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Abstract—Activation functions are one of the critical elements
of neural networks that allow them to produce non-linear, fine
and complex decision boundaries. Yet, their effects are not
very well understood in the context of attention mechanisms.
In this paper, we investigate the role of two widely used
family of activation functions in conjunction with three attention
mechanisms on two widely used image classification models;
ResNet50 and MobileNetV2. We modified the structures of
these classification models by infusing them with three attention
mechanisms, CBAM, BAM, and Triplet Attention. In addition,
we equipped them with different activation functions, including
ReLU, ELU, and a newly proposed activation function that we call
ELU+. The resultant models’ performances were examined in the
domain of facial expression recognition using three datasets; two
lab-controlled, CK+ and JAFFE, and one real-world, FER2013.
Compared with the baseline models, our results show a significant
increase of up to +30% of models’ performance when using the
newly proposed AF.

I. INTRODUCTION

Since activation functions are used to introduce non-

linearity in neural networks, their role is significant, and we

may argue that one of the main contributions introduced in

AlexNet is changing the activation function from sigmoid to

ReLU [1]. However, researchers were more attracted to the

more prominent aspect related to the network topology, which

showed that stacking more layers has the potential to achieve

better results and went in that direction. Therefore, following

AlexNet, we started to see deeper and deeper networks such as

GoogleNet [2], VGG [3], and ResNet [4]. Activation functions

nevertheless received attention on a smaller scale and far

fewer new activation functions were introduced [5]–[10]. Some

of these activation functions showed improvements of up

to 10% for ELU on ImageNet and of 1% for swish with

ResNet. However, these studies are not up to date when we

consider recent developments in deep learning models. ELU

and LReLU attempts to push the mean activation towards 0 to

cancel the bias shift problem that occur in neural network

learning. More recently, inspired by how humans retrieve

information from a scene, attention mechanisms have been

introduced to improve the performance of deep learning mod-

els by selectively focusing on the most informative parts of

the data [11]. Currently, attention mechanisms are dominating

the state-of-the-art in various tasks, such as natural language

processing [12] and computer vision [13]–[16].

In this work, we investigate the effect of using different acti-

vation functions on deep learning architectures with attention

mechanisms and test them on facial expressions recognition

tasks. We introduce a new variant of ELU activation and

conduct an extensive comparative study of different activation

functions (AF) used with different attention models on the

aforementioned architectures applied to the facial expression

recognition domain. Our study empirically demonstrates the

effectiveness of a newly proposed activation function that we

call ELU+ and sheds light on the importance of AF in the

context of attention mechanisms.

This paper proceeds as follows. We start by reviewing

the facial expression recognition domain in sections 2. Then,

in section 3, we move to discuss the datasets used and

the attention mechanisms applied in the domain. Then we

discuss different activation functions and introduce our newly

proposed ELU+. Then in section 4, we conclude by showing

the empirical results of our extensive comparison study.

II. RELATED WORK

Detecting human emotions automatically is an important

research domain and has many applications [17]. While recog-

nising facial expressions constitutes the first step towards au-

tonomous and effective communication. In the context of facial

expression recognition, different types of deep learning models

have been used to tackle several issues that are common in

image classification models. These include bias shift between

layers due to activation [7], noise in the captured images,

high compute and memory requirements and difficulties in

extracting useful features. We categorise these models into two

groups. One that does not use attention mechanisms and one

that does.

A. DL Models For FER

To tackle some of the difficulties that arise in the context

of FER, deeper and more elaborate architectures are usually

introduced. However, such deep neural network models imply

a high number of parameters that require high computational

power and a large memory size to fit those parameters. Hence,

one of the major challenges in deep learning for facial expres-

sion recognition is producing efficient and lightweight models

that can be used in resource-constrained devices. To address



this issue, eXnet [18] proposed a lightweight but efficient

model for FER. They proposed a CNN network based on a

parallel feature extraction process resulting in a lighter model

with only a 4.57M parameter compared with the VGG19,

which has 14.72M parameters. [19] have also addressed the

same issue by proposing a model called EmNet that consists of

two similar deep convolutional neural network models and a

third one for integrating both models. The model is optimised

using a joint-optimisation technique. The EmNet gives three

predictions, two from the DCNN models and one from the

integrated DCNN models. Those predictions are then fused

for final classification. The resultant model has only 4.80M

parameters.

In facial expression recognition, factors such as age, ethnic-

ity, culture and gender affect the performance of FER systems

since they hold significant variations among individuals. Re-

search has shown that the basic facial expression is neutral,

and emotions are an addition to the neutral face. People can

distinguish the emotion by comparing the expressed emotion

with the neutral face. Based on that idea, [20] proposed an ap-

proach called De-expression Residue learning (DeRL). DeRL

can extract the expressive component from an expression face

image and produce a neutral face. This helps solve the issue

of individual variations since we could use the neutral face as

a reference.

Considering issues in the available datasets, [21] proposed

the FN2EN model that deals with the problem of the small

number of available datasets on facial expression recognition

by introducing a new distribution function to model the high-

level neurons of the expression network. Another problem in

the available datasets is the annotation errors and biases in

those datasets caused by the human factor during the creation

process of the datasets. [22] dealt with such a problem by

proposing a framework that trains facial expression models

from multiple inconsistently labelled datasets and a large-scale

unlabelled dataset.

Furthermore, [23] tackled the issue of inter-subject variation

of facial expression recognition. They proposed a model called

the Identity-Adaptive Generation method (IA-gen), which con-

sists of two parts. The first part generates the six different

expressions of a given subject using six different cGANs,

each of which generates one of the six emotions where it

keeps the identity features and alleviates the features of the

expression. The second part is a facial expression recognition

model, where they fed the input and the generated image to a

pre-trained CNN model.

Moreover, the main focus of the facial expression recogni-

tion models is on frontal face images because pose variation

is still a challenging task in deep learning. Preserving the

expression with frontalisation is one of those challenges.

Frontalisation means altering the head pose from a non-frontal

face to a frontal face resulting in a synthesised frontal face.

[24] aimed to solve this problem by building a frontalisation

system that preserves facial expression. They have developed

a multi-task model based on GANs that can preserve the

expression while frontalising the face from a profile pose to a

frontal pose and recognising the expression.

Feature extraction is also one of the most challenging tasks

of facial expression recognition since most of the features

lie in the mouth region, which is very detailed. Thus it

is challenging for a system to capture those features and

not get distracted by other features in the image, such as

pose and illumination. [25] argue that FER systems tend to

suppress variations in the feature extraction, which yields the

performance of such a system. They propose a system called

Two-branch Disentangled GANs (TDGANs). The system can

disentangle the expression features from other features by

transferring the expression.

Although the above models have the edge over general

models like ResNet, they are domain specific to FER and

do not provide a neutral basis to conduct our comparison.

Therefore, we will base our study on more general image

classification architectures, such as ResNet, to demonstrate

that the effect of choosing a suitable activation function can

match bespoke and tailored architectures and to ensure a more

generalised applicability of our results.

B. DL Models For FER with Attention

The DDL model presented in [26] deals with two major

issues in facial expression recognition, which are datasets-

related and feature extraction issues. The available facial

expression recognition datasets provide labelling for the ex-

pressions only, and some other datasets provide labelling

for pose and identity. Other factors, such as age, race, and

illumination, are not provided in terms of labelling, which

limits the performance of facial expression recognition models.

Authors in [26] propose a model that disentangles multiple dis-

turbing factors (other than the expression factor) by multi-task

learning and adversarial transfer learning. They followed two

stages; in the first stage, they pre-trained a disturbance feature

extraction model that performs multi-task learning to classify

different disturbance factors on a large-scale dataset. In the

second stage, they built a disturbance-disentangled model with

three sub-networks, a global shared sub-network and two

task-specific networks (one for the expression and one for

the disturbance). The purpose of the disturbance-disentangled

model is to learn the disturbance-disentangled representation

for expression classification. Specifically, the expression sub-

network utilises a multi-level attention mechanism to extract

an expression’s features.

In contrast, the disturbance sub-network uses adversarial

transfer learning to extract the disturbance features based

on the pre-trained model in the first stage. The DDL

model achieved state-of-the-art performance in three lab-

controlled datasets, which are CK+, MMI and Oulu-CASIA

with 99.16%, 83.67%, and 88.26% classification accuracy,

respectively. Additionally, the model achieved state-of-the-art

in the RAF-DB, a real-world dataset with 87.71% classifica-

tion accuracy.

The ADDL model in [27] states that the DDL model has

two limitations. It can not adaptively choose the disturbance

factor while training and the disentanglement process of the



disturbance factor are not performed explicitly. Therefore, they

modified the DDL model by introducing the ADFL module,

designed to learn the importance weights of the disturbance

factor before performing the adversarial transfer learning, and

the MINE module, which minimises the correlation between

the expression and the disturbance feature. The ADDL is

the current state-of-the-art in many facial expression recog-

nition datasets. The classification accuracy scores in the lab-

controlled datasets, which are CK+, MMI, and Oulu-CASIA,

are 99.64%, 86.13%, and 89.44%, respectively. In addition,

The classification accuracy scores in the real-world datasets,

which are RAF-DB and AffectNet, are 89.34%, and 66.20%,

respectively.

Similar to the IA-gen [23], [28] dealt with the inter-subject

variation by removing the identity features from the image

resulting in an identity-free image with only the expression

features. They propose a GAN model called Identity-Free

conditional Generative Adversarial Network (IF-GAN). First,

an average expression face is computed using all images of the

same expression. Then, the input of the IF-GAN is an image

of any subject with an expression and the average expression

face. The IF-GAN, then, tries to learn to generate an identity-

free image using the pair of those inputs. In other words, the

generator learns to transfer the expression of the input image

to the average identity.

In the context of real-world datasets, [29] proposed a

method for facial expression recognition in-the-wild consid-

ering partially occluded faces, which is common in the real-

world. They have proposed a convolutional neural network

with an attention mechanism that alleviates the occlusion and

pays attention to the most important features. Additionally,

[30] outlined two observations in a real-world facial expression

recognition task: the variations in images’ sizes and the

sensitivity of CNNs to the input size of the image. Thus, they

have proposed a network called Pyramid with Super-resolution

to deal with the variation in images’ sizes.

Following the extraordinary success of the transformers in

natural language processing (NLP) proposed in [11], [31]

proposed a framework called Vision Transformers (ViT) that

utilises transformers on computer vision without the reliance

on convolutional neural networks. They split the input images

into small patches of 16x16 size, and then those patches are

flattened and passed to a linear layer. Then, the output of the

linear projection is embedded alongside a position and an extra

learnable class embedding. Finally, the embedding sequence

is fed to a transformer. This allows the transformer to deal

with the images as it does with words in NLP. ViT is a more

general model than CNNs because it has less inductive bias.

This is because the transformer part of the model has no clue

about the positions of the patches in their two-dimensional

space, and they have to be learned.

In the field of facial expression recognition, Vision Trans-

formers (ViT) was utilised in [32], where they used it with

the addition of a Squeeze and Excitation (SE) block for facial

expression recognition. The ViT module extracts the local fea-

tures using its attention ability, while the SE module captures

the global relations from the extracted features. The addition of

the SE module helps optimise the learning process, which has

the limitation of dealing with small facial expression datasets.

The ViT module is pre-trained on the ImageNet dataset and

fine-tuned on the FER-2013 dataset. The proposed model

is the current state-of-the-art on CK+ dataset with 99.80%

classification accuracy and achieved competitive results on the

RAF-DB dataset with 87.22% classification accuracy.

We argue that more suitable activation functions can alle-

viate the need for a deeper and more complex architecture.

Nevertheless, we study two types of deep learning architec-

tures, the first is ResNet which is relatively deep and has a high

number of parameters, and the second is MobileNet which is

more lightweight and has fewer parameters. We would like

to shed light on the combination of traditional (legacy) deep

models with attention and suitable activation functions. The

idea is to provide a basis for comparison and demonstrate

the benefit of using different activation functions on these

traditional architectures and to prove that they are comparable

with other architectures that utilise transformers.

C. Activation Functions

Since replacing the sigmoid activation function used in

LeNet with the ReLU activation function in AlexNet, the

ReLU became the default choice in deep learning models

due to efficiency reasons compared with the sigmoid and tanh

activation functions [33]. ReLU deals well with the vanishing

gradient problem because its derivative is not contractive. On

the other hand, it does not activate neurons with negative

input values. This reduces the number of active neurons, which

in turn makes learning faster but limits the model’s learning

capability. In addition, it introduces a bias shift from early

layers to later layers because their activation’s mean is always

positive [7]. This led to the need of other techniques, such as

batch normalisation, to help limit the shift.

Modifications to the ReLU activation function have been

proposed since then to overcome its limitations. For example,

LReLU [5] and PReLU [6] were proposed to overcome such

limitations by introducing a slope in the negative direction. In

the LReLU, the slope is fixed, while in the PReLU, the slope is

a learnable parameter. The ELU activation function proposed

in [7] is another modification to the ReLU where the negative

values are represented using a log curve instead of a straight

line compared with the LReLU and PReLU. The PReLU-net

proposed in [6] was the first network to surpass the human

performance in the ImageNet challenge. In addition, the ELU

activation function [7] enhanced the training speed and led to

a better generalisation.

III. METHODOLOGY

To investigate the effectiveness of adding attention mech-

anisms to convolutional deep learning models, two complex

CNNs models were chosen in this work, namely ResNet50

and MobileNetV2. In terms of attention mechanisms, the focus

of this work is on the attention mechanisms that combine

channel and spatial attention and are CNN based. Therefore,



(a) Angry (b) Disgust (c) Fear (d) Happy

(e) Neutral (f) Sad (g) Surprise

Fig. 1: Sample images from JAFFE dataset

three-channel and spatial attention mechanisms were chosen,

namely CBAM, BAM, and Triplet Attention. The two models

were trained with the addition of each attention mechanism.

The chosen attention mechanisms are designed as blocks that

can be easily integrated into any CNNs model. The attention

blocks were plugged before the residual connection in the

building blocks of both models.

Additionally, the two models were tested using different

activation functions to investigate their role. By inception,

ResNet50 base model uses ReLU activation functions through-

out its layers. This was replaced by ELU. Similarly, Mo-

bileNetV2 uses the ReLU6 activation function throughout its

layers. This was replaced by ELU6, a new activation function

created by modifying ELU to match ReLU6. In addition,

further modifications of ELU are proposed resulting in two

new activation functions that we call ELU+ and ELU7+. The

performance of each of the above models, when equipped

with a combination of each of the three activation functions

(ReLU, ELU and ELU+), along with each of the three different

attention mechanisms (CBAM, BAM and TA), are compared

with the base models. For training and testing, we used 10-

folds cross-validation (CV) for the CK+ and JAFFE datasets,

while the FER2013 dataset has a substantially dedicated

testing set which alleviates the need to use CV. CK+ is a fairly

easy dataset, and we achieved perfect and near-perfect scores

without even applying any of our suggested modifications.

Therefore, in order to make the CK+ dataset more challenging

and use it for benchmarking, we have applied the following

data augmentation techniques: Color Jitter, Random Solarize,

Random Affine, and Random Horizontal Flip. The following

subsections explain the datasets, attention mechanisms and

activation functions used in this work.

A. Datasets

In [34] they have created a lab-controlled dataset for emo-

tions recognition, which is the Extended Cohn-Kanade Dataset

(CK+). The set of emotions presented in this dataset are Angry,

Disgust, Fear, Happy, Sadness, Surprise, and Contempt. CK+

consists of 593 video sequences from 123 different individuals.

Each video shows a transition from a neutral face to the

expressed emotion. Only 327 videos are labelled with one of

the emotions set, aka emotion class. CK+ is one of the widely

(a) Angry (b) Disgust (c) Fear (d) Happy

(e) Neutral (f) Sad (g) Surprise

Fig. 2: Sample images from FER-2013 dataset

used datasets in emotion recognition. In [35], authors created

a lab-controlled dataset for emotion recognition, which is the

Japanese Female Facial Expression (JAFFE). Ten different

female Japanese individuals were asked to express the six

basic facial expressions plus a neutral face. A total of 213

8-bit grayscale images were taken and viewed by 60 different

Japanese individuals to come up with an average semantic

rating for each image. In [36] they have introduced a real-

world dataset for emotions recognition, which is the Facial Ex-

pression Recognition 2013 (FER2013). The FER2013 dataset

consists of 35,685 examples in a grayscale format. The images

are classified into one of the six basic emotions plus neutral.

B. Attention Mechanisms

[14] proposed the bottleneck attention module (BAM) that

increases the receptive field using a dilated convolution. The

module consists of two branches: the channel attention branch

and the spatial attention branch. The channel attention branch

computes the channel attention using average pooling, then

an MLP, and finally applies batch normalisation. At the same

time, the spatial branch computes the attention map using a

bottleneck-structured convolution with a dilation. The results

of the two branches are reshaped to match the dimensions

of the input feature maps. Next, they are added together and

passed to the sigmoid function.

[16] proposed the convolutional block attention module

(CBAM) that has two subsequent operations: channel attention

followed by spatial attention. The channel attention is similar

to the SE block but captures the global information using

average and max pooling in parallel. The spatial attention

module generates the attention map using a convolutional

layer.

CBAM and BAM compute the spatial and channel attention

independently, which might result in the loss of discrimina-

tive information across different dimensions. [15] proposed

the triplet attention block, which considers cross-dimension

interactions. The triplet attention block has three branches;

two branches capture the interactions between the channels

and one of the spatial dimensions (the height or the width),

while the third branch captures the spatial attention. The input

data is rotated (90o rotation anti-clockwise) along the desired

spatial axes in the first two branches. Then the results are



passed to a z-pool layer that reduces the dimensionality of the

other spatial dimension to two. In other words, for the first

branch that capture the cross-dimension interaction between

the channels and the height dimension, the dimensions of the

input tensor are transformed from (W×H×C) to (2×H×C)
by computing and concatenating the average and the max

pooling across the dimension. The results are then convolved

with batch normalisation, resulting in an output of the shape

(1×H × C) that is passed to a sigmoid function to produce

the attention weights. The attention weights are then applied

to the rotated input, and the results are rotated along the

desired dimension (90o rotation clockwise). The same process

is followed for the second branch but on the W axis. For the

last branch, the channels are reduced to two using the z-pool

layer, and then the results are convolved and batch normalised.

Finally, the results are fed to a sigmoid function to produce

the attention weights, which are then applied to the input. The

final result is computed by averaging the results of the three

branches.

C. ELU: Better Fit Activation Functions

Given the discussion of the above-mentioned attention

mechanisms, one can conjecture that an activation function

that is smooth and uses exponentiation would be more suit-

able than the simple ReLU. This is because attention needs

to peak naturally for specific excitation, quite sharply and

quickly, while it should dampen and neutralise other irrelevant

excitation. Also, the sigmoid function which has been used in

all of these mechanisms in its core depends heavily on specific

exponentiation formula. ELU activation function satisfies these

traits (smooth and uses exponentiation) and forms a better fit

for the discussed attention mechanisms, although we will show

how to amend it in the next section to get even better AF.

ELU activation function applies the exponential linear unit.

It returns x if x is greater than 0; else, it returns ex − 1,

where ex is the exponentiation of x, multiplied by α which is

a hyperparameter with a default value of 1. See (1) and Fig.

3.

ELU(x) =

{

x, if x > 0

α(ex − 1), if x ≤ 0
(1)

Just like the ReLU6 activation function, the ELU activation

function was modified to return the minimum value between

x and 6. See (2) and Fig. 3.

ELU6(x) =

{

min(x, 6), if x > 0

α(ex − 1), if x ≤ 0
(2)

D. ELU+: Best Fit Activation Functions to Support Attention

and Normalisation

A further modification of the ELU function was carried

out to produce the ELU+, which returns x if x is greater

than β, where β is a hyperparameter, see (3) and Fig. 4. The

motivation for this change is that we realised that activation

functions in general, and ELU in particular, work better for

attention if we allow it to model non-linearity on the input

beyond 0. Given that the majority of deep learning models

perform normalisation in one way or the other, specifically

batch normalisation, we know that the model sensitivity to-

wards the range [0, 1] should be made higher than other inputs

in the range [1,∞] or [1, n]. Therefore, we opted to keep the

function as close as possible to its original form but increase

its sensitivity beyond 0 to the interval [0, β], where β can be

tailored towards the application and problem domain’s needs.

We have tried to add the linear part (straight line) at the end

of the non-linear curve that resides along the [0, β] interval

(i.e. on the top of the little peak that can be seen in Fig

4) to enhance its smoothness, but that did not produce good

results. In addition, similar to ReLU6 used in MobileNetV2,

the ELU7+ is introduced to replace the ReLU6, which returns

the minimum value between x and seven if x is greater than β.

Seven was specified via trial and error, which seems to work

better than other values between 1 to 10. See (4) and Fig. 4.

ELU + (x) =

{

x, if x > β

α(ex − 1), if x ≤ β
(3)

ELU7 + (x) =

{

min(x, 7), if x > β

α(ex − 1), if x ≤ β
(4)

IV. RESULTS

This section shows the results of the previously explained

experiment. Table I illustrates the results of ResNet50 after

adding attention mechanisms with three activation functions,

ReLU, ELU, and ELU+ on the CK+, JAFFE, and FER2013,

respectively. For this architecture (ResNet50), the first obser-

vation is that the ELU activation function outperformed the

ReLU in every dataset with all attention mechanisms. This

suggests that ELU is, in fact, a better fit for models that use

attention mechanisms than the traditional ReLU. This insight

can be interpreted due to both the smoothness of the ELU in

comparison with ReLU, particularly when transitioning from

negative to positive input, and due to allowing negative input

to take negative values, which helps in reducing the bias

shift. Furthermore, our ELU+ activation function outperformed

the ELU activation function in the majority of comparisons

(except for BAM on the CK+ dataset and Triplet Attention on

the FER2013 dataset). This shows that the proposed activation

function offers an important alternative that can gain a perfor-

mance boost for attention mechanisms, particularly for BAM

and CBAM.

The accuracy achieved on the CK+ without using attention

is already high when moved from ReLU to ELU. The model

gained 6%. This seems to have saturated the possibility of

raising the accuracy by using our ELU+ activation function.

On the CK+ dataset with attention, the best performance

achieved is 96.23% for CBAM. The best classification ac-

curacy on the JAFFE dataset is 94.87% after adding CBAM

to the ResNet50 using ELU+ with β = 0.7. On the FER2013,

the best performance achieved is 60.90% after adding triplet

attention to the ResNet50 using the ELU activation function.



Fig. 3: ELU, ELU6 Activation Functions, and their Derivatives Fig. 4: ELU+, ELU7+ Activation Functions, and their Derivatives

However, the ELU+ outperformed the baseline models using

CBAM, and BAM. The second best performance achieved is

60.50% with CBAM using ELU+ with β = 0.7. All of the best

classification performances were achieved using the ELU+

activation function except on CK+ with BAM and on FER2013

with Triplet Attention, which proves the validity of replacing

the ReLU activation function with the newly proposed ELU+

activation function.

The ELU+ activation function shows a significant perfor-

mance, especially with the FER2013 dataset, which is a real-

world dataset and more challenging due to the variations in

viewpoints and illuminations. We can infer that the model’s

capability to deal implicitly with such variations has improved

using such an activation function.

Furthermore, the results of the more lightweight deep learn-

ing architecture MobileNetV2 after adding attention mech-

anisms with the three activation functions, ReLU6, ELU6,

and ELU7+ are illustrated in tables I. We can see that the

newly created ELU7+ activation function has significantly

improved the performance of the MobileNetV2 of +25% on

the JAFFE dataset, from 75.56% to 90.63%. The performance

of the baseline MobileNetV2 model using ReLU6 with CBAM

was increased by +31% after changing the ReLU6 activation

function with the ELU7+ activation function from 61.58%

to 92.94%. The same observation holds for the other models

using the BAM and Triplet Attention. The performances were

improved by a significant margin. Fig. 5 shows the training

and testing curves of the best-performing model compared

with the baseline models. We can clearly see that the testing

accuracy (shown in red) started to increase around the tenth

epoch, leaving a noticeable margin compared with the baseline

models. Such results are extremely encouraging and open

the window for more investigation of the ELU7+ activation

function. It should be noted that although ELU6 performed

well in training, but in testing, it performed worse than all

other AFs due to overfitting. On the CK+ dataset, the best

performance achieved is 99.59% after adding Triplet attention

to the MobilNetV2. The best classification performance in

the JAFFE dataset is 94.35% after adding BAM to the Mo-

bileNetV2 using ELU7+ with β = 1. In the FER2013, the best

performance achieved is 65.30% after adding triplet attention

to the MobileNetV2 using the ELU7+ activation function with

β = 1. Fig. 6 shows the training and testing curves of the best-

performing model compared with the baseline models. Even

though the model using the ELU7+ activation function was

slower in terms of convergence, it learned to generalise better.

Similar to ResNet50, all of the best classification performances

were achieved using the ELU+ activation function except on

CK+ and FER2013 with BAM, which proves the validity

of replacing the ReLU6 activation function with the newly

proposed ELU7+ activation function. In fact, it is more encour-

aging with MobileNetV2 due to the significant improvement

achieved on the JAFFE dataset. The results using the ELU+

and the ELU7+ activation functions are worth more intensive

investigations since they seem to have significant potential.

One possible justification for their performance is noticeable

by looking at their derivatives. In Fig. 4 the solid blue line

shows the ELU+ activation function, while the dashed blue

line shows its derivative. We can see that the function gave

more importance to the values between zero and one, which -in

our opinion- allowed achieving such results. In contrast, when

we look at the ELU activation function and its derivative, it

gives similar importance to all values that are greater than 0,

see Fig. 3.

V. CONCLUSION

Simple but effective modifications to the internal structure

of neural net components can lead to significant improvements.

In this work, we proposed a new activation function that we

call ELU+. We empirically demonstrated the effectiveness of

the newly proposed ELU+ activation function compared to

ReLU and ELU in ResNet50 infused with three attention

mechanisms, CBAM, BAM, and Triplet Attention. We have

also demonstrated the effectiveness of the newly proposed

ELU7+ activation function compared with ReLU6 and ELU6

in MobileNetV2 infused with the same attention mechanisms.

The significant increase of up to +30% of models’ perfor-

mance demonstrated a significant potential for using the ELU+

activation function in future deep learning models that utilise

attention. In the future, we plan to conduct more investigation

to obtain further insight into the newly proposed activation



Fig. 5: Training and Testing Accuracy Curves for MobileNetV2 with
BAM on JAFFE. (Best Performing Model on JAFFE)

Fig. 6: Training and Testing Accuracy Curves for The MobileNetV2
with Triplet Attention on FER2013. (Best Performing Model on
FER2013)

TABLE I: Evaluation of ReLU/ReLU6, ELU/ELU6, and ELU+/ELU7+ Activation Functions using the accuracy metric on ResNet50/MobileNetV2 w/o
attention mechanisms and with CBAM, BAM, and Triplet Attetnion (TA) on the CK+, JAFFE, and FER2013 dataset. The subscripted values indicate the
value of β used in the ELU+/ELU7+ activation function.

Dataset Activation

ResNet50 MobileNetV2

w/o AM CBAM BAM TA w/o AM CBAM BAM TA

% σ % σ % σ % σ % σ % σ % σ % σ

CK+

ReLU/6 91.95 4.9 87.47 4.9 86.75 2.6 91.03 4.3 97.35 0.8 96.43 1.4 97.35 1.5 96.43 1.1

ELU/6(0) 97.66 0.9 93.38 3.0 94.50 2.2 90.62 1.8 99.80 0.4 98.37 1 99.70 0.9 99.50 0.9

ELU+/7+(0.3) 96.94 1.7 94.90 1.8 91.24 0.9 92.46 2.3 99.69 0.5 99.39 1.2 92.76 2 99.49 0.9

ELU+/7+(0.5) 94.09 3.1 95.81 1.8 91.23 3.2 95.93 2.5 94.90 1.4 99.39 0.9 96.23 1.6 99.39 0.9

ELU+/7+(0.7) 88.38 1.8 96.23 2.7 82.47 4.0 90.42 2.2 98.98 1.4 99.29 0.9 97.14 2 99.59 0.7

ELU+/7+(1) 84.81 5.3 91.12 2.6 83.69 4.7 91.54 3.6 97.66 1.4 98.98 1.2 97.25 1 99.18 1.2

JAFFE

ReLU/6 80.30 12 82.23 9.5 80.32 8.4 79.42 8.5 75.56 7.2 61.58 14 70.04 9.9 68.59 11

ELU/6(0) 89.72 6.8 90.67 5.4 87.85 7.1 89.74 7.4 58.70 6.4 55.43 8.8 47.90 8.5 49.74 6.1

ELU+/7+(0.3) 90.15 8 91.58 6.5 89.22 6.3 91.58 6.8 57.66 9.3 60.06 7.2 61.60 10 52.58 6.8

ELU+/7+(0.5) 93.87 6 92.99 6.0 92.46 5.7 93.48 6.6 78.38 7.4 60.17 7.6 80.76 4.9 64.72 10

ELU+/7+(0.7) 89.68 7.2 94.87 4.4 84.50 9.5 94.35 4.6 89.22 3.6 82.16 7.5 89.15 6.7 86.93 7

ELU+/7+(1) 88.24 4.8 91.52 6.7 84.00 9.1 91.04 6.2 90.63 7.3 92.94 3.8 94.35 4.6 92.14 8.9

FER13

ReLU/6 56.00 n/a 57.00 n/a 54.60 n/a 57.80 n/a 64.30 n/a 62.00 n/a 64.50 n/a 63.30 n/a

ELU/6(0) 59.00 n/a 59.50 n/a 58.70 n/a 60.90 n/a 61.70 n/a 61.80 n/a 62.10 n/a 62.50 n/a

ELU+/7+(0.3) 59.40 n/a 57.90 n/a 50.50 n/a 59.20 n/a 62.00 n/a 61.30 n/a 62.90 n/a 62.10 n/a

ELU+/7+(0.5) 60.80 n/a 59.80 n/a 59.50 n/a 60.30 n/a 62.10 n/a 62.20 n/a 64.10 n/a 62.90 n/a

ELU+/7+(0.7) 59.40 n/a 60.50 n/a 56.50 n/a 60.20 n/a 63.40 n/a 63.70 n/a 64.10 n/a 63.40 n/a

ELU+/7+(1) 56.00 n/a 59.20 n/a 51.80 n/a 58.50 n/a 63.20 n/a 63.70 n/a 51.80 n/a 65.30 n/a

function as well as automating the process of optimising the

threshold β.
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