tree of depth i by first using the induction hypothesis to build two obstruction
trees T1 and T2 of depth i − 1 and then joining them together. After the construction of the
first tree T1, we reach a position J1 and by our induction hypothesis no variable in V (J1) is
contained in a constraint of T1. This encapsulates the core idea behind our approach, as it
means that T1 is separated from all potential future obstruction trees T2. Therefore, we can
compute the next tree T2 and join them together in accordance with Definition 7. At last,
we connect them via a path and use Corollary 19 to also separate this path from all future
obstructions. If at any point of this process we reach a winning position or a proof that the
�-backdoor depth of I is larger than d , we can stop. Let us now describe this approach in
detail.

For convenience, let x = (2 · arity(�) + d)(d + 2)(3 + 4(d + arity(�)))d . We start our
induction with i = 0. If there is no �-bad constraint in I, then it is a winning position and
we can stop. Otherwise, there is a �-bad constraint c containing variables v1, . . . , vt with
t ≤ d + arity(�) by Lemma 12. We define T = {c} to be our �-obstruction tree of depth
i = 0. To reach a position J such that no variable v ∈ V (J ) is contained in c, we let the
splitter select all variables in c. This takes at most d + arity(�) ≤ (2i+1 − 1)x rounds.

We now assume the statement of this lemma to hold for i − 1 and we show it also holds
for i . To this end, we start playing the game Game(I, �) according to the existing splitter-
algorithm for i − 1. If we reach (within at most (2i − 1)x rounds) a winning position or a
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proof that the �-backdoor depth of I is larger than d then we are done. Assuming this is not
the case, we reach a position J1 and a �-obstruction tree T1 of depth i − 1 in I such that no
variable v ∈ V (J1) is contained in a constraint of T1.

We continue playing the game at position J1 according to the existing splitter-algorithm for
Game(I, �)J One and i − 1. The �-backdoor depth of I is larger or equal to the �-backdoor
depth of J1. Thus again (after at most (2i − 1)x rounds) we either are done (because we
reach a winning position or can conclude that the �-backdoor depth of J1 is larger than d) or
we reach a position J2 and a �-obstruction tree T2 of depth i − 1 in J1 such that no variable
v ∈ V (J2) is contained in a constraint of T2.

Let β = τJ1 be the assignment that assigns all the variables the splitter chose until reaching
position J1 to the value given by the connector. Note that J1 is a connected component of
I [β]. By Lemma 10, T2 is a �-obstruction tree of depth i − 1 not only in J1, but also in I [β].

Let v ∈ V (I [β]). We show that v is not contained both in some constraint of T1 and of
T2. To this end, assume v is contained in a constraint of T2. Since all constraints of T2 are in
J1 and J1 is a connected component of I [β], we further have v ∈ V (J1). On the other hand
(as discussed earlier), no variable v ∈ V (J1) is contained in a constraint of T1.

We pick two constraints c1 ∈ T1 and c2 ∈ T2 that are �-bad in I and compute a shortest
path P between c1 and c2 in I. ByDefinition 7, T = V (P)∪C(P)∪T1∪T2 is a�-obstruction
tree of depth i in I.

We use Corollary 19 to continue playing the game at position J2. Again, if we reach a
winning position or a proof that the �-backdoor depth of I is larger than d we are done. So
we focus on the third case that we reach (within at most x rounds) a position J such that
no variable v ∈ V (J ) is contained in a constraint of P . We know already that no variable
v ∈ V (J1) is contained in a constraint of T1 and no variable v ∈ V (J2) is contained in a
constraint of T2. Since V (J1), V (J2) ⊆ V (J ), we can conclude that no variable v ∈ V (J )

is contained in a constraint of T .
In total,weplayed for (2i−1)x+(2i−1)x+x = (2i+1−1)x rounds. The splitter-algorithm

in Corollary 19 takes at mostO(|I|) time per move. The same holds for the splitter-algorithm
for i − 1 that we use as a subroutine. Thus, the whole algorithm takes at most O(|I|) time
per move. ��

Given Lemma 20, the remaining results now follow easily.

Theorem 21 Let � be a finite constraint language that is closed under assignments. We can,
for a given CSP instance I and a non-negative integer d, in time at most |D(I )|2(d) |I | either:
1. compute a component �-backdoor tree of I of depth at most 2O(d), or
2. conclude that the �-backdoor depth of I is larger than d.

Proof An obstruction tree of depth d is a proof that the backdoor depth is higher than d ,
thus for the case i = d the output of the splitter-algorithm in Lemma 20 after 2O(d) rounds
reduces to either a winning position, or a proof that the �-backdoor depth of I is larger
than d . The algorithm takes at most O(|I|) time per move. The statement then follows from
Lemma 6. ��
Corollary 22 Let� be a tractable constraint language that is finite and semi-conservative. The

CSP can be solved in time δ2
O(d)

(|I |)O(1) for instances I with δ = |D(I)| and d = depth�(I).

Proof According to Lemma 1, the closure �∗ of � is also tractable. Furthermore, �∗ is
more permissive than � and therefore depth�∗(I) ≤ depth�(I) = d . We use Theorem 21 to
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compute a component �∗-backdoor tree of depth 2O(d) in I and then use Lemma 2 to solve I
in time δ2

O(d)
(|I |)(1). ��

We would like to mention a corollary of Theorem 21 that we can derive very similarly to
Corollary 22. Consider the #CSP problem, which asks for the number of satisfying assign-
ments.A constraint language is#tractable if #CSP is solvable in polynomial time for instances
from C� [34]. The Proof of Lemma 2 can easily be adapted to #CSP, as at a variable node,
we have to add, and at a component node we have to multiply. Hence, we can substitute in
the statement of Corollary 22 CSP with #CSP and tractable with #tractable.

7 Conclusion

In this work, we compute backdoors of bounded depth for the CSP to base classes defined via
finite semi-conservative constraint languages. Our approach via obstruction trees seems to be
fundamentally limited to semi-conservative languages. However, we are optimistic that our
techniques can be extended to base classes of unbounded arity. A first step in this direction has
already been obtained in the context of SAT for the base class of Horn formulas [27]. In this
setting, it is particularly interesting to consider tractable classes (of unbounded arity) of CSPs
based on restrictions on the graphical structure [7–9], as well as hybrid restrictions [10–12].

Another interesting direction for future research, which has also been mentioned in the
context of SAT [27], are the so-called scattered and heterogeneous extensions of (strong)
backdoor sets [28, 29]. These extensions can be readily lifted to backdoor depth by allowing
each component to be in any of a given set of (heterogeneous) tractable base classes. Interest-
ingly, while those two notions lead to orthogonal tractable classes in the context of backdoor
size, they lead to the same notion for backdoor depth. Therefore, lifting these two exten-
sions to backdoor depth, would result in a unified and significantly more general approach.
Moreover, we think that obtaining a heterogeneous version of backdoor depth seems to be
particularly promising within the context of CSP. This is because, in contrast to SAT, there
is a wide range of tractable classes (even of bounded arity) that can be characterized in a
unified manner via algebraic properties.
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