
This is a repository copy of Probabilistic robotic logic programming with hybrid Boolean
and Bayesian inference.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/203659/

Version: Published Version

Article:

Post, Mark Andrew orcid.org/0000-0002-1925-7039 (2023) Probabilistic robotic logic
programming with hybrid Boolean and Bayesian inference. Robotica. ISSN 0263-5747

https://doi.org/10.1017/S0263574723001339

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Robotica (2023), 1–32

doi:10.1017/S0263574723001339

RESEARCH ARTICLE

Probabilistic robotic logic programming with hybrid

Boolean and Bayesian inference

Mark A. Post

School of Physics, Engineering, and Technology, University of York, York YO10 5DD, UK

E-mail: mark.post@york.ac.uk

Received: 15 November 2022; Revised: 10 May 2023; Accepted: 5 September 2023

Keywords: Bayesian methods; robot programming; logic programming; probabilistic logic; uncertain systems; Boolean algebra

Abstract

Bayesian inference provides a probabilistic reasoning process for drawing conclusions based on imprecise and

uncertain data that has been successful in many applications within robotics and information processing, but is

most often considered in terms of data analysis rather than synthesis of behaviours. This paper presents the use

of Bayesian inference as a means by which to perform Boolean operations in a logic programme while incorpo-

rating and propagating uncertainty information through logic operations by inference. Boolean logic operations

are implemented in a Bayesian network of Bernoulli random variables with tensor-based discrete distributions to

enable probabilistic hybrid logic programming of a robot. This enables Bayesian inference operations to coexist

with Boolean logic in a unified system while retaining the ability to capture uncertainty by means of discrete prob-

ability distributions. Using a discrete Bayesian network with both Boolean and Bayesian elements, the proposed

methodology is applied to navigate a mobile robot using hybrid Bayesian and Boolean operations to illustrate how

this new approach improves robotic performance by inclusion of uncertainty without increasing the number of

logic elements required. As any logical system could be programmed in this manner to integrate uncertainty into

decision-making, this methodology can benefit a wide range of applications that use discrete or probabilistic logic.

1. Introduction

Robots and other autonomous systems are nearly all designed based on traditional “exact” logic, as

they use Boolean logic circuitry and Von Neumann architectures for computation. However, they must

interact through sensing and interpretation with a complex and uncertain world that cannot be described

easily with “exact” quantities. Sensor models and algorithms that use probabilistic information have

been very successful at dealing with uncertainty in robotics, but there is always a boundary at which

probabilistic information must be “interpreted” and converted into an exact logical decision. Current

autonomous systems do not propagate this probabilistic information throughout the logical decision-

making process, which causes an overall loss of information. Faced with an uncertain obstacle, a robot

is generally still forced to make a “yes/no” decision regarding whether to pass it or not, and complex

behavioural responses require a designer to explicitly specify how the robot should behave in each case.

1.1. Background

The use of definite Boolean logic is ubiquitous in modern computing, but the application of probabilis-

tic logic constructs for programming defined behaviours has been discussed in academic circles since

the beginnings of modern computing [1], including by von Neumann himself [2]. However, the use of

probabilistic logic as a programming medium has not been pursued with the same focus as precise and

definite computation due to computing applications chiefly desiring this precision. The combination of

C© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative

Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,

provided the original article is properly cited.

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

2 Mark A. Post

probabilities with logic has been discussed at length in the context of prepositional logic by Adams [3]

and several others [4], but probabilities have not previously been incorporated into robotic program-

ming at the level of logic itself. More recently, there has been a pervasive need in the autonomous

systems field for new approaches to computing, as exact computing alone becomes very complex when

implementing autonomous systems that interact with uncertain quantities. DeBenedictis and Williams

(Sandia/HP) describe the need for new learning device behaviours [5]. Khasanvis et al. (BlueRISC) state

that “Conventional von Neumann microprocessors are inefficient. . .limiting the feasibility of machine-

learning. . .”, proposing instead the use of probabilistic electronic hardware [6]. Kish and others have

suggested that precise nano-scale and quantum computing may not live up to expectations [7]. A

resurgence of interest in probabilistic hardware has also focused on increasing energy efficiency [8],

providing fault tolerance [9], and overcoming the non-determinism challenges in nano-scale computing

[10]. Hardware models currently in the development for probabilistic computing include the Strain-

switched magneto-tunnelling junction (S-MTJ) model used by Khasanvis et al. [11], the more traditional

stochastic electronic neural logic model used by Thakur et al. [12], and conventional FPGA-based imple-

mentations [13]. While probabilistic computing hardware will likely be available in the near future, there

is currently very little focus on how this hardware could be used to replace exact logic in the kinds of

robots and autonomous systems that are now being built. By creating a framework that allows pro-

gramming of data handling and behaviours entirely based on probabilistic inference while subsuming

Boolean logic, it is also possible to build the very first functioning, autonomous systems solely based

on this ground-breaking hardware, with the full propagation of probabilistic information through every

element of the system allowing comprehensive information handling with efficiency and reliability.

Numerous approaches exist for using Bayesian theory in robotics for solving specific problems such

as learning behaviours from data [14], sensor planning [15], and mapping using both pure Bayesian [16]

and Markov-based approaches [17] due to the convenience of fusing and learning probabilistic abstrac-

tions over “hard” data. However, as the rest of the system is generally based on precise logic, there is

inevitably a data boundary at which a definite “yes/no” decision must be made. The first mention of

using Bayesian inference as a fully general method for programming robot behaviours was made by

Lebeltel, Diard, and Bessiere as early as 1999 [18] and based on the much earlier propositional theory

of Cox [19] and Jaynes [20]. As such, it provided a methodology for constructing complete probabilistic

programmes but still required extensive problem-specific programming of relevant priors and hypothe-

sis functions. The relationship of general Bayesian Robot Programming (BRP) as a superset of Bayesian

Networks and Dynamic Bayesian Networks in the set of probabilistic modelling formalisms was men-

tioned by Diard et al. [21]. However, no further innovation on the BRP methodology was made until

the author proposed the application of Bayesian Networks as a means of graphically organizing and

simplifying the complex inference models of BRP in the context of self-aware robotic systems [22]. In

the graphical Bayesian programming paradigm, procedural programmes for robotic action are replaced

by inference operations into a probabilistic graphical model of linked random variables (a Bayesian

network), and behaviours are produced by generation of appropriate likelihood functions and priors in

each random variable, which are stored as a probability distribution for efficient computation of pos-

terior values. This representation is based on Koller and Friedman’s probabilistic graphical modelling

concept, which focuses on declarative representations of real processes that separate “knowledge” and

“reasoning," which allows the application of general algorithms to a variety of related problems [23].

More specific computational approaches and languages for applying Bayesian programming in a

structured fashion fall under the category of Probabilistic Logic Programming (PLP). PLP is a form of

logic programming that is generally used to build probabilistic models of systems rather than Boolean

or definite numerical models and represents uncertainty by using random variables in place of definite

variables. A wide variety of PLP languages have been developed with different terminology, seman-

tics and syntax, but generally have in common probabilistic models, logical inference, and machine

learning methods [24]. The use of discrete probability distributions as a foundation for generalized pro-

gramming dates at minimum to Sato’s “Distribution Semantics” proposed in 1995, which can express

Bayesian networks, Markov chains, and Bernoulli sequences [25]. Many PLP languages have both the

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 3

ability to synthesize these probabilistic structures [26] and can represent Boolean functions as Binary

Decision Diagrams or Sentential Decision Diagrams as the ProbLog language has [27], thus forming

a bridge between the graphical constructs of a Bayesian network and a Boolean logic “gate” structure.

While robots can and have used PLPs for probabilistic programming for both the mentioned probabilistic

structures and other constructs such as affordances [28], these languages perform inference computations

through purpose-designed algorithms implemented using conventional “exact” compilers, which do not

provide the benefits of hardware-level probabilistic logic itself such as resilience to faults and end-to-end

(or in robotics, sensor-to-actuator) propagation of probabilistic information [22], and in most cases do

not yet effectively leverage probabilistic optimizations and parallel hardware acceleration [29].

To facilitate development of efficient close-to-hardware probabilistic programming, it is desirable to

replace the traditional Arithmetic Logic Unit (ALU) operations of a computer with a more efficient and

mathematically simple abstraction that can unify algebraic operations. The leading candidate for such an

abstraction is the tensor, sometimes referred to as a “multidimensional matrix." Tensor computation can

be performed with well-established linear operations and is popular in machine learning for the ability to

efficiently perform operations on highly dimensional data and is supported by accelerated parallelization

on modern Graphics Processing Unit and Tensor Processing Unit hardware. Tensors have been used to

represent logic programmes by transforming sets of logical rules into assembled “programme matrices”

[30], but this is a rule-centred definite approach, and in most cases does not incorporate probabilistic data

into logical computation. I instead propose an approach aimed at robust probabilistic computation using

Bayesian networks as the structural basis. In a “system-centred” approach, the components of a robotic

system directly define the random variables and the structure of the network need not be abstracted by

a programmer, but could in future be generated through high-level semantic knowledge of a robot’s

structure and mission [22]. A direct comparison between the performance of structurally isomorphic

Bayesian networks and Boolean logic systems has never been done in this context, and definitely not in

such a way that both definite and probabilistic logic elements could be used side by side. Also, low-level

robot control has not been achieved yet using only a single tensor probabilistic inference operation that

takes the place of a CPU or ALU in a way that could be implemented using probabilistic hardware. To

facilitate tensor-based hardware systems and show that low-level probabilistic logic programming can

subsume traditional logic programming in a way that both kinds of logic can coexist, this paper focuses

on demonstrating how Boolean logic programmes can be accomplished using Bayesian network logic,

and what advantages may be gained by doing so in the domain of robotics.

1.2. Significance

To prevent information and metadata from being lost as it is propagated throughout the system, it is

necessary to realize logical processing constructs that make use of and propagate this information at

each stage of processing. By using tensor-based logic that operates by inference, all the probabilistic

information of the sensory sources is propagated through each logical operation and ultimately is avail-

able at the actuators where it contains all the relevant information it has accumulated within the entire

system.

The use of probabilistic sensor data and sensor models in robotics provides valuable information on

both the sensor data itself and the world that the data represents. However, probabilistic information is

generally only used for part of a system, such as identifying objects, estimating location, and predicting

reliability. Probabilistic interpretation is more complex than simple and definite “Yes/No” analysis, and

once a conclusion is made, a definite “Yes/No” decision is frequently acted on, such as a decision to avoid

an obstacle without further propagating the probabilistic information that led to this conclusion. Figure 1

shows how probabilistic information can be propagated through a general robotic system. The process

illustrated on the left side of Fig. 1 indicates how sensor data that contains probabilistic information is

often used, by applying a sensor model that produces a definite conclusion that is used by the rest of

the system. This simplifies the design and programming of the system, but the probabilistic information

that characterizes the sensor’s response is effectively lost as soon as the model is applied. The process

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

4 Mark A. Post

Figure 1. Probabilistic information loss in robotic systems. Many systems are designed to threshold

or abstract away probabilistic information and uncertainty from sensors that is otherwise useful at an

early stage (left). Better decisions can be made by propagating probabilistic information further using

more complex sensor models, but this information is rarely used throughout the entire system (centre).

Ideally, probabilistic information should be implicitly propagated through the entire system and used at

all stages of processing to produce more comprehensive results (right).

illustrated in the middle of Fig. 1 shows an example of the use of a probabilistic logic model that allows

probabilistic information to propagate to the decision-making stage. This allows better decisions to be

made based on the additional probabilistic information, but if the outcomes of the decisions are definite,

probabilistic information is still lost after the decision-making process that would otherwise provide

context. The process illustrated on the right side of Fig. 1 shows an ideal situation, where probabilistic

information is propagated through the decision stage and throughout the entire system, being available

to perform actions that can make use of the additional information that is provided.

Propagating probabilistic information throughout every operation in such a system is usually highly

complex, requiring the extension of all algorithms to make use of and propagate probabilistic informa-

tion with every operation. For this reason, most robotic systems discard this metadata as soon as it is

not required to make a definite decision. However, if these decisions are themselves based on simple

logic such as Boolean operations, a new alternative is proposed here: to enhance the logic so that it

implicitly operates on and propagates probabilistic information in each operation. For simple digital

logic systems, this enables a logical system to make use of uncertainty and more complex probabilistic

information natively, without additional elements or complex interpretation of probabilities. The flexibil-

ity of probabilistic tensors also makes it simple to implement specialized non-commutative logic types

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 5

such as multiple-input logical implication. Using this probabilistic realization of Boolean logic, there

is no loss of probabilistic information in the system, and the resulting behaviours are more representa-

tive of real systems being based on this information. It is important to note that the ability to propagate

probabilities through logic is beneficial in many specific domains besides general robotic programming,

including data analytics, system design, and artificial intelligence. Fault diagnosis in particular is easier

if additional probabilistic information is present within a system, and quantum computing is inherently

probabilistic and is related to the use of probabilistic computing in general.

2. Methodology

In this section, the methodology to create systems in which Boolean logic can implicitly coexist with

and propagate probabilistic information is described. The proposed methodology builds these systems

out of probabilistic inference operations that realize the same logical rules as Boolean operations.

To connect binary-valued logic to probabilistic logic, some comparison of the different kinds of

variables involved must be done. To begin with, logic operations in general have similar properties

to Bayesian operations. They are commutative if the input variables are of identical dimension and

relation to the random variable in question. This changes if the meaning of the input random variables

in a Bayesian system is different, for example, if one input has more states than the other, or if the

effect of the two input variables is different (having different conditional probability distributions). In

the proposed methodology, commutative Boolean operations are represented by Bayesian conditional

distributions that have a symmetry between inputs.

Variables themselves are considered by definition to be quantities with multiple states. The definition

of a “random variable” includes a probability value for each of its states. Bayesian random variables

are represented graphically in a directed acyclic graph or “Bayesian network” as nodes that can have

any number L of parents. The output of these nodes is an “inferred” probability distribution that is

dependent on the probabilities of the parent random variables. For discrete random variables specifically,

the relationship between the parent probability distributions and the inferred distribution of the node

itself is a conditional probability distribution that provides a probability for each potential state of the

parent random variables. The probabilities of the states provided to this node are considered to be priors,

upon which the inferred probabilities of the variable are ultimately based.

In Boolean logic, the only states possible are true and false, with definite values, and these are used

as the reference values for a two-state system. All Boolean operations are based only on the use of two

values, and connections between components carry only one true or false value. Boolean logic operations

are also represented as “logic gates," most commonly in a directed graph structure that represents a logic

circuit, and generally as a component of an electronic circuit that realizes this logic using semiconductor

devices. These gates, as logical rather than semiconductor devices, can also have L inputs. However,

while the number of inputs in a Boolean system does not change the value of the output as long as the

logic is valid, the values of random variables can vary with the number of inputs, with consequences

explored in Section 4.

The structures of logic systems and Bayesian networks are similar in the sense of data flow and

perform similar logical functions, but in terms of fundamental representation of logic, they cannot be

seamlessly combined without extending the representational capacity of Boolean logic, and at the same

time constraining the use of random variables such that true and false states can be represented consis-

tently. As a comparison between these two domains of logic, the left side of Fig. 2 shows an example of

a network of Boolean logic gates. The right side shows an example of a Bayesian network, in which ran-

dom variables are calculated based on conditional probabilities, and vectors that contain the likelihoods

of random variable states propagate this information through the network.

Bernoulli random variables provide an ideal form of probabilistic logic that bridges this represen-

tational gap, also representing a random variable as having only true and false states but with the

probability of the variable being true being defined. The probability to be true, and the probability to be

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

6 Mark A. Post

Figure 2. Separate domains of logic. The separate domains of Boolean logic using bi-valued scalars

(left) and Bayesian inference using random variables (RVs) with tensors of state probabilities (right).

false can be considered as two separate states, with the sum of the probabilities of these states always

being 1.0. The Bayesian inference “compatible” equivalent of a Boolean variable is here considered to

be a Bernoulli random variable.

Boolean logic can be extended to fuzzy logic by defining a “degree of truth” for each variable, but this

is not the same as using Bayesian inference. The use of fuzzy logic in a compatible fashion to Boolean

logic is well-established, since fuzzy logic has proven that it serves as a superset of Boolean logic [31].

Fuzzy logic alone defines that a variable can take on multiple values at once, each of which is assigned

a “degree of membership” that is considered to be known with certainty. In contrast, Bayesian inference

assumes that variables ultimately have only one value, but with a given probability. The actual value is

not generally known with absolute certainty (hence the term “random variable”).

Conceptually, the application of Bernoulli random variables in Boolean logic is well-established, and

their use in Bayesian networks is possible in the same manner as general dependent random variables.

However, to be able to perform mixed Boolean and Bayesian inference operations in a robotic system,

Boolean operations must be defined in a manner that is consistent with Bayesian inference and at the

same time with a practical structure that facilitates implementation on computing hardware. The pro-

posed methodology utilizes a tensor representation for storing conditional random variables, with the

advantage that tensors can be constructed to accommodate any number of random variable states, and

inference can be performed as a tensor operation that takes the number of states into account in each

case of a parent random variable.

Using the proposed methodology, Fig. 3 shows how a logical system can be seamlessly constructed

to propagate probabilistic data through both general random variables and Bernoulli random variables

to perform Boolean operations while propagating probabilistic information throughout the system. The

results of inference operations are consistent with Boolean logic outputs but also contain the information

that is provided by probabilistic sources and operations, allowing a much greater wealth of information

to be processed while retaining the compact and logical structure of a logic gate system.

3. Boolean logic with Bernoulli random variables

In this section, Bayesian logic is developed that subsumes Boolean logic operations so that they can be

combined as described in Section 2. To do this, it is necessary to look at Boolean and Bayesian logic

in similar terms – that is, as a logical operation to be performed on one or more variables that follows

established logical rules. This novel approach insures that the logic is not only mathematically consistent,

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 7

Figure 3. Combined domains of logic. A methodology for combining Boolean and Bayesian logic, in

which Boolean operations are subsumed by Bayesian inference and tensors represent Bernoulli random

variables (RVs).

but is also consistent in terms of the algorithms and operations that are executed on a computing device

to perform it.

The logical rules for probabilistic inference using naive Bayesian logic are well-known [23] and are

described here using random variables A and B that contain states a and b respectively with B represented

as a parent random variable of A, as denoted by membership in the set of parents Pa(A) of A, such that

the value of A depends on B ∈ Pa(A) as shown in Eq. (1).

P(A = a) =
∑

B∈Pa(A)

P(A = a|B = b)P(B = b) (1)

A Bayesian inference operation depends entirely on the conditional probability distribution P(A =

a|B = b), which for a discrete random variable can be represented as an order (L + 1) tensor for a random

variable dependent on L other random variables [32]. The logical operation to be performed can be

chosen by selecting this distribution. This tensor [33] is chosen such that the index that represents the

inferred distribution (the “output”) is the first index, considered to be the “rows” of a tensor that is

represented as a multidimensional array in row-major order.

In contrast to the number of tensors that could be defined in a Bayesian network, only a few specific

operations are defined for Boolean values due to their simplicity. The basic operations commonly

used in programming are referred to as logical negation (NOT), logical conjunction (AND), logical

disjunction (OR), and exclusive disjunction (XOR). Complementary logic operations are also defined

as NAND, NOR, and XNOR, being equivalent to AND, OR, and XOR with a NOT negation operation

following the operation. The logical identity operation (which does not change the input) and the logical

implication operation (which is non-commutative) are not commonly found in computational logic, but

as Boolean operations they can be similarly performed by Bayesian inference, and definitions of these

operations are included here for completeness.

Bernoulli random variables are an ideal basis for building a system of probabilistic logic as they

assume two states (true and false) depending on a truth probability p = P(A = true) and a complementary

probability q = P(A = false) = 1 − p. In subscripts, true is denoted by “t” and false is denoted by “f."

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

8 Mark A. Post

Bernoulli random variables follow Boolean logic if p = 1 (true) or q = 1 (false). We use the letter Q in

the fashion adopted by logical notation to denote the output distribution of an inference operation. In

the logic model described here, the conditional probability distribution is represented as P(Q = t|A, B),

with Q as the Bayesian random variable representing the logic operation and parent variables A and B

representing the inputs as shown in Eq. (2).

P(Q) =
∑

a∈A,b∈B

P(Q|A = a, B = b)P(A = a)P(B = b) (2)

As an example calculation, Eq. (3) shows the probability that Q is true as calculated by the total

probability (sum) of all system states in which Q is true, from the law of total probability.

P(Q = t) = P(Q = t|A = t, B = t)P(A = t)P(B = t)

+ P(Q = t|A = t, B = f)P(A = t)P(B = f)

+ P(Q = t|A = f, B = t)P(A = f)P(B = t)

+ P(Q = t|A = f, B = f)P(A = f)P(B = f) (3)

The conditional probability distribution is represented by a tensor of order L = 3 and size 2 × 2 × 2

for Bernoulli random variables. Representing the conditional probability distribution as a tensor P, the

operation can be defined as Pijk = P(Q = i|A = j, B = k), where i ∈ {t, f}, j ∈ {t, f}, k ∈ {t, f}. Additionally,

the probabilities of the parent random variables can be defined in shortened form as At = P(A = t), Af =

P(A = f), Bt = P(B = t), Bf = P(B = f). The inference operation is then defined as a tensor inner product

with the probability distributions of A and B, where the first dimension of the tensor represents the

distribution of Q itself as in Eq. (4).

P(Q) =

[

PtttAtBt + PtftAfBt + PttfAtBf + PtffAfBf

PfttAtBt + PfftAfBt + PftfAtBf + PfffAfBf

]

(4)

This leads to the compact representation in Eq. (5) of the inferred probability distribution for

Bernoulli random variables.

P(Q) =

[
∑

j,k
PtjkAjBk

∑

j,k
PfjkAjBk

]

(5)

Performing a Boolean operation by means of Bayesian inference is now a matter of defining the

conditional probability distributions in the form of tensors that produce an equivalent logical output in

terms of a Bernoulli distribution.

3.1. Negation and identity

The simplest Boolean logic operation is the unary negation (NOT) operation ¬A, which serves as a good

basic reference for comparison between Boolean and Bayesian logic. In the Boolean sense, the output

state of this operation is the opposite state of the input.

For the case of a two-valued random variable that can take the state true or false, the conditional

probability distribution, represented as a two-dimensional matrix, takes the same form as the truth table

for the NOT operation, as shown in Fig. 4. This is because the truth table for the probability p deter-

mines the value for P(Q = t| . . .), and its complement q determines the values for P(Q = f| . . .). The

conditional probability distribution for a random variable with a single parent is just a matrix that is

multiplied in the manner of matrix multiplication with the distribution of the parent random variable

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 9

Figure 4. Bayesian logical negation (NOT) operation.

to produce the inferred distribution. The conditional probability distribution can also be described as

in Eq. (6).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

P(Q = f|A = t) = 1.0

P(Q = t|A = f) = 1.0

P(Q = t) = 0.0 otherwise

(6)

To provide a comparison example, an “identity” conditional random variable (with the operation

abbreviated as ID) is created that has the effect of the inferred distribution being identical to the parent

random variable, shown in Fig. 5. For a random variable with a single parent A, this distribution takes

the form of an identity matrix as the inference operation is again a matrix multiplication.

⎧

⎨

⎩

P(Q = t|A = t, B = t, . . . = t) = 1.0

P(Q = t) = 0.0 otherwise
(7)

These examples indicate a useful property of the conditional probability distribution for Bernoulli

random variables. The negation operation has the effect of reversing the conditional probability

distribution along the axis of the values for the random variable as shown in Eq. (8).

P(Q) = ¬P(A) = 1 − P(A) = 1 − [p0,0, p1,0] (8)

Since p1,0 = 1 − p0,0, the operation of negation on P(A) is as illustrated in Eq. (9).

¬P(A) = 1 − [p0,0, 1 − p0,0] = [1 − p0,0, p0,0] = [p1,0, p0,0] (9)

Thus, the distribution terms are reversed on negation. Using this rule, the Bernoulli conditional proba-

bility distributions can easily be produced that are equivalent to inverted logic operations such as NAND,

NOR, and XNOR, from the non-inverted AND, OR, and XOR operations.

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

10 Mark A. Post

Figure 5. Bayesian logical identity (ID) operation.

3.2. Conjunction

The conjunction (AND) operation A ∧ B ∧ . . . is implemented as a conditional probability distribution

by recognizing that the inferred distribution should show a state of true only for the case where all

priors are considered to be true. Following the previous example, the indices of the distribution for

P(Q = t| . . .) are set as in Eq. (10).

⎧

⎨

⎩

P(Q = t|A = t, B = t, . . . = t) = 1.0

P(Q = t) = 0.0 otherwise
(10)

In all cases, P(Q = f| . . .) = 1 − P(Q = t| . . .). Figure 6 shows the resulting distribution for the case

of a two-input AND operation. This method also applies to multiple-input AND operations, as shown

by the example of three parent random variables in Fig. 7.

3.3. Disjunction

The disjunction (OR) operation A ∨ B ∨ . . . is implemented in a complementary fashion to conjunction,

by recognizing that the inferred distribution should be true in all cases except for that where all priors

are considered to be false, as stated in Eq. (11).

⎧

⎨

⎩

P(Q = t|A = f, B = f, . . . = f) = 0.0

P(Q = t) = 1.0 otherwise
(11)

The resulting distribution for a two-input OR operation is shown in Fig. 8 and again applies equally

to the case of three or more inputs as shown in Fig. 9.

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 11

Figure 6. Bayesian logical conjunction (AND) operation.

Figure 7. Bayesian logical conjunction (AND) operation with three inputs.

3.4. Exclusive disjunction

The exclusive disjunction (XOR) operation A ⊕ B ⊕ . . . differs from that of OR in that there are two cases

in which the inferred distribution should be false, when all priors are considered to be true and when

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

12 Mark A. Post

Figure 8. Bayesian logical disjunction (OR) operation.

Figure 9. Bayesian logical disjunction (OR) operation with three inputs.

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 13

Figure 10. Bayesian logical exclusive disjunction (XOR) operation.

all priors are considered to be false. Equation (12) describes the conditional probability distribution for

this operation.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

P(Q = t|A = t, B = t, . . . = t) = 0.0

P(Q = t|A = f, B = f, . . . = f) = 0.0

P(Q = t) = 1.0 otherwise

(12)

The resulting distribution for a two-input XOR operation is shown in Fig. 10 and again applies equally

to the case of three or more inputs as shown in Fig. 11.

3.5. Material implication

Material implication (which is abbreviated here as IMP) differs from the logical operations above that

are used for computational logic in that the special cases for a multiple-input operation are not simply

those of all-true or all-false. This means that the operation is not commutative – the ordering and identity

of the priors matters, and one input is distinct as the hypothesis. For the case of implication (A → B),

Eq. (13) provides the conditional probability distribution.

{

P(Q = t|A = t, B = f) = 0.0

P(Q = t) = 1.0 otherwise
(13)

Figure 12 shows the distribution that results. The reverse case of converse implication (CIMP) A ← B

is provided by simply setting P(Q = t|A = t, B = f) = 0.0 in Eq. (13).

Although the Boolean implication operation is not defined for multiple inputs, the extension of Eq.

(13) to multiple variables is proposed in this methodology as an appropriate definition of multiple-

input implication. This naturally produces the operation A → (B ∨ C ∨ . . .) in which all input random

variables other than the one serving as hypothesis are treated as a single disjunction. By defining

the operation as false only if A is true and all other variables are false, only one tensor entry for

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

14 Mark A. Post

Figure 11. Bayesian logical exclusive disjunction (XOR) operation with three inputs.

Figure 12. Bayesian logical implication (IMP) operation.

P(Q = t| . . .) needs to be defined as false, and the conditional probability distribution takes the form

of Eq. (14).

{

P(Q = t|A = t, B = f, . . . = f) = 0.0

P(Q = t) = 1.0 otherwise
(14)

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 15

Figure 13. Bayesian logical implication (IMP) operation extended to three inputs as proposed by

A → (B ∨ C ∨ . . .).

Using this new proposed formulation, the distribution shown in Fig. 13 is produced. Any parent

random variable (the first parent input A is suggested here for convenience) can be selected as the impli-

cation input for this operation, which when true will require at least one of the other inputs to also be

true for the operation output to be true. The converse implication operation for multiple variables ceases

to have distinct meaning in this interpretation as it is simply the use of a different input variable. The

negation of implication however (abbreviated here as NIMP) still a distinct operation that can again be

accomplished by reversing the conditional probability distribution as described above.

While implementing the multiple-input IMP operation as A → (B ∧ C ∧ . . .) is possible, in which

all input random variables other than the hypothesis are treated as a single conjunction, it is both less

efficient to generate and less useful in the sense that the output is identical to the hypothesis in all cases

other than when all variables are true and thus requires setting conditional probabilities separately for

L parents rather than setting a single case.

Having defined Boolean operations in terms of Bayesian inference, more detail in their properties can

now be explored with respect to Boolean logic systems that can propagate probabilistic information.

4. Hybrid probabilistic logic

In this section, the ability for Bayesian logic and Boolean logic based on the logic described previously

to coexist side by side is examined in the interest of creating a system where uncertainty can be prop-

agated even in elements that are not Boolean. Until now, only “definite” Bernoulli random variables

that follow the function of Boolean logic have been considered. The effects of introducing priors with

uncertainty (probability values other than 1.0 and 0.0) are now considered in systems with definite prob-

ability distributions as described above, and also the effect of combining uncertain states with a different

number of inputs to an operation.

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

16 Mark A. Post

4.1. Product forms

The single-input identity and negation (NOT) operations are simple in their application, so instead

multiple-input operations with more than one parent random variable are considered here. To begin

with, consider the example of a two-input logical conjunction (AND) operation. Applying the expanded

tensor inner product of Eq. (4) to the AND operation tensor constructed in Eq. (10) results in the expan-

sion as follows, here shown with P(Q = t|A, B) on the “top” of column vectors and P(Q = f|A, B) on the

“bottom” of Eq. (15).

P(QAND|A, B) =

⎡

⎣

(1.0)AtBt + (0.0)AfBt + (0.0)AtBf + (0.0)AfBf

(0.0)AtBt + (1.0)AfBt + (1.0)AtBf + (1.0)AfBf

⎤

⎦

=

⎡

⎣

AtBt

AfBt + AtBf + AfBf

⎤

⎦ (15)

The same pattern can be seen in the expansion of the logical disjunction (OR) operation constructed

in Eq. (11) that is given in Eq. (16), exclusive disjunction (XOR) operation constructed in Eq. (12) that

is given in Eq. (17), and logical implication (IMP) operation constructed in Eq. (13) that is given in

Eq. (18).

P(QOR|A, B) =

⎡

⎣

(1.0)AtBt + (1.0)AfBt + (1.0)AtBf + (0.0)AfBf

(0.0)AtBt + (0.0)AfBt + (0.0)AtBf + (1.0)AfBf

⎤

⎦

=

⎡

⎣

AtBt + AfBt + AtBf

AfBf

⎤

⎦ (16)

P(QXOR|A, B) =

⎡

⎣

(0.0)AtBt + (1.0)AfBt + (1.0)AtBf + (0.0)AfBf

(1.0)AtBt + (0.0)AfBt + (0.0)AtBf + (1.0)AfBf

⎤

⎦

=

⎡

⎣

AfBt + AtBf

AtBt + AfBf

⎤

⎦ (17)

P(QIMP|A, B) =

⎡

⎣

(1.0)AtBt + (0.0)AfBt + (1.0)AtBf + (1.0)AfBf

(0.0)AtBt + (1.0)AfBt + (0.0)AtBf + (0.0)AfBf

⎤

⎦

=

⎡

⎣

AtBt + AfBt + AfBf

AtBf

⎤

⎦ (18)

This expansion demonstrates how probabilistic logic with Bernoulli random variables can differ from

Boolean logic. It is clear that due to the imposed Boolean logic structure of all conditional probability

distribution terms being either 1.0 or 0.0, and the probabilities along the random variable distribution

summing to 1.0 in all cases, each combination of input product AB terms appears only in one place in

the inferred distribution. Note that a negation (NAND, NOR, XNOR) has the effect already explained

of reversing the probabilities of the inferred distribution.

This leads to a sum-of-products expression for each of the Boolean-derived probabilistic logic oper-

ations that can be used as an efficient way to produce these logic operations numerically and makes

the result of a hybrid logic calculation clear to see. This sum-of-products expression is equivalent to

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 17

a Boolean sum-of-products expression, indicating that if a set of purely Boolean values {1.0, 0.0} are

used as inputs, only one of the product terms will result in a probability of P(Q = t|A, B) = 1.0. Due to

the conceptual parallel with the Boolean sum-of-products form, these products within the sum are also

referred to as “minterms," and validate that the proposed methodology produces the same results as an

equivalent Boolean logic system.

Of much greater interest is the result if probabilities that do not indicate certainty and lie in the

interval [0, 1] are used, for input random variables of the form P(A = t) = At = [0.0, 1.0], P(A = f) =

Af = 1.0 − At. If either At = 0 or Bt = 0 in an AND operation, it is clear from the minterms that AtBt will

be 0 and the output will be definite with P(QAND = t|A, B) = 0, which reflects the removal of uncertainty

by the ultimate dependence on both inputs.

Similarly, in the OR operation, if either At = 1 or Bt = 1, it is clear from the minterms that AfBf will

be 0 and the output will be definite with P(QOR = t|A, B) = 1.

Logical implication as presented in this work is similar to AND with one minterm determining the

probability that the result is false, but indicates the specific values of inputs that will produce P(QIMP =

t|A, B) = 0, and definite truth is implied if any of these input values are 0, and uncertainty if not.

An XOR operation is different in that there are two minterms for each state, and given the definite

At = 0, then P(QXOR = t|A, B) = Bt, while At = 1, results in P(QXOR = t|A, B) = Bf. Both A and B must be

definite to produce a definite output in XOR, and like the pure Boolean operation, it effectively serves as

a selectable negation operation when one input is definite while uncertainty is passed through the other.

These minterms clearly indicate how both certainty and uncertainty are propagated together through

hybrid logic operations.

In summary, the different logic operations as proposed in this methodology provide different “toler-

ances” to uncertainty in one variable with other variables being definite, as indicated by analysis of Eqs.

(15)–(18).

AND definite false if one input is definite false, otherwise propagates uncertainty in other inputs

OR definite true if one input is definite true, otherwise propagates uncertainty in other inputs

XOR not definite unless all inputs definite; one definite input being true will invert the other with two

inputs

IMP definite false if hypothesis input is definite true and all others false, otherwise propagates other

inputs

4.2. Number of inputs

The number of inputs L as parent random variables to the operation is highly relevant to the resulting

inferred distribution. In the case of AND, OR, and implication operations, only one minterm will appear

in one of the inferred distribution state probabilities (either for true or for false) and for an XOR oper-

ation two minterms, regardless of the number of inputs. The remaining terms appear in the opposite

state probability. As Bernoulli random variables are restricted to two states, this can be seen to heav-

ily bias the “output” inferred distribution of the operation in favour of the state in which more terms

appear.

This behaviour is a consequence of the uncertainty that is built into the concept of a random variable,

as seen in the context of a logical operation. A Boolean operation with L independent and uncertain

inputs that all have a probability p of state true and probability q = 1 − p of state false can be modelled

by a binomial distribution. In the case of a Boolean AND operation, the probability of the operation

resulting in true is pL, while in the case of a Boolean OR operation, the probability of the operation

resulting in true is 1 − qL, which typically is a larger value for large L. As the XOR operation has two

terms in which the result is false, the probability is pL + qL in this case. Even in the case of entirely

uncertain input state probabilities p = 0.5 and q = 0.5, the output will be biased depending on the type

of logical operation to a degree proportional to the number of inputs.

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

18 Mark A. Post

Table I. The dependence of inferred probability of truth P(Q = true) on the number of

parent inputs Pa(Q) for probabilistic logic operations. Assuming that all L probabilities

of truth pl = 1 − ql in Pa(Q) are the same, the scaling of p by the number of inputs L is

calculated.

Operation General P(Q = t| . . .) P(Q = t| . . .) with constant pl

AND

L
∏

l=1

pl (pl)
L

NAND 1 −

L
∏

l=1

pl 1 − (pl)
L

OR 1 −

L
∏

l=1

ql 1 − (1 − pl)
L

NOR

L
∏

l=1

ql (1 − pl)
L

XOR

L
∏

l=1

pl +

L
∏

l=1

ql (pl)
L + (1 − pl)

L

XNOR 1 −

(

L
∏

l=1

pl +

L
∏

l=1

ql

)

1 − (pl)
L − (1 − pl)

L

IMP 1 − p1

L
∏

l=2

ql 1 − pl(1 − pl)
L−1

NIMP p1

L
∏

l=2

ql pl(1 − pl)
L−1

Note: For IMP and CIMP, the input at l = 1 is the hypothesis.

Since the probability distributions of parent random variables (inputs) to a logical operation will vary,

a more general description of the truth probability of the inferred distribution (output) P(Q = true) is

preferred and takes the form of a product of the truth probability of the parent random variables Xl in

Pa(Q) to the logical operation random variable Q. For clarity of notation, the L probabilities of truth for

each parent random variable in Pa(Q) are denoted as pl and the corresponding probabilities of falsity

are denoted as ql = 1 − pl as stated in Eqs. (19) and 20.

pl = P(Xl = true), Xl ∈ Pa(Q) (19)

ql = P(Xl = false) = 1 − pl, Xl ∈ Pa(Q) (20)

Table I provides a summary of the probability of these truth probabilities for the operations dis-

cussed here as a product of input truth probabilities from Pa(Q). If all these probabilities are identical

and represented by pl, the probability of truth can be calculated with respect to L, as on the right side

of this table. As it is not commutative, the logical implication operation (IMP) that is here defined

as A → (B ∨ C ∨ . . .) for multiple inputs and its negation (NIMP) must specify one variable A to

be the hypothesis, and this variable is considered here for simplicity to be the first indexed parent

at l = 1.

Although this scaling is a significant factor in the design of logical programmes that involve uncer-

tainty, it is important to note that if the inputs (probability distributions of parent random variables) are

traditional Boolean quantities and therefore certain in state, then p must be either 0.0 or 1.0. In this case,

the minterms in Eqs. (15)–(18) will also reduce to either 0.0 or 1.0, and the certainty of state implied in

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 19

Boolean logic will continue to propagate throughout the system until a probability value 1.0 > p > 0.0 is

introduced into a variable, at which point uncertainty will cause the number of parent variables to affect

the probability distribution. This proves that the certainty of Boolean logic and consequential invariance

with number of inputs is retained in the proposed methodology, while allowing uncertainty to act on the

system in a means consistent with Bayesian inference.

5. Robotic programming

In this section, a hybrid Bayesian and Boolean logic programme for mobile robot control is tested based

on the described methodology. To illustrate how Boolean logic and Bayesian logic can coexist by the

use of Bernoulli random variables, elements are introduced that not only are purely logical but also

depend on uncertainties inherited from the environment and from the internal design of the robot. The

use of hybrid logic also facilitates operations such as probabilistic sensor fusion that would otherwise

be complex to programme in traditional computing.

5.1. Programming structure

The framework for programming Bayesian inference as described here makes use of arithmetic oper-

ations in fixed-point arithmetic for high efficiency and C structures with the following members that

realize Bayesian network nodes following the methodology described above [32]:

name: A unique name string for identification of the node

numParents: The integer number L of node parents

parent: An ordered array of integer node numbers indicating the parents of the node

numVals: The integer number of states or discrete node distribution size (N)

distSize: The total size in words of the order L + 1 distribution tensor

conditionals: A fixed-point array for the size N inferred (conditional) distribution

distributions: A fixed-point array for the order L + 1 distribution tensor

distFunction: A pointer to a single-input single-output fixed-point function used to populate the proba-

bility distribution if a special operation is needed (e.g., a continuous distribution function or a connection

to a sensor or actuator)

Linear array indexing with an array declared with fixed size is used to store the list of node structures

and the order L + 1 tensor that represents the conditional probability distribution, and operations are

bounds-checked to prevent pointer arithmetic errors. The tensor is indexed in row-major order, with the

first dimension of the tensor sized to represent the internal probability distribution of the Bayesian node,

and subsequent dimensions sized to represent the distributions of sizes Ml of the parents l = 1 . . . L. The

index i into the linear array is calculated for each access of the tensor.

ci = m1 + m2M1 + m3M2M1 + . . . + mL+1

L
∏

l=1

Ml

=

L+1
∑

n=1

(

mn

n−1
∏

l=1

Ml

)

. (21)

This requires an array of total size N
∏L

l=1
Ml. For subsuming Boolean logic using Bernoulli ran-

dom variables as in the proposed methodology, Ml = 2 in all cases except when a parent node is not a

Bernoulli random variable, but instead is a general random variable with more than two states (shown

in Eq. 21).

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

20 Mark A. Post

Figure 14. The scenario for the analysis of robotic navigational sensor processing. A mobile robot

with sensor arcs {L, FL, F, FR, R} must reach a target that is sensed by means of a beacon signal with

some uncertainty, while avoiding an obstacle in the way that is sensed by rangefinders and a physical

collision detector. The outline arrows show the movement of the robot in the time period considered.

The advantages of programming behaviours in the manner of a flexible Bayesian network include that

the programme is robust against unexpected system states and logical faults (such as division by zero or

undesired negative results) as all calculation is done entirely by tensor-based multiplication operations

on a field with known size of defined random variable states. The behavioural programme can also

be changed quickly and easily by changing the tensor values that represent the conditional probability

distribution of the nodes, as well as the structure of the network itself, which makes it practical to change

behavioural programmes and implement machine learning methods that operate on probabilistic data.

5.2. Robot behaviour logic programme

To illustrate how the use of hybrid Boolean and Bayesian logic can process sensor information and pro-

duce system behaviours, I created a simulation scenario within the CoppeliaSim 4.2.0 robotics simulator

environment. The scene included a simple differential drive mobile robot with multiple sensor inputs, an

obstacle, and a goal location with a beacon that the robot can sense. I implemented the logic programme

for navigation using the C programming language. The scenario and starting position of the robot are

illustrated in Fig. 14. A mobile robot with a sensor that can identify the approximate direction of a tar-

get beacon must travel to the target and also avoid an obstacle that lies between the robot and the target.

The robot must identify from sensor signals how to turn so as to avoid the obstacle while travelling in

the direction of the target. As the focus of this analysis is to exemplify a hybrid logic programme and

compare Boolean and hybrid logic results based on the proposed methodology rather than to design a

useable hybrid logic control system, no closed-loop control or robotic movement model is used.

Three kinds of external sensors are used. First, an obstacle collision sensor produces a Boolean out-

put of true to indicate a collision has occurred. Obstacle avoidance is implemented using obstacle range

sensors with an infrared range measurement model to detect obstacles and produce a probability distri-

bution that indicates the relative probability of obstacle presence across direction states. Navigation is

driven by a direction sensor that is modelled on a directional infrared beacon, that provides a Gaussian

probability distribution over states of the directional movement. Boolean logic is used to determine the

most appropriate action to take based on the sensor input in the same manner that logical rules are used

to govern many types of robotic movement. However, when they are realized as Bayesian nodes, they

propagate the uncertainty estimates in the sensors through the entire system so that it can be used as part

of further decision-making processes. The actuators for the robot are modelled after a typical differential

drive robot, and consist of two motors opposite each other that produce forward speed when rotating

in the same direction, and turning based on the difference between their rotation speeds. The actuators

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 21

Figure 15. The navigation programme for mobile robot control, as a network of Boolean logic gates.

The decision for forward (“Fwd”) is an OR operation, speed (“Spd”) is an AND operation, and direction

control (“Dir”) is a set of AND gates representing the desired direction of movement, turning.

of the robot are only the left and right motors, which can only be switched forward or reverse using

Boolean logic, but using inference can be scaled in speed proportional to the probability value of the

relevant random variables for forward and reverse movement, assuming higher certainty should result

in higher movement speed.

The Boolean logic programme is written in C the language using the software framework described

in [32] with the logic layout shown in Fig. 15. This system is based on sensor inputs to drive behaviour

with Boolean two-state information in traditional fashion. While it is very simplistic compared to most

practical robotic control programmes, it is used here only for the purpose of comparing the differences

between Boolean and hybrid Bayesian logic. The sensory responses provided by Boolean logic are com-

pared to those of a system that uses the proposed methodology to replace Boolean logic with Bayesian

inference for the same logic structure and operations, as shown in Fig. 16. The implemented programme

is shown exported directly as a Bayesian network in Fig. 17. All are created using the common frame-

work detailed above so that a single programming methodology is followed throughout. All decisions

are implemented as inference operations into linked random variables, each with posterior probability

values for the states {false, true}. The conditional probability distributions are set for each type of logic

operation as described in Eq. (6) and Eqs. (10)–(14), and the process of inference is done as in Eq. (1)

using the tensor indexing from Eq. (21). To compare the use of purely Boolean logic to Bayesian in

an appropriate context, it is assumed that a probability p >= 0.5, q <= 0.5 corresponds to a logic true;

otherwise, a logic false is propagated. Therefore, if a state of the target sensor, visual obstacle detection,

or direction estimate are above 0.5, it is considered in the Boolean interpretation to be true. Only the

probability of truth p is plotted against time in time steps t in Figs. 19–26 as the complementary state

q = 1 − p is implied at all times. The programme is run in separate test cases using Boolean logic and

then using hybrid Bayesian logic. In both cases, the programme runs its main loop at a frequency of

10 Hz, which means that the states of all logic gates and random variables on the robot are updated

every “time step” of 0.1 s. Comparing operation under Boolean logic to that under Bayesian, the robot

follows a similar trajectory, but actions are performed differently due to the use of uncertainty informa-

tion (for example, in setting motor speeds to intermediate values) leading to a timing difference between

runs (the robot reaches the obstacle faster in the Boolean case but takes more time to avoid it). Example

images indicating the path that the robot takes by illustration of positions at the associated time step

numbers are shown in Fig. 18.

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

22 Mark A. Post

Figure 16. The navigation programme for mobile robot control using the proposed methodology for

Boolean logic within a Bayesian network. The same number of elements is used for behaviour determi-

nation, but inputs and outputs are provided as separate random variables for each state, and probability

values are propagated.

Figure 17. The navigation programme for mobile robot control. Fully implemented using the proposed

methodology, in the form of a Bayesian network.

5.3. Sensory inputs

Information from direction-dependent sensors is split into five directional components to approximate

angular position as Boolean variables. The facing direction θ that the sensed quantity refers to in the

body frame of the robot is denoted by F (front), FL (front-left), FR (front-right), L (left), and R (right),

such that θ ∈ {L, FL, F, FR, R}.

In a purely Bayesian or probabilistic inference approach, this information can be stored as a single

random variable with five states, using a tensor of order 6 to store the conditional probability distribution.

However, as the aim of this work is to show how probabilistic inference can operate as Boolean two-state

logic, these states are actually implemented as separate Bernoulli random variables as indicated above. It

should be noted that in this system, the use of multiple Bernoulli probability values in a set of states such

as “direction” is not conceptually the same as a single random variable with multiple states, because the

total of all probabilities for the directions F, FL, FR, L, and R does not necessarily sum to 1. Instead,

p + q = 1 for two states. In comparison to using a single random variable as above, the probability p of

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 23

Figure 18. The positions of the robot during its path through the simulation. Positions illustrated are

at time step numbers 0 (a), 160 (b), 280 (c), 380 (d), 470 (e), and 580 (f).

each sensor direction can be independently in the range [0 . . . 1] without being normalized with respect

to the probabilities of other sensor directions. Therefore, the numerical outputs of the sensor array will

be different and it is important to consider this distinction with respect to how the sensor programming

of the robot is interpreted logically.

The navigation target is named “Target” and is assumed to contain a directional beacon that the robot

can sense to serve as a reference point for navigation. The target direction sensing model assumes that

the probability distribution of the sensor follows a discretized Gaussian “normal” distribution N (µ, σ 2),

and it is assumed that the mean of the distribution is located at the angle to target µ = θT and that the

direction sense grows stronger and more directional the closer the robot is to the sensor, such that the

standard deviation σ = rT/2 decreases with range to target rT . The sensor directional components are

located at angles θ = [−π/3, −π/6, 0, π/6, π/3] and sample the probability distribution of the beacon

at these values. A Boolean logic direction estimate to the target is obtained by the probability of the

target being greater than 0.3 (pθ > 0.3) in these directions. More than one sensing direction can be true

at a time.

The values for the “Target” nodes as the robot navigates through the simulation are shown in Fig. 19.

In the Boolean logic case, logic values for the forward directions overlap due to the spread of the target

distribution and can be seen to cycle rapidly as the robot turns left and right in small increments to track

the location of the beacon in the interval between t = [80, 180] time steps while the robot is turning

towards the target. This rapid cycling behaviour is seen often in Boolean logic cases where discrete

feedback thresholds are used. In the hybrid Bayesian logic case, a gradual change in probabilities occurs

as the robot tracks the target. The probability values are seen to diverge as the robot gets closer to the

target and the spread of the Gaussian sensor distribution decreases, making it clearer over time which

direction dominates. This allows the robot to quantify directional probabilities with gradual changes,

avoiding sudden logic changes as seen in the Boolean case and propagating this information through the

entire system to control actuators in a similarly gradual fashion.

Five obstacle presence sensors designed to simulate infrared rangefinders also produce estimates of

obstacle presence probability for the corresponding five forward directions. A probabilistic model is

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

24 Mark A. Post

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

time (t)

lo
g

ic
 v

al
u

e

Target

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

time (t)

p
ro

b
ab

il
it

y
 (

p
)

L
FL
F
FR
R

L
FL
F
FR
R

Figure 19. Sensor inputs to the navigation programme. Outputs of target direction sensor states in the

five forward directions, for Boolean (top) and hybrid Bayesian (bottom) control cases, indicating the

direction of the target point from the robot. As a probabilistic sensor, uncertainty information is affected

by both the direction of the robot and the range from the target.

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

time (t)

lo
g

ic
 v

al
u

e

not-Obstacle

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

time (t)

p
ro

b
ab

il
it

y
 (

p
)

L
FL
F
FR
R

L
FL
F
FR
R

Figure 20. Sensor inputs to the navigation programme. Output of obstacle sensor, interpreted as the

probability of no obstacles being detected (a clear path) in the five forward directions. The Boolean case

(top) only indicates the point at which an obstacle is unlikely to be in the sensor arc (p < 0.5) to be in a

given direction while the Bayesian case (bottom) includes clear information about how likely or close

the obstacle may be.

used for each sensor, in which the probability of obstacle presence is 0.2/rO, where rO is the range to

the target. For simplicity of combination with the navigation target information, the logical complement

value is used and is named “not-Obstacle." The Boolean value for a given obstacle direction θ is set to the

complement of whether the obstacle probability is greater than 0.1 (¬(pθ > 0.1)) to increase sensitivity

to obstacles, while the Bayesian value is the probability pθ itself.

The obstacle detection values for “not-Obstacle” for the simulation are shown in Fig. 20. As the robot

gets closer to the obstacle, the obstacle probability increases as the sensor becomes more accurate and

certain, with eventual changes to false in Boolean values, and a clear decrease in ¬Obstacle for hybrid

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 25

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

time (t)

lo
g

ic
 v

al
u

e

Collision

F

Figure 21. Sensor inputs to the navigation programme: output of collision sensor. As a sensor that only

registers “collision” or “no collision," only a Boolean output is considered for this sensor, though it is

propagated through Bayesian logic as probabilities p = 0.0 and p = 1.0. No collision occurred in the

Bayesian control case for this simulation.

Bayesian values until certainty of an obstacle for sensors in the F, FR, and R directions is achieved at

t = 300 time steps.

In contrast to the probabilistic sensors, a collision sensor is created as a purely Boolean device named

“Collision," which produces a single transition from false (p = 0) to true (p = 1) at the time of the

collision t = 280 time steps as shown in Fig. 21. The effect of the collision sensor is to immediately

inform the robot that forward speed is not possible and reverse the motors fully to free the robot while

allowing turning toward the target. The effect of a certain value of p = 0 or p = 1 on hybrid Bayesian logic

is to immediately cause corresponding dependent states to become certain also, a type of “saturation”

effect which can be used to quickly change the system’s response in an emergency.

5.4. Decision variables and actuators

Two intermediate variables are represented by logic operations in the navigation programme to represent

whether the robot can move forward, and which directions are permissible given the target direction and

estimate of obstacle presence. These consist of a scalar quantity referred to as “Speed” which controls

forward movement, and a quantity represented again as separate logical quantities F (no turn), FL (slow

turn left), FR (slow turn right), L (fast turn left), and R (fast turn right) and collectively referred to as

“Direction." “Speed” implies forward movement if it is true in the Boolean case, and higher overall

speed is assumed with higher speed probability in the hybrid Bayesian case. As such, the logic for speed

is a disjunction of the forward, forward-left, and forward-right target directions, but is false if an obstacle

collision occurs. A turning direction is assumed to be valid if both the target is in that direction, and if

there is no obstacle in that direction by conjunction. The logic for these variables can be described as in

Eq. (22).

Speed = (TargetFL ∨ TargetF ∨ TargetFR) ∧ ¬Collision

∀θ , Directionθ = (Collisionθ ∧ ¬Obstacleθ). (22)

Figure 22 shows the values of the speed variable in the simulation. In the Boolean case, immediate

decisions to start and stop forward motion are made based on target direction and obstacle proxim-

ity, which causes frequent cycling between states, particularly after t = 300 time steps as the robot

approaches the goal. In the hybrid Bayesian case, a gradual increase and decrease in probability and

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

26 Mark A. Post

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

time (t)

lo
g
ic

 v
al

u
e

Speed

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

time (t)

p
ro

b
ab

il
it

y
 (

p
)

F

F

Figure 22. Navigation programme control results using the proposed methodology. Logically produced

forward speed decision. In the Boolean case (top), only stop and go movement is possible based on two

logic states with frequent cycling. The Bayesian case (bottom) produces gradual change in forward

speed.

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

time (t)

lo
g

ic
 v

al
u

e

Direction

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

time (t)

p
ro

b
ab

il
it

y
 (

p
)

L
FL
F
FR
R

L
FL
F
FR
R

Figure 23. Navigation programme control results using the proposed methodology. Logically pro-

duced best-turning direction of travel. Using Boolean logic for the five directions (top) produces sudden

judgements in the optimal direction. Using Bayesian inference on Bernoulli random variables (bottom)

indicates more clearly how relatively safe each direction is at a given point in time and can be used to

vary turning and movement speed with respect to the certainty provided.

therefore speed is seen with no cycling and only a rapid decrease in speed after turning around the

obstacle at t = 480 time steps, which is possible due to the additional information propagated through

the logic by the Bayesian approach.

Figure 23 shows the performance of the set of “Direction” states. In the Boolean logic case, more

than one direction may be true at a time, and the most appropriate turning direction given a set of states

is less clear, leading to less precise directional control. The robot stops for a short time between t = 178

time steps and t = 263 time steps due to the obstacle momentarily obscuring the forward direction, until

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 27

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

time (t)
lo

g
ic

 v
al

u
e

Turn

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

time (t)

p
ro

b
ab

il
it

y
 (

p
)

L
R

L
R

Figure 24. Navigation programme control results using the proposed methodology. Logic for control of

left and right motors based on direction. Using only Boolean logic (top) only coarse steering is possible

and a stop occurs, while using Bayesian inference can cause smooth steering without a stop.

small changes in sensor data result in the robot continuing movement forward at t = 290 time steps and

turning around the obstacle at t = 325 time steps. In the Bayesian case, a divergence of probabilities over

time results from higher certainty in both target direction sensing and obstacle presence sensing. The

robot starts its turn around the object gradually at t = 150 time steps, makes a sharp turn away from the

obstacle at t = 290 time steps and then shows smooth movement around the obstacle until aligning itself

with the goal at t = 480 time steps. It is clear in the Bayesian case how directions should be chosen, as

a marginal MAP query can easily pick out the direction with highest probability.

For simplicity, the right and left motors of the robot are driven forward by a disjunction of the three

left direction values (L, FL, and F) and a disjunction of the three right direction values (R, FR, and F)

respectively so that the robot will turn toward the indicated state of “Direction." These two variables

are named “Turn” and are shown for the simulation in Fig. 24. The right motor is used more heavily

to turn to the left as the target is to the left and the obstacle predominantly to the right. In the Boolean

case (top), coarse steering control is performed with frequent cycling during turns and near the obstacle

and target. In the Bayesian case (bottom), steering is smooth for the most part to the left and right, with

sudden changes at t = 290 time steps as the robot turns away from the obstacle, and again at t = 480

time steps as the robot aligns to travel to the target.

Motor control is accomplished by creating four random variables “Left Motor Forward," “Right

Motor Forward," “Left Motor Reverse," and “Right Motor Reverse” separately so as to simplify con-

nection with other system components and stay consistent with the Boolean logic implementation. To

produce a desired motor speed, the “Motor Reverse” variables are not simply defined as the negation

or logical complement of “Motor Forward." The logic for these variables is defined in Eq. (23), with

“Turn” implicit in MotorFL and MotorFR. The actual speed of the motors is set in the Boolean case by

subtracting the logic value of “Motor Reverse” variables from “Motor Forward” variables for left and

right motors, and motors are set to either 0 if false or a fixed maximum speed of 0.2 in CoppeliaSim

if true. In the hybrid Bayesian case, motor speed is set by directly subtracting the probability values of

“Motor Reverse” variables from “Motor Forward” variables. This allows information about both desired

forward and reverse movement to be combined for control of each motor.

Movement of the right and left motors as shown in Fig. 25 is controlled by a conjunction of “Turn”

and “Speed” variables. The “Left Motor Forward” and “Right Motor Forward” variables can be seen

to closely follow the “Turn” variables. In the Boolean case (top) motor speed simply displays on-off

behaviour, where frequent cycling provides coarse turning control of both motors to control the robot’s

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

28 Mark A. Post

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

time (t)
lo

g
ic

 v
al

u
e

Motor Forward

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

time (t)

p
ro

b
ab

il
it

y
 (

p
)

L
R

L
R

Figure 25. Navigation programme control results using the proposed methodology. Logically produced

motor control commands for left and right motors. Using Boolean logic results in sudden changes in

motor speed. Using Bayesian inference on Bernoulli random variables (bottom) speed can be controlled

based on the likelihood of forward motor movement, resulting in a more complex set of behaviours.

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

time (t)

lo
g

ic
 v

al
u

e

Motor Reverse

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

time (t)

p
ro

b
ab

il
it

y
 (

p
)

L
R

L
R

Figure 26. Navigation programme control results using the proposed methodology. Logically produced

motor control commands for left and right motors. Using Boolean logic results in sudden changes in

motor speed. Using Bayesian inference on Bernoulli random variables (bottom) speed can be controlled

based on the likelihood of forward motor movement, resulting in a more complex set of behaviours.

trajectory. In the Bayesian case (bottom), higher probability is mapped to higher speed as a percentage

of maximum, allowing the useful effect of uncertainty to cause gradual speed increase and decrease, and

also smooth turning control. Initially, a left turn is required using the right motor to avoid the obstacle

due to the presence of the obstacle and the option to turn left as offered by the nonzero probability of

“Target” in the FL direction, but the left motor is run at lower speed due to nonzero forward movement

probability. As the robot rounds the obstacle at t = 310 time steps, the left motor is run at a higher speed

and the turn angle increases as the obstacle is passed until the robot aligns with the target at t = 480 time

steps.

Reversing of the motors to cause backward robot movement is shown for the simulation in Fig. 26 is

controlled very simply, as a disjunction of “Direction” on the same side as the motor to cause fast turns

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 29

toward a target, and “Collision” to the left motor only so as to turn the robot away from an obstacle in

front quickly if a collision occurs, as is seen in the Boolean case at t = 280 time steps.

MotorFL = Speed ∧ (DirectionR ∨ DirectionFR ∨ DirectionF)

MotorFR = Speed ∧ (DirectionL ∨ DirectionFL ∨ DirectionF)

MotorBL = Collision ∨ DirectionL

MotorBR = Collision ∨ DirectionR (23)

6. Comparison of results

The results presented here illustrate several distinctions between definite logical systems where no prob-

abilistic information propagated and probabilistic logic such as hybrid Bayesian logic that propagates

probabilistic information implicitly. The advantage of hybrid logic is that the same number of logical

operations can be used in a system (which in probabilistic electronic hardware could be implemented

as an equivalent number of electronic elements) while producing much more detailed state information

that allows more complex behaviours. Propagating probabilistic information about logical quantities has

the potential to solve problems that may occur within Boolean programming in the following ways:

6.1. Consideration of uncertainty in behaviours

Probabilistic information available at every stage of processing effectively allows decisions to be made

based on a continuum of uncertainty in states that can be interpreted in a variety of ways, including the

variation of actuator speed, maximum a priori estimation of states, and to facilitate smooth transitions

between states. Motor speed control allows more responsive movement based on the information in

Figs. 25 and 26.

6.2. More complete information about states

Thresholded logic can cause potentially useful state information to be overlooked. In Fig. 20, a fixed

threshold determines how far an obstacle must be to be detected in the Boolean case, while the proba-

bilistic sensor model allows distance information to affect decisions about motor speed in Figs. 25 and

26. Any logic that depends on the quantity thresholded (e.g., motor speed) will lose the capacity to

incorporate uncertainty.

6.3. Combination of definite and probabilistic quantities

Figures 25 and 26 show that smooth state transitions of the target and obstacle sensors cause a similarly

smooth response, but sudden changes in probability value such as that which occurs at time step t = 480

or changes in a Boolean state variable such as the collision sensor can cause similarly immediate state

transitions in Bayesian logic. This is useful in a robot as it allows the system to retain desirable properties

of Boolean logic such as immediate response to definite quantities in time-critical situations, while

allowing the flexibility of continuous interpretation characteristic of Bayesian inference.

6.4. Probabilistic data fusion from multiple inputs

Fusion of information into multiple-input logic such as the three direction states used in an OR gate

configuration to control turning allows fusion of probabilistic information into each of these inputs while

deemphasizing information from individual inputs using the concept of hybrid probabilistic logic. This

facilitates mediation at the logic level between the direction probabilities for three directions at once in

Fig. 23 to produce a single turning probability in Fig. 24.

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

30 Mark A. Post

6.5. Rejection of relatively small probability changes and state oscillation

Figure 23 and all related Figures show how relatively small changes in sensor data can cause fast cycling

of Boolean states while the obstacle or target moves in and out of thresholded sensor arcs, and can also

cause a full stop of the robot if the logic of “Target” is fully negated by low states of “not-Obstacle.”

While the robot successfully can navigate using this information, it is undesirable as it causes oscillating

stop-start movement that must be damped out with additional logic or programming so as to not cause

mechanical strain on a physical robot. It also increases the chance that logic may be put in an unrecov-

erable state in a hard-to-find corner case of operation, immobilizing the robot. Using hybrid Bayesian

inference, state changes are smooth as long as the input variable probabilities are continuous and not

Boolean in nature, and the robot will in general continue moving as long as probability values do not

saturate at 1 or 0.

7. Conclusion

In this paper, I have described and demonstrated unified probabilistic and Boolean logic programming

with tensor-based Bernoulli random variables as a form of inference-based hybrid Bayesian logic in a

programmed system. This propagates probabilistic information from sensors throughout a logic system,

so that more complex and comprehensive behaviours are possible at the decision and actuator levels.

The definition of a multiple-input implication operation, the use of probabilistic minterms in predicting

the behaviour of hybrid operations, and the effect of multiple inputs on an operation with uncertainty

have also been presented. Robotic systems that must interact with and interpret unreliable and uncertain

quantities stand to benefit greatly from this approach, as it allows the use and propagation of probabilis-

tic information from sensors and other sources throughout every operation of a Boolean logic-based

system. This provides actuators and decision-making processes access to a richer and more useful set

of information, which provides additional degrees of control without significantly increasing the num-

ber of logic elements. Using probabilistic electronic hardware elements in place of CMOS logic gates

in future systems could allow probabilistic logical programmes to operate on silicon with comparable

speed and efficiency to traditional logic circuits.

Conditional probability distributions for random variables have been described to facilitate the com-

bination of Bayesian inference with existing Boolean modular structures and models, enabling hybrid

logic to be used in defining robotic behaviours. This allows easy inclusion of new and enhanced capabil-

ities within a logic system design that can exploit this enhanced information so as to be more aware of,

and tolerant to, uncertainty. Envisioned fields of use include advanced and adaptive decision-making,

improved diagnostics, and learning and self-modification capabilities all at the level of logical elements

without requiring the addition of more complex systems. This methodology is also applicable to many

other fields that can benefit from enhanced probabilistic information, including data analytics, system

representation, fault diagnosis, quantum computing, and artificial intelligence.

There are many avenues for future research, such as optimizing the efficiency of hybrid logic designs,

accelerating inference operations on FPGA hardware, interpreting the propagated information most

effectively, and adding learning and self-modification capabilities based on statistical characterization.

In the next step, the most important challenge is how to effectively use this methodology for building

the very complex logic needed to fulfil the requirements for a useful robotic system while retaining

the propagation of full probabilistic information. The logically correct mixing of two-state and multi-

state probabilistic logic must be defined, and the development of advanced probabilistic logic synthesis

and programming tools will be necessary to create useful large-scale probabilistic logic systems. In

addition, methods for synthesizing appropriate priors will be needed to produce complex probabilistic

programmes based on inference operations that are not simply built using Boolean operations. These

advances will enable the effective use of the proposed methodology by domain experts and programmers

without deep knowledge and expertise in logic and probabilistic theory.

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

Robotica 31

Acknowledgements. The author gratefully acknowledges the support from Dr Junquan Li at Space Innovation Robotics Ltd UK

in conceptualizing and justifying this study.

Author contributions. Dr Mark Post designed the study and wrote the software (currently on the GitHub), conducted

the simulation and testing, and authored the paper. The ubayes and umath libraries used in this research are available at

https://github.com/markapost/ubayes.

Financial support. This research received no specific grant from any funding agency, commercial, or not-for-profit sectors.

Competing interests. The authors declare no competing interests exist.

Ethical approval. Not applicable.

References

[1] K. de Leeuw, E. F. Moore, C. E. Shannon and N. Shapiro, “Computability by Probabilistic Machines,” In: Automata Studies

(Princeton University Press, Princeton, 1956) pp. 183–212.

[2] J. von Neumann, “Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components,” In: Automata

Studies, vol. 34 (Princeton University Press, Princeton, 1956) pp. 43–98.

[3] E. W. Adams, A Primer of Probability Logic (CSLI Publications, Stanford, CA, 1996).

[4] L. Demey, B. Kooi and J. Sack, Logic and Probability, Summer 2017 Edition (The Stanford Encyclopedia of Philosophy,

Stanford, CA, 2017).

[5] E. P. DeBenedictis and R. S. Williams, “Help wanted: A modern-day turing,” Computer 49(10), 76–79 (2016).

[6] S. Khasanvis, M. Y. Li, M. Rahman, A. K. Biswas, M. Salehi-Fashami, J. Atulasimha, S. Bandyopadhyay and C. A. Mortiz,

“Architecturing for Causal Intelligence at Nanoscale,” In: Computer Magazine (IEEE Computer Society, 2016).

[7] L. B. Kish, “Moore’s law and the energy requirement of computing versus performance,” IEEE Proc. Circuits Dev. Syst.

151(2), 190–194 (2004).

[8] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz, K. V. Palem and B. Seshasayee, “Ultra Efficient

(Embedded) SOC Architectures Based on Probabilistic CMOS (PCMOS) Technology,” In: Proceedings of the Design

Automation & Test in Europe Conference, Munich (2006) pp. 1–6.

[9] J. B. Tenenbaum, E. M. Jonas and V. K. Mansinghka, Stochastic Digital Circuits for Probabilistic Inference. Technical

Report (Massachusetts Institute of Technology, 2008). MITCSAIL-TR-2008-069.

[10] J. Sartori, J. Sloan and R. Kumar, “Stochastic Computing: Embracing Errors in Architecture and Design of Processors and

Applications,” In: 2011 Proceedings of the 14th International Conference on Compilers, Architectures and Synthesis for

Embedded Systems (CASES), Taipei (2011) pp. 135–144.

[11] S. Khasanvis, M. Y. Li, M. Rahman, M. B. A. K. Salehi-Fashami, J. Atulasimha, S. Bandyopadhyay and C. A. Moritz,

“Self-similar magneto-electric nanocircuit technology for probabilistic inference engines,” IEEE Trans. Nanotechnol. 14(6),

980–991 (2015).

[12] C. S. Thakur, S. Afshar, R. M. Wang, T. J. Hamilton, J. Tapson and A. van Schaik, “Bayesian estimation and inference using

stochastic electronics,” Front. Neurosci. 10(104), (2016). doi: 10.3389/fnins.2016.00104.

[13] S. Zermani, C. Dezan, H. Chenini, J. P. Diguet and R. Euler, “FPGA Implementation of Bayesian Network Inference for

an Embedded Diagnosis,” In: 2015 IEEE Conference on Prognostics and Health Management (PHM), Austin, TX (2015)

pp. 1–10.

[14] E. Lazkano, B. Sierra, A. Astigarraga and J. M. Martinez-Otzeta, “On the use of Bayesian networks to develop behaviours

for mobile robots,” Robot. Auton. Syst. 55(3), 253–265 (2007).

[15] S. Kristensen, “Sensor planning with Bayesian decision theory,” Reason. Uncertain. Robot. 19(3-4), 273–286 (1997).

[16] D. Cho, “Certainty grid representation for robot navigation by a Bayesian method,” Robotica 8(2), 159–165 (1990).

doi: 10.1017/S0263574700007748.

[17] A. R. Cassandra, L. P. Kaelbling and J. A. Kurien, “Acting Under Uncertainty: Discrete Bayesian Models for Mobile-Robot

Navigation,” In: Intelligent Robots and Systems ’96 (IROS 96), Proceedings of the 1996 IEEE/RSJ International Conference,

Osaka (1996) pp. 963–972.

[18] O. Lebeltel, J. Diard, P. Bessiere and E. Mazer, “A Bayesian framework for robotic programming,” Auton. Robot. 16(1),

49–79 (2004).

[19] R. T. Cox and E. T. Jaynes, “The algebra of probable inference,” Science 134(3478), 551 (1961).

[20] E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003).

[21] J. Diard, P. Bessiere and E. Mazer, “A Survey of Probabilistic Models Using the Bayesian Programming Methodology as a

Unifying Framework,” In: The Second International Conference on Computational Intelligence, Robotics and Autonomous

Systems. CIRAS (2003).

[22] M.A. Post, Planetary Micro-Rovers with Bayesian Autonomy. Ph.D. Thesis (York University, 2014).

[23] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques (MIT Press, Cambridge, 2009).

[24] L. De Raedt and A. Kimmig, “Probabilistic (logic) programming concepts,” Mach. Learn. 100(1), 5–47 (2015).

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

32 Mark A. Post

[25] T. Sato, “A Statistical Learning Method for Logic Programs with Distribution Semantics,” In: Proceedings of the 12th

International Conference on Logic Programming 1995. ICLP’95 (MIT Press, Cambridge, MA, 1995) pp. 715–729.

[26] J. Vennekends, S. Verbaeten and M. Bruynooghe, “Logic Programs with Annotated Disjunctions,” In: Proceedings of the

20th International Conference on Logic Programming 2004. LNCS, vol. 3131 (Springer, Berlin, 2004) pp. 195–209.

[27] L. D. Raedt, A. Kimmig and H. Toivonen, “ProbLog: A Probabilistic Prolog and its Application in Link Discovery,”

In: Proceedings of the 12th International Joint Conference on Artifical Ingelligence, California, USA (2007) pp. 2468–2473.

[28] B. Moldovan, P. Moreno, D. Nitti, J. Santos-Victor and L. De Raedt, “Relational affordances for multiple-object manipula-

tion,” Auton. Robot. 42(1), 19–44 (2018).

[29] A. D. Gordon, T. A. Henzinger, A. V. Nori and S. K. Rajamani, “Probabilistic Programming,” In: Future of Software

Engineering Proceedings (2014) pp. 167–181.

[30] C. Sakama, K. Inoue and T. Sato, “Logic programming in tensor spaces,” Ann. Math. Artif. Intell. 89(12), 1133–1153 (2021).

[31] N. S. Behbahan, S. Azari and H. Bahadori, Fuzzy logic applications and its challenges,” Int. J. Adv. Res. Eng. Appl. Sci.

2(11), 1–11 (2013).

[32] M. A. Post, “An Embedded Implementation of Bayesian Network Robot Programming Methods,” In: IMA Conference on

Mathematics of Robotics, St Anne College, University of Oxford, 9-11 September 2015.

[33] Y. K. Yilmaz and A. T. Cemgil, “Algorithms for probabilistic latent tensor factorization,” Signal Process. 92(8), 1853–1863

(2012).

Cite this article: M. A. Post, “Probabilistic robotic logic programming with hybrid Boolean and Bayesian inference”, Robotica.

https://doi.org/10.1017/S0263574723001339

https://doi.org/10.1017/S0263574723001339 Published online by Cambridge University Press

	
	Introduction
	Background
	Significance
	Methodology
	Boolean logic with Bernoulli random variables
	Negation and identity
	Conjunction
	Disjunction
	Exclusive disjunction
	Material implication
	Hybrid probabilistic logic
	Product forms
	Number of inputs
	Robotic programming
	Programming structure
	Robot behaviour logic programme
	Sensory inputs
	Decision variables and actuators
	Comparison of results
	Consideration of uncertainty in behaviours
	More complete information about states
	Combination of definite and probabilistic quantities
	Probabilistic data fusion from multiple inputs
	Rejection of relatively small probability changes and state oscillation
	Conclusion

