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Abstract

Temporal networks are widely used as abstract graph representations for real-world1

dynamic systems. Indeed, recognizing the network evolution states is crucial in2

understanding and analyzing temporal networks. For instance, social networks3

will generate the clustering and formation of tightly-knit groups or communities4

over time, relying on the triadic closure theory. However, the existing methods5

often struggle to account for the time-varying nature of these network structures,6

hindering their performance when applied to networks with complex evolving7

states. To mitigate this problem, we propose a novel framework called ESSEN, an8

Evolution StateS awarE Network, to measure temporal network evolution using9

von Neumann entropy and thermodynamic temperature difference. The developed10

framework utilizes the von Neumann entropy aware attention mechanism and11

network evolution state contrastive learning in the graph encoding. In addition,12

it employs a unique decoder Mixture of Thermodynamic Experts (MoTE) for13

decoding. ESSEN extracts local and global network evolution information using14

thermodynamic features and adaptively recognizes the network evolution states.15

Moreover, the proposed method is evaluated on link prediction tasks with transduc-16

tive settings and inductive settings, with the corresponding results demonstrating17

its effectiveness compared to various state-of-the-art baselines 1.18

1 Introduction19

In recent years, graph representation learning has demonstrated excellent performance in a variety20

of static graphs [7; 14][28; 18]. Indeed, the success of static graph representation learning has led21

to a growing interest in continuous-time dynamic graph representation learning. Temporal network22

representation learning has emerged as an active research area focusing on learning low-dimensional23

representations that capture their topological and temporal properties. However, in many temporal24

networks, which are naturally generated in real-world systems, such as social networks[12] and25

citation networks, learning effective representations is still a difficult task. The evolving nature of26

these networks poses a significant challenge for network analysis and modeling, as the relationships27

between nodes and their properties evolve. The existing methods often struggle to account for28

the time-varying nature of these network structures, hindering their performance when applied to29

networks with complex evolving states. However, capturing the evolving states of temporal networks30

suffers from the following challenges: (1) Temporal networks have different types of evolving31

states, such as periodic, linear, or non-linear changes in their structure over time. Moreover, the32

evolving patterns can be changed in the network’s different evolving stages. As illustrated in Fig.1,33

the evolution speed varies at different times in both datasets. The MathOverflow network evolves34

rapidly and has obvious central nodes, which means hot issues will receive long-term attention.35

1Code is available at https://github.com/h1o2n3/ESSEN
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(a) MathOverflow: 10th Day (b) MathOverflow: 20th Day (c) MathOverflow: 30th Day

(d) BitcoinOTC: 10th Day (e) BitcoinOTC: 20th Day (f) BitcoinOTC: 30th Day

Figure 1: Network snapshots of the MathOverflow website and BitcoinOTC trading platform on
the 10th, 20th, and 30th day. The black nodes represent the users who have connections, and the
grey nodes represent the users with no edges prior to the snapshot time. The snapshots illustrate that
temporal networks have different evolutionary states at different stages.
Instead, in the BitcoinOTC network, early active users may quickly become silent. The phenomenon36

requires algorithms that can perform extensive and effective recognition of diverse evolutionary states.37

(2) As time passes, temporal networks tend to accumulate more nodes and edges, resulting in an38

increasing number of possible connections and a rapidly growing neighborhood for each node. This39

growth in the neighborhood can lead to significant computational challenges when analyzing and40

modeling evolving patterns. Besides, many connections can quickly make structure recognization41

computationally infeasible in large and complex networks, especially the methods based on the42

anonymous walk in recent years[24; 6; 20]. The time complexity is tightly related to the length and43

number of paths, so it is challenging to balance time consumption and effectiveness.44

To overcome these shortcomings, we aim to capture the evolution states using a thermodynamic45

entropy view. Thermodynamic network entropy is a macroscopic representation of network structures46

widely used to characterize the salient features of static and dynamic network systems in biology,47

physics, and social sciences. One of the most sophisticated studies involves the von Neumann entropy,48

which has been successfully used to describe the structural properties of random, small-world, and49

scale-free networks [1; 2]. Unfortunately, computing the required network entropies on the temporal50

network can be computationally burdensome due to spectral decomposition. Hence, we expand51

the approximate von Neumann entropy into the temporal network. Compared with other graph52

entropy, approximating von Neumann entropy with low time complexity can better adapt to the53

constantly evolving complex temporal networks. Moreover, we compute the important approximate54

thermodynamic quantity temperature for the temporal network. Measuring the thermodynamic55

temperature difference and the von Neumann entropy will provide a better understanding of the56

network’s evolving state at any time.57

On this basis, we propose a novel framework named ESSEN, an Evolution StateS awarE Network.58

ESSEN encodes node embeddings with evolution information by utilizing two proposed techniques:59

von Neumann entropy aware attention mechanism and virtual evolution node representation learning.60

In addition, ESSEN employs a unique decoder mixture of thermodynamic experts (MoTE) for61

decoding. Specifically, we project the global network’s von Neumann entropy into each edge. The62

proposed von Neumann entropy aware attention mechanism aggregates the neighborhood in the virtual63

evolution graph and the original graph based on the von Neumann edge entropy. The virtual evolution64

graph is defined as supposing the node pair’s test connection will truly happen at the specified test time65

future. The MoTE decoder evaluates the evolutionary state based on the thermodynamic temperature66

difference and von Neumann entropy in two graph views and provides a comprehensive result from67
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multiple experts. The decoder helps to recognize the network under various evolution states adaptively.68

Our framework is evaluated on transductive link prediction, inductive link prediction, and dynamic69

node classification tasks. The experimental results demonstrate our method’s effectiveness compared70

to various state-of-the-art baselines. The overall contributions of our work are summarized as follows:71

• To our best knowledge, we are the first to utilize the von Neumann entropy in temporal network72

representation learning. We provide a method to expand the approximate von Neumann Entropy73

and approximate thermodynamic temperature difference to temporal networks.74

• We propose a novel framework, namely ESSEN. The model introduces a new perspective to encode75

evolution-aware node representations using the von Neumann entropy aware attention mechanism76

and virtual evolution node representation learning. Furthermore, the model uses a novel decoder77

MoTE that adaptively recognizes temporal network evolution states.78

• We evaluate our framework on link prediction tasks with transductive and inductive settings.79

The results show the effectiveness of our proposed method compared to various state-of-the-art80

baselines.81

2 Related Work82

Temporal Network Representation Learning. Network representation learning is often used to83

transform large networks into lower-dimensional vectors. For instance, CTDNE [15] learns node84

embedding from a continuous-time dynamic network instead of a sequence of snapshots. Besides,85

JODIE [10] uses two recurrent neural networks (RNNs) to learn trajectories of users and items and86

updates the embedding when interaction occurs. TGAT [25] utilizes a self-attention mechanism and87

presents an encoding method to learn inductively. CAW [24] and NeuralTWs [6] learn temporal88

structure using random walk. Specifically, CAW proposes a new anonymization strategy, and89

NeuralTWs considers structural and tree traversal properties. TDLG[4] aims to model the edges90

in temporal networks directly instead of calculating from node embedding. However, it remains91

challenging to model global evolution under acceptable time complexity.92

Von Neumann Entropy of Static Graph. The von Neumann entropy can be computed in the static93

graph using a quantum analogy[16]. According to this analogy, the Laplacian matrix [17] of a graph94

is interpreted as the density matrix [23] of an equivalent quantum system whose information content95

is given by the von Neumann entropy. The von Neumann entropy can be computed in the static graph96

as follows:97

SVN = −
|V |∑
i=1

λi

|V |
log

λi

|V |
, (1)

where λ1, . . . ., λ|V | are the eigenvalues of Laplacian matrix. This form of von Neumann entropy is98

effective for network characterization. The thermodynamics entropy could model the structure and99

complexity of a graph, where the von Neumann graph entropy[3; 16; 17] is often used to describe the100

statistical state of a network system. De Domenico et al.[5] use von Neumann graph entropy for the101

structural reduction in multiplex networks. Li et al.[11] study convergence through von Neumann102

entropy for network-ensemble comparison. Liu et al.[13] apply von Neumann graph entropy to study103

universal patterns of the dynamic genome. Besides, Wang[23] calculates the approximation of von104

Neumann graph entropy with node degrees to model the network evolution. However, applying von105

Neumann entropy to represent temporal structure is still scarce. To our best knowledge, there is106

almost no work using von Neumann entropy to characterize the temporal graph.107

3 Preliminaries108

Definition 1 Temporal Network. Formally, the temporal network can be denoted as G = (V,E, T ),109

where V represents the set of nodes, E ⊆ V × V represents the set of links, and T represents the110

set of timestamps. Each link (u, v, t) signifies a connection between node u and node v at time t.111

The temporal network evolves over time, with links appearing at different timestamps. The temporal112

networks can also include attributes associated with nodes or links, providing further information113

about the entities or their interactions at specific timestamps.114

Definition 2 Dynamic Link Prediction. In a temporal network G = (V,E, T ), the dynamic link115

prediction task aims to predict the presence or absence of a link at a future timestamp based on the116
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observed network evolution history. Given a time window Tw ⊆ T , which contains the observed link117

data, denoted as ETw ⊆ E, the goal is to learn a function f : (V,ETw , Tw) → {0, 1} that assigns118

a probability score to the existence of a link (u, v) at the future timestamp t. Mathematically, the119

function f can be defined as:120

f(u, v, t) = P (u, v|t, ETw
), (2)

where P ((u, v)|t, ETw) represents the probability of the link (u, v) being present at the future121

timestamp t given the observed network and the link data ETw
within the time window Tw.122

Definition 3 Evolution States. Evolution states denote the specific arrangements of nodes and edges123

at specific time moments. These states can be characterized by network topology, reflecting the124

evolving nature of the network over time. For example, social networks at specific evolutionary125

states will generate the clustering and formation of tightly-knit groups or communities over time126

by triadic closure theory [29]. The theory is formally defined as ∃u, v, w,w′ ∈ V : (u, v), (v, w) ∈127

ETw
, (u,w), (u,w′), (v, w′) /∈ ETw

7→ P (u,w|ETw
) > P (u,w′|ETw

). Therefore, analyzing evolu-128

tion states helps in understanding the temporal behavior of the network, identifying recurring patterns,129

predicting future states, and studying the impact of temporal dynamics on network properties and130

phenomena. In this paper, we aim to capture evolution states in a thermodynamic entropy view.131

4 The Proposed Method132

4.1 Evolution State Estimation133

Von Neumann Entropy in Temporal Network. The von Neumann entropy can be computed in134

the static graph by Eq. 1. However, the application to temporal networks has two challenges: (1)135

The dynamic nature of the temporal network. Unlike static networks, where the structure remains136

constant, temporal networks capture evolving relationships and interactions. This dynamic nature137

introduces challenges in analyzing and modeling the network’s behavior, as the network’s topology138

and connectivity patterns may vary at different time points. (2) The expensive time complexity of139

computing the Laplacian eigenvalues. In Eq. 1, computing the eigenvalues of the Laplacian matrix is140

a computationally intensive task and the time complexity grows with the size of the network. The141

time cost is cubic in the number of nodes. In temporal networks, where the network structure changes142

over time, repeatedly calculating the Laplacian eigenvalues can become prohibitively expensive and143

time-consuming.144

To solve these challenges, we must simplify the network and efficiently approximate thermodynamic145

quantities. First, we select a specific time interval from the temporal network and aggregate edge146

weights or frequencies, where the number of occurrences within the chosen time frame determines147

the strength of an edge. Following this process, the temporal network can be projected to the148

time-independent 2-D plane, which provides a simplified representation of the underlying network149

structure at a specific time. Moreover, inspired by [27], we use the approximate expression for150

the von Neumann entropy and reduce the computation to quadratic in the number of nodes. The151

approximate von Neumann entropy is152

SVN(Gt) = 1− 1

|V |
− 1

|V |2
∑

(u,v)∈E

1

dudv
, (3)

where V is the node set of the temporal network, and du, dv are the degree of node u and v at time t.153

This approximation allows the von Neumann entropy to be computed without explicitly solving the154

eigensystem for the normalized Laplacian. The proof of the approximate von Neumann entropy is155

presented in Appendix A. Thus, the von Neumann entropy can be computed in quadratic time using156

the node degrees for pairs of nodes connected by edges.157

Thermodynamic Temperature Differences. In thermodynamics, a thermodynamic state of a system158

can be fully described by an appropriate set of principal parameters known as thermodynamic159

variables. Due to the dynamic nature of the temporal network, it is not sufficient to simply evaluate160

the evolution states for two moments using the von Neumann entropy. Thus, we introduce the161

thermodynamic temperature difference, defined as the rate of energy change with entropy between162

two networks, to complement the description of the network dynamics system. The expression which163

subject to the condition that the volume and number of particles are constant is shown as follows:164

T (G1, G2) =
de

dS
=

e(G1)− e(G2)

S(G1)− S(G2)
, (4)
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where S(G1) is the graph entropy on the graph G1 and e(G1) is the graph average energy. The subject165

can be applied to temporal networks since the networks do not change significantly in node number166

during evolution. The thermodynamic temperature difference can bridge the graphs of two moments.167

More importantly, the thermodynamic temperature difference can also be approximated when we168

project the temporal network as a weighted graph, like in the computing process of von Neumann169

entropy. The approximate computation method uses low-order Taylor series that can be computed170

using the traces of powers of the normalized Laplacian matrix, avoiding explicit computation of the171

normalized Laplacian spectrum [26]. The detailed derivation process is in Appendix A. In summary,172

the temperature difference between the two networks can be approximated as173

T (G1, G2) = −2

k
+

2

3k
· K(G1)−K(G2)

J (G1)− J (G2)
, (5)

where174

J (G) =
∑

u,v∈V

Auv

dudv
, (6)

175

K(G) =
∑

u,v,w∈V

AuvAvwAwu

dudvdw
, (7)

k is the Boltzmann constant, and A is the adjacency matrix of the network. Especially we denote176

G′
uv as the graph G adds a new connection between u and v, the computation of T (G,G′

uv) can177

be reduced as quadratic in the number of nodes. Because the expressions J (G′
uv) − J (G) and178

K(G′
uv)−K(G) can be rewritten as179

J (G′
uv)− J (G) =

∑
i∈V

Aiv

didv(dv + 1)
+

Aiu

didu(du + 1)
,

K(G′
uv)−K(G) =

∑
i,j∈V

AivAjvAij

didjdv(dv + 1)
+

AiuAjuAij

didjdu(du + 1)
+

∑
i∈V

AivAiuAuv

didudv(du + 1)(dv + 1)
.

(8)
In summary, by simplifying the network representation and using efficient approximations, the180

von Neumann entropy and thermodynamic temperature difference can be computed effectively in181

temporal networks. These measures provide insights into the evolving nature of the network and182

enable the estimation of its evolution state.183

4.2 Evolution States Aware Graph Encoder184

Von Neumann Entropy Aware Attention Mechanism. In graph encoding, we utilize the von185

Neumann entropy to explore a more diverse and balanced distribution of attention weights with186

the attention mechanism in the input neighborhood. This strategy helps the model learn network187

evolution states adaptively. According to Eq. 3, the global network entropy is a sum of contributions188

from individual edges. Thus, we decompose the global network entropy into components residing on189

the individual edges, so the von Neumann entropy of the edge connecting nodes u and v is190

Suv
VN(Gt) =

1

|E|
− 1

|V ||E|
− 1

|E||V |2
1

dudv
, (9)

To better encode entropy features into attention layers, we incorporate the edge expression of von191

Neumann entropy via a bias term to the attention module[22]. Moreover, we use a time position192

encoding module[25] to supplement the continuous time information of edges simplified in the von193

Neumann entropy. Concretely, given a target node u at time t, the attention weight α(l)
v from the194

neighbor node v on the lth layer as195

α(l)
v =

Q
(l)
u

(
K

(l)
v

)T

√
d

+ Suv
VN(Gt), (10)

196

Q(l)
u = (h(l−1)

u ∥e0∥ϕ(0))WQ, (11)
197

K(l)
v = M

(l)
v,tWK, (12)
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198

M
(l)
v,t =

(
hv

(l−1)∥euv,t∥ϕ(tq − t)
)
WM , (13)

where d is the dimension of the node representation and “∥" is the concatenation operation. WK ∈199

R(d+dt+de)×d and WQ ∈ R(d+dt+de)×d are the projection matrices to obtain the query matrices and200

key matrices. e0 is an all-zero vector to keep the same dimension as K and V , and ϕ (∗) is the201

generic time position encoding module from [25], which encodes the difference between the edge’s202

timestamp and query timestamp. M
(l)
v,t is the message representation at time t from node v to u,203

where h(l−1)
v is node v’s hidden representation on the (l− 1)th layer, euv,t ∈ Rde is the edge feature,204

and tq is the query time.205

Next, the model combines values with the attention weight aware of generating hidden representation206

z
(l)
u (t) for node u. Finally, an MLP is used to combine the node representation of the previous layer207

with the neighborhood information:208

h(l)
u = MLP (h(l−1)

u ∥z(l)u (t)), (14)
209

z(l)u (t) =
∑
v∈Nu

softmaxv (αv(t))Vv(t), (15)

210

V (l)
v = M

(l)
uv,tWV, (16)

where V
(l)
v is the value vector of neighbor node v, and Nu is a neighbor node set that connects with211

node u before time t.212

U

V

Virtual Evolution Graph

Figure 2: Virtual evolution
graph of u, v at time t.

Virtual Evolution Node Representation Learning. Temporal net-213

works follow evolution laws in the progress of time. The emergence214

of nodes and edges is often predictive, i.e., future network states215

can be predicted by past states and evolutionary laws. The network216

evolution state representation learning utilizes historical evolution217

information and the future virtual evolution graph to generate node218

representations. Specifically, the dynamic link prediction task aims219

to predict the probability of the link between two nodes appearing220

at a future moment. We suppose the link has been generated at the221

query moment and further construct the virtual evolution graph be-222

longing to the query node pair on this suppose. For example, given a223

node pair (u, v) and the query time t, there is a virtual bridge at time224

t that connects the node u and v in the virtual evolution graph G
′

uv. The approach makes the two225

node’s neighborhoods interconnected. We denote h
′

u and h
′

v as the virtual future node embedding of226

u and v. Our framework will further measure the evolution differences through the decoding process.227

4.3 Mixture of Thermodynamic Experts Decoder228

Expert Assessment Features. We use the von Neuman entropy of the original graph, the von Neuman229

entropy of the virtual evolution graph, and the thermodynamic temperature difference between both230

networks to combine a unique vector as expert assessment features. The vector represents the231

network’s evolution states in the 3-D thermodynamic space, which is made up of current time and232

future time’s von Neumann entropy and the thermodynamic temperature. We use Eq. 5 to approximate233

the thermodynamic temperature difference and Eq. 3 to compute the von Neumann graph entropy for234

the original and virtual evolution graphs. Furthermore, to control evolution-aware ranges, which is235

important for large temporal networks, we compute these approximate thermodynamic quantities in236

the node’s neighborhood and set the sampled neighborhood size N .237

Decoding Process. The mixture of thermodynamic experts decoder dynamically selects the appro-238

priate thermodynamic expert model based on the input expert assessment feature vectors. For each239

expert, we use a two-layers MLP model to represent. Then the MoTE decoder combines the output240

embedding of each expert model using respective expert weights to produce the final target score as241

follows:242

score(u, v, t) =

M∑
i=1

σ(Wi(hu, hv, h
′
v − hv, h

′
u − hu))πi, (17)
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Table 1: Performance of AUC(%) for link prediction. The best results in each column are highlighted
in bold font and the second-best results are underlined. We report the AP results in Appendix B.

Task Methods MathOverflow BitcoinAlpha BitcoinOTC Wikipedia

Transductive

JODIE 86.07 ±0.48 91.14 ±0.18 92.29 ±0.11 94.62 ±0.50
DyRep 80.77 ±0.65 79.39 ±3.17 79.21 ±4.10 94.59 ±0.20
TGN 80.47 ±3.24 86.71 ±1.00 86.78 ±2.29 98.46 ±0.10

TGAT 71.80 ±0.91 78.99 ±0.50 79.53 ±0.67 95.34 ±0.10
CAW 53.82 ±0.28 64.70 ±0.93 73.95 ±1.22 98.96 ±0.10
TDLG 84.02 ±0.16 92.83 ±0.22 93.48 ±0.22 88.93 ±0.09
P-INT 54.09 ±3.24 88.11 ±0.60 91.26 ±0.69 98.78 ±0.10

NeurTWs 92.56 ±0.51 93.95 ±0.41 95.75 ±0.01 94.54 ±0.87
ESSEN 98.60 ±0.40 99.10 ±0.16 98.88 ±0.42 99.03 ±0.33

Inductive

JODIE 67.06 ±0.42 74.47 ±0.16 76.21 ±0.47 93.11 ±0.40
DyRep 63.50 ±0.66 66.27 ±0.73 65.09 ±0.86 92.05 ±0.30
TGN 64.50 ±1.17 69.36 ±0.94 76.52 ±1.25 97.81 ±0.10

TGAT 60.02 ±0.75 66.42 ±1.17 66.62 ±1.99 93.99 ±0.30
CAW 57.67 ±0.33 64.38 ±1.01 72.99 ±0.46 98.75 ±0.14
TDLG 74.31 ±1.58 83.85 ±1.65 85.22 ±3.89 45.77 ±3.06
P-INT 50.16 ±1.46 77.88 ±0.93 83.76 ±0.98 98.38 ±0.40

NeurTWs 91.83 ±0.13 94.20 ±0.26 96.08 ±0.38 94.63 ±0.47
ESSEN 98.33 ±0.28 98.07 ±0.64 98.67 ±0.31 98.80 ±0.10

243

πi = softmaxi((T (G,G′
uv)∥SVN(G))∥SVN(G

′
uv))Wπ), (18)

where M is the total number of experts, πi is the mixing coefficient of expert i. Wi ∈ R4d×1 is the244

weight matrices for expert i. And Wπ ∈ R3×M is the weight matrix of the gate unit. hv and h′
v are245

the embeddings of node v in the original graph and virtual evolution graph generated by the encoder.246

4.4 Optimization247

During training, we evaluated the convergence behavior of our model by monitoring the training and248

validation loss, ensuring that the model was not underfitting or overfitting. The loss function is shown249

as follows:250

ℓ =
∑

(vi,vj ,tij)∈E

− logP (vi, vj | tij)−Q ·Eṽ∼P (ṽ) logP (vi, ṽ | tij), (19)

where (vi, vj , tij) is the observed edge on the temporal network, Q denotes the number of negative251

samples, and P (ṽ) is the negative sampling distribution over the node space E.252

4.5 Computational Complexity Analysis253

This section aims to highlight the efficiency of our approach in calculating approximate thermo-254

dynamic quantities of temporal networks. Based on Eq.3, Eq. 5, and Eq. 8, the time complexity255

of computing approximate von Neumann entropy and the approximate temperature difference is256

O(|V |2), where |V | is the number of nodes in the network. Moreover, we compute the approximate257

thermodynamic quantities in the neighborhood for the large networks and set the sampled neighbor-258

hood size N . In this setting, the computational complexity can be reduced to O(N2), where N is259

the settable number. Therefore, the time complexity demonstrates scalability and feasibility for our260

method to operate in moderate or large networks. The controllable time complexity ensures efficient261

computation.262

5 Experiments263

5.1 Experimental Setup264
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Table 2: Statistics of the datasets.
Dataset Nodes Edges Timespan

MathOverflow 21,688 107,581 2350 days
BitcoinOTC 5,881 35,592 1903 days
BitcoinAlpha 3,783 24,186 1901 days
Wikipedia 9,227 157,474 30 days

Datasets. The temporal network datasets of our265

experiment are divided into three types: (a) QA:266

The “answers to questions" dataset of MathOver-267

flow. (b) Bitcoin trading data: BitcoinAlpha268

Dataset and BitcoinOTC Dataset [9; 8]. (c) So-269

cial networks: Wikipedia Dataset[10]. Table 2270

reports more details about these datasets.271

Baselines. In addition to reporting our ESSEN method’s performance, we report results for several272

popular dynamic methods: a) JODIE [10]; b) DyRep [21]; c) TGAT [25]; d) TGN [19]; e) CAW [24];273

f) TDLG[4]; g) P-INT[20]; and h) NeurTWs[6]. We report more details about baselines in Appendix274

C.275

Link Prediction Task Settings. We evaluate our model on the link prediction task with two significant276

settings:277

• Transductive Setting. The model under the transductive setting is trained on available nodes278

and their connections to predict links between these nodes in the future. The setting assumes279

the network will not add unseen nodes in the future test time. It mainly evaluates the model’s280

transductive ability.281

• Inductive Setting. The inductive setting predicts missing links for existing nodes and potential282

new nodes that may be added in the future. It generalizes link prediction beyond known nodes,283

considering the possibility of new nodes. It learns network patterns and characteristics to make284

predictions applicable to both known and unknown nodes.285

Implementation Training Details. For each dataset, we used the training time points Ttr = 70%286

to split the dataset results in approximately 70%-15%-15% of the total edges [25]. The principal287

hyperparameters are set as follows: a) the number of attention heads U = {2, 3}, b) the number of288

the GNN layers L = 2, c) the maximum number of aggregated neighbors n ∈ {60, 80, 100}, d) the289

total number of experts in MoTE M = {4, 6, 8, 10}, and e) the dimension of the node embedding290

D = 172. We use the ADAM optimization algorithm for model training with a learning rate 1e-3291

and batch size of 128. All the models are implemented in PyTorch and evaluated on a single Tesla292

A100 GPU.293

5.2 Results and Discussion294

Table 1 reports the transductive and inductive link prediction task results on four datasets, demonstrat-295

ing our method’s state-of-the-art performance on link prediction tasks. Indeed, our model significantly296

outperforms all baselines on all datasets. In particular, in the MathOverflow dataset, compared with297

NeurTWs, the second strongest baseline, ESSEN improved the AUC(%) by 5.04% and 6.50% on298

average on the transductive and inductive setting. The results demonstrate that our method has a299

clear advantage for temporal networks. Specifically, our method performs well on both long and300

short evolution time networks, while the effectiveness of baseline models varies significantly. CAW301

and TGAT have enormous performance gaps between MathOverflow and Wikipedia in all tasks.302

It indicates that our framework represents the network with ever-changing evolution states better.303

The superiority can be attributed to our von Neumann entropy aware mechanism, virtual evolution304

node representation learning, and MoTE decoder. In addition, our method is effective under both305

transductive and inductive settings. On the contrary, the baseline method JODIE cannot predict306

interactions well between unseen nodes because it pays more attention to node identities rather than307

the evolution states of temporal networks.308

5.3 Ablation Study and Time Comparison309

MathOverflow BitcoinAlpha
Ablation Study

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

AU
C

ESSEN
ESSEN_E

ESSEN_V
ESSEN_D

Figure 3: Ablation Study

Ablation Study. To validate the effectiveness of the elements310

comprising ESSEN, we conduct a series of ablation studies311

and report the AUC results. We investigated the proposed mod-312

ules with three ablated models on the Bitcoin-alpha dataset:313

a)ESSEN-E, the model removes the von Neumann edge en-314

tropy bias in the attention mechanism of ESSEN. b)ESSEN-V ,315

the model removes virtual evolution node representation and316

8



50 55 60 65 70
94

95

96

97

98

99

100

AU
C

(%
)

MathOverflow
BitcoinAlpha

(a) Training Time Point Ttr(%)

2 4 6 8 10
95

96

97

98

99

100

AU
C

(%
)

MathOverflow
BitcoinAlpha

(b) Number of Experts M

50 100 150 200 250
95

96

97

98

99

100

AU
C

(%
)

MathOverflow
BitcoinAlpha

(c) sampled Neighborhood Size N

Figure 5: Study on important settings. We report the results of the inductive link prediction.

only uses the node embeddings of the original graph for decoding. c)ESSEN-D, the model replaces317

the MoTE decoder with a simple MLP decoder. In Fig. 3, we can see the performance degradation318

without considering the von Neumann entropy information of edges, demonstrating the effectiveness319

of the proposed von Neumann entropy aware attention mechanism. Disabling the virtual evolution320

node representation also hurts performance. Furthermore, when the MoTE decoder is removed,321

BitcoinOTC and BitcoinAlpha exhibit more severe performance drops, demonstrating that the MoTE322

decoder excels on temporal networks with a long time span and more evolution states.323
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Figure 4: Time Comparison.

Time Comparison. Fig.4 compares the training times of ESSEN324

against the second-strongest baseline NTW. For fairness, we use the325

same batch size for both models and experiment in the same environ-326

ment. Note that the running time of ESSEN is down quickly because327

the approximate thermodynamic quantities have been computed at328

the first epoch and use cache after that. If we pre-computed thermo-329

dynamic quantities for the model, ESSEN would run considerably330

faster than NTW.331

5.4 Parametric Sensitivity332

we investigate the sensitivity of our ESSEN to various parameters and evaluate their impact on333

the model’s performance. In Fig. 5, We report the results and have the following observations: a)334

Through the exploration of different training time points, our model keeps excellent performance,335

even if the number of samples in the training set is reduced since the training time shift. Especially,336

lowering the training time point means increasing the testing of more samples in the future. It clearly337

shows the robustness of ESSEN for complex evolutionary states. b) Regarding the number of experts338

M , there are sweet spots in both datasets. This finding indicates that different datasets exhibit a339

preference for specific numbers of experts in the MoTE decoder, which can be attributed to the340

varying complexity of evolutionary states in the temporal network. c) We observe a strong correlation341

between the evolution-aware size N and the node number of the temporal network. For instance,342

the MathOverflow with more number nodes has better performance with the large evolution-aware343

neighborhood. On the contrary, it negatively impacts the performance of BitcoinAlpha when N is344

higher than 100.345

6 Conclusion346

In this paper, we propose ESSEN, an Evolution StateS awarE Network for recognizing and analyzing347

the evolution states on temporal networks. We addressed the limitations of existing methods in348

capturing the time-varying nature of network structures, especially in complex evolving states. Our349

framework incorporates a von Neumann entropy aware attention mechanism and network evolution350

state contrastive learning in the graph encoding. The decoding stage utilizes a unique decoder called351

Mixture of Thermodynamic Experts (MoTE). We evaluated ESSEN on link prediction tasks in352

transductive and inductive settings and compared it to state-of-the-art baselines. The experimental353

results demonstrate the effectiveness of our proposed method in capturing temporal dynamics and354

outperforming existing approaches. Our work contributes to advancing the field of temporal network355

analysis and opens up possibilities for future research in other domains and additional network356

dynamics. In the future, we will focus on improving ESSEN’s efficiency and scalability, allowing it357

to handle larger datasets and real-time analysis.358
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