Induced subgraphs and tree decompositions V. one neighbor in a hole

Tara Abrishami ${ }^{1}$ Sepehr Hajebi ${ }^{3}$
(1) Bogdan Alecu ${ }^{2}$ (${ }^{\text {(}}$ Maria Chudnovsky ${ }^{1}$ (©) | Sophie Spirkl ${ }^{3}$ | Kristina Vušković ${ }^{2}$ (1)

${ }^{1}$ Mathematics Department and PACM, Princeton University, Princeton, New Jersey, USA
${ }^{2}$ School of Computing, University of Leeds, Leeds, UK
${ }^{3}$ Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada

Correspondence

Sepehr Hajebi, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON, Canada.
Email: shajebi@uwaterloo.ca

Funding information

Natural Sciences and Engineering Research Council of Canada (NSERC), Grant/Award Number: RGPIN-202003912; Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG); Government of Ontario; NSFEPSRC, Grant/Award Number: DMS2120644; AFOSR, Grant/Award Number: FA9550-22-1-0083; DMS-EPSRC, Grant/Award Number: EP/V002813/1

Abstract

What are the unavoidable induced subgraphs of graphs with large treewidth? It is well-known that the answer must include a complete graph, a complete bipartite graph, all subdivisions of a wall and line graphs of all subdivisions of a wall (we refer to these graphs as the "basic treewidth obstructions"). So it is natural to ask whether graphs excluding the basic treewidth obstructions as induced subgraphs have bounded treewidth. Sintiari and Trotignon answered this question in the negative. Their counterexamples, the so-called "layered wheels," contain wheels, where a wheel consists of a hole (i.e., an induced cycle of length at least four) along with a vertex with at least three neighbors in the hole. This leads one to ask whether graphs excluding wheels and the basic treewidth obstructions as induced subgraphs have bounded treewidth. This also turns out to be false due to Davies' recent example of graphs with large treewidth, no wheels and no basic treewidth obstructions as induced subgraphs. However, in Davies' example there exist holes and vertices (outside of the hole) with two neighbors in them. Here we prove that a hole with a vertex with at least two neighbors in it is inevitable in graphs with large treewidth and no basic obstruction. Our main result is

[^0]that graphs in which every vertex has at most one neighbor in every hole (that does not contain it) and with the basic treewidth obstructions excluded as induced subgraphs have bounded treewidth.

KEYWORDS

induced subgraph, tree decomposition, treewidth

1 | INTRODUCTION

All graphs in this paper are finite and simple. Let H and G be graphs. We say G contains H if G has an induced subgraph isomorphic to H (unless stated otherwise). We say that G is H-free if G does not contain H. For a family of graphs \mathcal{H}, we say that G is \mathcal{H}-free if G is H-free for every $H \in \mathcal{H}$. A tree decomposition (T, χ) of G consists of a tree T and a map $\chi: V(T) \rightarrow 2^{V(G)}$ such that the following hold:
(i) For every vertex $v \in V(G)$, there exists $t \in V(T)$ such that $v \in \chi(t)$.
(ii) For every edge $v_{1} v_{2} \in E(G)$, there exists $t \in V(T)$ such that $v_{1}, v_{2} \in \chi(t)$.
(iii) For every $v \in V(G)$, the subgraph of T induced by $\{t \in V(T) \mid v \in \chi(t)\}$ is connected.

If (T, χ) is a tree decomposition of G and $V(T)=\left\{t_{1}, \ldots, t_{n}\right\}$, the sets $\chi\left(t_{1}\right), \ldots, \chi\left(t_{n}\right)$ are called the bags of (T, χ). The width of a tree decomposition (T, χ) is $\max _{t \in V(T)}|\chi(t)|-1$. The treewidth of G, denoted $\operatorname{tw}(G)$, is the minimum width of a tree decomposition of G.

Treewidth is an extensively studied graph parameter, mostly due to the fact that graphs of bounded treewidth exhibit interesting structural [16] and algorithmic [9] properties. It is thus of interest to understand the unavoidable substructures emerging in graphs of large treewidth (these are often referred to as "obstructions to bounded treewidth"). For instance, for each k, the $(k \times k)$-wall, denoted by $W_{k \times k}$, is a planar graph with maximum degree three and with treewidth k (see Figure 1; a precise definition can be found in [3]). Every subdivision of $W_{k \times k}$ is also a graph of treewidth k. The unavoidable subgraphs of graphs with large treewidth are fully characterized by the Grid Theorem of Robertson and Seymour, the following.

Theorem 1.1 (Robertson and Seymour [15]). There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that every graph of treewidth at least $f(k)$ contains a subdivision of $W_{k \times k}$ as a subgraph.

FIGURE $1 \quad W_{5 \times 5}$.

Following the same line of thought, our motivation in this series is to study induced subgraph obstructions to bounded treewidth. In addition to subdivided walls mentioned above, complete graphs and complete bipartite graphs are easily observed to have arbitrarily large treewidth: the complete graph K_{t+1} and the complete bipartite graph $K_{t, t}$ both have treewidth t. Line graphs of subdivided walls form another family of graphs with unbounded treewidth, where the line graph $L(F)$ of a graph F is the graph with vertex set $E(F)$, such that two vertices of $L(F)$ are adjacent if the corresponding edges of G share an end.

We call a family \mathcal{H} of graphs useful if there exists an integer $c(\mathcal{H})$ such that every \mathcal{H}-free graph has treewidth at most $c(\mathcal{H})$. The discussion above can be summarized as follows:

Theorem 1.2. If \mathcal{H} is a useful family of graphs, then there exists an integer t such that \mathcal{H} contains $K_{t}, K_{t, t}$, an induced subgraph of each subdivision of $W_{t \times t}$ and an induced subgraph of the line graph of each subdivision of $W_{t \times t}$.

The following was conjectured in [1] and proved in [13]:
Theorem 1.3 (Korhonen [13]). For all $k, \Delta>0$, there exists $c=c(k, \Delta)$ such that every graph with maximum degree at most Δ and treewidth at least c contains a subdivision of $W_{k \times k}$ or the line graph of a subdivision of $W_{k \times k}$ as an induced subgraph.

The bounded-degree condition of Theorem 1.3 implies that $K_{\Delta+2}$ and $K_{\Delta+1, \Delta+1}$ are excluded. However, Theorem 1.3 does not hold if "bounded degree" is replaced by excluding $K_{\Delta+2}$ and $K_{\Delta+1, \Delta+1}$, as is evidenced by the constructions of [11, 17] and [18]. Thus a natural question arises: what can replace this condition? Let us call a family \mathcal{F} of graphs helpful if the following holds: for all $t>0$, there exists $c=c(t)$ such that every \mathcal{F}-free graph with treewidth more than c contains $K_{t}, K_{t, t}$, a subdivision of $W_{t \times t}$ or the line graph of a subdivision of $W_{t \times t}$.

A hole in a graph is an induced cycle of length at least four. The length of a hole is the number of vertices in it. A wheel is a graph consisting of a hole C and a vertex v with at least three neighbors in C (in the literature, sometimes further restrictions are placed on the location of the neighbors of v in C). In view of the prevalence of wheels in the construction of [18], one might ask if the family of all wheels is helpful. The answer to this question is negative, because of the construction of [11, 17] (see Figure 2 for an example; we omit the precise definition). This paper is motivated by the following question: what wheel-like families may be helpful (where by "wheel-like" we mean graphs consisting of a hole and a vertex with certain neighbors in it)?

FIGURE 2 A wheel-free graph with large treewidth [11, 17].

In view of the existence of the faimly depicted in Figure 2, a helpful wheel-like family must contain a graph consistng of a hole and a vertex with at most two neighbors in it. Let \mathcal{T}_{1} be the family of all graphs consisting of a hole C and a vertex outside of C with at least two neighbors in C. The class of \mathcal{T}_{1}-free graphs was studied in [2]; in Section 6 we strengthen their results. A crucial difference between Theorem 6.3 and [2] is that in [2] only the existence of certain cutsets is shown, while we are able to guarantee that every heavy seagull is broken by a cutset of the required type (see Section 6 for details).

Our main result in this paper is the following:

Theorem 1.4. The family \mathcal{T}_{1} is helpful.

In fact, we prove something stronger. In the following, the length of a path is its number of edges. A pyramid is a graph consisting of a vertex a, a triangle $\left\{b_{1}, b_{2}, b_{3}\right\}$, and three paths P_{i} from a to b_{i} for $1 \leq i \leq 3$ of length at least one, such that for $i \neq j$ the only edge between $P_{i} \backslash\{a\}$ and $P_{j} \backslash\{a\}$ is $b_{i} b_{j}$, and at most one of P_{1}, P_{2}, P_{3} has length exactly one.

A prism is a graph consisting of two triangles $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$, and three paths P_{i} from a_{i} to b_{i} for $1 \leq i \leq 3$, all of length at least one, and such that for $i \neq j$ the only edges between P_{i} and P_{j} are $a_{i} a_{j}$ and $b_{i} b_{j}$.

Let \mathcal{T}_{2} be the family of all graphs consisting of a hole C and a vertex outside of C with at least two nonadjacent neighbors in C, together with all prisms and all pyramids. Note that each graph in \mathcal{T}_{2} contains a graph in \mathcal{T}_{1} (so the class of \mathcal{T}_{1}-free graphs is properly contained in the class of \mathcal{T}_{2}-free graphs). We prove:

Theorem 1.5. The family \mathcal{T}_{2} is helpful.
Let us next restate Theorem 1.5 more explicitly. Let r be an integer. A graph G is r-sparse if for every hole H of G and vertex $v \notin H$, there is an r-edge path P of H such that $N(v) \cap H \subseteq P$. A graph is sparse if it is 1 -sparse, that is for every hole H of G and vertex $v \notin H$, there is an edge $a b$ of H such that $N(v) \cap H \subseteq\{a, b\}$. A graph is very sparse if it is sparse and also (pyramid, prism)-free (thus a graph is very sparse if and only if it is \mathcal{T}_{2}-free). It follows that if G is sparse, then G does not contain $K_{3,3}$, and if G is very sparse then G does not contain the line graph of a subdivision of $W_{3 \times 3}$. Let \mathcal{F} be the family of all very sparse graphs, and let \mathcal{F}_{t} be the family of all very sparse graphs with no clique of size at least $t+1$.

We prove:
Theorem 1.6. For all $t>0$, there exists $c=c(t)$ such that every graph in \mathcal{F}_{t} with treewidth more than c contains a subdivision of $W_{t \times t}$ (as an induced subgraph).

Analyzing the graph in Figure 2 suggests that Theorem 1.6 may be strengthened further by addressing sparse graphs, instead of very sparse graphs. We conjecture:

Conjecture 1.7. For all $t>0$, there exists $c=c(t)$ such that every sparse graph with no clique of size t and with treewidth more than c contains a subdivision of $W_{t \times t}$ or the line graph of a subdivision of $W_{t \times t}$ (as an induced subgraph).

We also ask if the analogue of Conjecture 1.7 is true for r-sparse graphs in general (where c depends on t and r).

The rough outline of the proof of Theorem 1.6 is as follows. Our first step is to show that if a graph in \mathcal{F}_{t} contains a triangle, then it admits a clique cutset. Thus it is enough to prove the result for graphs in \mathcal{F}_{2}. Now let $G \in \mathcal{F}_{2}$. A heavy seagull in G is an induced three-vertex path both of whose ends have degree at least three in G. First we prove that every heavy seagull of G is "broken" by a two-clique-separation (this means that for every heavy seagull H of G, there exist two cliques $K_{1}, K_{2} \in G$ such that no component of $G \backslash\left(K_{1} \cup K_{2}\right)$ contains H). Now the idea is to use the central bag method, developed in earlier papers in this series [3,5-7], to identify an induced subgraph β of G that contains no heavy seagull, and such that the treewidth of G is not much larger than the treewidth of β. The key difference between our situation here and those in the earlier papers is that the cutsets we use to break the heavy seagulls are not connected, a property that was crucial in the earlier proofs. To deal with this difficulty, we change the definition of a central bag, including in it a path between the two cliques of the cutset whose interior is in $G \backslash \beta$ (this is in the spirit of, but different from, "marker paths" for 2-joins). We then modify the previously known central bag tools to work in this new setting. By "breaking" heavy seagulls, we arrange that in β, vertices of degree at least three appear in components of bounded size. This in turn allows us to bound the treewidth of β, and theorem follows.

1.1 | Definitions and notation

Let G be a graph. For $X \subseteq V(G)$, we denote by $G[X]$ the induced subgraph of G with vertex set X, and $G \backslash X$ denotes $G[V(G) \backslash X]$. In this paper, we use the set X and the subgraph $G[X]$ of G interchangeably. If F is a graph and $G[X]$ is isomorphic to F, we say that X is an F in G. Let $v \in V(G)$. The open neighborhood of v, denoted $N(v)$, is the set of all vertices in $V(G)$ adjacent to v. We denote the degree of v in G by $\operatorname{deg}_{G}(v)=|N(v)|$. The closed neighborhood of v, denoted $N[v]$, is $N(v) \cup\{v\}$. Let $X \subseteq V(G)$. The open neighborhood of X, denoted $N(X)$, is the set of all vertices in $V(G) \backslash X$ with a neighbor in X. The closed neighborhood of X, denoted $N[X]$, is $N(X) \cup X$. If H is an induced subgraph of G and $X \subseteq V(G)$, then $N_{H}(X)=N(X) \cap H$. Let $Y \subseteq V(G)$ be disjoint from X. Then, X is complete to Y if every vertex of X is adjacent to every vertex of Y, and X is anticomplete to Y if there are no edges between X and Y. We use $X \cup v$ to mean $X \cup\{v\}$, and $X \backslash v$ to mean $X \backslash\{v\}$.

Given a graph G, a path in G is an induced subgraph of G that is a path. If P is a path in G, we write $P=p_{1}-\cdots-p_{k}$ to mean that p_{i} is adjacent to p_{j} if and only if $|i-j|=1$. We call the vertices p_{1} and p_{k} the ends of P, and say that P is from p_{1} to p_{k}. The interior of P, denoted by P^{*}, is the set $P \backslash\left\{p_{1}, p_{k}\right\}$. The length of a path P is the number of edges in P.

A theta is a graph T containing two vertices a, b and three paths P_{1}, P_{2}, P_{3} from a to b of length at least two, such that $P_{1} \backslash\{a, b\}, P_{2} \backslash\{a, b\}, P_{3} \backslash\{a, b\}$ are pairwise disjoint and anticomplete to each other. We call a, b the ends of T.

1.2 | Organization of the paper

This paper is organized as follows. In Section 2, we give general background and definitions related to separations in graphs; we also discuss connections between different kinds of separations in the special case of sparse graphs. In Section 3, we reduce Theorem 1.6 to the case of triangle-free sparse graphs. In Section 4, we discuss balanced separators in graphs, and
develop our main tool, Theorem 4.5, which allows us to use the central bag method. In Section 5, we prove results about two-clique-separations, which are the cutsets that will be used to form the central bag. In Section 6, we prove structural results that allow us to break every heavy seagull in a triangle-free sparse graph and produce a central bag that contains no heavy seagulls. In Section 7, we use the tools of Section 4 to prove our main result for graphs in \mathcal{F}_{2}. Finally, in Section 8, we prove Theorem 1.6. We remark that some theorems in the paper are proved in greater generality than what is needed here. That is because we expect these more general statements to be used in later papers in the series.

2 | SEPARATIONS

A separation of a graph G is a triple (A, C, B), where $A, B, C \subseteq V(G), A \cup C \cup B=V(G), A, B$, and C are pairwise disjoint, and A is anticomplete to B. If $S=(A, C, B)$ is a separation, we let $A(S)=A, B(S)=B$, and $C(S)=C$. We say that $C \subseteq V(G)$ is a cutset of G if there exists a separation (A, C, B) of G with $A \neq \varnothing$ and $B \neq \varnothing$. A clique in a graph is a (possibly empty) set of pairwise adjacent vertices. We say that G admits a clique cutset if there is a cutset of G that is a clique (in particular every disconnected graph admits a clique cutset). A separation (A, C, B) is a star separation if there exists $v \in C$ such that $C \subseteq N[v]$ (we say that v is a center of C). A star separation (A, C, B) is proper if $A \neq \varnothing$ and $B \neq \varnothing$. We say that G admits a star cutset if there is a proper star separation in G.

First we observe:
Lemma 2.1. Let G be a sparse graph and (A, C, B) be a separation of G with $A \neq \varnothing$ and $B \neq \varnothing$. Suppose that there exist $v_{1}, \ldots, v_{k} \in C$ such that $C \subseteq \bigcup_{i=1}^{k} N\left[v_{i}\right]$. Let D_{1} be a component of A and let D_{2} be a component of B. Then there exist cliques $X_{1}, \ldots, X_{k} \subseteq C$ of G such that every path from a vertex of D_{1} to a vertex of D_{2} meets $\bigcup_{i=1}^{k} X_{i}$. In particular, if G admits a star cutset, then G admits a clique cutset.

Proof. Let $N_{1}=N\left(D_{1}\right) \subseteq C$, and let D_{2}^{\prime} be the component of $G \backslash\left(N_{1} \cup\left\{v_{1}, \ldots, v_{k}\right\}\right)$ such that $D_{2} \subseteq D_{2}^{\prime}$. Let $X=N\left(D_{2}^{\prime}\right) \cup\left\{v_{1}, \ldots, v_{k}\right\}$. Then $X \subseteq N_{1} \cup\left\{v_{1}, \ldots, v_{k}\right\} \subseteq C$, and every path from a vertex of D_{1} to a vertex of D_{2}^{\prime} in G meets X. We claim that for every $i \in\{1, \ldots, k\}$ the set $X \cap N\left[\nu_{i}\right]$ is a clique. Suppose not, and let $x, y \in X \cap N\left[\nu_{1}\right]$ (say) be nonadjacent (and so in particular, $x, y \neq v_{1}$). It follows that $x, y \in N\left(D_{1}\right) \cap N\left(D_{2}^{\prime}\right)$. Let P_{1} be a path from x to y with $P_{1}^{*} \subseteq D_{1}$ and let P_{2} be a path from x to y with $P_{2}^{*} \subseteq D_{2}^{\prime}$. Then $H=x-P_{1}-y-P_{2}-x$ is a hole and $v_{1} \notin H$ since $v_{1} \in X$. But now v_{1} has two nonadjacent neighbors in H, contrary to the fact that G is sparse.

Lemma 7 from [8] shows that clique cutsets do not affect treewidth. Now, by Lemma 2.1, it follows that to prove Theorem 1.6 it is enough to prove the following:

Theorem 2.2. For all $t>0$, there exists $c=c(t)$ such that every graph in \mathcal{F}_{t} with treewidth more than c and with no star cutset contains a subdivision of $W_{t \times t}$ as an induced subgraph.

3 | REDUCING TO THE TRIANGLE-FREE CASE

In this section, we show how to deduce Theorem 1.6 from the special case of triangle-free graphs. A diamond is the graph obtained from K_{4} by removing an edge.

Lemma 3.1. Let G be a sparse graph and assume that G does not admit a star cutset. Then G is diamond-free.

Proof. Suppose first $\{a, b, c, d\}$ is a diamond in G. We may assume that the pair $a c$ is nonadjacent. Since b is not the center of a star cutset in G, it follows that there exists is a path from a to c with no neighbor of b in its interior. Let P be such a path. Then d is not a vertex of P, since d is adjacent to b. Moreover, $a-P-c-b-a$ is a hole, and d has three neighbors in it, namely a, b and c, a contradiction. This proves that G is diamond-free.

We also need the following folklore result that appeared in [4]:

Lemma 3.2. Let x_{1}, x_{2}, x_{3} be three distinct vertices of a graph G. Assume that H is a connected induced subgraph of $G \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$ such that $V(H)$ contains at least one neighbor of each of x_{1}, x_{2}, x_{3}, and that $V(H)$ is minimal subject to inclusion. Then, one of the following holds:
(i) For some distinct $i, j, k \in\{1,2,3\}$, there exists P that is either a path from x_{i} to x_{j} or a hole containing the edge $x_{i} x_{j}$ such that

- $V(H)=V(P) \backslash\left\{x_{i}, x_{j}\right\}$, and
- either x_{k} has two nonadjacent neighbors in H or x_{k} has exactly two neighbors in H and its neighbors in H are adjacent.
(ii) There exists a vertex $a \in V(H)$ and three paths P_{1}, P_{2}, P_{3}, where P_{i} is from a to x_{i}, such that
- $V(H)=\left(V\left(P_{1}\right) \cup V\left(P_{2}\right) \cup V\left(P_{3}\right)\right) \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$, and
- the sets $V\left(P_{1}\right) \backslash\{a\}, V\left(P_{2}\right) \backslash\{a\}$ and $V\left(P_{3}\right) \backslash\{a\}$ are pairwise disjoint, and
- for distinct $i, j \in\{1,2,3\}$, there are no edges between $V\left(P_{i}\right) \backslash\{a\}$ and $V\left(P_{j}\right) \backslash\{a\}$, except possibly $x_{i} x_{j}$.
(iii) There exists a triangle $a_{1} a_{2} a_{3}$ in H and three paths P_{1}, P_{2}, P_{3}, where P_{i} is from a_{i} to x_{i}, such that
- $V(H)=\left(V\left(P_{1}\right) \cup V\left(P_{2}\right) \cup V\left(P_{3}\right)\right) \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$, and
- the sets $V\left(P_{1}\right), V\left(P_{2}\right)$ and $V\left(P_{3}\right)$ are pairwise disjoint, and
- for distinct $i, j \in\{1,2,3\}$, there are no edges between $V\left(P_{i}\right)$ and $V\left(P_{j}\right)$, except $a_{i} a_{j}$ and possibly $x_{i} x_{j}$.

Lemma 3.3. Let $G \in \mathcal{F}$. Then either $G \in \mathcal{F}_{2}, G$ is a complete graph, or G admits a star cutset.

Proof. We may assume that G does not admit a star cutset and G is not a complete graph. Let K be an inclusion-wise maximal clique of G with $|K|>2$, and let $D=G \backslash K$. Since G does not admit a clique cutset and is not a complete graph, it follows that D is connected, nonempty, and every vertex of K has a neighbor in D. By Lemma 3.1, it follows that G does not contain a diamond.
(1) Let $v \in D$. Then v has at most one neighbor in K.

Assume that v has at least two neighbors in K, say k_{1} and k_{2}. Since K is a maximal clique, there exists $k_{3} \in K$ nonadjacent to v. But now $\left\{v, k_{1}, k_{2}, k_{3}\right\}$ is a diamond, a contradiction. This proves (1).

Now let $x_{1}, x_{2}, x_{3} \in K$. Apply Lemma 3.2 to $\left\{x_{1}, x_{2}, x_{3}\right\}$ and a minimal connected subgraph H of D containing at least one neighbor of each of x_{1}, x_{2}, x_{3}. By (1), we have that $|V(H)| \geq 3$. Now the first outcome of Lemma 3.2 gives a hole and a vertex with two nonadjacent neighbors in it, the second outcome gives a pyramid, and the third gives a prism. In all cases we get a contradiction to the fact that $G \in \mathcal{F}$.

Now, by Lemma 3.3, to prove Theorem 2.2 it is enough to prove:
Theorem 3.4. For all k, there exists $c=c(k)$ such that every graph in \mathcal{F}_{2} with no star cutset and with treewidth more than c contains a subdivision of $W_{k \times k}$ as an induced subgraph.

4 | BALANCED SEPARATORS AND CENTRAL BAGS

Let G be a graph, and let $w: V(G) \rightarrow[0,1]$. For $X \subseteq V(G)$, we write $w(X)$ for $\sum_{x \in X} w(x)$. We call w a weight function on G if $w(G)=1$. Now let $c \in\left[\frac{1}{2}, 1\right)$. A set $X \subseteq V(G)$ is a (w, c) balanced separator if $w(D) \leq c$ for every component D of $G \backslash X$. The next two lemmas show how (w, c)-balanced separators relate to treewidth. The first result was originally proved in [14], and tightened by Harvey and Wood in [12]. It was then restated and proved in the language of (w, c)-balanced separators in [3].

Lemma 4.1 (Abrishami and colleagues [3, 12, 14]). Let G be a graph, let $c \in\left[\frac{1}{2}, 1\right)$, and let k be a positive integer. If G has $a(w, c)$-balanced separator of size at most k for every weight function w on G, then $\operatorname{tw}(G) \leq \frac{1}{1-c} k$.

Lemma 4.2 (Cygan et al. [10] and Robertson and Seymour [14]). Let G be a graph and let k be a positive integer. If $\operatorname{tw}(G) \leq k$, then G has $a(w, c)$-balanced separator of size at most $k+1$ for every $c \in\left[\frac{1}{2}, 1\right)$ and for every weight function w on G.

A pair (G, w) is d-unbalanced if w is a weight function on G, and G has no ($w, \frac{1}{2}$)-balanced separator of size at most d (if there is a $\left(w, \frac{1}{2}\right.$)-balanced separator of size at most d, we say that (G, w) is d-balanced).

Let M be an integer, let G be a graph and let K_{1}, K_{2} be two cliques of G, each of size at most M. Let (G, w) be a $2 K$-unbalanced pair. Following [7], we define the canonical two-cliqueseparation for $\left\{K_{1}, K_{2}\right\}$, as follows. Let $B\left(K_{1}, K_{2}\right)$ be a component of $G \backslash\left(K_{1} \cup K_{2}\right)$ with $w\left(B\left(K_{1}, K_{2}\right)\right)$ maximum. Since (G, w) is $2 K$-unbalanced, it follows that $K_{1} \cup K_{2}$ is not a $\left(w, \frac{1}{2}\right)$ balanced separator; consequently $w\left(B\left(K_{1}, K_{2}\right)\right)>\frac{1}{2}$, and so the choice of $B\left(K_{1}, K_{2}\right)$ is unique.

Let $A\left(K_{1}, K_{2}\right)=G \backslash\left(B\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}\right)$ and $C\left(K_{1}, K_{2}\right)=K_{1} \cup K_{2}$. Now $S\left(K_{1}, K_{2}\right)=\left(A\left(K_{1}, K_{2}\right)\right.$, $\left.C\left(K_{1}, K_{2}\right), B\left(K_{1}, K_{2}\right)\right)$ is the canonical two-clique-separation corresponding to $\left\{K_{1}, K_{2}\right\}$.

For the remainder of this section, let M be an integer, and let (G, w) be a $2 K$-unbalanced pair. Let $K_{1}^{1}, K_{2}^{1}, K_{1}^{2}, K_{2}^{2}$ be cliques in G. For $i \in\{1,2\}$, let $S_{i}=\left(A_{i}, C_{i}, B_{i}\right)$ be the canonical two-clique-separation for $\left\{K_{1}^{i}, K_{2}^{i}\right\}$. We say that $\left(A_{1}, C_{1}, B_{1}\right)$ and $\left(A_{2}, C_{2}, B_{2}\right)$ are noncrossing if $A_{1} \cup C_{1} \subseteq B_{2} \cup C_{2}$ and $A_{2} \cup C_{2} \subseteq B_{1} \cup C_{1}$, and that $\left(A_{1}, C_{1}, B_{1}\right)$ and (A_{2}, C_{2}, B_{2}) are loosely noncrossing if $A_{1} \cap C_{2}=A_{2} \cap C_{1}=\varnothing$. Clearly, if S_{1} and S_{2} are noncrossing, then they are loosely noncrossing. (Note that here we break the symmetry between A_{i} and B_{i}, and so our definition is slightly different from the classical definition of [15].)

The following observation follows immediately from the definition of a canonical two-clique-separation.

Lemma 4.3. Assume that G does not admit a star cutset. Let K_{1}, K_{2} be cliques of size at most M in G such that $A\left(K_{1}, K_{2}\right) \neq \varnothing$. Then the following hold.
(1) $K_{1} \cap K_{2}=\varnothing$.
(2) Let D be a component of $G \backslash\left(K_{1} \cup K_{2}\right)$. Then $N(D) \cap K_{i} \neq \varnothing$ for all $i \in\{1,2\}$, and so there is a path from a vertex of K_{1} to a vertex of K_{2} with nonempty interior in D.

Throughout this section, let \mathcal{S} be a set of sets $\left\{K_{1}, K_{2}\right\}$, where each of K_{1}, K_{2} is a clique of size at most M of G, and let \mathcal{T} be the set of canonical two-clique-separations corresponding to members of \mathcal{S}. Moreover, we will assume each pair of separations in \mathcal{T} is loosely noncrossing.

We would now like to define a central bag for \mathcal{S}. Roughly speaking, this central bag is the intersection of the heavy blocks $B(S) \cup C(S)$ of the separations, together with some paths that capture the important w-related information about the light blocks. To define it, we start by considering the connected components of the union $\cup_{S \in \mathcal{T}} A(S)$ of the light sides of the separations. We first note that, given such a component D and an $S_{0} \in \mathcal{T}$, we either have $D \subseteq A\left(S_{0}\right)$ or $D \cap A\left(S_{0}\right)=\varnothing$. Indeed, $N\left(A\left(S_{0}\right)\right) \subseteq C\left(S_{0}\right)$, and so if D simultaneously contains vertices in $A\left(S_{0}\right)$ and vertices not in $A\left(S_{0}\right)$, then $D \backslash A\left(S_{0}\right)$ must contain vertices in $C\left(S_{0}\right)$; but $D \backslash A\left(S_{0}\right) \subseteq \bigcup_{S \in \mathcal{T}: S \neq S_{0}} A(S)$, which has empty intersection with $C\left(S_{0}\right)$ by the loosely noncrossing property-a contradiction.

We now want to "reorganize" the $A(S)$ by assigning each component of $\bigcup_{S \in \mathcal{T}} A(S)$ to a unique $A\left(K_{1}, K_{2}\right)$ in a consistent way. To that end, we fix a total order π on \mathcal{S}, and group the components according to the π-minimal $\left\{K_{1}, K_{2}\right\}$ to whose $A(S)$ they belong. Specifically, for $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}$, we let $A^{*}\left(K_{1}, K_{2}\right)$ be the union of all components D of $A\left(K_{1}, K_{2}\right)$ such that for all $\left\{K_{1}^{\prime}, K_{2}^{\prime}\right\} \in \mathcal{S}$ with $D \subseteq A\left(K_{1}^{\prime}, K_{2}^{\prime}\right), \pi\left(A\left(K_{1}, K_{2}\right)\right) \leq \pi\left(A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)\right)$.

Now, by Lemma 4.3, for every $\left\{K_{1}, K_{2}\right\}$ with $A^{*}\left(K_{1}, K_{2}\right) \neq \varnothing$, there exists a path $P_{K_{1} K_{2}}^{*}$ in $A^{*}\left(K_{1}, K_{2}\right)$ whose two (possibly coinciding) endpoints have a neighbor in K_{1} and in K_{2}, respectively. Let $\mathcal{S}^{\prime}=\left\{\left\{K_{1}, K_{2}\right\} \in \mathcal{S} \mid A^{*}\left(K_{1}, K_{2}\right) \neq \varnothing\right\}$, and write

$$
\beta=\bigcap_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}}\left(B\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}\right) \cup \bigcup_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}}^{\cup} P_{K_{1} K_{2}}^{*} .
$$

We call β a central bag for \mathcal{S}. We write $\beta^{*}=\bigcap_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}}\left(B\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}\right)$. Note that the choice of β is not unique since the choice of the paths $P_{K_{1} K_{2}}^{*}$ is not unique. Observe that $\beta^{*}=V(G) \backslash \cup_{S \in \mathcal{T}} A(S)$.

Let w_{β} be the function on β defined as follows. For $v \in \beta^{*}$, we set $w_{\beta}(v)=w(v)$. Next let $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}$, and let $a_{K_{1}, K_{2}}$ be the endpoint of $P_{K_{1} K_{2}}^{*}$ adjacent to a vertex of K_{1}; set $w_{\beta}\left(a_{K_{1}, K_{2}}\right)=w\left(A^{*}\left(K_{1}, K_{2}\right)\right)$. Let $w_{\beta}(v)=0$ for every $v \in \beta$, where w_{β} has not been defined yet. We call w_{β} the weight function inherited from w.

Lemma 4.4. The function w_{β} is a weight function, that is, $w_{\beta}(\beta)=1$.
Proof. We note that, for any $\mathcal{S}_{0} \subseteq \mathcal{S}$, the pair of sets $\bigcap_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}_{0}}\left(B\left(K_{1}, K_{2}\right) \cup C\left(K_{1}, K_{2}\right)\right)$ and $\bigcup_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}_{0}} A\left(K_{1}, K_{2}\right)$ partition $V(G)$. In particular,

$$
w(G)=w\left(\bigcap_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}} B\left(K_{1}, K_{2}\right) \cup C\left(K_{1}, K_{2}\right)\right)+w\left(\bigcup_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}} A\left(K_{1}, K_{2}\right)\right) .
$$

Moreover, by construction, $\left(A^{*}\left(K_{1}, K_{2}\right)\right)_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}}$ is a partition of $\bigcup_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}} A\left(K_{1}, K_{2}\right)$, so that

$$
w(G)=w\left(\bigcap_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}} B\left(K_{1}, K_{2}\right) \cup C\left(K_{1}, K_{2}\right)\right)+\sum_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}} w\left(A^{*}\left(K_{1}, K_{2}\right)\right) .
$$

Since each $A^{*}\left(K_{1}, K_{2}\right)$ with $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}$ contains exactly one of the vertices $a_{K_{1}, K_{2}}$, we have

$$
\sum_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}} w\left(A^{*}\left(K_{1}, K_{2}\right)\right)=\sum_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}} w_{\beta}\left(a_{K_{1}, K_{2}}\right) .
$$

Putting everything together, we obtain:

$$
\begin{aligned}
w_{\beta}(\beta) & =w_{\beta}\left(\bigcap_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}} B\left(K_{1}, K_{2}\right) \cup C\left(K_{1}, K_{2}\right)\right)+\sum_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}} w_{\beta}\left(a_{K_{1}, K_{2}}\right) \\
& =w\left(\bigcap_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}} B\left(K_{1}, K_{2}\right) \cup C\left(K_{1}, K_{2}\right)\right)+\sum_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}} w\left(A^{*}\left(K_{1}, K_{2}\right)\right) \\
& =w(G)=1 .
\end{aligned}
$$

For $v \in V(G)$, let

$$
\delta_{\mathcal{S}}(v)=\bigcup_{K: v \in K \text { and there exists } L \text { such that }\{K, L\} \in \mathcal{S}} K
$$

Theorem 4.5. Let d, Δ be integers. Assume that $\left|\delta_{\mathcal{S}}(v)\right| \leq \Delta$ for every $v \in G$. Assume also that $\left(\beta, w_{\beta}\right)$ is d-balanced. Then (G, w) is $\max (2 K d, \Delta d)$-balanced.

Proof. Suppose that X is a $\left(w_{\beta}, \frac{1}{2}\right)$-balanced separator in β with $|X| \leq d$. We now construct a ($w, \frac{1}{2}$)-balanced separator Y of G with $|Y| \leq \max (2 K d, \Delta d)$.

Let

$$
Y_{1}=X \cap\left(\bigcap_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}}\left(B\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}\right)\right) .
$$

For $x \in Y_{1}$, let $Y(x)=\delta_{\mathcal{S}}(x)$. Now let $x \in X \backslash Y_{1}$. It follows from the definition of $A^{*}\left(K_{1}, K_{2}\right)$ and $P_{K_{1} K_{2}}^{*}$ that $x \in P_{K_{1} K_{2}}^{*}$ for exactly one $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}$; let $Y(x)=K_{1} \cup K_{2}$. Let $Y=\bigcup_{x \in X} Y(x)$. Then $|Y| \leq \Delta\left|Y_{1}\right|+2 K\left(d-\left|Y_{1}\right|\right) \leq \max (\Delta d, 2 K d)$, as required. Next we prove that Y is a $\left(w, \frac{1}{2}\right)$-balanced separator of G.
(2) Let F be a component of $G \backslash \beta$. Then, there exists $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}$ such that $F \subseteq A^{*}\left(K_{1}, K_{2}\right)$.

By construction of β, it holds that $G \backslash \beta \subseteq \bigcup_{\left\{K_{1}, K_{2}\right\} \in \mathcal{S}} A\left(K_{1}, K_{2}\right)$; consequently there exists $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}$ such that $F \subseteq A^{*}\left(K_{1}, K_{2}\right)$. This proves (2).

From now on, let D be a component of $G \backslash Y$. We will show that $w(D) \leq \frac{1}{2}$. Since (G, w) is $2 K$-unbalanced, it follows that $w\left(A\left(K_{1}, K_{2}\right)\right)<\frac{1}{2}$ for all $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}$, and so if D is a component of $G \backslash \beta$, then by (2), it follows that $w(D) \leq \frac{1}{2}$. Thus we may assume that $D \cap \beta \neq \varnothing$.

Suppose first that $D \cap A\left(K_{1}, K_{2}\right) \neq \varnothing$ for some $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}$ such that $K_{1} \cup K_{2} \subseteq Y$. Since $N\left(A\left(K_{1}, K_{2}\right)\right) \subseteq K_{1} \cup K_{2}$ and $K_{1} \cup K_{2} \subseteq Y$, it follows that $D \subseteq A\left(K_{1}, K_{2}\right)$, and so $w(D)<\frac{1}{2}$. Therefore, we may assume that $D \cap A\left(K_{1}, K_{2}\right)=\varnothing$ for all $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}$ such that $K_{1} \cup K_{2} \subseteq Y$. Next, suppose $D \cap A\left(K_{1}, K_{2}\right) \neq \varnothing$ for $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}$ such that $P_{K_{1} K_{2}}^{*} \cap X \neq \varnothing$. Let $x \in P_{K_{1} K_{2}}^{*} \cap X$. Now, $x \in X \backslash Y_{1}$, and so $Y(x)=K_{1} \cup K_{2} \subseteq Y$, a contradiction. Therefore, we may assume that for all $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}$ such that $D \cap A\left(K_{1}, K_{2}\right) \neq \varnothing$, it holds that $P_{K_{1} K_{2}}^{*}$ is disjoint from X, and thus $P_{K_{1} K_{2}}^{*}$ is contained in a component of $\beta \backslash X$. Let Q_{1}, \ldots, Q_{m} be the components of $\beta \backslash X$.
(3) Let $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}$, and suppose that $P_{K_{1} K_{2}}^{*} \subseteq Q_{k}$. Then $K_{1} \cup K_{2} \subseteq Q_{k} \cup Y$.

Since $N\left(P_{K_{1} K_{2}}^{*}\right) \cap K_{i} \neq \varnothing$ for each $i \in\{1,2\}$, it follows that each of K_{1}, K_{2} either is contained in Q_{k} or has a vertex in X. Since every two separations in \mathcal{T} are loosely noncrossing, it follows that each of K_{1}, K_{2} is either contained in Q_{k} or has a vertex in Y_{1}. Since $\delta_{\mathcal{S}}(x) \subseteq Y$ for every $x \in Y_{1}$, it follows that for $i \in\{1,2\}$, if $K_{i} \cap Y_{1} \neq \varnothing$, then $K_{i} \subseteq Y$. This proves (3).
(4) Let $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}$, and suppose that $N\left(A\left(K_{1}, K_{2}\right)\right) \cap Q_{k} \neq \varnothing$. Then either $K_{1} \cup K_{2} \subseteq Y$, or $P_{K_{1} K_{2}}^{*} \subseteq Q_{k}$. In particular, if $K_{1} \cup K_{2} \nsubseteq Y$, then there is at most one $k \in\{1, \ldots, m\}$ with $N\left(A\left(K_{1}, K_{2}\right)\right) \cap Q_{k} \neq \varnothing$.

If $P_{K_{1} K_{2}}^{*} \cap X \neq \varnothing$, then $K_{1} \cup K_{2} \subseteq Y$, and (4) holds; so we may assume that $P_{K_{1} K_{2}}^{*} \cap X=\varnothing$, and since $P_{K_{1} K_{2}}^{*}$ is connected, it follows that $P_{K_{1} K_{2}}^{*} \subseteq Q_{k^{\prime}}$ for some $k^{\prime} \in\{1, \ldots, m\}$. If $k=k^{\prime}$, then (4) holds, so we may assume that $k \neq k^{\prime}$. It follows from (3) that $K_{1} \cup K_{2} \subseteq Q_{k^{\prime}} \cup Y$ and that $K_{1} \cup K_{2} \subseteq Q_{k^{\prime}} \neq \varnothing$, and thus $N\left(A\left(K_{1}, K_{2}\right)\right) \subseteq Q_{k^{\prime}} \cup Y$, a contradiction. This proves (4).

Since $D \cap \beta \neq \varnothing$, it follows that for each $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}$ with $D \cap A\left(K_{1}, K_{2}\right) \neq \varnothing$, we have $D \cap N\left(A\left(K_{1}, K_{2}\right)\right) \neq \varnothing$, and in particular $\left(K_{1} \cup K_{2}\right) \cap D \neq \varnothing$, so $K_{1} \cup K_{2} \nsubseteq Y$. Moreover, from (4), it follows that $P_{K_{1} K_{2}}^{*} \subseteq Q_{k}$ for some $k \in\{1, \ldots, m\}$, and $N\left(A\left(K_{1}, K_{2}\right)\right) \cap Q_{k^{\prime}}=\varnothing$ for all $k^{\prime} \neq k$. Since D is connected, it follows that there is a $k \in\{1, \ldots, m\}$ such that for every $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}$ with $D \cap A\left(K_{1}, K_{2}\right) \neq \varnothing$, we have $N\left(A\left(K_{1}, K_{2}\right)\right) \subseteq Q_{k} \cup Y$, and $P_{K_{1} K_{2}}^{*} \subseteq Q_{k}$. It follows that $D \cap \beta \subseteq Q_{k}$, and $a_{K_{1}, K_{2}} \in Q_{k}$ for all such $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}^{\prime}$, and therefore $w(D) \leq w_{\beta}\left(Q_{k}\right) \leq \frac{1}{2}$. This concludes the proof.

Let K_{1}, K_{2} be cliques of size at most M in G. We say that $S\left(K_{1}, K_{2}\right)$ is proper (or that the pair $\left\{K_{1}, K_{2}\right\}$ is proper) if

- some component D of $A\left(K_{1}, K_{2}\right)$ satisfies $K_{1} \cup K_{2} \subseteq N(D)$, and
- if $\left|K_{1}\right|=\left|K_{2}\right|=1$, then $A\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}$ is not a path from the vertex of K_{1} to the vertex of K_{2}.

We observe:

Lemma 4.6. Let K_{1}, K_{2} be cliques of size at most M in G and assume that $S\left(K_{1}, K_{2}\right)$ is a proper canonical two-clique-separation in G. Then either some vertex of $A\left(K_{1}, K_{2}\right)$ has at least three neighbors in $A\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}$, or some vertex of $K_{1} \cup K_{2}$ has at least two neighbors in $A\left(K_{1}, K_{2}\right)$.

Proof. Let D be a component of $A\left(K_{1}, K_{2}\right)$ such that $K_{1} \cup K_{2} \subseteq N(D)$. Then $N[D]$ has a spanning tree T such that every vertex of $K_{1} \cup K_{2}$ is a leaf of T. If $\left|K_{1}\right|>1$, then T has at least three leaves, and therefore some vertex of D has degree at least three in $N[D]$ as required. Thus we may assume that $\left|K_{1}\right|=\left|K_{2}\right|=1$. If $N[D]$ is not a path from the vertex of K_{1} to the vertex of K_{2}, then some vertex of D has at least three neighbors in $N[D]$, and again theorem holds. Thus we may assume that $N[D]$ is a path from the vertex of K_{1} to the vertex of K_{2}. Since $S\left(K_{1}, K_{2}\right)$ is proper, $A\left(K_{1}, K_{2}\right) \neq D$. Let D^{\prime} be a component of $A\left(K_{1}, K_{2}\right) \backslash D$. By Lemma 4.3, we have that $K_{1} \subseteq N\left(D^{\prime}\right)$. But then the vertex of K_{1} has at least two neighbors in $A\left(K_{1}, K_{2}\right)$ as required.

We say that $S\left(K_{1}, K_{2}\right)$ is active (or that the pair $\left\{K_{1}, K_{2}\right\}$ is active) if it is proper and for every pair of cliques $K_{1}^{\prime}, K_{2}^{\prime}$ of size at most M in G such that $S\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ is proper and $K_{1} \cup K_{2} \neq K_{1}^{\prime} \cup K_{2}^{\prime}$, it holds that

- $B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cup K_{1}^{\prime} \cup K_{2}^{\prime}$ is not a proper subset of $B\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}$; and
- if $B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cup K_{1}^{\prime} \cup K_{2}^{\prime}=B\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}$, then $B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \subset B\left(K_{1}, K_{2}\right)$.

Lemma 4.7. Let K_{1}, K_{2} be cliques of G of size at most M. If $S\left(K_{1}, K_{2}\right)$ is active, then $K_{1} \cup K_{2} \subseteq N\left(B\left(K_{1}, K_{2}\right)\right)$.

Proof. Suppose not. We may assume that there exists $x \in K_{1}$ such x has no neighbor in $B\left(K_{1}, K_{2}\right)$. Then $\left(A\left(K_{1}, K_{2}\right) \cup\{x\},\left(K_{1} \cup K_{2}\right) \backslash\{x\}, B\left(K_{1}, K_{2}\right)\right)$ is a proper two-clique-separation of G contrary to the fact that S is active.

5 | TWO-CLIQUE-SEPARATIONS

The main result of this section will allow us to apply Theorem 4.5 with $M=2$:

Theorem 5.1. Let $G \in \mathcal{F}_{2}$ and let (G, w) be an 8-unbalanced pair. Let $K_{1}, K_{2}, K_{1}^{\prime}, K_{2}^{\prime}$ be cliques of G such that the separations $S=S\left(K_{1}, K_{2}\right)$ and $S^{\prime}=S\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ are active in G. Assume also that G admits no star cutset. Then S and S^{\prime} are loosely noncrossing.

Proof. Suppose that S and S^{\prime} are not loosely noncrossing. Then $\left(C\left(K_{1}, K_{2}\right) \cup C\left(K_{1}^{\prime}, K_{2}^{\prime}\right)\right) \cap$ $\left(A\left(K_{1}, K_{2}\right) \cup A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)\right) \neq \varnothing$. Since $w\left(B\left(K_{1}, K_{2}\right)\right)>\frac{1}{2}$ and $w\left(B\left(K_{1}^{\prime}, K_{2}^{\prime}\right)\right)>\frac{1}{2}$, it follows that $B\left(K_{1}, K_{2}\right) \cap B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \neq \varnothing$.
(5) $C\left(K_{1}, K_{2}\right) \cap B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \neq \varnothing$.

Suppose $C\left(K_{1}, K_{2}\right) \cap B\left(K_{1}^{\prime}, K_{2}^{\prime}\right)=\varnothing$. Since $B\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ is connected, it follows that $A\left(K_{1}, K_{2}\right) \cap B\left(K_{1}^{\prime}, K_{2}^{\prime}\right)=\varnothing$. Since by Lemma 4.7 every vertex of $K_{1}^{\prime} \cup K_{2}^{\prime}$ has a neighbor in $B\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ it follows that $A\left(K_{1}, K_{2}\right) \cap C\left(K_{1}^{\prime}, K_{2}^{\prime}\right)=\varnothing$. But now $B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cup K_{1}^{\prime} \cup$ $K_{2}^{\prime} \subseteq B\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}$. Since S is active, it follows that $B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cup K_{1}^{\prime} \cup K_{2}^{\prime}=$ $B\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}$. But now one of S, S^{\prime} is not active by the second bullet of the definition of being active, a contradiction. This proves (5).
(6) $C\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cap A\left(K_{1}, K_{2}\right) \neq \varnothing$.

Suppose $C\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cap A\left(K_{1}, K_{2}\right)=\varnothing$. Then, since S and S^{\prime} are not loosely noncrossing, $C\left(K_{1}, K_{2}\right) \cap A\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \neq \varnothing$. By (5), $C\left(K_{1}, K_{2}\right) \cap B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \neq \varnothing$. Let $D\left(K_{1}, K_{2}\right)$ be a component of $A\left(K_{1}, K_{2}\right)$ such that $K_{1} \cup K_{2} \subseteq N\left(D\left(K_{1}, K_{2}\right)\right)$. Since $C\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cap$ $A\left(K_{1}, K_{2}\right)=\varnothing$ it holds that either $D\left(K_{1}, K_{2}\right) \subseteq B\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ or $D\left(K_{1}, K_{2}\right) \subseteq A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$. In the former case $D\left(K_{1}, K_{2}\right)$ is anticomplete to $C\left(K_{1}, K_{2}\right) \cap A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$, and in the latter case $D\left(K_{1}, K_{2}\right)$ is anticomplete to $C\left(K_{1}, K_{2}\right) \cap B\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$; in both cases a contradiction. This proves (6).

By (5), (6), and symmetry each of the four sets $C\left(K_{1}, K_{2}\right) \cap A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$, $C\left(K_{1}, K_{2}\right) \cap B\left(K_{1}^{\prime}, K_{2}^{\prime}\right), C\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cap A\left(K_{1}, K_{2}\right), C\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cap B\left(K_{1}, K_{2}\right)$ is nonempty. Since each of the sets $K_{1}, K_{2}, K_{1}^{\prime}, K_{2}^{\prime}$ is a clique, we may assume that $K_{1} \cap B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \neq \varnothing$, $K_{2} \cap A\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \neq \varnothing, \quad K_{1}^{\prime} \cap B\left(K_{1}, K_{2}\right) \neq \varnothing, \quad$ and $\quad K_{2}^{\prime} \cap A\left(K_{1}, K_{2}\right) \neq \varnothing, \quad$ and therefore $K_{1} \subseteq B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cup K_{1}^{\prime} \cup K_{2}^{\prime}, \quad K_{2} \subseteq A\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cup K_{1}^{\prime} \cup K_{2}^{\prime}, \quad K_{1}^{\prime} \subseteq B\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}, \quad$ and $K_{2}^{\prime} \subseteq A\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}$.
(7) There is a component D of $A\left(K_{1}, K_{2}\right) \cup A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ such that $K_{1} \cup K_{2} \cup K_{1}^{\prime} \cup$ $K_{2}^{\prime} \subseteq N[D]$.

Let $D\left(K_{1}, K_{2}\right)$ be a component of $A\left(K_{1}, K_{2}\right)$ such that $K_{1} \cup K_{2} \subseteq N\left(D\left(K_{1}, K_{2}\right)\right)$ and let $D\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ be a component of $A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ such that $K_{1}^{\prime} \cup K_{2}^{\prime} \subseteq N\left(D\left(K_{1}^{\prime}, K_{2}^{\prime}\right)\right)$ (such components exist because S and S^{\prime} are active, and hence proper). Since $C\left(K_{1}, K_{2}\right) \cap$ $B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \neq \varnothing$ and $C\left(K_{1}, K_{2}\right) \cap A\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \neq \varnothing$ it follows that $D\left(K_{1}, K_{2}\right) \nsubseteq A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ and
$D\left(K_{1}, K_{2}\right) \nsubseteq B\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$, and therefore $D\left(K_{1}, K_{2}\right) \cap C\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \neq \varnothing$. Similarly $D\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cap$ $C\left(K_{1}, K_{2}\right) \neq \varnothing$. Consequently $D\left(K_{1}, K_{2}\right) \cup D\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ is connected. Now set D to be the component of $A\left(K_{1}, K_{2}\right) \cup A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ that contains $D\left(K_{1}, K_{2}\right) \cup D\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$, and (7) holds.

Since (G, w) is 8 -unbalanced, there is a component B of $G \backslash\left(K_{1} \cup K_{1}^{\prime} \cup K_{2} \cup K_{2}^{\prime}\right)$ with $w(B)>\frac{1}{2}$. Then $B \subseteq B\left(K_{1}, K_{2}\right) \cap B\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$. Let $C=N(B)$ and let $A=G \backslash(B \cup C)$. Then (A, C, B) is a separation of G. Note that $C \subseteq\left(C\left(K_{1}, K_{2}\right) \cup C\left(K_{1}^{\prime}, K_{2}^{\prime}\right)\right) \backslash\left(A\left(K_{1}, K_{2}\right) \cup\right.$ $\left.A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)\right)$.
(8) $K_{2} \cap K_{2}^{\prime} \neq \varnothing$ and $C \cap\left(K_{1} \cup K_{1}^{\prime}\right)$ is not a clique.

Note first that, since $B \subseteq B\left(K_{1}, K_{2}\right)$, we have $N(B) \subseteq\left(C\left(K_{1}, K_{2}\right) \cup C\left(K_{1}^{\prime}, K_{2}^{\prime}\right)\right) \backslash$ $A\left(K_{1}, K_{2}\right)$. Then in view of the last sentence before (7), this means $N(B) \subseteq K_{1} \cup K_{2} \cup K_{1}^{\prime}$. Similarly, since $B \subseteq B\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$, we obtain that $N(B) \subseteq K_{1}^{\prime} \cup K_{2}^{\prime} \cup K_{1}$. This shows that, if $K_{2} \cap K_{2}^{\prime}=\varnothing$, or if $C \cap\left(K_{1} \cup K_{1}^{\prime}\right)$ is a clique, then C is the union of two cliques, say X and Y, and so (A, C, B) is a two-clique-separation of G. We claim that (A, C, B) is proper. By (7) there is a component D of A such that $K_{1} \cup K_{2} \cup K_{1}^{\prime} \cup K_{2}^{\prime} \subseteq N[D]$, and therefore $C \subseteq N(D)$. If $|C|>2$, the claim follows. Since G does not admit a clique cutset, we may assume that $X=\{x\}$ and $Y=\{y\}$ and x is nonadjacent to y. We need to show that A is not a path from x to y. Suppose it is. Then every vertex of A has exactly two neighbors in $A \cup X \cup Y$, and each of x, y has exactly one neighbor in A. Since $A\left(K_{1}, K_{2}\right) \cup A\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \subseteq A$, this contradicts Lemma 4.6. This proves the claim that (A, C, B) is proper.

Observe that $B \cup C \subseteq B\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}$. Since $C\left(K_{1}, K_{2}\right) \cap A\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \neq \varnothing$, the inclusion is proper and we get a contradiction to the fact that S is active. This proves (8).

In view of (8), we write $K_{2} \cap K_{2}^{\prime}=\{s\}$. Note that $\left|K_{2}\right|,\left|K_{2}^{\prime}\right|=2$, since we know $K_{2} \cap A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ and $K_{2}^{\prime} \cap A\left(K_{1}, K_{2}\right)$ are nonempty, and $s \notin A\left(K_{1}, K_{2}\right) \cup A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$. Hence write $K_{2}=\{s, t\}$ and $K_{2}^{\prime}=\{s, r\}$, with $t \in A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ and $r \in A\left(K_{1}, K_{2}\right)$. Also by (8), there exist nonadjacent $k_{1} \in K_{1} \cap C$ and $k_{1}^{\prime} \in K_{1}^{\prime} \cap C$. Let P be a path from k_{1} to k_{1}^{\prime} with $P^{*} \subseteq B$. Let Q be a path from k_{1} to k_{1}^{\prime} with $Q^{*} \subseteq D$, where D is as in (7). Then $H=k_{1}-P-k_{1}^{\prime}-Q-k_{1}$ is a hole.
(9) $A\left(K_{1}, K_{2}\right) \cap A\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \neq \varnothing$.

Suppose that $A\left(K_{1}, K_{2}\right) \cap A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)=\varnothing$. Since S^{\prime} is proper, r has a neighbor $x \in A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$. Since $r \in A\left(K_{1}, K_{2}\right)$, we have $x \in A\left(K_{1}, K_{2}\right) \cup C\left(K_{1}, K_{2}\right)$, but by assumption, $A\left(K_{1}, K_{2}\right) \cap A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)=\varnothing$, so we conclude $x \in C\left(K_{1}, K_{2}\right)=K_{1} \cup\{s, t\}$. From above, $K_{1} \subseteq B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cup C\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$, and $s \in C\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$, so the only possible neighbor of r lying in $A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ is t. But now $\{s, t, r\}$ is a triangle, contrary to the fact that $G \in \mathcal{F}_{2}$. This proves (9).

Since $N\left(A\left(K_{1}, K_{2}\right) \cap A\left(K_{1}^{\prime}, K_{2}^{\prime}\right)\right) \subseteq K_{2} \cup K_{2}^{\prime} \cup\left(K_{1} \cap K_{1}^{\prime}\right)$, and since $K_{2} \cup K_{2}^{\prime}$ is not a star cutest in G, it follows that $K_{1} \cap K_{1}^{\prime} \neq \varnothing$. Let $x \in K_{1} \cap K_{1}^{\prime}$. Now x has two nonadjacent neighbors in H, namely k_{1} and k_{1}^{\prime}, contrary to the fact that $G \in \mathcal{F}_{2}$.

6 | HEAVY SEAGULLS

A seagull is a graph that is a three-vertex path. Given a seagull $F=a-v-u$ in G, an induced subgraph T of G is a theta through F if T is a theta, one of a, u is an end of T, and $F \subseteq T$. A seagull $a-v-u$ is heavy if $\operatorname{deg}_{G}(a)>2$ and $\operatorname{deg}_{G}(u)>2$. A heavy seagull is extendable if there is a theta through it in G. The goal of this section is to show that every heavy seagull is "broken" by some two-clique-separation. We start with a lemma. Recall that for a path P with end s, t we denote by P^{*} the set $P \backslash\{s, t\}$.

Lemma 6.1. Let $G \in \mathcal{F}_{2}$, let $F=a-v_{1}-u_{1}$ be a seagull in G and let T be a theta through F in G. Let the ends of T be a, b and let the paths of T be P_{1}, P_{2}, P_{3} where $F \subseteq P_{1}$. Assume that T is chosen with $\left|P_{1}\right|$ minimum among all thetas through F with end a in G. Let P be a path from u_{1} to $\left(P_{2} \cup P_{3}\right) \backslash N[b]$. Then P^{*} contains a vertex of $N[b] \cup N\left[v_{1}\right]$.

Proof. Suppose for a contradiction that $P^{*} \cap\left(N[b] \cup N\left[v_{1}\right]\right)=\varnothing$. Let $N_{T}(b)=$ $\left\{w_{1}, w_{2}, w_{3}\right\}$ where $w_{i} \in P_{i}$. Then P contains a path $Q=q_{1}-\cdots-q_{k}$ such that q_{1} has a neighbor in $P_{1} \backslash\left\{a, v_{1}, b\right\}, q_{k}$ has a neighbor in $\left(P_{2} \cup P_{3}\right) \backslash\left\{b, w_{2}, w_{3}\right\}$ and $Q \cap T=\varnothing$. We may assume that Q is chosen in such a way that k is minimum. We may also assume that q_{k} has a neighbor s in $P_{2} \backslash\left\{b, w_{2}\right\}$. Since $G \in \mathcal{F}_{2}$, it follows that $N_{T}\left(q_{k}\right)=\{s\}$. Let t be a neighbor of q_{1} in $P_{1}^{*} \backslash\left\{v_{1}\right\}$; similarly $N_{T}\left(q_{1}\right)=\{t\}$. In particular $k>1$. It follows from the minimality of k that Q^{*} is anticomplete to $T \backslash\left\{w_{2}, w_{3}\right\}$. Moreover, since $s-Q-t-P_{1}-a-P_{2}-s$ is a hole, it follows that each of w_{2}, w_{3} has at most one neighbor in Q.
(10) Not both w_{2} and w_{3} have a neighbor in Q.

Suppose not. Let $i, j \in\{1, \ldots, k\}$ be such that q_{i} is adjacent to w_{3} and q_{j} is adjacent to w_{2}. Since $N_{T}\left(q_{k}\right)=\{s\}$, it follows that $i, j \neq k$. Now, $w_{3}-P_{3}-a-P_{2}-w_{2}-q_{j}-Q-q_{i}-w_{3}$ is a hole, and b has two neighbors in it, contrary to the fact that $G \in \mathcal{F}_{2}$. This proves (10).
(11) w_{3} is anticomplete to Q.

Suppose not. Let $i \in\{1, \ldots, k\}$ be such that q_{i} is adjacent to w_{3}. Then, by (10), it follows that w_{2} has no neighbor in Q, and so $s-P_{2}-b-P_{1}-t-Q-s$ is a hole and w_{3} has two neighbors b and q_{i} in it, contrary to the fact that $G \in \mathcal{F}_{2}$. This proves (11).
(12) w_{2} is anticomplete to Q.

Suppose w_{2} has a neighbor in Q; let $i \in\{1, \ldots k\}$ be such that w_{2} is adjacent to q_{i}. Let S be the path $w_{1}-P_{1}-t-q_{1}-Q-q_{k}$. Since $t \neq v_{1}$, we have that $v_{1} \notin S$. Now $H=b-w_{1}-S-q_{k}-s-P_{2}-a-P_{3}-b$ is a hole and $b, q_{i} \in N_{H}\left(w_{2}\right)$, contrary to the fact that $G \in \mathcal{F}_{2}$. This proves (12). Since $s \neq w_{2}$ and $t \neq v_{1}$ the paths $t-P_{1}-a$, $t-q_{1}-Q-q_{k}-s-P_{2}-a$ and $t-P_{1}-b-P_{3}-a$ form a theta through $\left\{a, v_{1}, u_{1}\right\}$ that contradicts the choice of T with $\left|P_{1}\right|$ minimum.

The next result allows us to use Lemma 6.1 to handle heavy seagulls.

Lemma 6.2. Let $G \in \mathcal{F}_{2}$ and let F be a heavy seagull in G. Assume that G does not admit a star cutset. Then F is extendable.

Proof. Let $F=a-v-u$. Since F is heavy, there exist $x_{1}, x_{2} \in N(a) \backslash\{v\}$. Since $G \in \mathcal{F}_{2}$ the set $\left\{x_{1}, v, x_{2}\right\}$ is stable. Since G does not admit a star cutset, it follows that for $i \in\{1,2\}$, there exists a path P_{i} from x_{i} to u with $P_{i}^{*} \cap N[a]=\varnothing$. By choosing P_{1}, P_{2} with $P_{1} \cup P_{2}$ minimal, and permuting the indices if necessary, we may assume that one of the following two cases holds.
(1) $P_{1}^{*} \subseteq P_{2}^{*}$ and x_{1} has a neighbor in P_{2}^{*}.
(2) There exists a vertex $q \in V(G) \backslash\left\{v, a, x_{1}, x_{2}\right\}$ and a path Q from u to q such that $P_{i}=u-Q-q-P_{i}^{\prime}-x_{i}$ and $P_{1}^{\prime} \backslash q$ is disjoint from and anticomplete to $P_{2}^{\prime} \backslash q$.

We handle the former case first. Let $P_{2}=p_{1}-\cdots-p_{k}$ where $p_{1}=u$ and $p_{k}=x_{2}$. Let i be maximum such that both x_{1} and v have neighbors in $p_{i}-P_{2}-p_{k}$. Then there exists $x \in\left\{x_{1}, v\right\}$ such that x is anticomplete to $\left\{p_{i+1}, \ldots, p_{k}\right\}$, and consequently $H=x-p_{i}-P_{2}-p_{k}-a-x$ is a hole. Let $y \in\left\{x_{1}, v\right\} \backslash\{x\}$. Since y is adjacent to a and has a neighbor in $\left\{p_{i}, \ldots, p_{k}\right\}$, if follows that y has at least two neighbors in H, contrary to the fact that $G \in \mathcal{F}_{2}$. This proves that the first case is impossible, and so the second case holds. Now let H^{\prime} be the hole $q-P_{2}^{\prime}-x_{2}-a-x_{1}-P_{1}^{\prime}-q$. Since v is adjacent to a and $G \in \mathcal{F}_{2}$, it follows that v is anticomplete to $P_{1}^{\prime} \cup P_{2}^{\prime}$, and in particular, $u \notin V\left(H^{\prime}\right)$. Let R be a shortest path from u to a vertex u^{\prime} with a neighbor in H^{\prime} such that R is contained in $G \backslash(N[v] \backslash\{a, u\})$. Such a path exists, since v is not a star cutset center. Since $G \in \mathcal{F}_{2}$, it follows that u^{\prime} has a unique neighbor h in H^{\prime}. If $h \notin\left\{x_{1}, x_{2}, a\right\}$, then $H^{\prime} \cup R \cup\{v\}$ is a theta in G with ends h and a, and paths $a-v-u-R-u^{\prime}-h$ and the the two paths from h to a in H^{\prime}, and the result holds. So (by symmetry) we may assume that $h \in\left\{x_{1}, a\right\}$.

Let R^{\prime} be the path from h to q with interior in $R \cup Q$. Write $R^{\prime}=r_{1}-\cdots-r_{t}$, where $r_{1}=h, r_{t}=q$, and there exists $i \in\{2, \ldots, t-1\}$ such that $r_{1}, \ldots, r_{i} \in R$ and $r_{i+1}, \ldots, r_{t} \in Q$. Suppose first that v has a neighbor w in $\left\{r_{i+1}, \ldots, r_{t}\right\}$. Then $h-R^{\prime}-q-P_{2}^{\prime}-x_{2}-a-h$ is a hole, and v has two neighbors in it (namely a and w), contrary to the fact that $G \in \mathcal{F}_{2}$. So v is anticomplete to $\left\{r_{i+1}, \ldots, r_{t}\right\}$.

If v is anticomplete to $Q \backslash u$, then $H^{\prime} \cup Q \cup\{v\}$ is a theta with ends a, q and paths $a-v-u-Q-q$ and the the two paths from a to q in H^{\prime}, and so F is extendable. Thus we may assume that v has a neighbor in $Q \backslash u$, and therefore u is distinct from and nonadjacent to r_{i+1}.

Next suppose that r_{i} is adjacent to a. Then $i=2$ and $h=a$. Let Q^{\prime} be the path from a to q contained in $Q \cup\{a, v\}$ (thus Q^{\prime} is obtained from $a-v-u-Q-q$ by shortcutting through an edge incident with v). Then $a, r_{i+1} \in Q^{\prime}$. Now $a-Q^{\prime}-q-P_{2}^{\prime}-x_{2}-a$ is a hole, and r_{i} has two neighbors in it (namely a and r_{i+1}), contrary to the fact that $G \in \mathcal{F}_{2}$. This proves that r_{i} is nonadjacent to a.

Now there is a path S from u to q with $S \subseteq u-R-r_{i} \cup r_{i+1}-Q-q$. It follows that $\{a, v\}$ is anticomplete to $S \backslash u$. Consequently, $a-v-u-S$ is a path from a to q. If x_{1} has a neighbor $s \in S$, then x_{1} has two neighbors in the hole $a-S-q-P_{2}^{\prime}-x_{2}-a$ (namely a and s), contrary to the fact that $G \in \mathcal{F}_{2}$. This proves that x_{1} is anticomplete to S. But now $H^{\prime} \cup S$ is a theta with ends a, q and paths S and the two paths from a to q in H^{\prime}, and so F is extendable.

Now we deal with extendable seagulls.
Theorem 6.3. Let $G \in \mathcal{F}_{2}$ and let (G, w) be a 4-unbalanced pair. Assume that G does not admit a star cutset. Let $F=a-v_{1}-u_{1}$ be a heavy seagull in G. Then there are two cliques K_{1}, K_{2} of G such that $S\left(K_{1}, K_{2}\right)$ is active and $A\left(K_{1}, K_{2}\right) \cap\left\{a, u_{1}\right\} \neq \varnothing$.

Proof. Let T be a theta through F (such T exists by Lemma 6.2). We may assume that a is an end of T; let the other end be b. Let the paths of T be P_{1}, P_{2}, P_{3} with $\nu_{1} \in P_{1}$, and T is chosen with $\left|P_{1}\right|$ minimum among all thetas through F in G with end a.
(13) Let D be a component of $G \backslash\left(\left(N[b] \backslash N\left[v_{1}\right]\right) \backslash\left\{a, u_{1}\right\}\right)$. Then $\left|D \cap\left\{a, u_{1}\right\}\right| \leq 1$.

Since $G \in \mathcal{F}_{2}$, we have that $\left|V\left(P_{i}\right)\right| \geq 4$ and so $v_{1}, u_{1} \in P_{1} \backslash\{b\}$. Suppose for a contradiction that $u_{1}, a \in D$. Then there is a path P from u_{1} to a with $P^{*} \subseteq D$. Consequently P^{*} contains no vertex of $N[b] \cup N\left[v_{1}\right]$. Since $a \in\left(P_{2} \cup P_{3}\right) \backslash N[b]$ we get a contradiction to Lemma 6.1 applied to F, T, and P. This proves (13).
(14) There are cliques X, Y of G and a separation $(A, X \cup Y, B)$ such that $a \in A$ and $u_{1} \in B$.

Let D_{a}, D_{u} be the components of $G \backslash\left(\left(N[b] \cup N\left[v_{1}\right]\right) \backslash\left\{a, u_{1}\right\}\right)$ with $a \in D_{a}$ and $u_{1} \in D_{u}$. By (13), we have that $D_{a} \neq D_{u}$. It follows that there is a separation $S=\left(A,\left(N[b] \cup N\left[v_{1}\right]\right) \backslash\left\{a, u_{1}\right\}, B\right)$ of G with $D_{a} \subseteq A$ and $D_{u} \subseteq B$. Now (14) follows from Lemma 2.1 applied to S. This proves (14).

Let X, Y be as in (14). Since $G \in \mathcal{F}_{2}$ and since (G, w) is a 4 -unbalanced pair, the canonical two-clique-separation corresponding to $\{X, Y\}$ is defined, and by (13) $\left|B(X, Y) \cap\left\{a, u_{1}\right\}\right| \leq 1$. Since $\left|B(X, Y) \cap\left\{a, u_{1}\right\}\right| \leq 1$, we deduce that $A(X, Y)$ $\mathrm{a} \cap\left\{a, u_{1}\right\} \neq \varnothing$; let $p \in A(X, Y) \cap\left\{a, u_{1}\right\}$. Let D be the component of $A(X, Y)$ containing p, and let $N=N(D)$. Then N is the union of two cliques K_{1}, K_{2}.
(15) The pair $\left\{K_{1}, K_{2}\right\}$ is proper.

Observe that $B(X, Y) \subseteq B\left(K_{1}, K_{2}\right)$ and $D \subseteq A\left(K_{1}, K_{2}\right)$. Since G does not admit a clique cutset, both K_{1} and K_{2} are nonempty. If $\left|K_{1} \cup K_{2}\right| \geq 3$, then D is a component of $A\left(K_{1}, K_{2}\right)$ with $K_{1} \cup K_{2} \subseteq N(D)$, and the claim holds. Thus we may assume that $\left|K_{1}\right|=\left|K_{2}\right|=1$. Since F is heavy, it follows that $\operatorname{deg}_{G}(p)>2$, and therefore $D \cup K_{1} \cup K_{2}$ is not a path from K_{1} to K_{2}, and again the claim holds. This proves (15). Now among all proper pairs $\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ with $B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cup K_{1}^{\prime} \cup K_{2}^{\prime} \subseteq B\left(K_{1}, K_{2}\right) \cup K_{1} \cup K_{2}$ choose $K_{1}^{\prime}, K_{2}^{\prime}$ with $B\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cup K_{1}^{\prime} \cup K_{2}^{\prime}$ inclusion-wise minimal, and subject to that with $B\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ inclusion-wise maximal. Then $\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ is active and $A\left(K_{1}^{\prime}, K_{2}^{\prime}\right) \cap\left\{a, u_{1}\right\} \neq \varnothing$.

7 | PROOF OF THEOREM 3.4

We begin with proving an extension of Theorem 1.3. For a graph G and positive integer d, we denote by $\gamma_{d}(G)$ the maximum degree of the subgraph of G induced by the set of vertices with degree at least d in G.

Theorem 7.1. For all $k, \gamma>0$, there exists $w=w(k, \gamma)$ such that every graph G with $\gamma_{3}(G) \leq \gamma$ and treewidth more than w contains a subdivision of $W_{k \times k}$ or the line graph of a subdivision of $W_{k \times k}$.

Proof. Let $w=w(k, \gamma)=f(c(k, \gamma+3))$, where f is as in Theorem 1.1 and c is as in Theorem 1.3. Let G be a graph with treewidth at least w. By Theorem 1.1, G has a subgraph X which is isomorphic to $W_{c(k, \gamma+3) \times c(k, \gamma+3)}$. Let $H=G[V(X)]$. Then H has treewidth at least $c(k, \gamma+3)$. Also, we claim that G has maximum degree at most $\gamma+3$. To see this, suppose for a contradiction that H has a vertex v of degree at least $\gamma+4>3$. Then, since X has maximum degree at most 3, there are at least $\gamma+1$ edges in $E(H) \backslash E(X)$ incident with v. Moreover, for each such edge, its end distinct from v has degree at least two in X, and so degree at least 3 in H. But then v is a vertex of degree at least 3 in G with at least $\gamma+1$ neighbors, each of degree at least 3 in G. This violates $\gamma_{3}(G) \leq \gamma$, and so proves the claim. Now, by Theorem 1.3, H, and so G, contains a subdivision of $W_{k \times k}$ or the line graph of a subdivision of $W_{k \times k}$.

We remark that Theorem 7.1 is sharp, in the sense that the conclusion fails if the number 3 in $\gamma_{3}(G)$ is replaced by any larger integer. This is due to the construction of [11, 17], in which the set of vertices of degree 4 or more is stable. Next, we deduce:

Theorem 7.2. For all t, there exists $M=M(t)$ such that every graph in \mathcal{F}_{t} with no heavy seagull and with treewidth more than M contains a subdivision of $W_{t \times t}$.

Proof. Since G contains no heavy seagull, it follows that no two vertices of degree at least three in G are at distance two in G. This implies that every connected component of the subgraph of G induced by the set of vertices of degree at least three in G is a clique, and therefore has size at most t. It follows that $\gamma_{3}(G) \leq t-1$. Also, since $G \in \mathcal{F}$, no induced subgraph of G is the line graph of a subdivision of $W_{3 \times 3}$. Now Theorem 7.2 follows from Theorem 7.1.

We are now ready to prove Theorem 3.4, the main result of this section, which we restate.

Theorem 7.3. For all k, there exists $c=c(k)$ such that every graph in \mathcal{F}_{2} with no star cutset and with treewidth more than c contains a subdivision of $W_{k \times k}$.

Proof. Let $M=M(k) \geq 1$ be as in Theorem 7.2. Let $G \in \mathcal{F}_{2}$ and assume that G does not contain a subdivision of $W_{k \times k}$. We show that $\operatorname{tw}(G) \leq 8(M+1)$. Suppose not. By Lemma 4.1, there is a weight function w on G such that (G, w) is $4(M+1)$-unbalanced, and in particular 8 -unbalanced. Let \mathcal{H} be the set of all heavy seagulls of G. By Lemma 6.2, every seagull in \mathcal{H} is extendable. Let \mathcal{S} be the set of all pairs of cliques $\left\{K_{1}, K_{2}\right\}$ obtained by applying Theorem 6.3 to each member of \mathcal{H}. Then all elements of \mathcal{S} are active. Let \mathcal{T} be the set of the canonical two-clique-separations corresponding to the members of \mathcal{S}. By Theorem 5.1 every pair of members of \mathcal{T} is loosely noncrossing. Let β be a central bag for \mathcal{T}.
(16) There is no heavy seagull in β.

Suppose $X=a-b-c$ is a heavy seagull in β. Then $X \in \mathcal{H}$, and so there is a separation $(A, C, B) \in \mathcal{T}$ such that $\{a, c\} \cap A \neq \varnothing$. We may assume that $a \in A$. It follows from the definition of β that there exists a pair $\left\{K_{1}, K_{2}\right\} \in \mathcal{S}$ such that $a \in P_{K_{1} K_{2}}^{*}$. Since \mathcal{S} is loosely noncrossing, it follows that $N_{\beta}(a) \subseteq P_{K_{1} K_{2}}$. But then $\operatorname{deg}_{\beta}(a)=2$, contrary to the fact that X is a heavy seagull of β. This proves (16).

Recall that for $v \in V(G)$ we have defined $\delta_{\mathcal{S}}(v)=\bigcup_{K: v \in K}$ and there exists L such that $\{K, L\} \in \mathcal{S} K$.

$$
\begin{equation*}
\left|\delta_{\mathcal{S}}(v)\right| \leq 2 \text { for every } v \in \beta \tag{17}
\end{equation*}
$$

Suppose $\left|\delta_{\mathcal{S}}(v)\right|>2$ for some $v \in \beta$. Then there exist pairs $\left\{K_{1}, K_{2}\right\},\left\{K_{1}^{\prime}, K_{2}^{\prime}\right\} \in \mathcal{S}$ such that $v \in K_{1} \cap K_{1}^{\prime}$. Let $K_{1}=\left\{k_{1}, v\right\}$ and $K_{1}^{\prime}=\left\{k_{1}^{\prime}, v\right\}$. Since $G \in \mathcal{F}_{2}$, it follows that $k_{1}-v-k_{1}^{\prime}$ is a seagull in G. Since $k_{1} \in K_{1}$, it follows from Lemma 4.7 that k_{1} has a neighbor in $B\left(K_{1}, K_{2}\right)$. Since all elements of \mathcal{S} are active, and therefore proper, we deduce that k_{1} has a neighbor in $A\left(K_{1}, K_{2}\right)$. Since $v \in C\left(K_{1}, K_{2}\right)$, we deduce that $\operatorname{deg}_{G}\left(k_{1}\right)>2$. Similarly, $\operatorname{deg}_{G}\left(k_{1}^{\prime}\right)>2$. Consequently, $k_{1}-v-k_{1}^{\prime}$ is a heavy seagull of G. It follows that there exists a pair $\left\{L_{1}, L_{2}\right\} \in \mathcal{T}$ such that $A\left(L_{1}, L_{2}\right) \cap\left\{k_{1}, k_{1}^{\prime}\right\} \neq \varnothing$, say $k_{1} \in A\left(L_{1}, L_{2}\right)$. But then $k_{1} \in A\left(L_{1}, L_{2}\right) \cap C\left(K_{1}, K_{2}\right)$, contrary to Theorem 5.1. This proves (17).

It follows from (16) that there is no heavy seagull in β. By Theorem 7.2 , since G does not contain a subdivision of $W_{k \times k}$, we have that $\operatorname{tw}(\beta) \leq M$. Let w_{β} be the inherited weight function on β. Since $\operatorname{tw}(\beta) \leq M$, Lemma 4.2 implies that $\left(\beta, w_{\beta}\right)$ is $(M+1)$ balanced. Now, by (17) and Theorem $4.5(G, w)$ is $\max (4(M+1), 2(M+1))$-balanced, and therefore (G, w) is $4(M+1)$-balanced, a contradiction.

8 | PUTTING EVERYTHING TOGETHER

In this section, we prove Theorem 1.6, which we restate.
Theorem 8.1. For all $t>0$, there exists $c=c(t)$ such that every graph in \mathcal{F}_{t} with treewidth more than c contains a subdivision of $W_{t \times t}$ as an induced subgraph.

Proof. Let $c=c(t)$ be as in Theorem 7.3. By increasing $c(t)$, we may assume that $c(t) \geq t$. Let $G \in \mathcal{F}_{t}$, and suppose that $\operatorname{tw}(G)>c$. Lemma 7 from [8] shows that clique cutsets do not affect treewidth, and so we may assume that G does not admit a clique cutset. Now we deduce from Lemma 2.1 that G does not admit a star cutset. By Lemma 3.3 it follows that either $G \in \mathcal{F}_{2}$, or G is a complete graph (and so $\operatorname{tw}(G) \leq t$). So we may assume that $G \in \mathcal{F}_{2}$. But now the result follows from Theorem 7.3.

ACKNOWLEDGMENTS

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), (funding reference number RGPIN-2020-03912). Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), (numéro de référence RGPIN-2020-03912). This project was funded in part by the Government of Ontario, supported by NSF-EPSRC Grant DMS-2120644, and by AFOSR grant FA9550-22-10083, partially supported by DMS-EPSRC Grant EP/V002813/1.

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

ORCID

Bogdan Alecu (D) http://orcid.org/0000-0002-5515-9145
Maria Chudnovsky (D) http://orcid.org/0000-0002-8920-4944
Sepehr Hajebi (D) http://orcid.org/0000-0002-4551-7834
Kristina Vušković © http://orcid.org/0000-0003-3286-3145

REFERENCES

1. P. Aboulker, I. Adler, E. J. Kim, N. L. D. Sintiari, and N. Trotignon, On the treewidth of even-hole-free graphs, Eur. J. Comb. 98 (2021), 103394.
2. P. Aboulker, M. Radovanović, N. Trotignon, and K. Vušković, Graphs that do not contain a cycle with a node that has at least two neighbors on it, SIAM J. Discrete Math. 26 (2012), no. 4, 1510-1531.
3. T. Abrishami, M. Chudnovsky, C. Dibek, S. Hajebi, P. Rzążewski, S. Spirkl, and K. Vušković, Induced subgraphs and tree decompositions II. Toward walls and their line graphs in graphs of bounded degree, J. Combin. Theory, Ser. B 164 (2024), 371-403.
4. T. Abrishami, M. Chudnovsky, C. Dibek, and K. Vušković, Submodular functions and perfect graphs. arXiv:2110.00108 (2021).
5. T. Abrishami, M. Chudnovsky, S. Hajebi, and S. Spirkl, Induced subgraphs and tree decompositions III. three-path-configurations and logarithmic treewidth, Adv. Comb. 2022 (2021), no. 6, 29.
6. T. Abrishami, M. Chudnovsky, S. Hajebi, and S. Spirkl. Induced subgraphs and tree decompositions IV. (Even hole, diamond, pyramid)-free graphs, Electron. J. Comb. 30 (2023), no. 2.
7. T. Abrishami, M. Chudnovsky, and K. Vušković. Induced subgraphs and tree decompositions I. Even-hole-free graphs of bounded degree, J. Combin. Theory, Ser. B 157 (2022), 147-175.
8. H. Bodlaender and A. Koster, Safe separators for treewidth. Discrete Math. 306 (2006), no. 3, 337-350.
9. H. L. Bodlaender, Dynamic programming on graphs with bounded treewidth. Springer, Berlin, Heidelberg, 1988, pp. 105-118.
10. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized algorithms. Springer, 2015.
11. J. Davies, An Oberwolfach technical report. https://doi.org/10.4171/OWR/2022/1
12. D. J. Harvey and D. R. Wood, Parameters tied to treewidth, J. Graph Theory, 84 (2017), no. 4, 364-385.
13. T. Korhonen, Grid induced minor theorem for graphs of small degree, J. Combin. Theory Ser. B 160 (2023), 206.
14. N. Robertson and P. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms, 7 (1986), no. 3, 309-322.
15. N. Robertson and P. Seymour, Graph minors. V. Excluding a planar graph, J. Combin. Theory, Ser. B 41 (1996), no. 1, 92-114.
16. N. Robertson and P. Seymour, Graph minors. XVI. Excluding a non-planar graph, J. Combin. Theory, Ser. B 89 (2003), 43-76.
17. C. Pohoata, Unavoidable induced subgraphs of large graphs, Senior Thesis, Princeton University, 2014.
18. N. L. D. Sintiari and N. Trotignon, ((Theta, triangle)-free and (even-hole, K4)-free graphs. part 1: layeredwheels. J. Graph Theory 97 (2021), no. 4, 475-509.

How to cite this article: T. Abrishami, B. Alecu, M. Chudnovsky, S. Hajebi, S. Spirkl, and K. Vušković, Induced subgraphs and tree decompositions V. one neighbor in a hole, J. Graph Theory. 2024;105:542-561. https://doi.org/10.1002/jgt. 23055

[^0]: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
 © 2023 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC.

