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PROBING STATISTICAL REPRESENTATIONS FOR END-TO-END ASR

Anna Ollerenshaw, Md Asif Jalal, Thomas Hain
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ABSTRACT

End-to-End automatic speech recognition (ASR) models aim to learn

a generalised speech representation to perform recognition. In this

domain there is little research to analyse internal representation de-

pendencies and their relationship to modelling approaches. This pa-

per investigates cross-domain language model dependencies within

transformer architectures using SVCCA and uses these insights to

identify critical parameters and improve recognition performance. It

was found that specific neural representations within the transformer

layers exhibit correlated behaviour which is related to recognition

performance.

Altogether, this work provides analysis of the modelling ap-

proaches affecting contextual dependencies and ASR performance,

and can be used to create or adapt better performing End-to-End

ASR models without the requirement for hyperparameter optimisa-

tion, and also for downstream tasks.

Index Terms— speech recognition, end-to-end, cross domain,

transformer, analysis, language modelling

1. INTRODUCTION

The typical approach to develop a framework for ASR has been to

use deep neural networks to recognise and align acoustic features to

graphemes or phonemes; replacing the requirement for distinctly-

optimised modules, such as acoustic, pronunciation or language

models (LMs). Using End-to-End modelling approaches reduces

the need for expert domain knowledge as it aims to jointly optimise

the training regime while adapting to diverse speech environments.

These factors have led to End-to-End ASR models becoming a

popular choice for on-device deployment.

Current research in End-to-End ASR modelling is dominated by

three approaches: recurrent-transducers [1], Connectionist Temporal

Classification models [2] or attention-based encoder-decoder archi-

tectures [3, 4]. End-to-End ASR frameworks are typically dependant

on the amount of data resources and are commonly fine-tuned to the

corpora in order to improve the recognition performance, which has

directed techniques to improve the representation capacity of the

modelling approaches [5, 6]. The ability to use larger amounts of

training data significantly improves the recognition performance of

End-to-End models [7]. However, previous work [8] suggested that

the relationship between memorisation and generalisation within

these networks remains elusive, being referred to as a “black-box".

It can be hypothesised that richer neural representations are not

analogous to increasing neural depth or model size [9]. By learning

representations of speech that are robust, the general recognition

performance of the model should improve proportionately without

the requirement for increasing model size or training data.
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As the development of End-to-End ASR models continues, there

is also a corresponding demand to be able to not only optimise the

training process, but also to interpret the internal latent representa-

tions and the explainability of modelling approaches, such as the po-

tential relationship between training data and the integration of LMs.

Despite numerous variations of modelling approaches, there has also

been little exploration of the internal model representations and their

relationship to model recognition performance across different do-

mains. Layer-wise analysis of models has been used to interpret

modelling approaches and relationships between representations in

multiple domains [10, 11, 12]. SVCCA analysis techniques have

been used to highlight neural representations with respect to their

ability to generalise, by observing the relationship between the cor-

relation coefficients of neural layers during training [13].

As transformer modelling approaches achieve state-of-the-art

results for End-to-End ASR, this work aims to identify and show

representations in transformer models that adapt to out-of-domain

LMs by analysing how the representations evolve across layers. The

relationship between ASR performance and the neural represen-

tations is shown to aid parameter optimisation. Using unmatched

sub-word LMs, it is possible to observe the dependencies of the rep-

resentations within model layers and identify settings that improve

model performance. Section 5 shows that observing the repre-

sentation dependencies is important to develop intuitive modelling

approaches and improve recognition performance.

The analysis methodology is first defined in Section 2, then the

developed framework for analysis experiments is described in Sec-

tion 3.3. The implementation of cross-domain LMs in the End-to-

End ASR models is defined in Section 3.2 and the analysis experi-

ments are shown in Section 4. Experiments analysing the adaptation

of transformer model parameters are conducted in Section 5 with

the results discussed in further detail in Section 6. It was found that

deeper transformer model layers contain learned representation de-

pendencies for cross-domain LMs and recognition performance can

be improved by tuning the parameters to the hierarchical dependen-

cies.

2. CORRELATION ANALYSIS METHODOLOGY FOR

END-TO-END ASR MODELS

End-to-End ASR modelling approaches aim to approximate the

mapping of an acoustic input X = {x1, ..., xT } of length T over

output labels Y = {y1, ..., yN}. The dependencies of End-to-End

model parameters are not as tractable as approaches where acoustic

and language information is modelled separately. These End-to-End

or “black-box” models have inherently complex internal functions

and it can be difficult to understand the relationship between the in-

ternal parameter dependencies and the resulting performance across

datasets. Previous work in [14] showed it is possible to analyse

the relationship between two sets of variables, such as neurons and

their activation vectors by computing the correlations among the



eignenvectors of the covariance matrices of each set. This attempts

to capture the direction of greatest variance and identify important

neurons or activation vectors within the network. This method

has been used to measure the linear relationship between vectors

representing neural layers within ASR models [12, 13, 15]. The ac-

tivation outputs of a layer zli = {zli(x1), ..., (z
l

i(xN )} are extracted

for dataset X and neuron i in layer l. To observe the similarity

between or within neural layers and to compare the relationship of

the internal representation dependencies upon different variables,

the use of different LMs and model parameters are varied and the

similarities between layer representations are compared to derive

insights regarding their relationship.

To measure correlation for N datapoints, pairs of vectors are

sampled from layers l1 and l2, which are projected, where l1 =
{zl1

1
, ..., z

l1

N1
} and l2 = {zl2

2
, ..., z

l2

N2
}. The projections of l1 and

l2 are pruned by the application of singular vector decomposition

(SVD) to retain 99% of the representative dimensions and to reduce

the impact of potential noise. The application of SVD forms sub-

spaces l′1 ⊂ l1 and l′2 ⊂ l2 and then CCA can then be applied to find

vectors v and s that maximise correlation ρ between the projections

l′1 and l′2:

ρ =
⟨vT l′1, s

T l′2⟩

||vT l′
1
|| ||sT l′

2
||

(1)

where v, s are transforms that aim to maximise the correlation

of the vectors. ρ increases where neural representations have en-

coded more similar information. Further details regarding SVCCA

can be found in [14].

3. EXPERIMENTAL SETUP

3.1. End-to-End ASR Model

Transformers, initially published in [3], are a widely chosen encoder-

decoder architecture for speech recognition frameworks due their

ability to parallelise the training regime. This enables use of larger

amounts of training data which has been shown to improve recogni-

tion performance [7].

A CNN front-end is incorporated for feature extraction. The

final convolutional layer is then projected to 12 stacked trans-

former encoder blocks with embedding dimensions of 512 × 2048
and 6 decoder layers with positional embeddings, compiled in the

ESPRESSO framework [16].

3.2. Language Modelling in End-to-End ASR

The integration of LMs within End-to-End models can be used to

supervise training optimisation and also for decoding to improve

recognition performance [17, 16]. However, it is unclear how the

internal dependencies of End-to-End models handle latent LM rep-

resentations and whether there are similar learned representation

spaces that are robust across different domains. By training models

with cross-domain LMs, it is hypothesised to be possible to observe

these dependencies using SVCCA analysis.

In the following experiments, a sub-word LM is integrated by

shallow-fusion decoding [18] and label smoothing [19] techniques.

The sub-word LM is a 3 layer LSTM model. Shallow-fusion de-

coding computes the weighted sum of a pair of posterior distribu-

tions over sub-words; using one from the ASR model and one from

the sub-word LM. The sub-word LM is an LSTM-based LM trained

with restricted computational complexity, by only keeping the most

frequent sub-words and splitting the rest into characters, to enable

conversion with low information loss. Label smoothing computes

the cross entropy loss during the model’s training regime with a

weighted mix of distributions from a unigram LM and one-hot tar-

gets from the dataset.

3.3. Correlation Analysis Framework

The framework developed in [12] was utilised to investigate the re-

lationships between internal dependencies. For all the experiments,

the models were trained using the ESPRESSO framework [16]. The

analysis was conducted for all models by extracting the activation

outputs of each neural layer of the encoder for each training epoch.

Each model was saved throughout all epochs and then a controlled

input of 100 frames of unseen speech data was fed through the lay-

ers, whilst simultaneously extracting the activation outputs for each

layer. 80-dimensional log Mel acoustic features with additional pitch

features were extracted, from 25ms windows with a stride of 10ms.

3.4. Data

For the experiments, three common US-English datasets from differ-

ing domains for ASR were chosen: Switchboard [20], Librispeech

[21] and WSJ [22]. The Switchboard dataset contains conversa-

tional telephone speech, Librispeech is a compilation of read audio-

books, and WSJ contains read news. The test sets for the Switch-

board dataset, referred to as Swbd and Callhome, are derived from

the LDC2002S09 set and contain 20 unreleased telephone conversa-

tions from Switchboard and 20 telephone unscripted conversations

from Callhome. To ensure the transformer models were converged

by training on comparative data to the LM, the model trained with

Switchboard used up-sampled data (to 16kHz). The LMs trained

with Librispeech were trained using the full 960 hour training set

and the ASR models were tested on the test-clean and test-other

sets. The training set for the WSJ LM was the si284 set, with the

Dev93 set for validation and Eval92 for testing the ASR model per-

formance.

4. CROSS-DOMAIN LANGUAGE MODEL

EXPERIMENTATION

Correlation analysis of the neural representations across the trans-

former model layers is used to measure and analyse the changes in

correlation when cross-domain LMs are integrated. Figure 1 shows

the SVCCA coefficients, as training converges, between the encoder

layers of two transformer models. The models were trained with

Switchboard data but one model uses an in-domain Fisher sub-word

LM, and the other model uses an out-of-domain WSJ sub-word LM.

These models are both trained with sub-word units using Senten-

cePiece [23] and integrated during the training process using the

scheduled sampling method and decoded with shallow-fusion, as de-

scribed in Section 3.2. The correlation analysis shows very little dif-

ference in coefficiency between layers 1 to 6 (top graph of Figure 1),

aside from in the initial epochs which could be attributed to the ran-

dom initialisation of parameters. This suggests that the neural lay-

ers of both of these models are converging to similar representation

spaces. However, between layers 7 to 12 (bottom graph of Figure 1,

the differences in coefficiency are much larger throughout training.

This suggests that the representations learned in these deeper layers

are more dependent upon the LM domain.

The bottom graph in Figure 2 displays the standard deviations

of the coefficiency between the models trained with cross-domain

LMs. This aims to show the variation in coefficiency by layer more

clearly, where the standard deviations in layers 10, 11 and 12 are



highest. The top graph of Figure 2 shows the variance in coeffi-

ciency within the neural layers of a model trained without scheduled

sampling or shallow-fusion decoding compared to the model trained

with the Fisher sub-word LM. This suggests that a similar obser-

vation can be made for LM specific representations, whereby the

variance is higher overall and the coefficiency of layers 8 to 12 de-

viates the most. The results in Figure 2 also imply that layers 1 to 4

have very little dependency on LM representations. These insights

suggest that encoder layers 1 to 4 of the transformer model can be

frozen or stopped early when fine-tuning with LMs and the optimi-

sation regime of End-to-End ASR models can be adapted to improve

downstream tasks.

Fig. 1: SVCCA correlation coefficients as performance converges

within transformer layers 1 to 6 (top) and layers 6 to 12 (bottom),

between a model trained with a Fisher-based LM and a model trained

with a WSJ-based LM

Regarding performance, the model that was trained with the

Fisher LM reached 9.5% word error rate (WER) on the Switchboard

test set and 19.1% on the Callhome test set, while the model that was

trained with the WSJ LM was 10.7% and 21.1% respectively. The

differences in recognition performance are attributed to the domains

of the LMs and the test sets used for evaluation.

5. MODELLING STRUCTURE ANALYSIS

To optimise the parameters for state-of-the-art End-to-End ASR

models, many iterations are trained with parameter modifications.

Optimisation of model parameters to specific datasets to achieve the

best recognition performance possible [16, 17] is referred to here as

tuned. For example, the dimensionality, number of layers and also

the hyperparameters have been observed to impact the recognition

performance. As shown in Table 1, using a transformer model with

the same parameters and composition for several datasets does not

achieve the lowest WER across all of the datasets. These tuned

models are reached by extensive hyperparameter optimisation tech-

Fig. 2: Standard deviation of correlations across transformer model

layers with and without a LM (top) and with cross-domain LMs

(bottom)

niques, which are computationally expensive and considerably time

consuming without providing observational evidence regarding the

dependencies of certain parameters upon the recognition perfor-

mance.

Using cross-corpora correlation analysis, it is possible to inter-

pret the dependencies of parameters in a more meaningful way and

provide some observational evidence to reduce the need for hyper-

parameter optimisation when developing new models or fine-tuning

trained models. By understanding the representation dependencies,

it is possible to identify which parameters are unlikely to improve

model performance, which can potentially reduce the computational

resources required. Table 1 shows the results of 3 transformer

models with variations in model parameters that are used in state-

of-the-art End-to-End ASR frameworks. All models are the same

transformer-based encoder-decoder architecture with the following

variations:

• Model 1 has an embedding dimension of 512, a feed forward

embedding dimension of 2048, 4 attention heads, and an at-

tention dropout of 0.25.

• Model 2 has an embedding dimension of 256, a feed forward

embedding dimension of 1024, 4 attention heads, and atten-

tion dropout of 0.25.

• Model 3 has an embedding dimension of 512, a feed forward

embedding dimension of 2048, 8 attention heads, and an at-

tention dropout of 0.1.

To observe the relationship between the learned representations

of the adapted models and attribute these adaptations to improved

recognition performance with specific data, the model performance

was assessed across all test sets, as shown in Table 1. For the Switch-

board and Callhome test sets, the recognition performance of model



1 is the best, while model 2 reaches slightly worse performance on

the Callhome set and model 3 has the highest WER for both test sets.

Table 1: Transformer model WER on EVAL’00, WSJ and Lib-

rispeech test sets with tuned parameters

Model Swbd Chm Eval92 Dev93 Test-cln Test-oth

M1 9.5 19.1 4.59 7.54 3.5 8.51

M2 9.6 20 4.13 6.3 3.99 8.72

M3 10.4 21.6 4.52 7.43 1.9 3.9

Figure 3 displays the SVCCA coefficients for each model trained

with the Switchboard dataset. Model 2’s mean coefficiency, across

layerwise representations, are substantially less correlated than the

other models. The standard deviations of the correlations within

these layers also vary significantly higher than Model 1 or 3. Model

3’s mean coefficiency across layerwise representations is fairly sim-

ilar for all layers with very small standard deviation. It is observed

that correlations within the layers of model 2 have lower coeffi-

ciency, and the recognition performance of this model is lower for

the Switchboard test sets. Also, there are little hierarchical coef-

ficiency patterns throughout the layers of model 3, and this model

also has a slightly worse performance, which corroborates with re-

sults from [12]. Model 1 has lower coefficiency within layers 8-12

and has the best recognition performance.

6. DISCUSSION

The findings in Section 3.2 correlate with findings from [24] where

semantic and syntax level features of speech are predominantly

dependent upon deeper layers of transformer-based models, while

acoustic and fluency features are predominantly dependent on the

shallower layers. In the case of End-to-End transformers for ASR

tasks, the LM-dependent representations are shown to be primarily

dependent within layers 7-12. The cross-domain LM-dependent

representations are observed within layers 10-12. Further experi-

ments training with the WSJ dataset with cross-domain sub-word

LMs showed very similar observed behaviours across layer coef-

ficiency. These observations can be used to identify the elements

that affect recognition performance, without the need for extensive

training requirements, and to improve joint optimisation. The anal-

ysis also aids in the identification and interpretability regarding the

representation dependencies within End-to-End ASR models.

The experiments in Section 5, attempt to show these internal

dependencies with regard to the model parameters within the same

modelling architectures. As shown in Figure 3, Model 2 used shal-

lower embedding dimensions than model 1, which has caused the

coefficiency of many of the layers to become highly uncorrelated.

Model 3 is observed to have very highly correlated layers, however

there are little distinct hierarchies in the neural representations when

the attention heads are increased to 8 and the attention dropout is re-

duced. By adapting the parameters of transformer models, the layers

with the most dependency for representing domain-specific informa-

tion are altered. These changes in hierarchical representations have

been observed to impact recognition performance, and further sug-

gests a relationship between correlated hierarchical representations

and the ability for the model to generalise, particularly for cross-

domain speech recognition. Increasing the attention dropout is the-

orised to improve model robustness [6], where typical features of

conversational speech are boundary uncertainties and hesitations. In

the case of End-to-End conversational speech recognition, the results

Fig. 3: Transformer SVCCA coefficients as performance converges

in model 1 (top), model 2 (middle) and model 3 (bottom) trained

with Switchboard data

show that using substantial attention dropout in transformer models

is important to produce correlated hierarchies in dependent layers

but also utilise a model with sufficient embedding dimensionality

that the representations within context-critical layers don’t become

too uncorrelated.

7. CONCLUSION

Using SVCCA as a correlation index has identified several aspects

of the relationships between the neural representations, transformer-

based modelling parameters and the impact these have upon recog-

nition performance. Interpretative analysis is important to develop

future modelling approaches for meaningful improvement strate-

gies. Expanding the scope of the investigation into the attributes

and potential learned features that could be classified within the

layers would provide a deeper understanding of the properties of

these dependencies and how these could be further exploited. The

insights into the dependencies of the neural layers can be used for

the development of models for few-shot learning and downstream

tasks for End-to-End ASR.
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