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Abstract

COVID-19 infection rates remain high in South Africa. Clinical prediction models may be

helpful for rapid triage, and supporting clinical decision making, for patients with suspected

COVID-19 infection. TheWestern Cape, South Africa, has integrated electronic health care

data facilitating large-scale linked routine datasets. The aim of this study was to develop a

machine learning model to predict adverse outcome in patients presenting with suspected

COVID-19 suitable for use in a middle-income setting. A retrospective cohort study was con-

ducted using linked, routine data, from patients presenting with suspected COVID-19 infec-

tion to public-sector emergency departments (EDs) in theWestern Cape, South Africa

between 27th August 2020 and 31stOctober 2021. The primary outcome was death or criti-

cal care admission at 30 days. An XGBoost machine learning model was trained and inter-

nally tested using split-sample validation. External validation was performed in 3 test

cohorts: Western Cape patients presenting during the Omicron COVID-19 wave, a UK

cohort during the ancestral COVID-19 wave, and a Sudanese cohort during ancestral and

Eta waves. A total of 282,051 cases were included in a complete case training dataset. The

prevalence of 30-day adverse outcome was 4.0%. The most important features for predict-

ing adverse outcome were the requirement for supplemental oxygen, peripheral oxygen sat-

urations, level of consciousness and age. Internal validation using split-sample test data

revealed excellent discrimination (C-statistic 0.91, 95% CI 0.90 to 0.91) and calibration

(CITL of 1.05). The model achieved C-statistics of 0.84 (95% CI 0.84 to 0.85), 0.72 (95% CI

0.71 to 0.73), and 0.62, (95% CI 0.59 to 0.65) in the Omicron, UK, and Sudanese test

cohorts. Results were materially unchanged in sensitivity analyses examining missing data.

An XGBoost machine learning model achieved good discrimination and calibration in
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prediction of adverse outcome in patients presenting with suspected COVID19 to Western

Cape EDs. Performance was reduced in temporal and geographical external validation.

Author summary

The coronavirus disease 2019 (COVID-19) pandemic continues, with ongoing high infec-

tion rates. Clinical prediction models are tools that compute the risk of a given patient

outcome based on a set of individual characteristics. Such models may be helpful for rapid

triage, and supporting clinical decision making, for patients with suspected COVID-19

infection. Machine learning is where a data is provided to a computer algorithm to pro-

duce a mathematical model for prediction of future outcomes, such as a clinical prediction

model. We developed a machine learning algorithm in many patients with suspected

COVID-19 infection from the Western Cape, South Africa during their initial pandemic

wave. We then tested it in three other groups of patients: Western Cape patients present-

ing during the Omicron COVID-19 wave, a UK cohort during the ancestral COVID-19

wave, and a Sudanese cohort during ancestral and Eta waves. We found that the most

important features for predicting adverse outcome were the requirement for supplemental

oxygen, peripheral oxygen saturations, level of consciousness and age. Our model per-

formed well in Western Cape patients during the initial COVID19 pandemic wave. The

model could strongly identify patients who subsequently died or required intensive care

treatment. However, performance was reduced in the other settings.

Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December

2019 and subsequently spread globally, causing the coronavirus disease 2019 (COVID-19)

pandemic.[1] To date, South Africa, has experienced four distinct pandemic waves caused by

the ancestral Wuhan SARS-CoV-2 strain and subsequent evolutionary variants (Alpha and

Beta, Delta, and Omicron). [2,3] Although, much reduced from earlier in the pandemic, infec-

tion rates remain high, with approximately 3,000 confirmed cases recorded per week across

South Africa in Autumn 2022.[4]

The morbidity and mortality of COVID-19 infection has been attenuated by vaccination,

development of natural immunity, and the evolution of less pathogenic variants.[5] However,

emergency health care systems in middle-income settings, such as South Africa, remain vul-

nerable to being overwhelmed due to low vaccine coverage (35% fully vaccinated in October

2022) and emergence of future severe COVID-19 variants.[6] Moreover, healthcare within

South Africa emergency systems may be delivered by less experienced clinicians, with

restricted access to laboratory or radiological investigations.[7] Clinical prediction models

could help risk-stratification of patients presenting to emergency departments (ED) with sus-

pected COVID-19 and support clinical decision making around triage and management deci-

sions for individual patients. Existing models, such as the COVID-specific Pandemic

Respiratory Infection Emergency System Triage (PRIEST) score, were developed in high-

income settings and may not be generalisable or applicable to less well-resourced settings.[8]

Machine learning is where a data is provided to a computer algorithm to produce a mathe-

matical model for prediction of future outcomes.[9] Machine learning algorithms may have

advantages over traditional statistical prediction models, such as logistic regression, in ‘big
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data’ settings, in high signal to noise scenarios, where high-order interactions exist between

model inputs, and if continuous model inputs are non-linear.[9] The Western Cape of South

Africa has recently developed integration of electronic health care data across prehospital, ED,

laboratory, and public health systems. Linkage of these routine data sources provides a unique

opportunity to produce a very large study sample amenable to machine learning approaches.

The aim of this study was therefore to develop a model to predict adverse outcome in

patients presenting with suspected COVID-19 suitable for use in a middle-income setting.

Specific objectives were to train a gradient boosted machine learning model using data from

Western Cape EDs, explore which clinical features were most predictive of adverse outcome,

and test the model’s discrimination and calibration in external validation.

Methods

Study design

A retrospective cohort study was conducted to train and test a machine learning model, using

previously collected routine electronic data, to predict adverse outcomes in patients with sus-

pected COVID-19, in middle income countries. The study was conducted and reported in

accordance with relevant expert guidelines: Transparent reporting of a multivariable predic-

tion model for individual prognosis or diagnosis (TRIPOD), [10] Reporting of studies Con-

ducted using Observational Routinely collected Data (RECORD), [11] and DOME:

recommendations for supervised machine learning validation in biology.[12]

Setting and study populations

The source population for model training (derivation) was patients aged over 16 years present-

ing with suspected COVID-19 infection to public-sector EDs in the Western Cape, South

Africa during the Alpha, Beta and Delta waves of the COVID-19 pandemic (27th August 2020

to 31st October 2021).[3] The subsequent study population comprised consecutive patients

presenting to seven hospital EDs contributing to the Hospital Emergency Centre Triage and

Information System (HECTIS) data repository. Participating hospitals were from the urban

Cape Town metropole district and a single large peri-rural hospital. Patients were included

where an ED clinical impression of suspected, or confirmed, COVID-19 infection had been

recorded.

Three additional populations were studied for model testing (external validation). A tempo-

ral validation sample consisted of Western Cape patients who presented to participating hospi-

tals after the emergence of the Omicron COVID-19 variant (1stNovember 2021 to 11th March

2022).(3) A geographical, validation sample was derived from the PRIEST mixed prospective

and retrospective cohort study that collected data from 70 EDs across 53 sites in the UK during

the initial COVID-19 ancestral wave between 26th March and 28th May 2020.[8] A second

geographical validation was performed in a retrospective cohort of Sudanese patients present-

ing to two government referral hospitals in Sudan’s most populous region, Khartoum State,

between January 2020 and 14th December 2021.[13] This period corresponded to two distinct

COVID-19 waves: an initial ancestral wave, and a later Eta variant wave. A base case complete

case analysis was performed excluding all cases with any missing values from the training or

test data sets.

Data collection and preparation

TheWestern Cape data sets were produced by linking information from routinely collected

public data sources: ED HECTIS system, National Health Laboratory Services, death
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certification and other Western Cape Public Health data sources. Deterministic matching,

based on unique patient hospital numbers, was performed by the Western Cape Provincial

Health Data Centre (PHDC)). The final data set comprised patient demographics, ED clinical

details, COVID-19 status, hospital and critical care admissions, and death during the index

COVID encounter. For patients with multiple ED attendances, data were extracted for the first

ED attendance and outcomes were assessed up to 30 days from index attendance. Data collec-

tion for the UK PRIEST and Sudanese cohort studies have been described in detail in previous

publications.[8, 13] Anonymised versions of the PRIEST and Sudan study data were used to

derive the geographical external validation cohorts.

Where no comorbidities were recorded, they were assumed not to be present. Implausible

physiological variables were set as missing, including systolic blood pressure<50 mmHg, tem-

perature>42 or<25 degrees Celsius, heart rate< 10/minute, peripheral oxygen

saturation< 10% and respiratory rate = 0/minute. List-wise deletion of cases with missing fea-

ture data was performed for a complete case base case analysis.

Features and feature engineering

Candidate features were selected a priori on the basis of a previous systematic review of

COVID-19 outcome predictors suitable for use in lower and middle income countries, [14]

previous research, expert opinion within the research team, and availability at ED triage in the

Western Cape.[8, 15, 16] The final features considered were: age, sex, presenting symptoms

(cough or fever), co-morbidities (heart disease, diabetes, immunosuppression (including

HIV), asthma, chronic obstructive pulmonary disease, other chronic respiratory disease,

hypertension or pregnancy), first ED recorded physiological parameters (respiratory rate,

pulse rate, systolic blood pressure, level of consciousness, peripheral oxygen saturations) and

requirement for supplemental oxygen in the ED. Comorbidities were one-hot encoded, with

asthma, chronic obstructive pulmonary disease, and other chronic respiratory disease grouped

into a single feature. Level of consciousness, recorded using the ACVPU scale in Western

Cape data, was pre-processed to a numeric AVPU scale (confusion, grouped with verbal) to

ensure consistency across data sets. Continuous physiological features were not transformed,

and no other feature engineering was performed. No feature selection was performed prior to

machine learning. All features were available for the Western Cape and PRIEST data. A

restricted range of features was available in Sudanese data, with no information available for

temperature, immunosuppression, or level of consciousness.

Label

The label was a composite, binary, adverse outcome of either intubation or non-invasive venti-

lation in the ED on index attendance, Intensive Care Unit (ICU) admission or inpatient death

up to 30 days from index attendance. This was comparable to the PRIEST study primary out-

come (used in the geographical external validation sample) of death or organ support (respira-

tory, cardiovascular, or renal) at 30 days.(8) Outcome in the Sudanese data was intubation or

non-invasive ventilation in the ED, High/Intensive Care Unit (HDU/ICU) admission or inpa-

tient death. The model aimed to provide both good discrimination and well calibrated predic-

tions of adverse outcome, rather than label classification per se, therefore methods to address

class imbalance were not performed.[17]

Model training

Supervised machine learning was performed using an ensemble, decision tree-based, gradient

boosting algorithm, implemented using the XGBoost framework.[18] This approach was
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implemented over alternative algorithms due to its scalability to large datasets, flexibility in

capturing non-linear relationships and interactions, and favourable predictive performance

compared to other algorithms.[19] Training was initially performed using default parameters,

with regularization and early stopping rules defined to reduce variance and mitigate over-fit-

ting. Key hyperparameters (number of decision trees, learning rate, and tree depth) were

tuned using 5-fold cross validation of the training data, across a manually selected range of

parameter values, aiming to optimise model discrimination. To facilitate out of sample predic-

tion, conservative hyperparameter values were favoured in the absence of significant gains in

model performance.

The relative importance of each feature in the base case model was evaluated by calculating

the average training loss reduction gained across all occasions it was used for decision tree

splitting. A waterfall chart, showing the additive contribution of each individual feature for

label prediction, was constructed for illustrative cases to aid model interpretation. Machine

learning was carried out with the xgboost library in R 4.1.2 (R Core Team, 2021) using the R

Studio interface.[20] The DALExtra R package was used to construct waterfall charts. Models

were independently developed using the same methods by a second data analyst in Python

using the Scikit-learn package (version 0.24.1) using Python (Python Software Foundation.

Python Language Reference, version 3.8.8).

Model testing

Internal validation, using a random 80:20 train-test ratio split, was performed. The model was

then re-trained on the whole training dataset, and apparent validation assessed. External vali-

dation was evaluated by application of the final model to the Western Cape Omicron period,

UK PRIEST, and Sudanese external validation cohorts with adverse outcome probability cal-

culated for each case. Model discrimination was assessed through receiver-operating charac-

teristic (ROC) curves and calculating the area under the ROC curve (C-statistic).[21]

Calibration in the large was evaluated by comparing the average predicted risk to the average

observed risk. Calibration plots were constructed to compare predicted to observed risks

across deciles of predicted outcome probability. Calibration plot slope and intercept (weak cal-

ibration) and Locally Weighted Scatterplot Smoothing (LOWESS, moderate calibration) were

also evaluated.[22] Diagnostic parameters (accuracy, precision, recall, negative predictive

value, and specificity), and the proportion of cases with adverse outcome, were calculated and

presented graphically for different model probability thresholds to inform clinical manage-

ment decisions.[23] Discrimination was computed using the pROC library in R 4.1.2 (R Core

Team, 2021). Calibration metrics and plots were calculated using the pmcalplot package in

Stata 17.0 (StataCorp. 2021. College Station, TX: StataCorp LLC).

Secondary analyses

Case-wise and variable-wise missing data patterns were examined and the influence of missing

data was explored using 3 approaches: deterministic imputation (single imputation within

normal ranges defined by the South Africa Triage Early Warning Score (TEWS) score), [24]

multiple imputation approaches (data assumed to be missing at random, chained equations, 5

imputations, model predictions averaged across datasets), [25] and using the in-built

XGBOOST missing data algorithm (based on surrogate decision tree splits).[18] For simplicity

and increased usability, an alternative model was also developed using categorised physiologi-

cal variables, engineering features according to thresholds used by (TEWS) score in complete

case data.[24] To provide an indication of likely performance in future waves, irrespective of

vaccination prevalence and variant dominance, an additional model was trained onWestern
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Cape data across the alpha, delta, and omicron waves. A random 80:20 train/test split of the

pooled data was used, with modelling and validation otherwise proceeding as described for the

base case model.

Sample size

The training sample size was fixed based on a census sample of patients in the Western Cape

recorded on the HECTIS during the study period. There were 282,051 patients in this cohort,

with over 100 outcomes per model parameter. Test sample size was also fixed based on the size

of Western Cape Omicron wave, PRIEST and Sudanese data sets. However, assuming an out-

come prevalence of 10% and c-statistic of 0.75, external validation would require only 6,420

cases to provide measurement of the area under the operating characteristic curve with a stan-

dard error of 0.01.[26]

Ethics

Use of routinely collected electronic health care records from the Western Cape for the deriva-

tion of the development and Omicron cohorts for this study was approved by the University of

Cape Town Human Research Ethics Committee (HREC 594/2021), and the Western Cape

Health Research Committee (WC_202111_034). Analysis of Sudanese data was approved by

the University of Cape Town Human Research Ethics Committee (HREC 594/2021), the

Western Cape Health Research Committee (WC_202111_034) and Khartoum State ministry

of health. As all data were de-identified at source before being provided to the research team

the need for patient consent was waived. Data collection for the UK validation cohort was first

approved by the Northwest—Haydock Research Ethics Committee on 25 June 2012 (reference

12/NW/0303) and on the updated PRIEST study on 23rd March 2020. The Confidentiality

Advisory Group of the Health Research Authority granted approval to collect data without

patient consent in line with Section 251 of the National Health Service Act 2006.

Patient and Public Involvement (PPI)

A community advisory board comprising eight community members affected by COVID

(infected themselves or immediate family infected/ hospitalised) was purposively recruited by

an experienced community liaison officer to achieve representation across the Western Cape

population. Through several meetings, the community advisory board were able to influence

study planning and conduct. Implementation of machine learning and algorithmic (un)fair-

ness were considered to ensure acceptability and avoid minority group disparities.

Results

Study sample

A total of 305,564 patients aged over 16 years presented to participating Western Cape hospi-

tals with suspected COVID-19 during the Alpha, Beta, and Delta waves between 27th August

2020 and 31st October 2021. Of these, 282,051 (92.3%) cases had complete data available and

were included in the base case training dataset. The prevalence of 30-day adverse outcome was

4.0%, and 74,580 patients (24.4%) had a diagnosis of COVID confirmed by PCR testing. There

were 140,520 patients in the Omicron wave test (external validation) cohort, of whom 130,407

(92.8%) had complete data. The PRIEST test (external validation) cohort comprised 20,698

patients, of whom 18,960 (91.6%) had complete data. The Sudanese test (external validation)

cohort comprised 2,583 patients, of whom 1,290 (49.9%) had complete data. Prevalence of

adverse outcome was 1.98%, 22.1%, 35.7% in the Omicron wave, PRIEST and Sudanese
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cohorts respectively. Table 1 summarises characteristics of the Western Cape data. Derivation

of the Western Cape, PRIEST, and Sudanese cohorts; and comparison of patient characteris-

tics across train and test cohorts is provided in the supplementary materials (S1–S3 Fig; and

S1–S3 Text).

Trained model

The base case XGBOOST model hyper-parameters following tuning are presented in Table 2.

The most important features for predicting adverse outcome in the final model were the

requirement for supplemental oxygen, peripheral saturations, level of consciousness and age

(Fig 1 and 2). Apparent validation revealed excellent discrimination (C-statistic 0.91, 95% CI

0.90 to 0.91). This was unchanged on internal validation using a split train-test sample (C-sta-

tistic 0.91, 95% CI 0.90 to 0.91, Fig 3), with excellent calibration also apparent (CITL of 1.05,

Fig 3). The final base-case model saved in XGBoost-internal binary format is available in the

supplementary materials (S1 Data).

The final model showed good discrimination in the Western Cape Omicron test cohort (C-

statistic 0.84, 95% CI 0.83 to 0.85, Fig 3); however calibration was sub-optimal with overpredic-

tion of adverse outcome across all risk subgroups (CITL of 1.7, Fig 3). Discrimination was

reduced in the UK PRIEST cohort (c-statistic 0.72, 95% CI 0.71 to 0.73, Fig 3) with underpre-

diction of adverse outcome (CITL of 0.68, Fig 3). Model discrimination was lower in the Suda-

nese cohort (C-statistic 0.62, 95% CI 0.59 to 0.65, Fig 3) with under-prediction of adverse

outcome for low and moderate risk patients. Estimated diagnostic accuracy (recall, specificity,

NPV, precision) at different model probability thresholds across the train and test populations

are presented in Fig 4, with tables available in the supplementary materials (S4–S7 Text).

Secondary analyses

Case- and variable-wise missing data patterns are presented in the supplementary materials for

training and testing data (S4–S10 Figs). Results were not substantively changed in secondary

analyses exploring different missing data mechanisms. (. On internal validation, C-statistics

ranged from 0.891 to 0.892 across deterministic, surrogate split, and multiple imputation anal-

yses, and calibration plots were not significantly changed from the complete data base case

analysis. Discrimination and calibration metrics were similarly unchanged in missing data sec-

ondary analyses in the Western Cape Omicron, UK PRIEST, and Sudanese test cohorts (S11–

S13 Fig). The alternative model, using categorised physiological features in complete case data,

achieved a minimal reduction in discrimination (C-statistic 0.90, 95% CI 0.89–0.91), and simi-

lar calibration (CITL 1.05) compared to the base case continuous model (S14 Fig). The model

trained onWestern Cape data across all variants and time periods, demonstrated similar dis-

crimination (C-statistic 0.91, 95% CI 0.90–0.91) and calibration (CITL 1.07) metrics compared

to the base case model (S15 Fig).

Discussion

Summary of results

An XGBoost machine learning model was trained in patients with suspected COVID19 pre-

senting to Western Cape public hospitals during the Alpha/Beta/Delta pandemic waves. The

most important features for predicting adverse outcome were the requirement for supplemen-

tal oxygen, peripheral oxygen saturations, level of consciousness and age. Internal validation

using a split-test sample revealed excellent discrimination (C-statistic 0.91, 95% CI 0.90 to

0.91) and calibration (CITL of 1.05). The model achieved C-statistics of 0.84 (95% CI 0.84 to
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Table 1. Characteristics of Western Cape Alpha/Beta/Delta wave study participants.

Characteristic Statistic/level Adverse outcome No adverse outcome Total

Age (years) N 12,610 (4.1%) 292,954 (95.9%) 305,564

Mean (SD) 56.5 (17.5) 43.2 (17.1) 43.7 (17.3)

Median (IQR) 59 (43, 70) 40 (29, 56) 41 (29, 57)

Range 16 to 105 16 to 110 16 to 110

Sex Male 6,670 (52.9%) 151,294 (51.6%) 157,964 (51.7%)

Female 5,940 (47.1%) 141,660 (48.4%) 147,600 (48.3%)

Comorbidities Asthma/COPD 2,220 (17.6%) 42,590 (14.5%) 44,810 (14.7%)

Other Chronic respiratory disease 69 (0.6%) 649 (0.2%) 718 (0.2%)

Diabetes 5,256 (41.7%) 51,622 (17.6%) 56,878 (18.6%)

Hypertension 5,863 (46.5%) 80,099 (27.3%) 85,962 (28.1%)

Immunosuppression (HIV) 1,553 (12.3%) 50,824 (17.4%) 52,377 (17.1%)

Heart Disease 4,560 (36.2%) 53,664 (18.3%) 58,224 (19.1%)

Pregnant 62 (0.5%) 1,915 (0.7%) 1,977 (0.7%)

AVPU Missing 9,229 (3.0%)

Alert 9,159 (72.6%) 264,460 (90.3%) 273,619 (89.6%)

Voice 288 (2.3%) 3,682 (1.3%) 3,970 (1.3%)

Confused 617 (4.9%) 11,661 (4%) 12,278 (4%)

Pain 593 (4.7%) 2,202 (0.8%) 2,795 (0.9%)

Unresponsive 1,355 (10.8%) 2,318 (0.8%) 3,673 (1.2%)

Systolic BP Missing 10,389 (3.4%)

(mmHg) N 11,801 283,374 295,175

Mean (SD) 130.9 (29.4) 131.9 (25.5) 131.8 (25.6)

Median (IQR) 128 (110,146) 129 (115,145) 129 (115,144)

Range 50 to 289 50 to 300 50 to 300

Pulse rate Missing 9,995 (3.3%)

(beats/min) N 11, 858 283,711 295,569

Mean (SD) 98.8 (23.4) 93.5 (21) 93.7 (21.1)

Median (IQR) 98 (83,113) 92 (79, 106) 92 (79,107)

Range 11 to 300 10 to 300 10 to 300

Respiratory rate Missing 9,969 (3.3%)

(breaths/min) N 11,850 283,745 295,595

Mean (SD) 22.2 (6.7) 18.6 (4.1) 18.8 (4.3)

Median (IQR) 20 (18,25) 18 (16,20) 18 (16,20)

Range 2 to 60 1 to 60 1 to 60

Oxygen Missing 27, 781 (6.2%)

saturations N 11,634 274,409 286,043

Mean (SD) 89.7 (12) 96.2 (5.5) 96 (6)

Median (IQR) 94 (86, 98) 98 (96, 99) 97 (95, 99)

Range 10 to 100 10 to 100 10 to 100

Supplemental Missing 18,794 (6.2%)

oxygen 1 (air) 6,254 (49.6%) 254,399 (86.8%) 260,653 (85.3%)

administration 2 (40% O2) 346 (2.7%) 5,360 (1.8%) 5,706 (1.9%)

3 (28% O2) 8 (0.1%) 222 (0.1%) 230 (0.1%)

4 (Nasal prongs) 1,123 (8.9%) 8,389 (2.9%) 9,512 (3.1%)

5 (FM neb) 27 (0.2%) 571 (0.2%) 588 (0.2%)

6 (rebreather mask) 1,538 (12.2%) 5,199 (1.8%) 6,737 (2.2%)

7 (nasal prongs and rebreather mask) 368 (2.9%) 884 (0.3%) 1,252 (0.4%)

(Continued)

PLOS DIGITAL HEALTH Gradient boosted machine learning to predict adverse outcome in suspected COVID19

PLOSDigital Health | https://doi.org/10.1371/journal.pdig.0000309 September 20, 2023 8 / 18

https://doi.org/10.1371/journal.pdig.0000309


0.85), 0.72 (95% CI 0.71 to 0.73) and 0.62, (95% CI 0.59 to 0.65) in the Western Cape Omicron

wave, UK, and Sudanese external validation cohorts. Calibration was sub-optimal with over-

prediction of adverse outcome across all risk subgroups in Omicron cases (CITL of 1.7); and

underprediction of adverse outcome in UK cases with ancestral COVID19 infection and Suda-

nese patients with ancestral or Eta variant infection (CITL of 0.68 and 0.61 respectively).

Results were not substantively changed in extensive sensitivity analyses exploring different

missing data mechanisms.

Interpretation

Clinical prediction models rarely out-perform the clinical judgement of experienced clini-

cians.[27, 28] Western Cape EDs demonstrated excellent diagnostic performance for manage-

ment of COVID19 during the study period, admitting only 14.7% of patients as inpatients,

Table 1. (Continued)

Characteristic Statistic/level Adverse outcome No adverse outcome Total

8 intubated 1,917 (15.2%) 0 1,917 (0.6%)

9 NIV 165 (1.3%) 0 165 (0.1%)

Temperature (˚C) Missing 9,252 (3%)

N 12, 010 284,302 296,312

Mean (SD) 36.4 (1.3) 36.3 (0.8) 36.4 (0.9)

Median (IQR) 36.4 (35.9, 37) 36.3 (36, 36.7) 36.3 (36, 36.7)

Range 25 to 41 25 to 42 25 to 42

Cough Missing 41,524 (29.6%)

Present 557 (4.4%) 8,538 (2.9%) 9,095 (3%)

Fever Missing 93,962 (30.8%)

Present 178 (1.4%) 2,829 (1%) 3,007 (1%)

COVID PCR Positive 10,908 (86.5%) 63,672 (21.7%) 74,580 (24.4%)

Hospital admission ICU 1,527 (12.1%) 0 1,527 (0.5%)

Death Within 30 days contact 9,711 (77%) 0 9,711 (3.2%)

https://doi.org/10.1371/journal.pdig.0000309.t001

Table 2. Base case model parameterisation.

Parameter Definition Value used

booster Linear or tree-based model gbtree

nrounds Number of decision trees 50

eta Learning rate 0.1

gamma Minimum loss reduction needed to partition in each tree. 1

alpha L2 Regularization 1

max_depth Maximum depth of decision trees 6

min_child_weight Minimum sum of weights of all observations required in a child 1

sub_sample Proportion of training data sub-sampled for each additional decision
tree

1

colsample_bytree Proportion of features sub-sampled for each additional decision tree 1

scale_pos_weight Balance of weighting of positive and negative cases 1

objective Loss function to be minimised binary:logistic

eval_metric Metric to be used for hyper-parameter tuning auc: Area under the
curve

seed Random number seed 12345

https://doi.org/10.1371/journal.pdig.0000309.t002
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with a risk of false negative triage of around 1%.[29] Based on internal validation results, a

model probability cut point of 8% predicted risk would result in a similar admission rate of

13.1% and a negative predictive value of 98.7%. Despite the favourable accuracy of clinical

Fig 1. Relative feature importance plot.

https://doi.org/10.1371/journal.pdig.0000309.g001

Fig 2. Waterfall plot, interpretating the base case XGBoost Model for 3 illustrative training cases. The model intercept of 0.043
represents the average probability of adverse outcome in theWestern Cape Alpha/Beta/Delta wave. The additive impact of each
feature on probability of adverse outcome for each model feature is shown for 3 representative cases with final predicted
probabilities of adverse outcome of 0.006, 0.151, and 0.374. rr: respiratory rate; sbp: systolic blood pressure, hr:heart rate; HTN:
hypertension; HIV: immunocompromised; CATavpu: AVPU response, 3 = unresponsive.

https://doi.org/10.1371/journal.pdig.0000309.g002
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gestalt, prediction models are reproducible, objective, may be used by less experienced health

care workers, and could save time during periods of increased demand.

The reduced model performance across test cohorts could be explained by inherent study

biases, model overfitting, spectrum effects, conflicting associations with individual elements of

the composite label (death and organ support), or calibration drift. The wide range of adverse

outcome risk (1.98% Omicron wave, to 35.7% ancestral/Eta strain) observed across different

pandemic waves clearly demonstrates the potential for spectrum effects, where performance of

tests varies across settings with differing disease prevalence. Typically, for any given model

Fig 3. Calibration plots (top panel) and receivor operating characteristic curves (bottom panel) for test cohorts. ROC curves are
labelled with 10 representative probability thresholds.

https://doi.org/10.1371/journal.pdig.0000309.g003

Fig 4. Threshold plots presenting diagnostic accuracy metrics across varying model probability cut-points for test cohorts. Sensitivity (recall); NPV:
Negative predictive value; PPV: positive predictive value (precision).

https://doi.org/10.1371/journal.pdig.0000309.g004
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threshold, sensitivity will fall, and specificity will increase, at lower prevalence.[30] The high

proportion of adverse outcome in the Sudanese test cohort may reflect differing patient demo-

graphics, increased SARS-CoV-2 virulence, or inclusion of more severe cases from tertiary

referral hospitals. However, the primary reasons for lack of model transportability to non-

Western Cape settings are likely to be differences in population characteristics and variation is

measurement of features and labels across data sets.

The model label of adverse outcome from death or ICU admission/organ support has face

validity for guiding clinical management decision in the ED. However, it is important to note that

the model may predict differentially across the individual outcomes comprising the composite

endpoint.[31] Differences in the relative proportions of death and organ support across test

cohorts could therefore explain differential model performance. The previously published PRIEST

score demonstrated better prediction for death than critical care requirement, [8] implying that

the current model should be restricted for determining hospital admission only, rather than guid-

ing escalation of care decisions. Additionally, caution may be required when interpreting model

outputs in advance age, where the underlying hazard of mortality may dominate prediction.

Calibration drift occurs when deploying models in non-stationary clinical scenarios, [32]

where differences arise over time between the training and test populations to which the

model is applied. Predicting outcome in patients with suspected COVID19 is a highly dynamic

situation with multiple potential changes in data collection, patient case mix, vaccination cov-

erage, and clinical decision-making. Adaptive mutations in the SARS-CoV-2 genome can alter

the virus’s pathogenic potential, influencing transmissibility, virulence, and vaccination effec-

tiveness.[33] The base case model, trained using Alpha/Beta/Delta data, retained favourable

discrimination in patients with Omicron variant, but systematically overestimated individual

risk adverse outcome. Updated model training and re-calibration will likely be required as the

COVID19 pandemic evolves, and future variants of concern emerge in South Africa.

Comparison to other literature

There is a paucity of research investigating risk-stratification scores for patients presenting to

EDs with suspected COVID19 in middle-income settings. The Nutri-CoV score was developed

and internally validated in Mexico using data from the ancestral Wuhan strain of the pan-

demic.[34] A smaller number of features were included in that model (age, comorbidities,

peripheral oxygen saturations, respiratory rate, pneumonia), with lower discrimination for

adverse outcome achieved than the current study (C-statistic 0.797). The study sample of

RT-PCR confirmed cases may limit generalisability to use in undifferentiated ED patients.

Moreover, the inclusion of diagnosis of pneumonia in the score, requiring imaging or

advanced clinical skills, may reduce relevance in less well-resourced settings.

Our research group has previously developed similar risk-stratification scores using statisti-

cal modelling, rather than machine learning. Multivariable logistic regression with Least Abso-

lute Shrinkage and Selection Operator (LASSO) and fractional polynomials achieved a slightly

lower C-statistic of 0.87 (95% CI 0.866 to 0.874) and (CITL) of -0.017 (95%CI -0.043 to 0.009)

on internal validation inWestern Cape Alpha/Beta/Delta data, compared to the machine

learning model reported here.[35] Discrimination on external validation was lower in the

Omicron (C-statistic 0.79, 95% CI: 0.79 to 0.80) and Sudanese data (c-statistic 0.53, 95% CI:

0.53 to 0.54), but higher in the UK PRIEST, test data (C-statistic 0.79, 95% CI: 0.79 to 0.80).

Machine learning is a trade-off between bias and variance, and despite the large sample size

and use of regularization, there is a risk of over-fitting to the Western Cape data, which may

explain the differential performance across test cohorts compared to a more conservative sta-

tistical modelling strategy.[36]
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Limitations

This study has several strengths including large sample size, adherence to established predic-

tion modelling principles, external validation, assessment of calibration, and exploring model

interpretability.[10] However, there are potential limitations. There is a risk of selection bias

from incomplete identification of patients with suspected COVID19 infection, inaccurate link-

ing of health records, and incomplete outcome ascertainment.[37] Furthermore, list-wise dele-

tion of missing data, and multiple imputation, could result in systematic error if data is not

missing completely at random, or missing at random.[38] The use of routine data, not primar-

ily intended for research purposes, could also result in information bias from measurement

error and incomplete ascertainment of deaths.[11]

Generalisability

The external validity of any COVID19 prediction model will depend on circulating COVID-

19 variant, population vaccination status, clinical setting, and underlying patient demograph-

ics. The model’s inclusion of basic patient characteristics and vital signs should ensure the

model is transportable to other middle-income settings. However, the requirement for pulse

oximetry may limit application in lower income settings. South Africa is an upper middle-

income country, with large wealth disparities, a mixed state-private health economy, and a

high prevalence of HIV.[39] Generalisability of model predictions to other middle-income set-

tings with differing characteristics therefore requires caution.

Clinical and research implications

Despite increasing numbers of published machine learning models, very few are implemented

into clinical practice.[40] Furthermore, there is little experience of deploying machine learning

models into clinical practice outside high-income settings.[41] Independent external valida-

tion, impact studies, and qualitative work to explore acceptability are therefore recommended

prior to any introduction of the current model into clinical use. Western Cape emergency

medical services use an electronic patient record with the functionality to incorporate elec-

tronic decision support, potentially facilitating translation into clinical practice. Model opera-

tionalisation as a smartphone is an alternative strategy that could aid usability once regulatory

requirements are met. The ‘black box’ nature of artificial intelligence, with a patient-level pre-

diction provided without any explanation or rationale, is a major barrier to uptake of machine

learning models.[9] Using explainable machine learning tools, such as waterfall charts, could

help with future model implementation. [42]

Conclusions

An XGBoost machine learning model was trained and achieved good discrimination and cali-

bration in prediction of adverse outcome in patients presenting to Western Cape EDs with

suspected COVID19 infection. Performance was reduced in temporal and geographical exter-

nal validation. Independent external validation, impact studies, and qualitative work to explore

acceptability are recommended prior to any introduction of the current model into clinical

use. Updated model training and re-calibration will likely be required as the COVID19 pan-

demic evolves, and future variants of concern emerge.
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Supporting information

S1 Fig. Flow diagram showing derivation of complete case study sample for base case

model training inWestern Cape data and external validation.

(TIF)

S2 Fig. Flow diagram showing derivation of complete case study sample for base case

model testing in PRIEST data.

(TIF)

S3 Fig. Flow diagram showing derivation of complete case study sample for base case

model testing in Sudanese data.

(TIF)

S4 Fig. Variable-wise missing data in training data (Western Cape Alpha/Beta/Delta

wave).

(TIF)

S5 Fig. Case-wise missing data patterns in training data (Western Cape Alpha/Beta/Delta

wave).N = 305,564. 7.7% of cases (n = 23,513) had missing data.

(TIF)

S6 Fig. Variable-wise missing data in test data (Western Cape Omicron wave).

(TIF)

S7 Fig. Case-wise missing data patterns in test data (Western Cape Omicron wave).

N = 140,520. 7.2% of cases (n = 10,113) had missing data.

(TIF)

S8 Fig. Variable-wise missing data in test data (PRIEST).

(TIF)

S9 Fig. Case-wise missing data patterns in test data (PRIEST). N = 20,698. 6.2% of cases

(n = 1,291) had missing data.

(TIF)

S10 Fig. Variable-wise missing data in test data (Sudan).

(TIF)

S11 Fig. Missing data secondary analysis—XGBoost inbuilt missing data method. Calibra-

tion plots (bottom panel) and receiver operating characteristic curves (top panel) for test

cohorts. ROC curves are labelled with 10 representative probability thresholds.

(TIF)

S12 Fig. Missing data secondary analysis—Single deterministic imputation. Calibration

plots (bottom panel) and receiver operating characteristic curves (top panel) for test cohorts.

ROC curves are labelled with 10 representative probability thresholds.

(TIF)

S13 Fig. Missing data secondary analysis—Multiple imputation. Calibration plots (bottom

panel) and receiver operating characteristic curves (top panel) for test cohorts. ROC curves are

labelled with 10 representative probability thresholds

(TIF)

S14 Fig. Secondary analysis–Complete case categorised model. Calibration plots (bottom

panel) and receiver operating characteristic curves (top panel) for test cohorts. ROC curves are
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labelled with 10 representative probability thresholds.

(TIF)

S15 Fig. Secondary analysis–Complete case continuous model trained on all Western Cape

data (Alpha, Beta, Delta, Omicron waves). Calibration plots (bottom panel) and receiver

operating characteristic curves (top panel) for test cohorts. ROC curves are labelled with 10

representative probability thresholds. NB. Sudanese data not available for external validation

of this model, as analysis performed after end of data sharing agreement.

(TIF)

S1 Data. Final XGBoost model.

(MODEL)

S1 Text. Characteristics of Western Cape Omicron wave test cohort.

(DOCX)

S2 Text. Population characteristics UK PRIEST test cohort.

(DOCX)

S3 Text. Population characteristics Sudan test cohort.

(DOCX)

S4 Text. Diagnostic accuracy at different base case model thresholds in Western Cape

Alpha/Beta/Delta wave training data.

(DOCX)

S5 Text. Diagnostic accuracy at different base case model thresholds in thresholds inWest-

ern Cape Omicron wave test data.

(DOCX)

S6 Text. Diagnostic accuracy at different base case model thresholds in PRIEST test data.

(DOCX)

S7 Text. Diagnostic accuracy at different base case model thresholds in thresholds in

Sudanes test data.

(DOCX)
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