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A B S T R A C T

Deep Learning (DL) models have received increasing attention in the clinical setting, particularly in intensive
care units (ICU). In this context, the interpretability of the outcomes estimated by the DL models is an essential
step towards increasing adoption of DL models in clinical practice. To address this challenge, we propose an
ante-hoc, interpretable neural network model. Our proposed model, named double self-attention architecture
(DSA), uses two attention-based mechanisms, including self-attention and effective attention. It can capture the
importance of input variables in general, as well as changes in importance along the time dimension for the
outcome of interest. We evaluated our model using two real-world clinical datasets covering 22840 patients in
predicting onset of delirium 12 h and 48 h in advance. Additionally, we compare the descriptive performance
of our model with three post-hoc interpretable algorithms as well as with the opinion of clinicians based on
the published literature and clinical experience. We find that our model covers the majority of the top-10
variables ranked by the other three post-hoc interpretable algorithms as well as the clinical opinion, with the
advantage of taking into account both, the dependencies among variables as well as dependencies between
varying time-steps. Finally, our results show that our model can improve descriptive performance without
sacrificing predictive performance.

1. Introduction

Deep learning (DL) methods and specifically recurrent neural net-
works (RNNs) are revolutionising many scientific fields such as natural
language processing [1], machine translation [2], and as well clinical
domain [3]. In this regard, the use of DL models has demonstrated
an upward trend in the clinical field for the past several years [4].
These models can capture non-linear relationships in clinical data
and significantly outperform the conventional machine learning (ML)
models. However, DL models show a limited degree of interpretability
and to a large degree are considered black-boxes [5]. Therefore, we
need to probe these models better to extract a degree of interpretability
from them to make these models more reliable for clinicians.

Conventional machine learning models have been used in the in-
tensive care unit (ICU), which are interpretable [6] but cannot capture
non-linear relationship in data. This is because the data in ICU is

∗ Corresponding author at: Information School, University of Sheffield, UK.
E-mail address: v.osmani@sheffield.ac.uk (V. Osmani).

recorded in a time-series and conventional ML models do not have an
intrinsic ability to deal with time-series inputs. More advanced models
can deal with time-series data, for example RNNs can model evolution
of patients’ state, however they are not intrinsically interpretable.

The interpretability of DL models remains a significant challenge
in the ML domain. In this context, interpretability and explainability
concepts are often used interchangeably within the general Artificial
Intelligence (AI) community [7]. Interpretable models are categorised
into post-hoc and ante-hoc models. Post-hoc models incorporate the
interpretable module only at inference and as such, they aim to keep
a trained model unchanged, while explaining their behaviour exter-
nally. Examples of post-hoc methods include Shapley Value Sampling
(SVS) [8] belonging to the occlusion-based family of interpretability
methods, Integrated Gradients (IG) [9], and Guided Back-propagation
(GB) [10].
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In contrast, ante-hoc models incorporate the interpretable module
during training. As a consequence, a single model is employed for both
prediction and interpretation. Attention-based models, such as [11]
belong to ante-hoc interpretable models. Self-attention is an attention
mechanism that relates different positions of a single sequence in order
to compute a representation of the sequence. The self-attention mech-
anism has been employed successfully in a variety of tasks, including
machine translation [12], abstractive summarisation [13], and textual
entailment [14].

Recently developed attention models offer the promise of provid-
ing interpretability while retaining the flexibility and versatility of
DL models. The attention-based models were employed to predict
outpatient disease progression [11]. The Attend and Diagnose model
of Song et al. [15] used a self-attention mechanism to improve an
RNN’s predictive accuracy for four clinical tasks but did not explore
interpretability. While important time points were easily extracted
from this model, identifying important variables at a given point in
time required additional calculation which is not considered in the
proposed method. Choi et al. [16] proposed RETAIN model, which
uses two separate RNN layers integrated with an attention layer over
both variables and time using embedded variables. In contrast to our
model, Choi et al. do not consider the dependencies between time-steps
and dependencies between different variables and use two separate
RNN networks, which could be computationally expensive; their model
is trained and validated on EHR data to predict heart failure. The
attention-based model of Kaji et al. [11], which is applied to three
clinical tasks, focused on variable-level interpretability. However, it
does not consider the time-level importance, and dependencies among
variables and times-steps are not considered.

Time-level importance is useful to understand how importance of
variables changes over time, for example during an ICU stay, such that
clinical interventions can dynamically target the corresponding clinical
aspects as they arise, described by those variables. Additionally, know-
ing which clinical parameters are important and at what time allows
physicians to design personalised interventions, potentially leading to
improved outcomes.

Similar to [11], a possible way of interpreting the structured data
is to employ an attention-layer straight after the input layer, which
computes the coefficient of each variable before being fed into RNN.
In the study done by Zhang et al. [17] an LSTM-based model with
event embedding and time encoding is leveraged to model clinical
time series for early prediction of sepsis in the emergency depart-
ment. Additionally, an attention mechanism and global max pooling
techniques are employed to enable interpretation for the LSTM-based
model. Unlike [17] that converted numerical values into categorical
values and created an embedding out of them, in our study, we used
actual numerical values and converted categorical variables into em-
beddings. Additionally, we employed double self-attention architecture
to provide a clinically validated interpretability.

However, the above-mentioned ante-hoc interpretable models have
three limitations as follows:

1. The dependencies among clinical variables and time-steps are
not captured.

2. Time-step importance is not considered as the attention is ap-
plied on variable-level.

3. The predictive performance is generally worsened.

To address the limitations as mentioned earlier, we propose a Dou-
ble Self-attention Architecture (DSA), which employs a self-attention
[18] mechanism at a variable-level and another self-attention mech-
anism at the time-step level. Additionally, we use effective-attention
mechanism to interpret the model outcomes as it was found to be more
performant than self-attention [19]. Effective-attention is computed
from a matrix decomposition of self-attention mechanism which is
explained comprehensively in the explanation module section.

For brevity and concerning the use of self-attention in both al-
gorithms, we term both double self-attention and double effective-
attention architectures as DSA in the rest of this article. In summary,
the contributions of this work are as follows:

• DSA simultaneously attends over the variable level and the time-
step level.
• DSA takes into account the dependencies between different time-
steps and as well as correlation among clinical variables while
computing the importance of each variable and time-step.
• DSA outperforms the ante-hoc interpretable models, while pro-
viding clinically validated interpretability.
• Comparison with clinical knowledge and other post-hoc inter-
pretable models verifies the soundness of variable ranking pro-
vided by DSA, avoiding spurious associations that are not clini-
cally relevant.
• DSA maintains comparable predictive performance with baseline
models, such as BiLSTM while providing interpretability, as such
minimising the trade off between predictive performance and
interpretability.

We developed and validated an interpretable DL model to provide
a variable ranking based on prediction of the onset of delirium in
critically ill-patients to prioritise the patients at risk. This is a clinically
important case study because delirium occurrence is common in the
ICU. At the same time its aetiology is not well understood, while
the preventive strategies, such as ABCDEF bundle, are highly resource
intensive [20]. Our model allows for (1) an interpretable DL model,
(2) variable ranking by considering varying aspects such as variable
inter-dependence and time-step dependencies, and (3) an interpretable
screening tool that can prioritise patients at risk, thus reducing the
burden on care providers.

2. Materials and methods

2.1. Ethics statement

The current dataset was constructed by processing the eICU Collab-
orative Research Database (eICU-CRD) [21] and Medical Information
Mart for Intensive Care (MIMIC-III) [22] critical care dataset. As the
study was based on publicly available datasets, there was no need for
further Institutional review board (IRB) approval for this research.

2.2. Data description, cohort selection and outcome definition

The eICU-CRD is a freely available multi-centre database comprising
200,859 patient unit encounters for 139,367 unique patients admitted
between 2014 and 2015 in over 200 hospitals located throughout
the US [21]. The MIMIC-III database is an open-access single-centre
ICU database including 53,423 distinct hospital admissions for 46,476
unique patients admitted from 2001 to 2012 [22]. Both datasets com-
prise patient demographics, vitals, clinical flowsheets, laboratory val-
ues, medications, interventions, and outcomes. Any patient admitted
to the ICU for 24 h or more and with at least one CAM (Confusion
Assessment Method) was included in our study population. In the
patient records, in the case of multiple positive CAM-ICU records, the
first CAM-ICU was considered as the onset of delirium. The patients
older than 18 and younger than 89 are included in the study, resulting
in 22 840 patients (16 546 patients from eICU-CRD and 6294 patients
from MIMIC-III). The patients characteristics for both datasets are
shown in supplementary material, Table 5
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Fig. 1. Delirium prediction schema; observation window represents the collected data for each study (12 h, 24 h), and the prediction window represents the time ahead to predict
delirium (12 h, 48 h). The horizontal bar represents the length of stay in ICU that can vary between patients.

2.3. Variable selection and preprocessing

We compiled 21 clinical variables identified by critical care clini-
cians as relevant to delirium prediction, commonly used in the liter-
ature, and available in both data-sets, including demographics, vital
signs, laboratory measurements, and medication data. A detailed list of
the included clinical variables in this study is depicted in Supplemen-
tary material in Table 6. Variable preprocessing is detailed in [23], and
included aggregating values into hourly intervals with the last known
value used for that interval. If a variable is not measured during the
interval, the value is imputed by forward and then (if required) back-
ward imputation. We converted categorical variables into a vector to
capture the semantics of each category, while for continuous variables
we used the recorded value in the database without any adaptation.

2.4. Outcome assessment

In this study, we evaluated the ability of the proposed model to
provide a clinically validated variable ranking in the case of delirium
prediction in different settings, such as varying observation window
(12 h and 24 h) and different prediction window (12 h and 48 h)
illustrated in Fig. 1. In this work, the observation windows of 12 h
or 24 h are chosen based on the Intensive Care Delirium Screening
Checklist (ICDSC) [24] which is an 8–24 h window [25] to predict
the incidence of delirium in the following 12 h or 48 h. Therefore, our
methods estimate patients’ risk of delirium in the next 12 to 48 h, based
on multivariate analysis of a sequence of clinical parameters collected
during the observation window of either 12 h or 24 h [26].

2.5. Model development

Each patient can be viewed as a sequence of medical records (vital
signs, laboratory measurements, and demographics) ordered by time,
and each record contains a set of clinical variables. A three dimensional
data with patient ICU stays (n = 15,726), time steps (n = 24 or 12),
and variables (n = 21) serves as input to the model. As shown in
Fig. 2, the proposed model is divided into three modules, namely input
preparation, explainable module, and prediction module.

Fig. 2. Proposed architecture.

2.5.1. Input representation
We process and model numerical and categorical variables sepa-

rately. Categorical variables are represented using either one-hot en-
coding or entity embedding. One-hot encoding is the baseline ap-
proach that converts the variables into binary representation. Since
this approach results in a large sparse matrix, we have compared
the performance of one-hot encoding with entity embedding in our
previous work [27] and found entity embedding to provide superior
performance. Therefore, in this work we use entity embedding [28],
where each categorical variable in the dataset is mapped to a vector
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and the corresponding embedding is added to the patient’s record. This
entity embedding is learned by the neural network during the training
phase along with other parameters. The model in the training phase
learns the vectors related to each categorical variable. The vectors of
the categorical variable are concatenated with the numerical variables
to be fed into the model. Therefore, the input representation at time 𝑡

is as follows:

𝑥𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡[𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝑡, 𝑈 (𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙𝑡)] (1)

𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝑡 stands for the numerical variable, 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙𝑡 stands for
the categorical variable at time 𝑡, and 𝑈 is the embedding matrix.

In the explanation module, the input 𝑥𝑡 is fed into two different self-
attention layers, as shown in Fig. 2. The self-attention mechanism on
the right side is applied on the variables to compute the variable
importance, namely 𝛼𝑣. The self-attention mechanism on the left side is
applied on the time-steps to compute the time-step importance named
as 𝛼𝑡. The coefficient of the contribution is computed via both 𝛼𝑣 and
𝛼𝑡 using a dot-product applied as follows:

𝑐(𝑥𝑡) = 𝛼𝑣
⏟⏟⏟

self-attention on variable

⊙ 𝛼𝑡
⏟⏟⏟

self-attention on time

(2)

further expanded in [29].
The input data is weighted with the computed attention using a

residual connection as shown in Eq. (3)

𝑤𝑖𝑡 = 𝑥𝑡 ⊙ 𝑐(𝑥𝑡)
⏟⏟⏟

contribution coefficient

(3)

where 𝑤𝑖𝑡 is the weighted input at time 𝑡, 𝑥𝑡 is the input which
was computed in Eq. (1), and 𝑐 is the computed coefficient of the
contribution in Eq. (2).

In the prediction module, similar to [11] the weighted input is fed to
a masking layer to filter the time steps where patients have less than
12 or 24 h of data available and are fed into a BiLSTM layer to get the
data representation for each patient.

Formal definition of BiLSTM is available in [30]. In our work
BiLSTM layer with 128 units is connected to a hyperbolic tangent
activation function. The output layer of our network consists of one
dense neuron with a softmax activation to output the probability of a
given event over ICU stays.

2.6. Model training and evaluation

We evaluate the models using descriptive and predictive perfor-
mance metrics. We compared predictive performance of our models
with both, BiLSTM as well as the model proposed by Kaji et al. [11],
using the same architecture for both, however with manual hyper-
parameter optimisation to achieve model convergence. We used Adam
optimiser with a learning rate of 7.5 ∗ 10−4, and decay of 1 ∗ 10−6 in
all models, with batch size of 128, training the models for 50 epochs
using cross-entropy as the loss function. We evaluated the results based
on 5-fold stratified cross-validation. Typically, metrics computed based
on the k-fold stratified cross-validation can assess overfitting and have
lower variance [31]. We report the predictive performance using the
Area Under Receiver Operating Characteristic (AUROC), Area Under
Precision–Recall Curve (AUPRC), Precision and Recall with Confidence
Interval (CI) of 95%.

2.7. Explanation module

Understanding how the model predicts a patient’s delirium onset
is an essential step in validating its use. DL techniques are typically
considered black boxes where it is challenging to determine how a
predictive model generates a prediction. A model should provide clini-
cally validated explanations related to the clinical variables where these

explanations can be utilised by clinicians during daily routines. Recent

advances in ML techniques, such as attention mechanisms have en-

abled an improved way to probe interpretability. Attention-based [11]

models give importance to the classification associated with each input

variable given to the model, allowing us to identify the most predictive

variables that contribute to the severity of the diagnosis. In this section,

we employ two attention-based models to understand what has been

learned by our models. In detail, we can observe which time-steps and

variables the model relies on assigning a degree of significance to the

time-steps and variables.

As it is shown in Fig. 3.a, the data of each patient is fed as input

into attention-based (self-attention or effective-attention) layers. We

employ two 3-head attention mechanisms in order to compute time-

step importance and variable importance. As it is shown in Fig. 3.b, to

compute the importance of a single time-step, we need to score each

time-step of the input sequence against this single time-step. The score

is computed as it is shown in Eq. (5) and determines focus that needs

to be placed on other time-steps as we encode a time-step at a specific

position. In this way, we can capture the dependencies between time

steps while computing the importance of each time step. As depicted

in Fig. 3.c, to compute the importance of a single variable, we need to

score each variable of the input sequence against this single variable,

and the score determines focus that needs to be placed on other

variables as we encode a variable. While computing the importance of

each variable, the self-attention enables capturing dependencies among

variables, including the temporal dimension.

In the following sections, we provide a detailed description of the

varying version of attention mechanisms which provide interpretable

outputs, namely self-attention and effective-attention, where the latter

is computed from matrix decomposition of self-attention, the compo-

nent orthogonal to the nullspace contributing to the model output.

Effective-attention has been shown to be less associated with less

important variables, consequently capturing better the most relevant

variables in comparison to self-attention [19].

2.7.1. Self-attention

The implications of time steps and clinical variables vary depending

on the context. To capture this contextual information, we applied

two self-attention layers to which one self-attention layer attends over

time-steps and the other self-attention layer attends over variables.

As it is demonstrated in Fig. 4, Self-attention is an attention mech-

anism that relates different positions of a single sequence in order to

compute a representation of the sequence. The self-attention mecha-

nism has been employed successfully in a variety of tasks, including

machine translation [12], abstractive summarisation [13], and textual

entailment [14]. Formally,

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√
𝑑𝑘

)𝑉 (4)

where Q, K, V are computed by multiplying input with the learned

matrices 𝑊𝑄, 𝑊𝑘, 𝑊𝑉 during training.

DSA employs multi-head self-attention, which projects queries, keys,

and values h times with different, learned linear projections. The scores

are computed in parallel and are concatenated to get one matrix score,

Formally:

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑄,𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2)𝑊
𝑂𝑤ℎ𝑒𝑟𝑒

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 ) (5)

where parameters matrices such as 𝑊 𝑄
𝑖 , 𝑊

𝐾
𝑖 , 𝑊

𝑉
𝑖 , and 𝑊 𝑂 are the

projections [18].
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Fig. 3. Explanation module: a. Input data; b. Time importance; c. Variable importance; d. Variable importance by considering time importance.

Fig. 4. The architecture of self-attention.

2.7.2. Effective-attention

As it is demonstrated in [32], self-attention can be decomposed into

two matrices: (i) the component in the left nullspace of V which is

indicated with (𝐴∥) and (ii) the component orthogonal to the nullspace

(𝐴⊥). The matrix 𝐴∥ is irrelevant for the model output because its prod-

uct with the value matrix is equal to zero. The matrix 𝐴⊥ contributes

to the model output, which is so-called effective-attention.

Additionally, as Sun et al. [19] noted effective-attention is as-
sociated less with the variables related to the language modelling
pre-training such as separator [SEP], and it has the potential to illus-
trate linguistic variables much better than self-attention. Equivalent to
our study, we believe that in comparison to self-attention, effective-
attention is associated less with less important clinical variables, allow-
ing it to capture better the most relevant clinical variables in outcome
prediction.

𝐴𝑉 = (𝐴∥ + 𝐴⊥)𝑉 = 0⃗ + 𝐴⊥𝑉 = 𝐴⊥𝑉 (6)

As it is illustrated in Eq. (6), 𝐴∥𝑉 is equal to zero, therefore the
effective-attention matrix is equal to 𝐴⊥.

The effective-attention matrix 𝐴⊥, is computed as the following
[32]:

• We first compute the singular value decomposition (SVD) of the
value matrix V which is 𝑉 = 𝑈

∑
𝑊 𝑇

• The rows of 𝑈 that correspond to singular values equal to zero
span LN(𝑉 ):
𝐿𝑁(𝑉 ) = 𝑠𝑝𝑎𝑛{𝑢1,… , 𝑢𝑘},
Where k is the number of singular values that equal zero.
• We project each row 𝑎𝑖 of the attention matrix A to LN(V) to
construct a projection of the matrix A to LN(V):
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Table 1
Variable ranking presented by different algorithms versus DSA (top-10 variables) on MIMIC-III dataset. The variables ranked using self-attention and effective-attention in common
with IG, SVS, and GB are represented in italic. Variables that are considered relevant or partially relevant based on the published literature and clinical experience (shown in Table
7) are highlighted in bold.

Variable ranking Observation window 12 h – Prediction window 48 h

Algorithm

IG SVS GB DSA (self-attention) DSA (effective-attention)

1 Ventilation Ventilation Ventilation Weight Heart rate
2 WBC Gender WBC Hemoglobin Platelets
3 Creatinine WBC Creatinine Heart rate BUN
4 Vasopressor dose Vasopressor dose Vasopressor dose Sodium Hemoglobin
5 Sodium Sofa Sodium BUN 𝑺𝒑𝑶

𝟐

6 BUN Sodium BUN WBC Potassium
7 Glucose Age Glucose Potassium WBC
8 Platelets Sofa w/o GCS Platelets Vasopressor dose Height
9 Hemoglobin Creatinine Hemoglobin Glucose Sofa w/o GCS
10 Heart rate BUN Heart rate Bicarbonate Creatinine

Observation window 24 h – Prediction window 12 h

1 Ventilation Ventilation Ventilation Temperature WBC
2 Gender Gender Heart rate Ventilation Weight
3 Sodium Heart rate Sodium Sodium Age
4 Heart rate Sodium Creatinine 𝑆𝑝𝑂2 Ventilation
5 Sofa Sofa Bicarbonate Platelets Bicarbonate
6 Age Age Age BUN 𝑺𝒑𝑶

𝟐

7 Bicarbonate Sofa w/o GCS BUN Age Height
8 Vasopressor dose Vasopressor dose Vasopressor dose Chloride Gender
9 Sofa w/o GCS Bicarbonate Platelets Weight Potassium
10 Creatinine Creatinine WBC Vasopressor dose Vasopressor dose

𝑃𝐿𝑁(𝑉 )(𝑎𝑖) =
𝑘∑

𝑗=1

⟨𝑎𝑖, 𝑢𝑗⟩𝑢𝑗 ,∀𝑖 ∈ {1,… , 𝑑𝑠},

𝑃𝐿𝑁(𝑉 )(𝐴) = [𝑃𝐿𝑁(𝑉 )(𝑎1),… , 𝑃𝐿𝑁(𝑉 )(𝑎𝑑𝑠)]

where ⟨., .⟩ denotes the dot product.
• effective-attention is equal to

𝐴⊥ ∶= 𝐴 − 𝑃𝐿𝑁(𝑉 )(𝐴)

It is worth mentioning that similar to the approach in [19] we replace
self-attention with effective-attention at the model test phase.

3. Results

In this section we report both, the descriptive evaluation of the
model as well as predictive performance. The descriptive performance
is evaluated against the well known algorithms, including Shapley
Value Sampling, Integrated Gradients and Guided Back-propagation,
while the predictive performance is based on evaluation metrics such
as AUROC, AUPRC, precision and recall with 95% CI.

3.1. Descriptive performance

As mentioned earlier the importance of interpretable deep learn-
ing models in the clinical domain, in this section we explore further
interpretability by providing the most important clinical variables for
delirium-onset prediction task. In this regard, we compute variable
importance by considering the importance of one variable over other
variables across the patient cohort as shown in Eq. (2). Although
there are many definitions of interpretability, we focused on how
the model ranks each input variable with respect to outcome predic-
tion. Given that interpretability of neural networks is still an open
research question, especially for temporal neural networks [33], we
also provide results from three other post-hoc models to compare with
our proposed model. In this context, we employed as the benchmark
the Shapley Value Sampling (SVS) [8], Integrated Gradient (IG) [9],
and Guided Backpropagation (GB) [10], to ensure that the variable

importance results computed by DSA are consistent across the three
benchmark models. The top-10 influential variables ranked for MIMIC-
III and eICU-CRD are reported in Tables 1 and 2 respectively. The
variable ranking is reported using three different post-hoc interpretable
algorithms, namely IG, SVS, and GB, compared to two proposed ante-
hoc attention-based interpretable models, namely self-attention and
effective-attention.

The most influential variables that have contributed to delirium pre-
diction according to their relative importance in the eICU-CRD dataset
as reported in Table 2 are heart rate, Ventilation, age, white blood cell
count, and vasopressor dose according to the five algorithms. Most of
these variables are also ranked in the top-10 in the MIMIC-III dataset
as depicted in Table 1. Both proposed attention-based interpretable
models (DSA) captured most of the important variables ranked by
IG, SVS, and GB and in both datasets, validating the soundness of
the proposed model, with the additional advantage of also providing
inter-variable dependencies as well as temporal importance.

It is interesting to note that, effective-attention which was previ-
ously used in [19] shows a slightly higher number of variables in
common with the other three post-hoc algorithms that is an extra
point for effective-attention to be studied further in the case of clinical
time-series data.

3.2. Predictive performance

We evaluated 12 014 (24 h observation – 12 h prediction) and 9481
(12 h observation – 48 h prediction) from eICU-CRD and 3712 (24 h
observation – 12 h prediction) and 2128 patients (12 h observation
– 48 h prediction) from MIMIC-III databases. Considering AUPRC,
Precision, and Recall, DSA outperforms the proposed model by Kaji
et al. in two different scenarios as shown in Table 3 for MIMIC-III
and for eICU-CRD datasets as depicted in Table 4 . Another point to
mention, although the predictive performance of the DSA is better than
Kaji’s model, its predictive performance is slightly worse than BiLSTM
in terms of precision. This is due to the nature of ante-hoc interpretable
models in which there is a trade-off between predictive performance
power and descriptive performance [11].
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Table 2
Variable ranking presented by varying algorithms vs. proposed model (top-10 variables) on eICU-CRD dataset. The variable ranked using self-attention and effective-attention in
common with IG, SVS, and GB are represented in italic. Variables that are considered relevant or partially relevant based on the published literature and clinical experience (shown
in Table 7) are highlighted in bold.

Variable ranking Observation window 12 h – Prediction window 48 h

Algorithm

IG SVS GB DSA (self-attention) DSA (effective-attention)

1 Ventilation Ventilation Ventilation Heart rate Sodium
2 Heart rate Heart rate Heart rate Sodium Heart rate
3 Age Age WBC Platelets Hemoglobin
4 WBC WBC Age Height WBC
5 Sofa Sofa Vasopressor dose Age Sofa w/o GCS
6 Vasopressor dose Vasopressor dose Bicarbonate Chloride Ventilation
7 Bicarbonate Bicarbonate Chloride Weight Glucose
8 BUN BUN BUN WBC Age
9 Chloride Chloride Glucose Sofa w/o GCS Weight
10 Weight Weight Weight 𝑆𝑝𝑂2 Height

Observation window 24 h – Prediction window 12 h

1 Ventilation Ventilation Vasopressor dose Potassium Age
2 Vasopressor dose Vasopressor dose Ventilation Temperature WBC
3 Age Age WBC Creatinine Vasopressor dose
4 Heart rate Heart rate Heart rate Vasopressor dose Potassium
5 WBC WBC Age 𝑆𝑝𝑂2 Weight
6 Potassium Potassium Potassium Weight Sodium
7 Sofa Sofa Platelets Heart rate Hemoglobin
8 Bicarbonate Bicarbonate Bicarbonate Age Creatinine
9 Gender Weight Weight Platelets Gender
10 Weight Platelets BUN BUN Ventilation

Table 3
Predictive performance on MIMIC-III dataset.

Model Observation window 12 h – Prediction window 48 h

AUROC% (95% CI) AUPRC% (95% CI) Precision% (95% CI) Recall% (95% CI)

BiLSTM 71.37 (67.99–74.72) 29.81 (27.33–31.88) 28.45 (25.74–31.17) 65.98 (59.82–72.13)
DSA 68.66 (64.99–72.33) 28.58 (23.64–33.20) 26.70 (22.56–30.85) 59.85 (51.93–67.77)
Kaji model 67.56 (64.91–70.22) 27.90 (25.68–30.46) 24.31 (22.01–26.60) 58.07 (52.48–63.66)

Model Observation window 24 h – Prediction window 12 h

AUROC% (95% CI) AUPRC% (95% CI) Precision% (95% CI) Recall% (95% CI)

BiLSTM 81.24 (76.44–86.11) 44.45 (40.35–48.81) 35.03 (30.73–39.33) 71.16 (64.54–77.77)
DSA 80.50 (77.23–83.85) 44.90 (41.28–49.40) 35.58 (33.71–37.44) 68.98 (62.69–75.27)
Kaji model 78.33 (76.11–80.62) 41.69 (38.55–45.15) 32.39 (28.52–36.25) 65.63 (57.78–73.48)

Table 4
Predictive performance on eICU-CRD dataset. Highlighted in bold are results with statistically significant differences.

Model Observation window 12 h – Prediction window 48 h

AUROC% (95% CI) AUPRC% (95% CI) Precision% (95% CI) Recall% (95% CI)

BiLSTM 84.20 (82.52–85.86) 33.24 (29.41–36.54) 28.37 (27.15–29.58) 74.44 (70.91–77.98)
DSA 82.51 (80.33–84.67) 31.21 (28.01–33.70) 24.92 (24.22–25.61) 75.99 (72.20–79.78)
Kaji model 81.64 (80.05–83.27) 30.19 (27.41–32.27) 24.60 (23.23–25.97) 75.00 (70.56–79.44)

Model Observation window 24 h – Prediction window 12 h

AUROC% (95% CI) AUPRC% (95% CI) Precision% (95% CI) Recall% (95% CI)

BiLSTM 88.02 (86.31–89.75) 42.69 (38.71–46.1) 38.19 (36.78–39.6) 80.39 (76.62–84.16)
DSA 87.10 (85.15–89.03) 42.20 (38.78–45.69) 34.17 (32.88–35.46) 82.89 (78.54–87.25)
Kaji model 85.85 (84.16–87.57) 38.03 (34.64–41.02) 35.82 (34.48–37.15) 76.63 (72.84–80.42)

4. Discussion

Our study shows that the proposed models outperform the state-of-
the-art interpretable model proposed by [11], while being interpretable
and comparable to a handful number of post-hoc interpretable algo-
rithms such as IG, SVS, and GB. This demonstrates the strength of DSA
in both the predictive performance and the associated interpretable
matrix.

Improving the prediction of delirium is a critical step towards im-
proving ICU outcomes, and optimising costs [34]. Our study found that
incorporating two self-attention layers with a BiLSTM layer can achieve
informative performance in predicting delirium onset. The AUROC,
AUPRC and Recall for the delirium prediction suggest that employing

self-attention does not significantly sacrifice predictive performance
with respect to the BiLSTM. Furthermore, the focus of this work is
principally on variable ranking and explainability, where between two
methods that perform comparably, the one that provides better expla-
nation of its predictions would be preferable, even at the cost of slightly
sacrificing the predictive performance.

In this study, we demonstrated how to achieve a level of inter-
pretability for a DL model for clinical events in ICU by incorporating
self-attention mechanisms. As noted [35], interpretability of DL models
can facilitate understanding of inferential processes of a neural network
and improve the model in terms of descriptive.

While many BiLSTM based models to predict clinical outcomes have
incorporated attention, we are aware of only a handful of them that
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used attention to identify the variables driving the prediction [11,
15–17,36–38]. Several of the studies as mentioned earlier employed
attention; however, none of them compared the proposed model with
other interpretable models.

We demonstrated how self-attention could be applied to the input
variables to provide a degree of interpretability by capturing variable
dependencies and time-step dependencies. It should be noted that
clinical understanding of delirium is currently incomplete. Therefore,
while the majority of top variables considered relevant by our model
are also clinically relevant, the relevance of some of the remaining
variables cannot be excluded in future studies.

Our study has the following limitations: (i) many variables that
clinicians would have wanted to incorporate into this study were not
available in eICU-CRD and MIMIC-III datasets or had a very high
rate of missing data, in part due to the heterogeneity of the datasets,
(ii) we note that the proposed self-attention model can underline the
importance of each variable but cannot identify how a variable affects
the probability of an event, delirium prediction in our case, without
performing further analysis and, (iii) this study included data from US-
based hospitals and ICUs only, therefore generalisability in a different
context would require additional analysis.

5. Conclusion

This study demonstrated that DSA, can learn importance of vari-
ables for predicting delirium where the individual variables underlying
these predictions can be explored using self-attention and effective-
attention mechanisms. Furthermore, the explainability module pro-
posed in this paper can be used effectively to visualise variable im-
portance over time. This in turn would aid understanding of the input
variables and support clinical decision making by focusing on particular
variables that the model has deemed important at time points of
interest of the disease trajectory.
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