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Abstract

What are the unavoidable induced subgraphs of graphs

with large treewidth? It is well‐known that the answer

must include a complete graph, a complete bipartite

graph, all subdivisions of a wall and line graphs of all

subdivisions of a wall (we refer to these graphs as the

“basic treewidth obstructions”). So it is natural to ask

whether graphs excluding the basic treewidth obstruc-

tions as induced subgraphs have bounded treewidth.

Sintiari and Trotignon answered this question in the

negative. Their counterexamples, the so‐called “layered
wheels,” contain wheels, where a wheel consists of a hole

(i.e., an induced cycle of length at least four) along with a

vertex with at least three neighbors in the hole. This leads

one to ask whether graphs excluding wheels and the

basic treewidth obstructions as induced subgraphs have

bounded treewidth. This also turns out to be false due to

Davies' recent example of graphs with large treewidth, no

wheels and no basic treewidth obstructions as induced

subgraphs. However, in Davies' example there exist holes

and vertices (outside of the hole) with two neighbors in

them. Here we prove that a hole with a vertex with at

least two neighbors in it is inevitable in graphs with large

treewidth and no basic obstruction. Our main result is
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that graphs in which every vertex has at most one

neighbor in every hole (that does not contain it) and with

the basic treewidth obstructions excluded as induced

subgraphs have bounded treewidth.

KEYWORD S

induced subgraph, tree decomposition, treewidth

1 | INTRODUCTION

All graphs in this paper are finite and simple. Let H andG be graphs. We sayG contains H ifG
has an induced subgraph isomorphic to H (unless stated otherwise). We say that G is H ‐free if
G does not contain H . For a family of graphs, we say thatG is‐free ifG is H ‐free for every

∈H . A tree decomposition T χ( , ) of G consists of a tree T and a map →χ V T: ( ) 2V G( ) such
that the following hold:

(i) For every vertex ∈v V G( ), there exists ∈t V T( ) such that ∈v χ t( ).
(ii) For every edge ∈v v E G( )1 2 , there exists ∈t V T( ) such that ∈v v χ t, ( )1 2 .
(iii) For every ∈v V G( ), the subgraph of T induced by ∈ ∈t V T v χ t{ ( ) ( )} is connected.

If T χ( , ) is a tree decomposition of G and V T t t( ) = { , …, }n1 , the sets χ t χ t( ), …, ( )n1 are called
the bags of T χ( , ). The width of a tree decomposition T χ( , ) is ∈  χ tmax ( ) − 1t V T( ) . The treewidth
of G, denoted Gtw( ), is the minimum width of a tree decomposition of G.

Treewidth is an extensively studied graph parameter, mostly due to the fact that graphs of
bounded treewidth exhibit interesting structural [16] and algorithmic [9] properties. It is thus of
interest to understand the unavoidable substructures emerging in graphs of large treewidth
(these are often referred to as “obstructions to bounded treewidth”). For instance, for each k,
the k k( × )‐wall, denoted by Wk k× , is a planar graph with maximum degree three and with
treewidth k (see Figure 1; a precise definition can be found in [3]). Every subdivision ofWk k× is
also a graph of treewidth k. The unavoidable subgraphs of graphs with large treewidth are fully
characterized by the Grid Theorem of Robertson and Seymour, the following.

Theorem 1.1 (Robertson and Seymour [15]). There is a function →f : such that
every graph of treewidth at least f k( ) contains a subdivision ofWk k× as a subgraph.

FIGURE 1 W5×5.
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Following the same line of thought, our motivation in this series is to study induced
subgraph obstructions to bounded treewidth. In addition to subdivided walls mentioned above,
complete graphs and complete bipartite graphs are easily observed to have arbitrarily large
treewidth: the complete graph Kt+1 and the complete bipartite graph Kt t, both have treewidth t .
Line graphs of subdivided walls form another family of graphs with unbounded treewidth,
where the line graph L F( ) of a graph F is the graph with vertex set E F( ), such that two vertices
of L F( ) are adjacent if the corresponding edges of G share an end.

We call a family  of graphs useful if there exists an integer c( ) such that every ‐free
graph has treewidth at most c( ). The discussion above can be summarized as follows:

Theorem 1.2. If  is a useful family of graphs, then there exists an integer t such that
 contains K K,t t t, , an induced subgraph of each subdivision of Wt t× and an induced
subgraph of the line graph of each subdivision ofWt t× .

The following was conjectured in [1] and proved in [13]:

Theorem 1.3 (Korhonen [13]). For all k, Δ > 0, there exists c c k= ( , Δ) such that every
graph with maximum degree at most Δ and treewidth at least c contains a subdivision of
Wk k× or the line graph of a subdivision ofWk k× as an induced subgraph.

The bounded‐degree condition of Theorem 1.3 implies that KΔ+2 and KΔ+1,Δ+1 are excluded.
However, Theorem 1.3 does not hold if “bounded degree” is replaced by excluding KΔ+2 and
KΔ+1,Δ+1, as is evidenced by the constructions of [11, 17] and [18]. Thus a natural question
arises: what can replace this condition? Let us call a family  of graphs helpful if the following
holds: for all t > 0, there exists c c t= ( ) such that every  ‐free graph with treewidth more than
c contains Kt, Kt t, , a subdivision ofWt t× or the line graph of a subdivision ofWt t× .

A hole in a graph is an induced cycle of length at least four. The length of a hole is the
number of vertices in it. A wheel is a graph consisting of a hole C and a vertex v with at least
three neighbors inC (in the literature, sometimes further restrictions are placed on the location
of the neighbors of v in C). In view of the prevalence of wheels in the construction of [18], one
might ask if the family of all wheels is helpful. The answer to this question is negative, because
of the construction of [11, 17] (see Figure 2 for an example; we omit the precise definition). This
paper is motivated by the following question: what wheel‐like families may be helpful (where
by “wheel‐like” we mean graphs consisting of a hole and a vertex with certain neighbors in it)?

FIGURE 2 A wheel‐free graph with large treewidth [11, 17].
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In view of the existence of the faimly depicted in Figure 2, a helpful wheel‐like family must
contain a graph consistng of a hole and a vertex with at most two neighbors in it. Let 1 be the
family of all graphs consisting of a hole C and a vertex outside of C with at least two neighbors
in C. The class of 1‐free graphs was studied in [2]; in Section 6 we strengthen their results. A
crucial difference between Theorem 6.3 and [2] is that in [2] only the existence of certain
cutsets is shown, while we are able to guarantee that every heavy seagull is broken by a cutset
of the required type (see Section 6 for details).

Our main result in this paper is the following:

Theorem 1.4. The family 1 is helpful.

In fact, we prove something stronger. In the following, the length of a path is its number of
edges. A pyramid is a graph consisting of a vertex a, a triangle b b b{ , , }1 2 3 , and three paths Pi
from a to bi for ≤ ≤i1 3 of length at least one, such that for ≠i j the only edge between ⧹P a{ }i

and ⧹P a{ }j is b bi j, and at most one of P P P, ,1 2 3 has length exactly one.
A prism is a graph consisting of two triangles a a a{ , , }1 2 3 and b b b{ , , }1 2 3 , and three paths Pi

from ai to bi for ≤ ≤i1 3, all of length at least one, and such that for ≠i j the only edges
between Pi and Pj are a ai j and b bi j.

Let 2 be the family of all graphs consisting of a hole C and a vertex outside of C with at
least two nonadjacent neighbors inC, together with all prisms and all pyramids. Note that each
graph in 2 contains a graph in 1 (so the class of 1‐free graphs is properly contained in the
class of 2‐free graphs). We prove:

Theorem 1.5. The family 2 is helpful.

Let us next restate Theorem 1.5 more explicitly. Let r be an integer. A graph G is r‐sparse if
for every hole H ofG and vertex ∉v H , there is an r‐edge path P of H such that ∩ ⊆N v H P( ) .
A graph is sparse if it is 1‐sparse, that is for every hole H ofG and vertex ∉v H , there is an edge
ab of H such that ∩ ⊆N v H a b( ) { , }. A graph is very sparse if it is sparse and also (pyramid,
prism)‐free (thus a graph is very sparse if and only if it is 2‐free). It follows that if G is sparse,
thenG does not contain K3,3, and ifG is very sparse thenG does not contain the line graph of a
subdivision ofW3×3. Let  be the family of all very sparse graphs, and let t be the family of all
very sparse graphs with no clique of size at least t + 1.

We prove:

Theorem 1.6. For all t > 0, there exists c c t= ( ) such that every graph in t with
treewidth more than c contains a subdivision ofWt t× (as an induced subgraph).

Analyzing the graph in Figure 2 suggests that Theorem 1.6 may be strengthened further by
addressing sparse graphs, instead of very sparse graphs. We conjecture:

Conjecture 1.7. For all t > 0, there exists c c t= ( ) such that every sparse graph with no
clique of size t and with treewidth more than c contains a subdivision of Wt t× or the line
graph of a subdivision ofWt t× (as an induced subgraph).

We also ask if the analogue of Conjecture 1.7 is true for r‐sparse graphs in general (where c
depends on t and r).
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The rough outline of the proof of Theorem 1.6 is as follows. Our first step is to show that if
a graph in t contains a triangle, then it admits a clique cutset. Thus it is enough to prove the
result for graphs in 2. Now let ∈G 2. A heavy seagull in G is an induced three‐vertex path
both of whose ends have degree at least three in G. First we prove that every heavy seagull of
G is “broken” by a two‐clique‐separation (this means that for every heavy seagull H of G,
there exist two cliques ∈K K G,1 2 such that no component of ⧹ ∪G K K( )1 2 contains H). Now
the idea is to use the central bag method, developed in earlier papers in this series [3, 5–7], to
identify an induced subgraph β of G that contains no heavy seagull, and such that the
treewidth of G is not much larger than the treewidth of β. The key difference between our
situation here and those in the earlier papers is that the cutsets we use to break the heavy
seagulls are not connected, a property that was crucial in the earlier proofs. To deal with this
difficulty, we change the definition of a central bag, including in it a path between the two
cliques of the cutset whose interior is in ⧹G β (this is in the spirit of, but different from,
“marker paths” for 2‐joins). We then modify the previously known central bag tools to work
in this new setting. By “breaking” heavy seagulls, we arrange that in β, vertices of degree at
least three appear in components of bounded size. This in turn allows us to bound the
treewidth of β, and theorem follows.

1.1 | Definitions and notation

Let G be a graph. For ⊆X V G( ), we denote by G X[ ] the induced subgraph of G with vertex set
X , and ⧹G X denotes ⧹G V G X[ ( ) ]. In this paper, we use the set X and the subgraph G X[ ] of G
interchangeably. If F is a graph and G X[ ] is isomorphic to F , we say that X is an F in G. Let
∈v V G( ). The open neighborhood of v, denoted N v( ), is the set of all vertices in V G( ) adjacent

to v. We denote the degree of v inG by  v N vdeg ( ) = ( )G . The closed neighborhood of v, denoted
N v[ ], is ∪N v v( ) { }. Let ⊆X V G( ). The open neighborhood of X , denoted N X( ), is the set of all
vertices in ⧹V G X( ) with a neighbor in X . The closed neighborhood of X , denoted N X[ ], is

∪N X X( ) . If H is an induced subgraph of G and ⊆X V G( ), then ∩N X N X H( ) = ( )H . Let
⊆Y V G( ) be disjoint from X . Then, X is complete to Y if every vertex of X is adjacent to every

vertex of Y , and X is anticomplete to Y if there are no edges between X and Y . We use ∪X v to
mean ∪X v{ }, and ⧹X v to mean ⧹X v{ }.

Given a graph G, a path in G is an induced subgraph of G that is a path. If P is a path in G,
we write ⋯P p p= − − k1 to mean that pi is adjacent to pj if and only if  i j− = 1. We call the
vertices p1 and pk the ends of P, and say that P is from p1 to pk. The interior of P, denoted by P*,
is the set ⧹P p p{ , }k1 . The length of a path P is the number of edges in P.

A theta is a graph T containing two vertices a b, and three paths P P P, ,1 2 3 from a to b of
length at least two, such that ⧹ ⧹ ⧹P a b P a b P a b{ , }, { , }, { , }1 2 3 are pairwise disjoint and
anticomplete to each other. We call a b, the ends of T .

1.2 | Organization of the paper

This paper is organized as follows. In Section 2, we give general background and definitions
related to separations in graphs; we also discuss connections between different kinds of
separations in the special case of sparse graphs. In Section 3, we reduce Theorem 1.6 to the case
of triangle‐free sparse graphs. In Section 4, we discuss balanced separators in graphs, and
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develop our main tool, Theorem 4.5, which allows us to use the central bag method. In
Section 5, we prove results about two‐clique‐separations, which are the cutsets that will be used
to form the central bag. In Section 6, we prove structural results that allow us to break every
heavy seagull in a triangle‐free sparse graph and produce a central bag that contains no heavy
seagulls. In Section 7, we use the tools of Section 4 to prove our main result for graphs in 2.
Finally, in Section 8, we prove Theorem 1.6. We remark that some theorems in the paper are
proved in greater generality than what is needed here. That is because we expect these more
general statements to be used in later papers in the series.

2 | SEPARATIONS

A separation of a graphG is a triple A C B( , , ), where ⊆A B C V G, , ( ), ∪ ∪A C B V G= ( ), A, B,
and C are pairwise disjoint, and A is anticomplete to B. If S A C B= ( , , ) is a separation, we let
A S A( ) = , B S B( ) = , and C S C( ) = . We say that ⊆C V G( ) is a cutset of G if there exists a
separation A C B( , , ) ofG with ≠ ∅A and ≠ ∅B . A clique in a graph is a (possibly empty) set of
pairwise adjacent vertices. We say that G admits a clique cutset if there is a cutset of G that is a
clique (in particular every disconnected graph admits a clique cutset). A separation A C B( , , ) is
a star separation if there exists ∈v C such that ⊆C N v[ ] (we say that v is a center of C). A star
separation A C B( , , ) is proper if ≠ ∅A and ≠ ∅B . We say thatG admits a star cutset if there is
a proper star separation in G.

First we observe:

Lemma 2.1. LetG be a sparse graph and A C B( , , ) be a separation ofG with ≠ ∅A and
≠ ∅B . Suppose that there exist ∈v v C, …, k1 such that ⊆ C N v[ ]i

k
i=1 . Let D1 be a

component of A and let D2 be a component of B. Then there exist cliques ⊆X X C, …, k1 ofG
such that every path from a vertex of D1 to a vertex of D2 meets  Xi

k
i=1 . In particular, if G

admits a star cutset, then G admits a clique cutset.

Proof. Let ⊆N N D C= ( )1 1 , and let D′2 be the component of ⧹ ∪G N v v( { , …, })k1 1 such
that ⊆D D′2 2. Let ∪X N D v v= ( ′) { , …, }k2 1 . Then ⊆ ∪ ⊆X N v v C{ , …, }k1 1 , and every path
from a vertex of D1 to a vertex of D′2 in G meets X . We claim that for every ∈i k{1, …, }

the set ∩X N v[ ]i is a clique. Suppose not, and let ∈ ∩x y X N v, [ ]1 (say) be nonadjacent
(and so in particular, ≠x y v, 1). It follows that ∈ ∩x y N D N D, ( ) ( ′ )1 2 . Let P1 be a path
from x to y with ⊆P D*1 1 and let P2 be a path from x to y with ⊆P D* ′2 2. Then
H x P y P x= − − − −1 2 is a hole and ∉v H1 since ∈v X1 . But now v1 has two
nonadjacent neighbors in H , contrary to the fact that G is sparse. □

Lemma 7 from [8] shows that clique cutsets do not affect treewidth. Now, by Lemma 2.1, it
follows that to prove Theorem 1.6 it is enough to prove the following:

Theorem 2.2. For all t > 0, there exists c c t= ( ) such that every graph in t with
treewidth more than c and with no star cutset contains a subdivision of Wt t× as an
induced subgraph.
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3 | REDUCING TO THE TRIANGLE ‐FREE CASE

In this section, we show how to deduce Theorem 1.6 from the special case of triangle‐free
graphs. A diamond is the graph obtained from K4 by removing an edge.

Lemma 3.1. Let G be a sparse graph and assume that G does not admit a star cutset.
Then G is diamond‐free.

Proof. Suppose first a b c d{ , , , } is a diamond in G. We may assume that the pair ac is
nonadjacent. Since b is not the center of a star cutset in G, it follows that there exists is a
path from a to c with no neighbor of b in its interior. Let P be such a path. Then d is not a
vertex of P, since d is adjacent to b. Moreover, a − P − c − b− a is a hole, and d has three
neighbors in it, namely a, b and c, a contradiction. This proves thatG is diamond‐free. □

We also need the following folklore result that appeared in [4]:

Lemma 3.2. Let x x x, ,1 2 3 be three distinct vertices of a graph G. Assume that H is a
connected induced subgraph of ⧹G x x x{ , , }1 2 3 such that V H( ) contains at least one neighbor
of each of x1, x2, x3, and that V H( ) is minimal subject to inclusion. Then, one of the
following holds:

(i) For some distinct ∈i j k, , {1, 2, 3}, there exists P that is either a path from xi to xj or a
hole containing the edge x xi j such that
• ⧹V H V P x x( ) = ( ) { , }i j , and
• either xk has two nonadjacent neighbors in H or xk has exactly two neighbors in H

and its neighbors in H are adjacent.
(ii) There exists a vertex ∈a V H( ) and three paths P P P, ,1 2 3, where Pi is from a to xi,

such that
• ∪ ∪ ⧹V H V P V P V P x x x( ) = ( ( ) ( ) ( )) { , , }1 2 3 1 2 3 , and
• the sets ⧹V P a( ) { }1 , ⧹V P a( ) { }2 and ⧹V P a( ) { }3 are pairwise disjoint, and
• for distinct ∈i j, {1, 2, 3}, there are no edges between ⧹V P a( ) { }i and ⧹V P a( ) { }j ,

except possibly x xi j.
(iii) There exists a triangle a a a1 2 3 in H and three paths P P P, ,1 2 3, where Pi is from ai to xi,

such that
• ∪ ∪ ⧹V H V P V P V P x x x( ) = ( ( ) ( ) ( )) { , , }1 2 3 1 2 3 , and
• the sets V P( )1 , V P( )2 and V P( )3 are pairwise disjoint, and
• for distinct ∈i j, {1, 2, 3}, there are no edges between V P( )i and V P( )j , except a ai j

and possibly x xi j.

Lemma 3.3. Let ∈G . Then either ∈G 2, G is a complete graph, or G admits a star
cutset.

Proof. We may assume that G does not admit a star cutset and G is not a complete
graph. Let K be an inclusion‐wise maximal clique of G with  K > 2, and let ⧹D G K= .
Since G does not admit a clique cutset and is not a complete graph, it follows that D is
connected, nonempty, and every vertex of K has a neighbor in D. By Lemma 3.1, it
follows that G does not contain a diamond.

548 | ABRISHAMI ET AL.
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(1) Let ∈v D. Then v has at most one neighbor in K .

Assume that v has at least two neighbors in K , say k1 and k2. Since K is a maximal
clique, there exists ∈k K3 nonadjacent to v. But now v k k k{ , , , }1 2 3 is a diamond, a
contradiction. This proves (1).

Now let ∈x x x K, ,1 2 3 . Apply Lemma 3.2 to x x x{ , , }1 2 3 and a minimal connected
subgraph H of D containing at least one neighbor of each of x x x, ,1 2 3. By (1), we have that

≥ V H( ) 3. Now the first outcome of Lemma 3.2 gives a hole and a vertex with two
nonadjacent neighbors in it, the second outcome gives a pyramid, and the third gives a
prism. In all cases we get a contradiction to the fact that ∈G . □

Now, by Lemma 3.3, to prove Theorem 2.2 it is enough to prove:

Theorem 3.4. For all k, there exists c c k= ( ) such that every graph in 2 with no star
cutset and with treewidth more than c contains a subdivision of Wk k× as an induced
subgraph.

4 | BALANCED SEPARATORS AND CENTRAL BAGS

Let G be a graph, and let →w V G: ( ) [0, 1]. For ⊆X V G( ), we write w X( ) for ∈ w x( )x X . We

call w a weight function on G if w G( ) = 1. Now let ∈c [ , 1)
1

2
. A set ⊆X V G( ) is a w c( , )‐

balanced separator if ≤w D c( ) for every component D of ⧹G X . The next two lemmas show how
w c( , )‐balanced separators relate to treewidth. The first result was originally proved in [14], and
tightened by Harvey and Wood in [12]. It was then restated and proved in the language of
w c( , )‐balanced separators in [3].

Lemma 4.1 (Abrishami and colleagues [3, 12, 14]). Let G be a graph, let ∈c [ , 1)
1

2
, and

let k be a positive integer. If G has a w c( , )‐balanced separator of size at most k for every

weight function w on G, then ≤G ktw( )
c

1

1−
.

Lemma 4.2 (Cygan et al. [10] and Robertson and Seymour [14]). LetG be a graph and let
k be a positive integer. If ≤G ktw( ) , then G has a w c( , )‐balanced separator of size at most
k + 1 for every ∈c [ , 1)

1

2
and for every weight function w on G.

A pair G w( , ) is d‐unbalanced if w is a weight function on G, and G has no w( , )
1

2
‐balanced

separator of size at most d (if there is a w( , )
1

2
‐balanced separator of size at most d, we say that

G w( , ) is d‐balanced).
Let M be an integer, letG be a graph and let K K,1 2 be two cliques ofG, each of size at most

M . Let G w( , ) be a K2 ‐unbalanced pair. Following [7], we define the canonical two‐clique‐
separation for K K{ , }1 2 , as follows. Let B K K( , )1 2 be a component of ⧹ ∪G K K( )1 2 with

w B K K( ( , ))1 2 maximum. Since G w( , ) is K2 ‐unbalanced, it follows that ∪K K1 2 is not a w( , )
1

2
‐

balanced separator; consequently w B K K( ( , )) >1 2
1

2
, and so the choice of B K K( , )1 2 is unique.
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Let A K K( , ) =1 2 ⧹ ∪ ∪G B K K K K( ( , ) )1 2 1 2 and ∪C K K K K( , ) =1 2 1 2. Now S K K A K K( , ) = ( ( , ),1 2 1 2

C K K( , ),1 2 B K K( , ))1 2 is the canonical two‐clique‐separation corresponding to K K{ , }1 2 .
For the remainder of this section, let M be an integer, and let G w( , ) be a K2 ‐unbalanced

pair. Let K K K K, , ,1
1

2
1

1
2

2
2 be cliques in G. For ∈i {1, 2}, let S A C B= ( , , )i i i i be the canonical two‐

clique‐separation for K K{ , }i i
1 2 . We say that A C B( , , )1 1 1 and A C B( , , )2 2 2 are noncrossing if

∪ ⊆ ∪A C B C1 1 2 2 and ∪ ⊆ ∪A C B C2 2 1 1, and that A C B( , , )1 1 1 and A C B( , , )2 2 2 are loosely
noncrossing if ∩ ∩ ∅A C A C= =1 2 2 1 . Clearly, if S1 and S2 are noncrossing, then they are
loosely noncrossing. (Note that here we break the symmetry between Ai and Bi, and so our
definition is slightly different from the classical definition of [15].)

The following observation follows immediately from the definition of a canonical two‐
clique‐separation.

Lemma 4.3. Assume that G does not admit a star cutset. Let K K,1 2 be cliques of size at
most M in G such that ≠ ∅A K K( , )1 2 . Then the following hold.

(1) ∩ ∅K K =1 2 .
(2) Let D be a component of ⧹ ∪G K K( )1 2 . Then ∩ ≠ ∅N D K( ) i for all ∈i {1, 2}, and so

there is a path from a vertex of K1 to a vertex of K2 with nonempty interior in D.

Throughout this section, let  be a set of sets K K{ , }1 2 , where each of K K,1 2 is a clique of size
at most M of G, and let  be the set of canonical two‐clique‐separations corresponding to
members of  . Moreover, we will assume each pair of separations in  is loosely noncrossing.

We would now like to define a central bag for  . Roughly speaking, this central bag is the
intersection of the heavy blocks ∪B S C S( ) ( ) of the separations, together with some paths that
capture the important w‐related information about the light blocks. To define it, we start by
considering the connected components of the union ∈ A S( )S of the light sides of the
separations. We first note that, given such a component D and an ∈S0 , we either have
⊆D A S( )0 or ∩ ∅D A S( ) =0 . Indeed, ⊆N A S C S( ( )) ( )0 0 , and so if D simultaneously contains

vertices in A S( )0 and vertices not in A S( )0 , then ⧹D A S( )0 must contain vertices in C S( )0 ;
but ⧹ ⊆ ∈ ≠D A S A S( ) ( )S S S0 : 0

, which has empty intersection with C S( )0 by the loosely
noncrossing property—a contradiction.

We now want to “reorganize” the A S( ) by assigning each component of ∈ A S( )S to a
unique A K K( , )1 2 in a consistent way. To that end, we fix a total order π on  , and group the
components according to the π‐minimal K K{ , }1 2 to whose A S( ) they belong. Specifically, for

∈K K{ , }1 2 , we let A K K*( , )1 2 be the union of all components D of A K K( , )1 2 such that for all
∈K K{ ′, ′}1 2 with ⊆D A K K( ′, ′)1 2 , ≤π A K K π A K K( ( , )) ( ( ′, ′))1 2 1 2 .

Now, by Lemma 4.3, for every K K{ , }1 2 with ≠ ∅A K K*( , )1 2 , there exists a path P*K K1 2
in

A K K*( , )1 2 whose two (possibly coinciding) endpoints have a neighbor in K1 and in K2,
respectively. Let  ∈ ≠ ∅K K A K K′ = {{ , } *( , ) }1 2 1 2 , and write

 
∪ ∪ ∪

∈ ∈

 β B K K K K P= ( ( , ) ) * .
K K K K

K K
{ , } ′

1 2 1 2
{ , } ′1 2 1 2

1 2

We call β a central bag for  . We write  ∪ ∪∈β B K K K K* = ( ( , ) )K K{ , } ′ 1 2 1 21 2
. Note that the

choice of β is not unique since the choice of the paths P*K K1 2
is not unique. Observe that

⧹ ∈β V G A S* = ( ) ( )S .
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Let wβ be the function on β defined as follows. For ∈v β*, we set w v w v( ) = ( )β . Next let
∈K K{ , } ′1 2 , and let aK K,1 2

be the endpoint of P*K K1 2
adjacent to a vertex of K1; set

( )w a w A K K= ( *( , ))β K K, 1 21 2
. Let w v( ) = 0β for every ∈v β, where wβ has not been defined yet.

We call wβ the weight function inherited from w.

Lemma 4.4. The function wβ is a weight function, that is, w β( ) = 1β .

Proof. We note that, for any  ⊆0 , the pair of sets  ∪∈ B K K C K K( ( , ) ( , ))K K{ , } 1 2 1 21 2 0

and ∈ A K K( , )K K{ , } 1 21 2 0
partition V G( ). In particular,

 

∪
∈ ∈

 













w G w B K K C K K w A K K( ) = ( , ) ( , ) + ( , ) .

K K K K{ , } ′

1 2 1 2

{ , } ′

1 2

1 2 1 2

Moreover, by construction, ∈A K K( *( , )) K K1 2 { , } ′1 2
is a partition of ∈ A K K( , )K K{ , } ′ 1 21 2

,
so that

 

∪
∈ ∈

 





w G w B K K C K K w A K K( ) = ( , ) ( , ) + ( *( , )).

K K K K{ , } ′

1 2 1 2

{ , } ′

1 2

1 2 1 2

Since each A K K*( , )1 2 with ∈K K{ , } ′1 2 contains exactly one of the vertices aK K,1 2
, we have

 ∈ ∈

 w A K K w a( *( , )) = ( ).
K K K K

β K K

{ , } ′

1 2

{ , } ′

,

1 2 1 2

1 2

Putting everything together, we obtain:

 

 

∪

∪

∈ ∈

∈ ∈

 

 

















w β w B K K C K K w a

w B K K C K K w A K K

w G

( ) = ( , ) ( , ) + ( )

= ( , ) ( , ) + ( *( , ))

= ( ) = 1.

β β

K K K K

β K K

K K K K

{ , } ′

1 2 1 2

{ , } ′

,

{ , } ′
1 2 1 2

{ , } ′

1 2

1 2 1 2

1 2

1 2 1 2

□

For ∈v V G( ), let



∈ ∈

δ v K( ) = .
K v K L K L: and there exists such that{ , }

Theorem 4.5. Let d, Δ be integers. Assume that  ≤ δ v( ) Δ for every ∈v G. Assume also
that β w( , )β is d‐balanced. Then G w( , ) is Kd dmax(2 , Δ )‐balanced.

Proof. Suppose that X is a w( , )β
1

2
‐balanced separator in β with ≤ X d. We now

construct a w( , )
1

2
‐balanced separator Y of G with ≤ Y Kd dmax(2 , Δ ).
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Let



∩ ∪ ∪
∈







Y X B K K K K= ( ( , ) ) .

K K

1

{ , } ′

1 2 1 2

1 2

For ∈x Y1, let Y x δ x( ) = ( ). Now let ∈ ⧹x X Y1. It follows from the definition of
A K K*( , )1 2 and P*K K1 2

that ∈x P*K K1 2
for exactly one ∈K K{ , } ′1 2 ; let ∪Y x K K( ) = 1 2. Let

∈Y Y x= ( )x X . Then ≤ ≤     Y Y K d Y d KdΔ + 2 ( − ) max(Δ , 2 )1 1 , as required. Next we
prove that Y is a w( , )

1

2
‐balanced separator of G.

(2) Let F be a component of ⧹G β. Then, there exists ∈K K{ , }1 2 such that
⊆F A K K*( , )1 2 .

By construction of β, it holds that ⧹ ⊆ ∈G β A K K( , )K K{ , } 1 21 2
; consequently there exists

∈K K{ , }1 2 such that ⊆F A K K*( , )1 2 . This proves (2).

From now on, let D be a component of ⧹G Y . We will show that ≤w D( )
1

2
. Since

G w( , ) is K2 ‐unbalanced, it follows that w A K K( ( , )) <1 2
1

2
for all ∈K K{ , }1 2 , and so if D

is a component of ⧹G β, then by (2), it follows that ≤w D( )
1

2
. Thus we may assume that

∩ ≠ ∅D β .
Suppose first that ∩ ≠ ∅D A K K( , )1 2 for some ∈K K{ , }1 2 such that ∪ ⊆K K Y1 2 .

Since ⊆ ∪N A K K K K( ( , ))1 2 1 2 and ∪ ⊆K K Y1 2 , it follows that ⊆D A K K( , )1 2 , and so
w D( ) <

1

2
. Therefore, we may assume that ∩ ∅D A K K( , ) =1 2 for all ∈K K{ , }1 2 such

that ∪ ⊆K K Y1 2 . Next, suppose ∩ ≠ ∅D A K K( , )1 2 for ∈K K{ , } ′1 2 such that
∩ ≠ ∅P X*K K1 2

. Let ∈ ∩x P X*K K1 2
. Now, ∈ ⧹x X Y1, and so ∪ ⊆Y x K K Y( ) = 1 2 , a

contradiction. Therefore, we may assume that for all ∈K K{ , } ′1 2 such that
∩ ≠ ∅D A K K( , )1 2 , it holds that P*K K1 2

is disjoint from X , and thus P*K K1 2
is contained in

a component of ⧹β X . Let Q Q, …, m1 be the components of ⧹β X .

(3) Let ∈K K{ , } ′1 2 , and suppose that ⊆P Q*K K k1 2
. Then ∪ ⊆ ∪K K Q Yk1 2 .

Since ∩ ≠ ∅N P K( * )K K i1 2
for each ∈i {1, 2}, it follows that each of K K,1 2 either is

contained inQk or has a vertex in X . Since every two separations in  are loosely noncrossing,
it follows that each of K K,1 2 is either contained inQk or has a vertex inY1. Since  ⊆δ x Y( ) for
every ∈x Y1, it follows that for ∈i {1, 2}, if ∩ ≠ ∅K Yi 1 , then ⊆K Yi . This proves (3).

(4) Let ∈K K{ , } ′1 2 , and suppose that ∩ ≠ ∅N A K K Q( ( , )) k1 2 . Then either
∪ ⊆K K Y1 2 , or ⊆P Q*K K k1 2

. In particular, if ∪ ⊈K K Y1 2 , then there is at most one
∈k m{1, …, } with ∩ ≠ ∅N A K K Q( ( , )) k1 2 .

If ∩ ≠ ∅P X*K K1 2
, then ∪ ⊆K K Y1 2 , and (4) holds; so we may assume that

∩ ∅P X* =K K1 2
, and since P*K K1 2

is connected, it follows that ⊆P Q*K K k′1 2
for some

∈k m′ {1, …, }. If k k= ′, then (4) holds, so we may assume that ≠k k′. It follows from (3)
that ∪ ⊆ ∪K K Q Yk1 2 ′ and that ∪ ⊆ ≠ ∅K K Qk1 2 ′ , and thus ⊆ ∪N A K K Q Y( ( , )) k1 2 ′ , a
contradiction. This proves (4).
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Since ∩ ≠ ∅D β , it follows that for each ∈K K{ , } ′1 2 with ∩ ≠ ∅D A K K( , )1 2 ,
we have ∩ ≠ ∅D N A K K( ( , ))1 2 , and in particular ∪ ∩ ≠ ∅K K D( )1 2 , so ∪ ⊈K K Y1 2 .
Moreover, from (4), it follows that ⊆P Q*K K k1 2

for some ∈k m{1, …, }, and
∩ ∅N A K K Q( ( , )) =k1 2 ′ for all ≠k k′ . Since D is connected, it follows that there is

a ∈k m{1, …, } such that for every ∈K K{ , } ′1 2 with ∩ ≠ ∅D A K K( , )1 2 , we have
⊆ ∪N A K K Q Y( ( , )) k1 2 , and ⊆P Q*K K k1 2

. It follows that ∩ ⊆D β Qk, and ∈a QK K k,1 2
for

all such ∈K K{ , } ′1 2 , and therefore ≤ ≤w D w Q( ) ( )β k
1

2
. This concludes the proof. □

Let K K,1 2 be cliques of size at most M in G. We say that S K K( , )1 2 is proper (or that the pair
K K{ , }1 2 is proper) if

• some component D of A K K( , )1 2 satisfies ∪ ⊆K K N D( )1 2 , and
• if    K K= = 11 2 , then ∪ ∪A K K K K( , )1 2 1 2 is not a path from the vertex of K1 to the vertex
of K2.

We observe:

Lemma 4.6. Let K K,1 2 be cliques of size at most M in G and assume that S K K( , )1 2 is a
proper canonical two‐clique‐separation in G. Then either some vertex of A K K( , )1 2 has at
least three neighbors in ∪ ∪A K K K K( , )1 2 1 2, or some vertex of ∪K K1 2 has at least two
neighbors in A K K( , )1 2 .

Proof. Let D be a component of A K K( , )1 2 such that ∪ ⊆K K N D( )1 2 . Then N D[ ] has a
spanning tree T such that every vertex of ∪K K1 2 is a leaf of T . If  K > 11 , then T has at
least three leaves, and therefore some vertex of D has degree at least three in N D[ ] as
required. Thus we may assume that    K K= = 11 2 . If N D[ ] is not a path from the vertex
of K1 to the vertex of K2, then some vertex of D has at least three neighbors in N D[ ], and
again theorem holds. Thus we may assume that N D[ ] is a path from the vertex of K1 to
the vertex of K2. Since S K K( , )1 2 is proper, ≠A K K D( , )1 2 . Let D′ be a component of

⧹A K K D( , )1 2 . By Lemma 4.3, we have that ⊆K N D( ′)1 . But then the vertex of K1 has at
least two neighbors in A K K( , )1 2 as required. □

We say that S K K( , )1 2 is active (or that the pair K K{ , }1 2 is active) if it is proper and for
every pair of cliques K K′, ′1 2 of size at most M in G such that S K K( ′, ′)1 2 is proper and
∪ ≠ ∪K K K K′ ′1 2 1 2, it holds that

• ∪ ∪B K K K K( ′, ′) ′ ′1 2 1 2 is not a proper subset of ∪ ∪B K K K K( , )1 2 1 2; and
• if ∪ ∪ ∪ ∪B K K K K B K K K K( ′, ′) ′ ′ = ( , )1 2 1 2 1 2 1 2, then ⊂B K K B K K( ′, ′) ( , )1 2 1 2 .

Lemma 4.7. Let K K,1 2 be cliques of G of size at most M . If S K K( , )1 2 is active, then
∪ ⊆K K N B K K( ( , ))1 2 1 2 .

Proof. Suppose not. We may assume that there exists ∈x K1 such x has no neighbor in
B K K( , )1 2 . Then ∪ ∪ ⧹A K K x K K x B K K( ( , ) { }, ( ) { }, ( , ))1 2 1 2 1 2 is a proper two‐clique‐separation
of G contrary to the fact that S is active. □
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5 | TWO ‐CLIQUE ‐SEPARATIONS

The main result of this section will allow us to apply Theorem 4.5 with M = 2:

Theorem 5.1. Let ∈G 2 and let G w( , ) be an 8‐unbalanced pair. Let K K K K, , ′, ′1 2 1 2 be
cliques of G such that the separations S S K K= ( , )1 2 and S S K K′ = ( ′, ′)1 2 are active in G.

Assume also that G admits no star cutset. Then S and S′ are loosely noncrossing.

Proof. Suppose that S and S′ are not loosely noncrossing. Then ∪ ∩C K K C K K( ( , ) ( ′, ′))1 2 1 2

∪ ≠ ∅A K K A K K( ( , ) ( ′, ′))1 2 1 2 . Since w B K K( ( , )) >1 2
1

2
and w B K K( ( ′, ′)) >1 2

1

2
, it follows that

∩ ≠ ∅B K K B K K( , ) ( ′, ′)1 2 1 2 .

(5) ∩ ≠ ∅C K K B K K( , ) ( ′, ′)1 2 1 2 .

Suppose ∩ ∅C K K B K K( , ) ( ′, ′) =1 2 1 2 . Since B K K( ′, ′)1 2 is connected, it follows that
∩ ∅A K K B K K( , ) ( ′, ′) =1 2 1 2 . Since by Lemma 4.7 every vertex of ∪K K′ ′1 2 has a neighbor

in B K K( ′, ′)1 2 it follows that ∩ ∅A K K C K K( , ) ( ′, ′) =1 2 1 2 . But now ∪ ∪B K K K( ′, ′) ′1 2 1

⊆ ∪ ∪K B K K K K′ ( , )2 1 2 1 2. Since S is active, it follows that ∪ ∪B K K K K( ′, ′) ′ ′ =1 2 1 2

∪ ∪B K K K K( , )1 2 1 2. But now one of S, S′ is not active by the second bullet of the
definition of being active, a contradiction. This proves (5).

(6) ∩ ≠ ∅C K K A K K( ′, ′) ( , )1 2 1 2 .

Suppose ∩ ∅C K K A K K( ′, ′) ( , ) =1 2 1 2 . Then, since S and S′ are not loosely noncrossing,
∩ ≠ ∅C K K A K K( , ) ( ′, ′)1 2 1 2 . By (5), ∩ ≠ ∅C K K B K K( , ) ( ′, ′)1 2 1 2 . Let D K K( , )1 2 be a

component of A K K( , )1 2 such that ∪ ⊆K K N D K K( ( , ))1 2 1 2 . Since ∩C K K( ′, ′)1 2

∅A K K( , ) =1 2 it holds that either ⊆D K K B K K( , ) ( ′, ′)1 2 1 2 or ⊆D K K A K K( , ) ( ′, ′)1 2 1 2 . In
the former case D K K( , )1 2 is anticomplete to ∩C K K A K K( , ) ( ′, ′)1 2 1 2 , and in the latter
case D K K( , )1 2 is anticomplete to ∩C K K B K K( , ) ( ′, ′)1 2 1 2 ; in both cases a contradiction. This

proves (6).
By (5), (6), and symmetry each of the four sets ∩C K K A K K( , ) ( ′, ′)1 2 1 2 ,

∩C K K B K K( , ) ( ′, ′)1 2 1 2 , ∩C K K A K K( ′, ′) ( , )1 2 1 2 , ∩C K K B K K( ′, ′) ( , )1 2 1 2 is nonempty. Since

each of the sets K K K K, , ′, ′1 2 1 2 is a clique, we may assume that ∩ ≠ ∅K B K K( ′, ′)1 1 2 ,
∩ ≠ ∅K A K K( ′, ′)2 1 2 , ∩ ≠ ∅K B K K′ ( , )1 1 2 , and ∩ ≠ ∅K A K K′ ( , )2 1 2 , and therefore
⊆ ∪ ∪K B K K K K( ′, ′) ′ ′1 1 2 1 2, ⊆ ∪ ∪K A K K K K( ′, ′) ′ ′2 1 2 1 2, ⊆ ∪ ∪K B K K K K′ ( , )1 1 2 1 2, and
⊆ ∪ ∪K A K K K K′ ( , )2 1 2 1 2.

(7) There is a component D of ∪A K K A K K( , ) ( ′, ′)1 2 1 2 such that ∪ ∪ ∪K K K′1 2 1

⊆K N D′ [ ]2 .

Let D K K( , )1 2 be a component of A K K( , )1 2 such that ∪ ⊆K K N D K K( ( , ))1 2 1 2 and
let D K K( ′, ′)1 2 be a component of A K K( ′, ′)1 2 such that ∪ ⊆K K N D K K′ ′ ( ( ′, ′))1 2 1 2 (such
components exist because S and S′ are active, and hence proper). Since ∩C K K( , )1 2

≠ ∅B K K( ′, ′)1 2 and ∩ ≠ ∅C K K A K K( , ) ( ′, ′)1 2 1 2 it follows that ⊈D K K A K K( , ) ( ′, ′)1 2 1 2 and
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⊈D K K B K K( , ) ( ′, ′)1 2 1 2 , and therefore ∩ ≠ ∅D K K C K K( , ) ( ′, ′)1 2 1 2 . Similarly ∩D K K( ′, ′)1 2

≠ ∅C K K( , )1 2 . Consequently ∪D K K D K K( , ) ( ′, ′)1 2 1 2 is connected. Now set D to
be the component of ∪A K K A K K( , ) ( ′, ′)1 2 1 2 that contains ∪D K K D K K( , ) ( ′, ′)1 2 1 2 , and (7)

holds.
Since G w( , ) is 8‐unbalanced, there is a component B of ⧹ ∪ ∪ ∪G K K K K( ′ ′)1 1 2 2 with

w B( ) >
1

2
. Then ⊆ ∩B B K K B K K( , ) ( ′, ′)1 2 1 2 . Let C N B= ( ) and let ⧹ ∪A G B C= ( ). Then

A C B( , , ) is a separation of G. Note that ⊆ ∪ ⧹ ∪C C K K C K K A K K( ( , ) ( ′, ′)) ( ( , )1 2 1 2 1 2

A K K( ′, ′))1 2 .

(8) ∩ ≠ ∅K K′2 2 and ∩ ∪C K K( ′)1 1 is not a clique.

Note first that, since ⊆B B K K( , )1 2 , we have ⊆ ∪ ⧹N B C K K C K K( ) ( ( , ) ( ′, ′))1 2 1 2

A K K( , )1 2 . Then in view of the last sentence before (7), this means ⊆ ∪ ∪N B K K( ) 1 2 K′1.
Similarly, since ⊆B B K K( ′, ′)1 2 , we obtain that ⊆ ∪ ∪N B K K K( ) ′ ′1 2 1. This shows that, if
∩ ∅K K′ =2 2 , or if ∩ ∪C K K( ′)1 1 is a clique, thenC is the union of two cliques, say X and

Y , and so A C B( , , ) is a two‐clique‐separation of G. We claim that A C B( , , ) is proper. By
(7) there is a component D of A such that ∪ ∪ ∪ ⊆K K K K N D′ ′ [ ]1 2 1 2 ,
and therefore ⊆C N D( ). If  C > 2, the claim follows. Since G does not admit a clique
cutset, we may assume that X x= { } and Y y= { } and x is nonadjacent to y. We need to
show that A is not a path from x to y. Suppose it is. Then every vertex of A has exactly
two neighbors in ∪ ∪A X Y , and each of x y, has exactly one neighbor in A. Since

∪ ⊆A K K A K K A( , ) ( ′, ′)1 2 1 2 , this contradicts Lemma 4.6. This proves the claim that

A C B( , , ) is proper.
Observe that ∪ ⊆ ∪ ∪B C B K K K K( , )1 2 1 2. Since ∩ ≠ ∅C K K A K K( , ) ( ′, ′)1 2 1 2 , the

inclusion is proper and we get a contradiction to the fact that S is active. This
proves (8).

In view of (8), we write ∩K K s′ = { }2 2 . Note that    K K, ′ = 22 2 , since we know
∩K A K K( ′, ′)2 1 2 and ∩K A K K′ ( , )2 1 2 are nonempty, and ∉ ∪s A K K A K K( , ) ( ′, ′)1 2 1 2 . Hence

write K s t= { , }2 and K s r′ = { , }2 , with ∈t A K K( ′, ′)1 2 and ∈r A K K( , )1 2 . Also by (8), there

exist nonadjacent ∈ ∩k K C1 1 and ∈ ∩k K C′ ′1 1 . Let P be a path from k1 to k′1 with ⊆P B* .
Let Q be a path from k1 to k′1 with ⊆Q D* , where D is as in (7). Then
H k P k Q k= − − ′ − −1 1 1 is a hole.

(9) ∩ ≠ ∅A K K A K K( , ) ( ′, ′)1 2 1 2 .

Suppose that ∩ ∅A K K A K K( , ) ( ′, ′) =1 2 1 2 . Since S′ is proper, r has a neighbor
∈x A K K( ′, ′)1 2 . Since ∈r A K K( , )1 2 , we have ∈ ∪x A K K C K K( , ) ( , )1 2 1 2 , but by

assumption, ∩ ∅A K K A K K( , ) ( ′, ′) =1 2 1 2 , so we conclude ∈ ∪x C K K K s t( , ) = { , }1 2 1 .
From above, ⊆ ∪K B K K C K K( ′, ′) ( ′, ′)1 1 2 1 2 , and ∈s C K K( ′, ′)1 2 , so the only possible
neighbor of r lying in A K K( ′, ′)1 2 is t . But now s t r{ , , } is a triangle, contrary to the fact

that ∈G 2. This proves (9).
Since ∩ ⊆ ∪ ∪ ∩N A K K A K K K K K K( ( , ) ( ′, ′)) ′ ( ′)1 2 1 2 2 2 1 1 , and since ∪K K′2 2 is not a star

cutest in G, it follows that ∩ ≠ ∅K K′1 1 . Let ∈ ∩x K K′1 1. Now x has two nonadjacent
neighbors in H , namely k1 and k′1, contrary to the fact that ∈G 2. □
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6 | HEAVY SEAGULLS

A seagull is a graph that is a three‐vertex path. Given a seagull F a v u= − − inG, an induced
subgraph T of G is a theta through F if T is a theta, one of a, u is an end of T , and ⊆F T . A
seagull a v u− − is heavy if adeg ( ) > 2G and udeg ( ) > 2G . A heavy seagull is extendable if
there is a theta through it in G. The goal of this section is to show that every heavy seagull is
“broken” by some two‐clique‐separation. We start with a lemma. Recall that for a path P with
end s t, we denote by P* the set ⧹P s t{ , }.

Lemma 6.1. Let ∈G 2, let F a= − v1 − u1 be a seagull in G and let T be a theta
through F in G. Let the ends of T be a b, and let the paths of T be P P P, ,1 2 3 where ⊆F P1.
Assume thatT is chosen with  P1 minimum among all thetas through F with end a inG. Let
P be a path from u1 to ∪ ⧹P P N b( ) [ ]2 3 . Then P* contains a vertex of ∪N b N v[ ] [ ]1 .

Proof. Suppose for a contradiction that ∩ ∪ ∅P N b N v* ( [ ] [ ]) =1 . Let N b( ) =T

w w w{ , , }1 2 3 where ∈w Pi i. Then P contains a path ⋯Q q q= − − k1 such that q1 has a
neighbor in ⧹P a v b{ , , }1 1 , qk has a neighbor in ∪ ⧹P P b w w( ) { , , }2 3 2 3 and ∩ ∅Q T = . We
may assume thatQ is chosen in such a way that k is minimum. We may also assume that
qk has a neighbor s in ⧹P b w{ , }2 2 . Since ∈G 2, it follows that N q s( ) = { }T k . Let t be a
neighbor of q1 in ⧹P v* { }1 1 ; similarly N q t( ) = { }T 1 . In particular k > 1. It follows from the
minimality of k that Q* is anticomplete to ⧹T w w{ , }2 3 . Moreover, since
s−Q − t − P1 −a − P2 − s is a hole, it follows that each of w w,2 3 has at most one
neighbor in Q.

(10) Not both w2 and w3 have a neighbor in Q.

Suppose not. Let ∈i j k, {1, …, } be such that qi is adjacent to w3 and qj is adjacent to w2.
Since N q s( ) = { }T k , it follows that ≠i j k, . Now, w3 − P3 − a − P2 −w2 −qj −Q − qi −w3 is
a hole, and b has two neighbors in it, contrary to the fact that ∈G 2. This proves (10).

(11) w3 is anticomplete to Q.

Suppose not. Let ∈i k{1, …, } be such that qi is adjacent to w3. Then, by (10), it follows
that w2 has no neighbor in Q, and so s − P2 − b − P1 − t −Q − s is a hole and w3 has two
neighbors b and qi in it, contrary to the fact that ∈G 2. This proves (11).

(12) w2 is anticomplete to Q.

Suppose w2 has a neighbor in Q; let ∈i k{1, … } be such that w2 is adjacent to qi.
Let S be the path w P t q Q q− − − − − k1 1 1 . Since ≠t v1, we have that ∉v S1 . Now
H b w S q s P a P b= − − − − − − − −k1 2 3 is a hole and ∈b q N w, ( )i H 2 , contrary to
the fact that ∈G 2. This proves (12). Since ≠s w2 and ≠t v1 the paths t P a− −1 ,
t q Q q s P a− − − − − −k1 2 and t P b P a− − − −1 3 form a theta through a v u{ , , }1 1

that contradicts the choice of T with  P1 minimum. □

The next result allows us to use Lemma 6.1 to handle heavy seagulls.
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Lemma 6.2. Let ∈G 2 and let F be a heavy seagull inG. Assume thatG does not admit
a star cutset. Then F is extendable.

Proof. Let F a v u= − − . Since F is heavy, there exist ∈ ⧹x x N a v, ( ) { }1 2 . Since ∈G 2

the set x v x{ , , }1 2 is stable. SinceG does not admit a star cutset, it follows that for ∈i {1, 2},
there exists a path Pi from xi to u with ∩ ∅P N a* [ ] =i . By choosing P P,1 2 with ∪P P1 2

minimal, and permuting the indices if necessary, we may assume that one of the
following two cases holds.

(1) ⊆P P* *1 2 and x1 has a neighbor in P*2.
(2) There exists a vertex ∈ ⧹q V G v a x x( ) { , , , }1 2 and a path Q from u to q such that

P u Q q P x= − − − ′ −i i i and ⧹P q′1 is disjoint from and anticomplete to ⧹P q′2 .

We handle the former case first. Let ⋯P p p= − − k2 1 where p u=1 and p x=k 2. Let i
be maximum such that both x1 and v have neighbors in p P p− −i k2 . Then there
exists ∈x x v{ , }1 such that x is anticomplete to p p{ , …, }i k+1 , and consequently
H x p P p a x= − − − − −i k2 is a hole. Let ∈ ⧹y x v x{ , } { }1 . Since y is adjacent to a and
has a neighbor in p p{ , …, }i k , if follows that y has at least two neighbors in H , contrary to the
fact that ∈G 2. This proves that the first case is impossible, and so the second case holds.
Now let H′ be the hole q P x a x P q− ′ − − − − ′ −2 2 1 1 . Since v is adjacent to a and ∈G 2,
it follows that v is anticomplete to ∪P P′ ′1 2, and in particular, ∉u V H( ′). Let R be a shortest
path from u to a vertex u′ with a neighbor in H′ such that R is contained in ⧹ ⧹G N v a u( [ ] { , }).
Such a path exists, since v is not a star cutset center. Since ∈G 2, it follows that u′ has a
unique neighbor h in H′. If ∉h x x a{ , , }1 2 , then ∪ ∪H R v′ { } is a theta inG with ends h and
a, and paths a − v − u − R − u′ − h and the the two paths from h to a in H′, and the result
holds. So (by symmetry) we may assume that ∈h x a{ , }1 .

Let R′ be the path from h to q with interior in ∪R Q. Write ⋯R r r′ = − − t1 , where
r h=1 , r q=t , and there exists ∈i t{2, …, − 1} such that ∈r r R, …, i1 and ∈r r Q, …,i t+1 .
Suppose first that v has a neighbor w in r r{ , …, }i t+1 . Then h R q P x a h− ′ − − ′ − − −2 2

is a hole, and v has two neighbors in it (namely a and w), contrary to the fact that ∈G 2.
So v is anticomplete to r r{ , …, }i t+1 .

If v is anticomplete to ⧹Q u, then ∪ ∪H Q v′ { } is a theta with ends a q, and paths
a v u Q q− − − − and the the two paths from a to q in H′, and so F is extendable. Thus
we may assume that v has a neighbor in ⧹Q u, and therefore u is distinct from and
nonadjacent to ri+1.

Next suppose that ri is adjacent to a. Then i = 2 and h a= . LetQ′ be the path from a to
q contained in ∪Q a v{ , } (thus Q′ is obtained from a v u Q q− − − − by shortcutting
through an edge incident with v). Then ∈a r Q, ′i+1 . Now a Q q P x a− ′ − − ′ − −2 2 is a
hole, and ri has two neighbors in it (namely a and ri+1), contrary to the fact that ∈G 2.
This proves that ri is nonadjacent to a.

Now there is a path S from u to q with ⊆ ∪S u R r r Q q− − − −i i+1 . It follows that
a v{ , } is anticomplete to ⧹S u. Consequently, a v u S− − − is a path from a to q. If x1

has a neighbor ∈s S, then x1 has two neighbors in the hole a S q P x a− − − ′ − −2 2

(namely a and s), contrary to the fact that ∈G 2. This proves that x1 is anticomplete
to S. But now ∪H S′ is a theta with ends a q, and paths S and the two paths from a to
q in H′, and so F is extendable. □
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Now we deal with extendable seagulls.

Theorem 6.3. Let ∈G 2 and let G w( , ) be a 4‐unbalanced pair. Assume thatG does not
admit a star cutset. Let F a v u= − −1 1 be a heavy seagull inG. Then there are two cliques
K K,1 2 of G such that S K K( , )1 2 is active and ∩ ≠ ∅A K K a u( , ) { , }1 2 1 .

Proof. Let T be a theta through F (such T exists by Lemma 6.2). We may assume that a
is an end ofT ; let the other end be b. Let the paths of T be P P P, ,1 2 3 with ∈v P1 1, and T is
chosen with  P1 minimum among all thetas through F in G with end a.

(13) Let D be a component of ⧹ ⧹ ⧹G N b N v a u(( [ ] [ ]) { , })1 1 . Then ∩ ≤ D a u{ , } 11 .

Since ∈G 2, we have that ≥ V P( ) 4i and so ∈ ⧹v u P b, { }1 1 1 . Suppose for a
contradiction that ∈u a D,1 . Then there is a path P from u1 to a with ⊆P D* .
Consequently P* contains no vertex of ∪N b N v[ ] [ ]1 . Since ∈ ∪ ⧹a P P N b( ) [ ]2 3 we get a
contradiction to Lemma 6.1 applied to F T, , and P. This proves (13).

(14) There are cliques X Y, of G and a separation ∪A X Y B( , , ) such that ∈a A and
∈u B1 .

Let D D,a u be the components of ⧹ ∪ ⧹G N b N v a u(( [ ] [ ]) { , })1 1 with ∈a Da and ∈u Du1 .
By (13), we have that ≠D Da u. It follows that there is a separation

∪ ⧹S A N b N v a u B= ( , ( [ ] [ ]) { , }, )1 1 of G with ⊆D Aa and ⊆D Bu . Now (14) follows
from Lemma 2.1 applied to S. This proves (14).

Let X Y, be as in (14). Since ∈G 2 and since G w( , ) is a 4‐unbalanced pair, the
canonical two‐clique‐separation corresponding to X Y{ , } is defined, and by (13)

∩ ≤ B X Y a u( , ) { , } 11 . Since ∩ ≤ B X Y a u( , ) { , } 11 , we deduce that A X Y( , )

∩ ≠ ∅a ua { , }1 ; let ∈ ∩p A X Y a u( , ) { , }1 . Let D be the component of A X Y( , ) containing
p, and let N N D= ( ). Then N is the union of two cliques K K,1 2.

(15) The pair K K{ , }1 2 is proper.

Observe that ⊆B X Y B K K( , ) ( , )1 2 and ⊆D A K K( , )1 2 . Since G does not admit a clique
cutset, both K1 and K2 are nonempty. If ∪ ≥ K K 31 2 , then D is a component of A K K( , )1 2

with ∪ ⊆K K N D( )1 2 , and the claim holds. Thus we may assume that    K K= = 11 2 .
Since F is heavy, it follows that pdeg ( ) > 2G , and therefore ∪ ∪D K K1 2 is not a
path from K1 to K2, and again the claim holds. This proves (15). Now among all
proper pairs K K( ′, ′)1 2 with ∪ ∪ ⊆ ∪ ∪B K K K K B K K K K( ′, ′) ′ ′ ( , )1 2 1 2 1 2 1 2 choose K K′, ′1 2 with

∪ ∪B K K K K( ′, ′) ′ ′1 2 1 2 inclusion‐wise minimal, and subject to that with B K K( ′, ′)1 2

inclusion‐wise maximal. Then K K( ′, ′)1 2 is active and ∩ ≠ ∅A K K a u( ′, ′) { , }1 2 1 . □

7 | PROOF OF THEOREM 3.4

We begin with proving an extension of Theorem 1.3. For a graph G and positive integer d, we
denote by γ G( )d the maximum degree of the subgraph of G induced by the set of vertices with
degree at least d in G.
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Theorem 7.1. For all k γ, > 0, there exists w w k γ= ( , ) such that every graph G with
≤γ G γ( )3 and treewidth more than w contains a subdivision ofWk k× or the line graph of a

subdivision ofWk k× .

Proof. Let w w k γ f c k γ= ( , ) = ( ( , + 3)), where f is as in Theorem 1.1 and c is as in
Theorem 1.3. Let G be a graph with treewidth at least w. By Theorem 1.1, G has a
subgraph X which is isomorphic to Wc k γ c k γ( , +3)× ( , +3). Let H G V X= [ ( )]. Then H has
treewidth at least c k γ( , + 3). Also, we claim that G has maximum degree at most γ + 3.
To see this, suppose for a contradiction that H has a vertex v of degree at least γ + 4 > 3.
Then, since X has maximum degree at most 3, there are at least γ + 1 edges in

⧹E H E X( ) ( ) incident with v. Moreover, for each such edge, its end distinct from v has
degree at least two in X , and so degree at least 3 in H . But then v is a vertex of degree at
least 3 in G with at least γ + 1 neighbors, each of degree at least 3 in G. This violates

≤γ G γ( )3 , and so proves the claim. Now, by Theorem 1.3, H , and so G, contains a
subdivision ofWk k× or the line graph of a subdivision ofWk k× . □

We remark that Theorem 7.1 is sharp, in the sense that the conclusion fails if the number 3
in γ G( )3 is replaced by any larger integer. This is due to the construction of [11, 17], in which
the set of vertices of degree 4 or more is stable. Next, we deduce:

Theorem 7.2. For all t , there exists M M t= ( ) such that every graph in t with no heavy
seagull and with treewidth more than M contains a subdivision ofWt t× .

Proof. Since G contains no heavy seagull, it follows that no two vertices of degree at
least three inG are at distance two inG. This implies that every connected component of
the subgraph of G induced by the set of vertices of degree at least three in G is a clique,
and therefore has size at most t . It follows that ≤γ G t( ) − 13 . Also, since ∈G , no
induced subgraph of G is the line graph of a subdivision of W3×3. Now Theorem 7.2
follows from Theorem 7.1. □

We are now ready to prove Theorem 3.4, the main result of this section, which we
restate.

Theorem 7.3. For all k, there exists c c k= ( ) such that every graph in 2 with no star
cutset and with treewidth more than c contains a subdivision ofWk k× .

Proof. Let ≥M M k= ( ) 1 be as in Theorem 7.2. Let ∈G 2 and assume that G does
not contain a subdivision of Wk k× . We show that ≤G Mtw( ) 8( + 1). Suppose not. By
Lemma 4.1, there is a weight function w onG such that G w( , ) is M4( + 1)‐unbalanced,
and in particular 8‐unbalanced. Let  be the set of all heavy seagulls of G. By
Lemma 6.2, every seagull in  is extendable. Let  be the set of all pairs of cliques
K K{ , }1 2 obtained by applying Theorem 6.3 to each member of . Then all elements of
 are active. Let  be the set of the canonical two‐clique‐separations corresponding to
the members of  . By Theorem 5.1 every pair of members of  is loosely noncrossing.
Let β be a central bag for  .

(16) There is no heavy seagull in β.
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Suppose X a b c= − − is a heavy seagull in β. Then ∈X , and so there is a
separation ∈A C B( , , ) such that ∩ ≠ ∅a c A{ , } . We may assume that ∈a A. It follows
from the definition of β that there exists a pair ∈K K{ , }1 2 such that ∈a P*K K1 2

. Since  is
loosely noncrossing, it follows that ⊆N a P( )β K K1 2

. But then adeg ( ) = 2β , contrary to the

fact that X is a heavy seagull of β. This proves (16).
Recall that for ∈v V G( ) we have defined  ∈ ∈δ v K( ) = .K v K L K L: and there exists such that{ , }

(17)  ≤ δ v( ) 2 for every ∈v β.

Suppose  δ v( ) > 2 for some ∈v β. Then there exist pairs ∈K K K K{ , }, { ′, ′}1 2 1 2 such
that ∈ ∩v K K′1 1. Let K k v= { , }1 1 and K k v′ = { ′, }1 1 . Since ∈G 2, it follows that
k v k− − ′1 1 is a seagull in G. Since ∈k K1 1, it follows from Lemma 4.7 that k1 has a
neighbor in B K K( , )1 2 . Since all elements of  are active, and therefore proper, we deduce
that k1 has a neighbor in A K K( , )1 2 . Since ∈v C K K( , )1 2 , we deduce that kdeg ( ) > 2G 1 .
Similarly, kdeg ( ′) > 2G 1 . Consequently, k v k− − ′1 1 is a heavy seagull ofG. It follows that

there exists a pair ∈L L{ , }1 2 such that ∩ ≠ ∅A L L k k( , ) { , ′}1 2 1 1 , say ∈k A L L( , )1 1 2 . But

then ∈ ∩k A L L C K K( , ) ( , )1 1 2 1 2 , contrary to Theorem 5.1. This proves (17).
It follows from (16) that there is no heavy seagull in β. By Theorem 7.2, since G does

not contain a subdivision of Wk k× , we have that ≤β Mtw( ) . Let wβ be the inherited
weight function on β. Since ≤β Mtw( ) , Lemma 4.2 implies that β w( , )β is M( + 1)‐
balanced. Now, by (17) and Theorem 4.5 G w( , ) is M Mmax(4( + 1), 2( + 1))‐balanced,
and therefore G w( , ) is M4( + 1)‐balanced, a contradiction. □

8 | PUTTING EVERYTHING TOGETHER

In this section, we prove Theorem 1.6, which we restate.

Theorem 8.1. For all t > 0, there exists c c t= ( ) such that every graph in t with
treewidth more than c contains a subdivision ofWt t× as an induced subgraph.

Proof. Let c c t= ( ) be as in Theorem 7.3. By increasing c t( ), we may assume that
≥c t t( ) . Let ∈G t, and suppose that G ctw( ) > . Lemma 7 from [8] shows that clique

cutsets do not affect treewidth, and so we may assume that G does not admit a clique
cutset. Now we deduce from Lemma 2.1 that G does not admit a star cutset. By
Lemma 3.3 it follows that either ∈G 2, or G is a complete graph (and so ≤G ttw( ) ). So
we may assume that ∈G 2. But now the result follows from Theorem 7.3. □
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