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Towards Sensorless Interaction Force
Estimation for Industrial Robots Using

High-Order Finite-Time Observers

Linyan Han, Jianliang Mao, Member, IEEE, Pengfei Cao, Yahui Gan, and Shihua Li, Fellow, IEEE

Abstract—This paper proposes a novel interaction force
estimation scheme capable of estimating the interaction
forces for industrial robots with high precision in the ab-
sence of force sensors. Specifically, we first establish the
dynamic model of a class of industrial robots via model
identification methods. Furthermore, a high-order finite-
time observer (HOFTO) is established to estimate the in-
teraction forces, where HOFTO serves as an interaction
force observer and is designed to accurately estimate
external time-varying interaction forces. In addition, we
strictly analyze the stability of our approach in two different
cases, endowing HOFTO with reliable estimation abilities in
broader applications. Subsequently, we integrate the esti-
mated force information into the applications of force con-
trol frameworks (e.g., collision detection and impedance
control). Several evaluations on a real 6-axes robot demon-
strate the effectiveness of the proposed approach.

Index Terms—Interaction force estimation, high-order
finite-time observer, parameter identification, force control.

I. INTRODUCTION

IN a myriad of applications, such as deburring [1] and

guiding tasks [2] as well as collision detection [3], robot

manipulators need to contact with external environments prop-

erly and thus careful treatment of interaction forces is vital.

In force-sensitive scenarios, traditional approaches on position

control are prone to impose strong stiffness using large con-

trol gains and consequently the risk of breaking robots and

harming environments becomes high. In order to overcome

this issue of position-control methods, force control has been

studied towards obtaining an environment or user-friendly

controller, where interaction forces between robots and the

environment are taken into account. Usually, interaction forces

are measured by a force/torque sensor. However, the high
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price of force sensors restricts their applicability in various

settings. Moreover, the deployment of force sensors per se

also increases the difficulty of structural design. Therefore, an

efficient and easily-implemented interaction force observer has

great potentials, which indeed has been showcased in many

previous works [4], [5], [6].

A straightforward way of estimating interaction forces is

to utilize the motor torque, position, velocity and acceleration

information [7]. However, this kind of approaches will become

problematic since double differentiation of position signals

amplifies measurement noise in practice. Therefore, various

filters [8] were employed to improve the estimation accuracy

of interaction forces, which, however, brings another issue,

i.e., the small time delay caused by the filter will prolong the

system’s response time.

In order to address the aforementioned issues, many alter-

native solutions have been investigated [9], [10], [11], [12]. In

[9], a nonlinear disturbance observer was proposed to estimate

the interaction forces. The stability and performance of the

reaction torque observer in a robust force control system were

analyzed, where the estimation of environmental impedance

control through the reaction torque observer can be viewed as

an application of disturbance observers [10], [11]. In [12],

an extended state observer (ESO) was applied to estimate

the interaction forces with a theoretical analysis. However,

these works only focus on estimating constant or slow time-

varying interaction forces while the case of fast time-varying

interaction forces (e.g., in highly dynamical environments) has

not been explored sufficiently.

Based on the design idea of finite time convergence, the

super-twisting algorithm (STA) observer [13] is designed to

estimate the interaction forces and has achieved great suc-

cess. However, the STA observer is first-order and can only

accurately estimate the interaction forces with the first-order

derivative bounded. However, the interaction forces in practice

are complex and changeable, so it is desired to design an

interaction force observer with the ability of generalization.

In this paper, we are dedicated to the design of a force

observer so as to estimate time-varying (particularly fast time-

varying) interaction forces, with the aim of addressing the

limitations of the aforementioned approaches. Specifically,

using an identified dynamics model of robot manipulators,

we design a HOFTO to estimate the interaction forces in a

finite time horizon. The proposed interaction force observer

not only guarantees the global stability, but also provides a



more accurate estimation in comparison with the traditional 
ESO-based methods. The main contributions of this paper 
include

1) An observer design method is utilized to achieve the

sensorless interaction force estimation, which is better

than traditional direct estimation methods and ESO-based

methods in terms of estimation accuracy [12].

2) A finite-time observer is designed to estimate the interac-

tion forces with rigorous stability analysis.

This paper is arranged as follows. The motivation of our

work is first explained in Section II. Then, we illustrate the

design procedure of the interaction force observer in detail in

Section III. Several experiments on a real robot are reported

in Section IV. Finally, we conclude this paper in Section V.

II. MOTIVATION

In this section, we discuss the existing interaction force

estimation methods and their shortcomings, which motivate

our work to cope with these issues.

A. Direct Estimation of τ e

As a well-established model, the Euler-Lagrange equation

[14] has been widely employed to represent the dynamics of

robots. Specifically, for a robot manipulator with r-link, its

dynamic model can be described as

M(q)q̈+C(q, q̇) + g(q) + f = τ + τ e, (1)

where q ∈ R
r×1, q̇ and q̈ denote joint position, velocity

and acceleration, respectively. M(q) ∈ R
r×r is a symmetric,

positive-definite matrix, C(q, q̇) ∈ R
r×1 represents Coriolis

and centrifugal terms, g(q) ∈ R
r×1 denotes gravity, f ∈ R

r×1

represents friction force, τ e ∈ R
r×1 denotes the interaction

force (which will be estimated in this paper without using a

torque/force sensor) and τ ∈ R
r×1 denotes joint torque (which

is also referred to as control input).

According to (1), the direct estimation can be calculated as

τ̂ e = M(q)q̈+C(q, q̇) + g(q) + f − τ (2)

with τ̂ e being the estimation of τ e.

Note that in (2), q, q̇, q̈ and τ are needed to calculate the

interaction force. However, in practice, only the joint positions

q, joint velocity q̇ and τ can be obtained from the servo drive.

A simple solution to estimate q̈ is to resort to the second

order differentiators, which, however, will amplify the noise

introduced during the measurement signals.

B. Indirect estimation of τ e though traditional extended

state observer

In this subsection, we will show the ESO-based interaction

force estimation approach and its shortcomings.

Define x1 = q, x2 = q̇ and x3 = M(x1)
−1τ e. The

dynamic model in (1) becomes
{

ẋ1 = x2,
ẋ2 = M(x1)

−1τ + F(x1,x2) + x3,
(3)

where the nonlinear function F(x1,x2) ∈ R
r×1 is defined as

F(x1,x2) = −M(x1)
−1 (C(x1,x2) + g(x1) + f) . (4)

The standard ESO can be designed to estimate the interac-

tion force, i.e.,






ż1 = z2 + k1(x1 − z1),
ż2 = M(x1)

−1τ + F(x1,x2) + z3 + k2(x1 − z1),
ż3 = k3(x1 − z1),
τ̂ e = M(x1)z3,

(5)

where ki ∈ R
r×r, zi, i = {1, 2, 3} and τ̂ e represent

design parameters, the estimation of system states xi and the

estimation of τ e, respectively.

Denote e1 = x1 − z1, e2 = x2 − z2, e3 = x3 − z3 and

e =
[
eT1 eT2 eT3

]T
. Combining (3) with (5) yields the error

dynamics as

ė = Ae+Bẋ3 (6)

with

A =





−k1 Ir×r 0r×r

−k2 0r×r Ir×r

−k3 0r×r 0r×r



 ,B =





0r×r

0r×r

Ir×r



 . (7)

Generally, it is trivial to select suitable parameters ki, i =
{1, 2, 3} to ensure that A is a Hurwitz matrix. Following (6),

we have

e(t) = eAte(0) +

∫ t

0

eA(t−ι)Bẋ3(ι)dι. (8)

Note that if ẋ3 = 0, we have e(∞) = ė(∞) = 0 since A is a

Hurwitz matrix. This implies that ESO can accurately estimate

constant or slowly time-varying lumped interaction forces,

however, the estimation of non-constant lumped interaction

forces is not addressed therein. Suppose that the lumped

interaction force x3 in (3) is non-constant but bounded and

with a bounded derivative, i.e., ‖ẋ3‖ < ζ, ζ > 0. Then, (8)

can be transformed into

‖e(t)‖ ≤ ‖eAt‖‖e(0)‖+ ‖A−1(I− eAt)B‖ζ. (9)

Taking the limit of (9) yields

‖e(∞)‖ ≤ ‖A−1B‖ζ. (10)

Hence, the ESO introduces steady-state estimation errors in

the presence of non-constant lumped interaction forces. Please

refer to [15] for more detailed discussion on the ESO. This

is also the motivation driving us to study a more efficient and

accurate observer to estimate time-varying and non-constant

interaction forces.

III. MAIN RESULTS

Before proceeding to present our main results, some key

notations and lemma are first introduced.

Notations x =
[
x1, x2, . . . , xn

]T
denotes

a n-dimensional vector with xi being the ith
element of x, where i = 1, 2, . . . , n. sigα(x) =
[
|x1|

α
sign(x1), |x2|

α
sign(x2), . . . , |xn|

α
sign(xn)

]T
with

α > 0. xα =
[
xα
1 , x

α
2 , . . . , x

α
n

]T
.



c+d

Lemma 1 [16] Let c, d > 0. For any a > 0, the following 
inequality holds for ∀x, y ∈ R : |x|c|y|d ≤ c a|x|c+d +
d

c+da
−c
d |y|c+d.

A. System Identification

In this subsection, we first build the dynamic model of

industrial robots by the parameter identification method so as

to facilitate the design of high-order finite-time observers in

the next subsection.

During the process of identification, we assume that no

external interaction forces are applied to the robot manipulator

and therefore τ e is set as zero, i.e.,

τ e = 0. (11)

Usually, the friction model of the ith joint is described by

[17]

fi = Fci · sign(q̇i) + Fviq̇i +Bi, (12)

where fi is the ith element of f , Fci and Fvi respectively

denote Coulomb and viscous friction coefficients, and Bi is

the bias term.

Remark 1: For the friction model, we only consider two

conventional dynamics (e.g., Coulomb and viscous friction)

since it is effective for our robot. In order to better characterize

the friction, as future work, the improved friction models [18],

[19], [20] can be used to generalize our results to other robots.

Due to the linearity in the parameters property [14], the

inverse dynamic model in (1) can be written as

τ = Hs(q, q̇, q̈)θs (13)

where Hs(q, q̇, q̈) ∈ R
r×s is called a regressor func-

tion and θs ∈ R
s×1 represents the standard parameters.

For rigid robot manipulators, there are 14 standard param-

eters for each joint and link, including six components

(Ixxj Ixyj Ixzj Iyyj Iyzj Izzj) of inertia tensor for each link

j , first moments (mxj , myj , mzj) of link j, mass mj , total

inertia moment Iaj and friction parameters Fvj Fcj Bj .

In accordance with [21] and [22], we can utilize the column

linear dependency of Hs to regroup the standard parameters

and therefore (13) can be rewritten as

τ = H(q, q̇, q̈)µ, (14)

where H(q, q̇, q̈) ∈ R
r×p corresponds to a subset of the

maximum linear independent columns of Hs and µ ∈ R
p×1

represents the base parameters.

Remark 2: For rigid robot manipulators, there are 14
standard parameters for each joint and link. If a robot has

r joints, the number of standard parameters are 14r. Hence,

s = 14r and p < s.

Assuming that we have access to N groups of experimental

data {H(qt, q̇t, q̈t), τt}
N
t=1 along an excitation trajectory, we

have

T = Hµ, (15)

where H = [H1
TH2

T · · ·HN
T]T, T = [τ 1

Tτ 2
T · · · τN

T]T.

Hence, µ can be obtained using the least squares estimation

[23], [24].

B. Improved Estimation of τ e Though high-order finite-

time observer

We construct a high-order finite-time observer to estimate

the interaction forces, since it provides us with crucial char-

acteristics in interaction force estimation, including estimation

accuracy and continuity. In order to design a high-order finite-

time observer, the system parameters are required in advance.

By importing the identification result, the friction model f

can be extracted. Subsequently, the system parameter matrices

M(q),C(q, q̇) and g(q) are obtained via algebraic sorting as







g(q) = H(q,0,0)µ− f ,
C(q, q̇) = H(q, q̇,0)µ− f − g(q),
Mi(q) = H(q,0,Ei)µ− f − g(q),

(16)

where Ei = [0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

r−i

]T, i = 1, · · · , r and Mi(q)

represents the ith column of M(q).

Now, the HOFTO can be constructed to estimate the inter-

action force, which is designed as







ż1 = z2 + L1sig
m2(x1 − z1),

ż2 = M(x1)
−1τ + F(x1,x2) + z3,

+L2sig
m3(x1 − z1),

ż3 = z4 + L3sig
m4(x1 − z1),

. . .
żn+2 = Ln+2sig

mn+3(x1 − z1),
τ̂ e = M(x1)z3,

(17)

where z1, z2, z3, . . . , zn+2, τ̂ e are estimations corresponding

to x1,x2,x3, . . . ,x
(n−1)
3 , τ e . L1,L2, . . . ,Ln+2 ∈ R

r×r

denote the parameter matrices to be designed. Note that both

the numerator and denominator of mi are odd such that the

notation xmi = sigmi(x) holds, where mi = 1+(i−1)σ, σ ∈
(−1/(n+ 2), 0), i = 1, 2, . . . , n+ 3.

Remark 3: In general, the estimated order is selected

according to the physical interaction force model. For in-

stance, one can achieve finite-time stability for the observer

by choosing n = 1, 2 and 3 for the constant, ramp and

parabolic interaction forces, respectively. Similarly, a higher

order n can be selected to ensure the estimation accuracy of

the more general order interaction forces (e.g., forces with

the polynomial types), which however is attained at the cost

of an increasing computational burden. In practice, we first

consider low-order cases and later increase the order properly

if the corresponding estimation is unsatisfactory.

Denote e1 = x1 − z1, e2 = x2 − z2, e3 = x3 −
z3, · · · , en+2 = x

(n−1)
3 − zn+2. Combining (3) and (17), we

have







ė1 = e2 − L1e
m2
1 ,

ė2 = e3 − L2e
m3
1 ,

ė3 = e4 − L3e
m4
1 ,

. . .

ėn+2 = x
(n)
3 − Ln+2e

mn+3

1 .

(18)



Redefine e1 = e1, e2 = L−1
1 e2, e3 = L−1

2 e3, · · · , en+2 =
L−1
n+1en+2. (18) can be written as







ė1 = L1(e2 − em2
1 ),

ė2 = L−1
1 L2(e3 − em3

1 ),
ė3 = L−1

2 L3(e4 − em4
1 ),

. . .

ėn+2 = L−1
n+1x

(n)
3 − L−1

n+1Ln+2e
mn+3

1 .

(19)

Denote K1 = L1, K2 = L−1
1 L2, K3 = L−1

2 L3, · · · ,

Kn+2 = L−1
n+1Ln+2. Then, we can rewrite (19) as







ė1 = K1(e2 − em2
1 ),

ė2 = K2(e3 − em3
1 ),

ė3 = K3(e4 − em4
1 ),

. . .

ėn+2 = −Kn+2e
mn+3

1 + L−1
n+1x

(n)
3 .

(20)

1) Case 1: estimation of x3 with time series polynomial

form

The following assumption play a key role in introducing the

main result.

Assumption 1: The n time derivatives of x3i exists and

satisfies x
(n)
3i (t) = 0.

Theorem 1: For the robot manipulator system (3) under

Assumption 1, if the interaction force observer is designed as

(17), then the estimation error will converge to zero in a finite

time .

Proof : For the error system (20), if x
(n)
3 = 0, then we

follow the spirit of [25] that there is a Lyapunov function

V (e) such that

V̇ (e) ≤ −γV α(e), (21)

where

γ > 0, 0 < α < 1,

and

V (e) =
n+2∑

j=1

r∑

i=1

∫ e(j)i

e
mj/mj+1
(j+1)i

(

s
2−mj
mj − e

2−mj
mj+1

(j+1)i

)

ds.

Hence, we can conclude from (21) that the estimation error

will converge to zero in a finite time [25].

2) Case 2: estimation of time-varying interaction forces

The stability of the interaction force observer is introduced

by Theorem 2 with satisfying Assumption 2.

Assumption 2: The n time derivatives of external interac-

tion forces τ e(t) exist. We can derive that x3 is continuously

differentiable and its high-order derivatives are bounded, i.e.,

|x
(n)
3i | ≤ κi, i = 1, 2, . . . , n.

Remark 4: Assumption 2 needed here is essentially made to

guarantee the finite-time convergence of the proposed observer

with rigorous stability analysis. From a theoretical point of

view, the proposed observer is finite-time convergent. As for

the susceptibility of the closed-loop system to noise, we do not

consider it in this paper. To our knowledge, no results have

been reported on this topic. However, this problem deserves

to be studied in the future.

Theorem 2: For the robot manipulator system (3) under

Assumption 2, if the interaction force observer is designed as
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Fig. 1. Experiment setup. (a): The diagram of the robotics system. (b):
Hardware architecture of the robot.

(17), then the estimation value will converge to a bounded

region in a finite time .

Proof: Define Hi,j(ej+1, ej) = [e
1

jσ+1

j+1 ]iσ+1 −

[e
1

(j−1)σ+1

j ]iσ+1. Then, we have
∑i

j=1 Hi,j =

ei+1 − e
mi+1

1 , i = 1, . . . , n + 2. Hence, the (20) can be

rewritten as







ė1 = K1H1,1,
ė2 = K2(H2,2 +H2,1),
ė3 = K3(H3,3 +H3,2 +H3,1),
. . .
ėn+2 = −Kn+2(Hn+2,n+2 + · · ·+Hn+2,1)

+L−1
n+1x

(n)
3 .

(22)

Here, we can construct the same Lyapunov function shown

in (21). Then, the derivative of V (e) along system (22) can

be written

V̇ |(22) ≤−
n+2∑

j=1

r∑

i=1

|e(j+1)i − e
mj+1/mj

(j)i |
2+σ

mj+1

+
r∑

i=1

∂V (e)

∂e(n+2)i
L−1
(n+1)ix

(n)
3i

≤− γV α(e) +

r∑

i=1

∂V (e)

∂e(n+2)i
L−1
(n+1)iκi,

(23)
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Fig. 2. Comparison between the measured and estimated torque. (a)−(f) correspond to the 1st−6th joints, where the blue dashed, red solid and
green solid curves depict the measured torque, estimated torque and the corresponding torque errors, respectively.

where

r∑

i=1

∂V (e)

∂e(n+2)i
=

r∑

i=1

e
(2−mn+2)/mn+2

(n+2)i

−
r∑

i=1

2−mn+1

mn+2
e

2−mn+1
mn+2

−1

(n+2)i e(n+1)i

+
r∑

i=1

2−mn+1

mn+2
e

2−mn+1
mn+2

−1

(n+2)i e

mn+1
mn+2

(n+2)i.

(24)

Considering

|e(n+1)i − e

mn+1
mn+2

(n+2)i| ≤ b|e

mn+2
mn+1

(n+1)i − e(n+2)i|
mn+1
mn+2

+ b|e

mn+2
mn+1

(n+1)i − e(n+2)i||e(n+2)i|
mn+1
mn+2

−1
,

(25)

with b > 0 being a constant, then we have

|e

2−mn+1
mn+2

−1

(n+2)i (e(n+1)i − e

mn+1
mn+2

(n+2)i)| ≤

b|e(n+2)i|
2−mn+1
mn+2

−1
|e

mn+2
mn+1

(n+1)i − e(n+2)i|
mn+1
mn+2

+ b|e(n+2)i|
2−mn+2+σ

mn+2 |e

mn+2
mn+1

(n+1)i − e(n+2)i|.

(26)

Following Lemma 1, we have

b|e(n+2)i|
2−mn+1
mn+2

−1
|e

mn+2
mn+1

(n+1)i − e(n+2)i|
mn+1
mn+2 ≤

b1|e(n+2)i|
2−mn+2
mn+2 + b2|e

mn+2
mn+1

(n+1)i − e(n+2)i|
2−mn+2
mn+2

(27)

and

b|e(n+2)i|
2−mn+2+σ

mn+2 |e

mn+2
mn+1

(n+1)i − e(n+2)i| ≤

b3|e(n+2)i|
2+σ

mn+2 + b4|e

mn+2
mn+1

(n+1)i − e(n+2)i|
2+σ

mn+2

(28)

with b1 = b 2−mn+1−mn+2

2−mn+2
, b2 = b mn+1

2−mn+2
, b3 = b 2−mn+2+σ

2+σ

and b4 = bmn+2

2+σ .

Combining (27) and (28), (26) can be rewritten as

|e

2−mn+1
mn+2

−1

(n+2)i (e(n+1)i − e

mn+1
mn+2

(n+2)i)| ≤ b1|e(n+2)i|
2−mn+2
mn+2

+ b3|e(n+2)i|
2+σ

mn+2 + b2|e

mn+2
mn+1

(n+1)i − e(n+2)i|
2−mn+2
mn+2

+ b4|e

mn+2
mn+1

(n+1)i − e(n+2)i|
2+σ

mn+2 .

(29)

Hence, (24) can be rewritten as

r∑

i=1

∂V (e)

∂e(n+2)i
≤

r∑

i=1

b5|e(n+2)i|
2−mn+2
mn+2

+
r∑

i=1

b6|e(n+2)i|
2+σ

mn+2 +
r∑

i=1

b7|e

mn+2
mn+1

(n+1)i − e(n+2)i|
2−mn+2
mn+2

+
r∑

i=1

b8|e

mn+2
mn+1

(n+1)i − e(n+2)i|
2+σ

mn+2

≤
r∑

i=1

b9|e(n+2)i|
2+σ

mn+2 + rb5
mn+3

2 + σ

+
r∑

i=1

b10|e

mn+2
mn+1

(n+1)i − e(n+2)i|
2+σ

mn+2 + rb7
mn+3

2 + σ

(30)

with b5 = 2−mn+1

mn+2
b1 + 1, b6 = 2−mn+1

mn+2
b3, b7 = 2−mn+1

mn+2
b2,

b8 = 2−mn+1

mn+2
b4, b9 = b5

2−mn+2

2+σ + b6 and b10 = b7
2−mn+2

2+σ +
b8.
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Fig. 3. (a) shows the 3-D motion trajectory. (b)−(c) correspond to
trajectories in Cartesian space and joint space, respectively. Start,
A,B,C and D separately mark the starting and desired points.

Combining (30), (23) can be written as

V̇ |(22) ≤ −γV α(e) +
r∑

i=1

∂V (e)

∂e(n+2)i
L−1
(n+1)iκi

≤ −γV α(e) +

r∑

i=1

b9L
−1
(n+1)iκi|e(n+2)i|

2+σ
mn+2

+
r∑

i=1

b10L
−1
(n+1)iκi|e

mn+2
mn+1

(n+1)i − e(n+2)i|
2+σ

mn+2

+
r∑

i=1

L−1
(n+1)iκib5

mn+3

2 + σ
+

r∑

i=1

L−1
(n+1)iκib7

mn+3

2 + σ

≤ −γV α(e) + γ1V
α(e) + Θ = −ρV α(e) + Θ

(31)

where ρ = γ − γ1 > 0, γ1 =
max{b9L

−1
(n+1)iκi, b10L

−1
(n+1)iκi},i = 1, 2, . . . , r and Θ > 0

are constant.

According to (31), we can conclude that the estimation value

will converge to a bounded region Ω in a finite time, where

Ω =

{

ei | V (e) ≤ (
Θ

ρ
)

1
α , i = 1, 2, . . . , n+ 2

}

. (32)

This completes the proof. �

Remark 5: Generally, the estimation error of HOFTO

can be reduced by increasing gain-related parameters Li,i =
1, 2, . . . , n+2, however, it is noted that too large Li will bring

some other issues, such as noise amplification and overshoot.

Therefore, in this case, we can also adjust the fractional power

α to reduce the estimation error, which outperforms the ESO.

Remark 6: The HOFTO exhibits the advantage over the

ESO [12] in terms of estimation accuracy. Unlike the ESO that

can only accurately estimate constant or slowly time-varying

interaction forces, the estimation accuracy for the fast time-

varying interaction forces is not as high as the HOFTO.

Remark 7: In (17), if all of fractional power terms m2, m3

and m4 are equal to 1, and meanwhile if z4 = 0, . . . , zn+2 =
0, the HOFTO in (17) will be equivalent to the ESO. The

advantage of HOFTO over ESO is clarified in non-smooth

control, please refer to, e.g., [26], [27]. In addition, if z4 =
0, . . . , zn+2 = 0, m2 = 1

2 , m3 = 1
2 , and m4 = 0, the HOFTO

in (17) will be equivalent to the STA observer.

IV. EXPERIMENTAL EVALUATIONS

In this section, a series of evaluations on a real robot

manipulator (ER3A robot, made by Efort Intelligent Equip-

ment Co.,Ltd) are reported to show the performance of our

approach. The robotic system is depicted in Fig. 1, which

consists of a motion control unit, a servo drive unit and a

basic machine unit. The motion control unit is implemented by

a Beckhoff controller and developed in the Matlab/Simulink

environment through a model-based design (MBD) method.

The servo drive unit is governed by a motion controller using

the EtherCAT protocol. The basic machine unit is composed

of six rotational joints and equipped with a 6-D force/torque

sensor attached at the end-effector of the robot.

Following the dynamics identification approach in Section

III-A, we can estimate the relevant dynamics model param-

eters, as listed in Table I, where all units are in SI units.

The performance of the identified dynamics model on an

excitation trajectory is shown in Fig. 2, where the blue curves

denote the real torque inputs over the course of executing the

excitation trajectory while the red curves correspond to the

estimated torque with the identified dynamics model. We can

see from the error curves (green curves) that the identification

is satisfactory.

A. Evaluations of Force Estimation

In order to evaluate the accuracy of force estimation, we

consider a tracking task where the X-, Y- and Z- components

of the desired Cartesian trajectory is plotted Fig. 3(b) and the

corresponding 3-D trajectory is shown in Fig. 3(a). Here, the

corresponding desired joint trajectory is determined by using

the Jacobin-based inverse kinematics, as shown in Fig. 3(c).

Note that the most challenging situation for interaction force

estimation is when some joints are unchanged or at ultra-low

speeds. In Fig. 3(c), the 4th joint is almost unaltered, which

leads to a challenging situation for interaction force estimation.

For the sake of comparison, we evaluate the traditional ESO-

based estimation method whose gain parameters are set as

k1 = diag{8, 8, 5, 5, 5, 5}, k2 = diag{50, 50, 40, 40, 40, 40}
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Fig. 4. Comparison among the HOFTO-based (red curve) method, the ESO-based (yellow curve) method and the DOB (purple curve) method.
(a)−(f) correspond to the 1st−6th joints, respectively. The blue curves depict the real measured external torque.
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Fig. 5. The estimated and measured interaction force in collision detection. (a)−(f) correspond to the 1st−6th joints.
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Fig. 6. The estimated and measured interaction force in collision detection. (a)−(c) correspond to the X-, Y - and Z- directions in Cartesian space.
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Fig. 7. (a) and (b) correspond to traction tracking along the X- and Y - directions, respectively.



TABLE I
IDENTIFICATION RESULTS

item value item value item value item value

µ1 0.853 µ17 0.284 µ33 0.119 µ49 −0.000

µ2 24.157 µ18 −0.197 µ34 5.412 µ50 0.010

µ3 7.535 µ19 −0.273 µ35 4.913 µ51 −0.001

µ4 0.056 µ20 0.732 µ36 −0.025 µ52 0.002

µ5 0.346 µ21 1.910 µ37 0.079 µ53 0.003

µ6 0.593 µ22 1.274 µ38 0.032 µ54 −0.001

µ7 0.162 µ23 13.127 µ39 0.061 µ55 0.021

µ8 −0.267 µ24 9.924 µ40 0.087 µ56 0.573

µ9 −0.220 µ25 −0.445 µ41 0.038 µ57 1.946

µ10 2.028 µ26 0.119 µ42 −0.021 µ58 −0.006

µ11 0.845 µ27 −0.038 µ43 0.181 µ59 −5.136

µ12 59.052 µ28 0.110 µ44 0.060 µ60 −13.643

µ13 8.975 µ29 0.061 µ45 6.716 µ61 0.053

µ14 3.492 µ30 0.044 µ46 3.230 µ62 −0.492

µ15 −0.181 µ31 −0.023 µ47 0.054 µ63 −1.143

µ16 0.015 µ32 0.096 µ48 −0.008 µ64 −0.013

TABLE II
PERFORMANCE INDICES UNDER THREE ESTIMATION APPROACHES

τ e1 τ e2 τ e3

Offset MA RMS Offset MA RMS Offset MA RMS

HOFTO 0.6566 19.0628 5.6758 1.4586 30.0325 13.7747 4.5513 29.8924 6.9009

ESO 2.0557 31.0833 10.7413 10.2418 60.2324 27.800 11.6811 39.0532 16.4946

DOB 1.8935 28.6627 10.6633 7.609 58.3107 20.1128 11.0636 34.5772 14.8554

τ e4 τ e5 τ e6

Offset MA RMS Offset MA RMS Offset MA RMS

HOFTO 0.5386 9.4659 2.8030 0.0239 3.4266 0.9214 0.0885 2.1013 0.5057

ESO 1.1106 11.5670 4.3130 0.6496 9.1514 2.7173 0.1063 2.5020 1.3726

DOB 0.8419 10.1855 3.6928 1.1858 14.3877 4.3777 0.1560 2.9912 1.6311

and k3 = diag{300, 300, 200, 200, 200, 200}. In addition,

the disturbance-observer-based (DOB) method in [10] is also

evaluated. Meanwhile, we choose the 4th-order HOFTO de-

sign, namely, n = 2, whose gain parameters for the pro-

posed HOFTO-based estimation scheme are defined as L1 =
diag{22.3607, 22.3607, 21.6265, 20.8090, 20.8090, 20.8090},

L2 = diag{22.101, 22.101, 21.1419, 20.083, 20.083, 20.083},

L3 = diag{30, 30, 28.0624, 25.9808, 25.9808, 25.9808} and

L4 = diag{440, 440, 385, 330, 330, 330}. Note that the pa-

rameter adjustment is mainly based on the recursive selection

scheme introduced in [28] and supplemented by the trial-and-

error method.

The estimated interaction forces by using the HOFTO, the

ESO-based and the DOB methods are shown in Fig. 4, where

the real measured torque by using a torque/force sensor is pro-

vided as the baseline. It can be seen that the HOFTO method

indeed has a more precise estimation compared to ESO-based

and DOB approaches. Furthermore, to quantitatively assess

our method, the performance indices including the offset value

defined as the absolute of the mean value of estimating errors,

the maximum absolute (MA) value representing the maximum

of absolute value of a sequence of data and the root-mean-

squared (RMS) value denoting the square root of the average



of squares of a set of data are taken into account. The 
quantitative evaluations are summarized in Table II, showing 
that HOFTO improves the estimation precision over ESO and 
DOB significantly. N ote t hat, d ue t o u nmodeled dynamics 
and measurement noise, the proposed method still brings 
estimation errors, but these errors are trivial for human-robot 
interaction applications.

B. Evaluations of Collision Detection

Collision detection is a very common task in industrial

scenarios. In the event of a collision, it is often required to

detect external contact forces. In our experiment, we block

the end-effector of a robot when it collides with an obstacle.

During the collision, the response curves of the interaction

force estimation in joint space and Cartesian space are shown

in Fig. 5 and Fig. 6, respectively, from which we can observe

that the proposed estimation strategy detects the external force

effectively.

C. Sensorless Drag Control

Impedance control is widely used in human-robot interac-

tion scenarios [29], which can be expressed as

MaẌd +BaẊd +KaXd = Fe − Fd, (33)

where Xd and Fd represent the desired position in Cartesian

space and the contact force with the end-effector, respectively.

Ma, Ba, and Ka denote the inertia matrix, damping matrix,

and stiffness matrix of the target impedance model, respec-

tively, and Fe is the interaction force.

With the estimated interaction forces, we realize the sensor-

less drag and teaching function by setting Ka = diag{01×6}
and Fd = 06×1 in (33), giving

MaẌd +BaẊd = (JT)−1τ̂ e (34)

with J being the jacobian matrix. In the procedure of traction,

the estimated contact forces along the X- and Y- directions

are shown in Fig. 7 (a) and (b), respectively. Note that the

chattering shown in Fig. 7 results from two main factors.

First, the proposed HOFTO is essentially a non-smooth and

nonlinear observer, where the chattering is caused by the

parameter adjustment, especially the fractional power term.

When fractional power terms are 0, the proposed observer

will become non-continuous as the function sig(·) in our

observer degrades into the switching function sign(·). In this

case, chattering is the largest. When fractional power terms

are 1, the proposed observer will become linearly continuous.

In this case, the chattering can be avoided, but the finte

time convergence can not be guaranteed. Therefore, in our

experiments the fractional power term is set as (0, 1) as a

trade-off between chattering and the finite time convergence.

Second, measurement noise is a chattering-producing factor

that cannot be ignored.

V. CONCLUSION

Interaction force estimation has been viewed as a vital

research line in the context of force control. This paper has

presented an observer for estimating the interaction forces

applied to industrial robot manipulators. Following the pro-

cedure in this paper, a finite-time convergent HOFTO has

been established. Through several evaluations on a real robotic

manipulator, we demonstrated that the proposed nonlinear

HOFTO is capable of estimating the interaction forces more

precisely than ESO and performs well in various applications

including collision detection and impedance control.
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