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The 2023 European New Car Assessment Programme (Euro NCAP) [9] protocol states that Original Equipment Manufacturers (OEMs) should 

include Driver Monitoring Systems (DMS) and appropriate technical assessment dossiers for evaluation by driving authorities. This includes 

demonstrating how the system can identify elements of driver state; driver distractions, fatigue, and unresponsiveness. Whilst visual 

distractions have been detailed extensively, cognitive distraction has received less attention within these protocols. Part of the reason for this 

could be the lack of understanding or general consensus on cognitive distraction within the context of driver state. For example, how do we 

assess driver state, how do we develop ground truths, how much distraction should be considered too much, and what is and is not considered 

cognitive? To answer these questions, workshop participants will focus on the methods and metrics used to assess cognitive load and the 

impact this has on driver state and performance; whether during manual driving, monitoring an automated vehicle, or during takeovers after 

periods of automation.  

Keywords: Driver state monitoring; Driver distraction; Cognitive load; Performance estimation 

1 INTRODUCTION  

1.1 Experimental manipulation of cognitive load 

Euro NCAP defines distraction as anything that takes the driver’s focus away from the primary task of driving/controlling the 

vehicle [9]. Within the literature, a common distinction is made between 3 components of distraction. Visual and manual 

components refer to modality-specific interference during perceptual and motor processes [37] respectively, (e.g., the 

competing visual demand for monitoring the road and reading text on an interface; or the simultaneous need for the hands to 

be on the steering wheel and peeling a banana) [8]. Cognitive distraction, however, typically refers to the general withdrawal 

of attention away from the driving task [8]. This can include tasks that take drivers’ “mind off the road” [36] alongside tasks 

that load the working memory resources of drivers [23]. Whilst most naturalistic tasks may involve a combination of all 3 

components, there are many tasks used in the laboratory that attempt to load the 3 components independently.   
In driver behaviour studies, the terms cognitive load and cognitive distraction are often used interchangeably. The former 

is defined as the demands imposed on the driver by non-visual tasks [8], with the latter referring to a more general diversion 

of attention away from the driving task [30]. Researchers have used a range of tasks to load or distract participants during both 

manual and automated driving experiments. These include “artificial” or surrogate tasks, with easy to quantify performance, 

that are considered to impose the same demand on drivers as hands-free mobile phone conversations. Examples include the 

N-back task [24], the Sustained Attention Response Task (SART) [14], the Paced Auditory Serial Addition Task [5], and the 

Twenty-Questions Task [26, 32], with some studies also considering the effect of more naturalistic hands-free phone 

conversations [29, 35]. A consistent finding when drivers are cognitively loaded is increased gaze concentration toward the 

road centre [13, 22, 29, 31]. With regard to lateral control, cognitive load has been found to increase steering activity during 

manual driving [1, 7, 15, 19].  

The assessment of cognitive load is particularly relevant for the ever-growing field of Human Factors for vehicle 

automation. When drivers are driving in an L2+ automated system, it is expected for them to be out of the loop [25]; thus, 

drivers are more likely to engage on non-driving related tasks (NDRTs) [3]. As such, workload will likely increase thus 

compromising their ability to takeover. For takeovers after periods of automation, cognitive load has had mixed results. Whilst 
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some studies highlight slower takeovers times [12, 28], others have found that cognitive load results in faster takeover times 

due to higher perceived difficulty of the overall task [4]. Whilst simulator study results generally conclude that cognitive load 

has negative effects on overall driving performance, these are somewhat in contrast to those found in the real world, with some 

even suggesting that engagement in a handsfree conversation can improve driver safety [2, 38]. 

This first section of the workshop aims to foster discussion on this topic area from expert researchers in the field in more 

detail. We want to outline rationales for the use of particular tasks for imposing cognitive load, and the results of their studies 

in this context. We then aim to focus on the methodological considerations regarding how cognitive load is manipulated 

experimentally. What are the effects of these tasks on driving performance metrics and physiological measures, and can we 

identify common indicators relevant to the identification of cognitive distraction in the future. Furthermore, we will discuss 

which facets of cognition the aforementioned tasks aim to load; how ecologically valid are these tasks with respect to 

naturalistic non-driving related tasks; what implications does this have on how we assess cognitively loaded drivers using 

DMS in the real world.  

1.2 Assessment of cognitive load 

A range of metrics have been used to assess the effect of cognitive load on driving performance and driver physiological 

metrics [8, 27]. Engström et al. [8] proposed four methods which can be used to identify the effect of cognitively loading tasks 

on driving performance. These include object/event detection, such as response to the Detection Response Task, lateral vehicle 

control such as standard deviation of lane position, longitudinal vehicle control such as speed and headway, and decision 

making such as lane selection and gap acceptance. Ultimately, this review concluded that there are selective and task-dependent 

effects of cognitive load on driving. 

Eye tracking metrics such as fixation duration, dispersion of gaze, and dwell time can also provide information about the 

cognitive state of the driver (e.g., [21]). Cognitive load can also be assessed using physiological measures (e.g., [11, 34]) such 

as heart rate, skin conductance, and brain activity. Self-report techniques, such as the NASA Task Load Index, have been used 

to measure an individual’s own assessment of the cognitive load imposed by a task (e.g., [33]). Researchers have also used 

performance-based measures, such as reaction time to a leading vehicle, to measure the effect of cognitive load, while the 

Detection-Response Task [17] is one standardized method used to assess the effects of cognitive load on attention.  

Currently, there is a lack of consensus among researchers in terms of the tasks used to impose cognitive load and how the 

effect of these tasks on driver state may differ from that imposed, for example, by driver fatigue. In the section detailed above, 

we will focus on cognitive load assessment, metrics, and methodological issues. 

1.3 Assessment and ground truths of driver state 

Cognitive load is one facet under the general topic of driver state that driving research is aiming to better understand. There 

have been many attempts in the literature to predict the outcome of a drivers’ response to a critical situation, based on models 

that infer the state of the driver. For instance, in the field of automation, Zeeb et al. [39] were able to predict the likelihood of 

crashes during transitions of control from vehicle automation based on drivers’ gaze. Similar work was also done by Louw 

and Merat [22], which found differences on the probability of crashes of the drivers, based on manipulations of drivers’ levels 
of situation awareness, by projecting a fog, partially or totally occluding their field of view. Latter studies from [6] were able 

to use cameras and machine learning models to estimate the readiness state of the driver based on visual indicators. With that, 

the authors were able to draw conclusions about the safety implications of drivers’ posture, fatigue, and gaze strategies, in a 

case of an emergency transition of control. However, the metrics for takeover prediction are not standardized, or consistent 

across the literature [16].  

As for manual driving literature, studies from [19] were able to find detrimental effects of cognitive distraction on drivers’ 
capabilities to maintain lateral control of the vehicle in the lane. When considering eye movements and visual distractions, 

[18] created a model that dynamically accounts for drivers’ off-road glances, to estimate their visual distraction, based on the 

limitations on humans’ short-term memory. In further research, similar techniques were used in prediction models to estimate 

the probability for drivers to respond to a near-crash scenario [20]. Also, Gomaa et al. [10] presented a framework using 

machine learning techniques to estimate drivers’ workload, and their respective impairments on drivers’ capabilities. However, 

most of the models proposed in the literature are not consistent or directly applicable due to a lack of ground truth for their 

assessment. 

The main issue for the lack of consistency for driver state estimation models is that driver state is an internal representation 

of an amalgamation of physical and cognitive metrics that are causally correlated with driver’s condition. For this reason, 
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driver state cannot be systematically controlled, losing its experimental validity. With that in mind, this section of the workshop 

will discuss the state of the art in driver state estimation, and how we can use objective measurements to estimate safety 

outcomes of a transition of control.  

2. WORKSHOP GOALS AND EXPECTED OUTCOMES 

In this workshop, we will address theoretical and methodological issues related to the future of driver state monitoring systems 

and the research that informs them. The organisers of the workshop intend to disseminate the results of this workshop to a 

wider audience. Expert guests have been invited to collaborate, and we are waiting for responses. No previous experience and 

preparation are required to attend the workshop. All interested participants from academia, industry, or the public are welcome. 

The workshop will be interactive, and participants will be encouraged to contribute to the discussion. During the workshop we 

expect a maximum of 20 participants and will use a projector, whiteboard (alternatively flip charts), sticky notes, pens, A4 

paper, blu-tack, and highlighters to enhance the visual interactive sections. 

The provisional workshop program is as follows. The workshop will be three hours and divided into three parts, lasting 45 

minutes each, with 5 minutes intervals between them. The sections will have a 35-minute slot dedicated for the proposed 

activities (and their subsequent discussions), and a 10-minute debrief session. The workshop will also have a 10-minute ice-

breaking introduction, and a 20-minute wrap-up session. Each author will lead one of the sections with the corresponding 

discussions and the following activities. The list below summarizes the tasks planned, and the referent time allocated to them. 

Introduction (10 minutes): 

1. Introductory presentation from the members of the panel, and their respective backgrounds. 

2. Separation of the audience in groups of up to 4 people, for the following activities throughout the workshop. 

3. Introduction and greeting between the members of each group. 

Section 1.1 (45 minutes): 

1. Task: Define the facets of cognition that differing cognitive distraction tasks attempt to load (I.e., working 

memory, episodic memory, emotion) and place each task under these headings.  

2. What are the effects of these differing cognitive distraction tasks on takeover performance, and how can the 

effects be compared?  

3. Task: Place each cognitive distraction task on a scale regarding how ecological valid they are (ranging from 

highly artificial to highly realistic) or how controlled they are (ranging from highly controlled to highly 

uncontrolled). 

4. Task x Situation interactions – the same cognitive load tasks might affect people differently in different driving 

situations. 

Break (5 minutes) 

Section 1.2 (45 minutes): 

1. Assessment of the cognitive load. 

2. Identification and comparison of the metrics.  

3. Classification of the metrics in terms of different methodological aspects (i.e. reliability, validity, experimental 

control). 

4. Evaluation of the data requirement for the assessment of cognitive load and the need for normative data in order 

to draw robust conclusions. 

Break (5 minutes) 

Section 1.3 (45 minutes): 

1. How do DMS manufactures measure driver state?  

2. How do they assessment their measurements?  

3. What ground truths can be used and where are these obtained from? 

4. Task: If you are a manufacturer and you need to create a DMS, how do you measure it, how do you control, and 

how do you assess your measurements. 

Break (5 minutes) 

Wrap-up (20 minutes): 

1. Closing thoughts and debrief of the discussion. 

2. Contact sharing and networking space. 
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At the end of the workshop, we aim to have a rigorous scientific discussion with researchers from academia and industry 

to better understand the current state of the art regarding driver state and cognitive load from a methodological perspective. 

We would like to extend our understanding on the methods and metrics used to assess and the methods used to induce cognitive 

load and assess the driver state. 
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