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Understanding how resource limitation and biotic interactions interact across

spatial scales is fundamental to explaining the structure of ecological commu-

nities. However, empirical studies addressing this issue are often hindered by

logistical constraints, especially at local scales. Here, we use a highly tractable

arboreal ant study system to explore the interactive effects of resource avail-

ability and competition on community structure across three local scales: an

individual tree, the nest network created by each colony and the individual

ant nest. On individual trees, the ant assemblages are primarily shaped by

availability of dead wood, a critical nesting resource. The nest networks

within a tree are constrained by the availability of nesting resources but

also influenced by the co-occurring species. Within individual nests, the dis-

tribution of adult ants is only affected by distance to interspecific

competitors. These findings demonstrate that resource limitation exerts the

strongest effects on diversity at higher levels of local ecological organization,

transitioning to a stronger effect of species interactions at finer scales. Collec-

tively, these results highlight that the process exerting the strongest influence

on community structure is highly dependent on the scale at which we exam-

ine the community, with shifts occurring even across fine-grained local scales.

1. Introduction
Resource-mediated habitat filtering and competition are expected to interact in

the structuring of ecological communities [1–3]. The resources available in a

habitat set the foundation for which species can live there, based on the funda-

mental niche and minimum resources required for long-term persistence of

each species [4,5]. For each species that finds suitable resources, their persist-

ence in the community can then be challenged by competition, potentially

leading to exclusion [6–8]. Considerable work has focused on detecting the sig-

natures of habitat filtering, competition and their interactions at large spatial

scales [9,10]. Such work summarizes broad hierarchical patterns across a diver-

sity of habitats, with habitat filtering generally being more important at large

scales but with the balance shifting to competition at finer scales. However,

the direct mechanisms underlying patterns of diversity are frequently obscured

at broader spatial scales [11,12]. At the other extreme, local spatial scales pro-

vide opportunities to directly link known resource usage and competitive

interactions among individuals with observable community patterns [13,14].

© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
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Nevertheless, studies that address the relative importance of

resource availability and competition in structuring commu-

nities across multiple local scales are rare (but see work

with communities in pitcher plants [15] and rock pools

[16]). Filling this knowledge gap is critical for understanding

the extent to which local processes and their interactions scale

to influence the structure of ecological communities [14,17].

At local spatial scales, the influences of resource avail-

ability and biotic interactions on community structure are

thought to be spatially dependent and complex [14]. Avail-

able resources often occur in discrete patches that limit

access for species in the community, especially if dispersal

to new resource patches is challenging [18,19]. Although fre-

quently simplified to pairwise, linear interactions between

species [20], communities generally exist as an assemblage

of multiple species differentially interacting across space

[21,22]. Indeed, how species use and partition resources in

space is often complex and variable at local scales, but one

common and understudied context is when individuals

acquire resources and grow via establishing and expanding

networked patches or nodes of resources. Examples of net-

work patterns of resource acquisition and use span such

disparate systems as fungal hyphae and root networks [23]

and the foraging and multi-nest networks of social insect

colonies [24–26]. Competition in these cases then plays out

via interactions between abutting or intertwined networks,

with any pattern of network growth facing an array of com-

petitive pressures from multiple species and locations

simultaneously. How resource distribution, network growth

and competitive interactions shape local-scale patterns of

coexistence should thus be highly dependent on fine-scale

spatial relationships. Systems that incorporate these layers

of local community interactions should then be ideal for

addressing the broader knowledge gap of how local

processes scale to community-level influences.

Arboreal ant communities are particularly tractable

systems for studying the interactions between resource avail-

ability and competition in the context of growth via discrete

expansion of resource networks [27]. Individual trees func-

tion as the primary habitat patches for arboreal ants to

colonize and compete over. This is true even within dense

forest environments, due to the phenomena of crown shyness

and because arboreal ants rarely leave the crowns of trees

[28,29]. As a result, arboreal ant communities within an indi-

vidual tree typically act as isolated ‘island-like’ communities

following classic species–area relationships [30–32]. Within a

tree, resident colonies of ants also compete fiercely for a lim-

ited number of pre-existing nesting cavities [33–36]. Each

colony must acquire and defend multiple nest sites, without

the capacity to make more themselves, in order to grow

and successfully reproduce [37,38], building a nest network

as they do so. Finally, individual nests, which represent the

finest spatial scale, vary in properties of quality [39] and defen-

sibility [38,40], as well as in the competitive pressures they face

[41]. Colonies must make collective decisions about which

individual cavities they use within the resource-limited and

highly competitive environment they occupy, and how they

allocate colony members to a nest to maximize overall

colony growth and reproduction [38,39,41].

Here, we use an arboreal ant study system, where growth

is via network expansion, to explore the interactive effects of

resource availability and competition on community struc-

ture at multiple spatial scales. More specifically, we focus

on the following three local scales: (i) a discrete resource

patch, represented by the whole tree, (ii) resource networks

built by organisms, represented by the within-tree nest net-

works of the resident ant colonies, and (iii) an individual

resource within a network, represented by the individual

nest. Our central hypothesis is that resource availability has

an overarching influence on local community structure, and

that species interactions emerge as more important at finer-

grained local scales. We tested this hypothesis by surveying

arboreal ant communities, quantifying nest site availability,

mapping the spatial distribution of nests and quantifying

the contents of individual nests. At the patch scale, we eval-

uated how the availability of resources and the competitive

context on whole trees influences the ant community. At the

scale of the resource network, we mapped nest networks

and evaluated how these are shaped by tree characteristics,

ant species and competitive context. Finally, at the scale of

an individual resource or node within a resource network,

we examined how competition and habitat limitations influ-

enced the populations of adult ants and brood within

individual nests. We expect that resource availability will be

more important than competition for determining ant commu-

nity metrics, such as species richness and nest abundance,

measured at the scale of an individual tree. By contrast, we

expect competition to determine nest selection and ant distri-

bution, with less competitive ant species selecting nest sites

and distributing adult ants and brood further away from com-

petitors. Taken together, these detailed data across multiple

spatial scales provide an integrative approach to identifying

how local resource availability and competition shape

community structure, including richness, composition and

physical location within a habitat.

2. Methods

(a) Study site and focal species
We conducted all field work at the Dagny Johnson Key Largo

Hammock Botanical State Park in Key Largo, Florida, USA

(25.178°N, 80.366°W; hereafter Dagny State Park). The Florida Keys

are marked by a mild subtropical climatewith mean monthly temp-

eratures ranging between 17.9°C and 31.9°C with approximately

101.2 cm of precipitation annually (https://climatecenter.fsu.

edu/products-services/data/1981-2010-normals/key-west). Dagny

State Park was established in 1982 and hosts the largest remnant in

the United States ofWest Indian hardwood hammock forest [42–44].

The hardwood hammock forest of the Florida Keys present a

novel opportunity to work in an arboreal ant system that over-

comes many of the logistical constraints of other arboreal ant

communities. For example, in the highly diverse tropical forest

habitats where most arboreal ant research has focused, felling

trees [45] or specialized equipment and training [46–48] are

required simply to access the nesting ecology of the ants.

Across all tropical habitats, including those that are more acces-

sible, community diversity of more than a hundred species and

tree-level diversity of 20 species or more [30,32,40,49] remains

a challenge for understanding detailed species interaction or

resource requirement. By contrast, the hardwood hammock

forest of the Florida Keys is a species-rich ecosystem of conserva-

tion concern [43] that has a low and easily accessible canopy

(does not exceed 10 m and is frequently less than 6 m; electronic

supplementary material, figure S1) [42]. While the arboreal ant

diversity is reduced compared with tropical habitats, tropical

arboreal ant genera are still well-represented in the full commu-

nity [50], and all species rely on the same nesting resource for
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growth and reproduction: hollow cavities in dead stems that are

often the abandoned feeding tunnels of wood-boring beetles

[51]. Capturing all fine-grained local-scale interactions for even

this reduced community of Florida Keys hammock forest could

be overwhelming logistically, butmost ant communities are domi-

nated by a smaller subset of especially abundant species that

capture an array of competitive interactions. Our surveys revealed

four especially common species in the hammock forest system that

will be our focus here. In addition to high colony incidence across

surveyed trees, including frequent co-occurrence (below), these

four species also represented contrasting ecology within the

larger community. Thus, while this study is not an exhaustive

study of the full arboreal ant community in the system, it uses

the most abundant players in the community that span an

array of potentially generalizable interactions and outcomes.

Our four focal species are as follows: (i) Pseudomyrmex ejectus

and (ii) Pseudomyrmex simplex, which are established native

species that share similar niche space [52–54], (iii) Pseudomyrmex

gracilis, which is a disruptive non-native with invasive potential

[55,56] and (iv) Cephalotes varians, a native species with known

defence specialization in its use of nesting resources [57–59].

(b) Identifying ant colonies and nest locations
We used a combination of multiple baiting and hand-collecting

methods [38,60] to document ants foraging and nesting on 176

individual poisonwood trees (Metopium toxiferum) in relatively

open areas of the hammock forest, in which individual trees

are typically physically isolated from other trees. We specifically

targeted trees that were not embedded in the larger forest canopy

to eliminate any potential connectivity between neighbouring

crowns and ensure that the only ants foraging at baits were nest-

ing within the tree [32,61]. Baits (a combination of approx. 140 g

of canned chicken and approx. 60 ml of honey with urine added

as an additional attractant for C. varians) were placed throughout

the entire crown of each tree at 12.00 and were examined and

refreshed until 21.00 in order to document activity of both the

diurnal (P. ejectus, P. gracilis and P. simplex) and nocturnal species

(C. varians). We selected a subset of the trees (n = 31) based on

ease of access to the entire crown of the tree and a stratified

sampling of tree sizes, and we then tracked foraging ants back

to their nests. This method was used to locate all nests of all

four of our focal species on each tree and to look for aggressive

interactions among conspecifics at baits to ensure all conspecific

ants within a tree were from the same colony [38]. Voucher speci-

mens of all ants found at baits or on any other part of the tree

were collected and stored in 95% ethanol to be identified in

the lab using keys and voucher specimens [62]. It is worthwhile

to note that, within the genera of interest, only our focal species

of Cephalotes is found in the system, and that only our three focal

species of the genus Pseudomyrmexwere found on our study trees

in the hammock forest, even though other members of the genus

are found in the Florida Keys more generally [50].

(c) Measurements across local spatial scales
(i) Resource patch scale: whole tree
For each tree included in the initial survey, GPS coordinates were

recorded, and the diameter of the trunk at 10 cm above the

ground was measured. Although diameter at breast height (1.3 m

above the ground) is a more common measure, nearly all of the

trees in this forest branch below breast height (average distance

to first branch = 83.6 cm; range = 10–173 cm in the present study).

We used the diameter measured at 10 cm to calculate basal area

(BA = π(D/2)2) as a proxy for tree size and an estimate of the total

resource patch size for the local ant community [30,63].

For each tree, we also quantified the total amount of dead

wood (i.e. the nest resources available to the ant community)

in the crown using three methods that required increasing

degrees of time and effort in the field but provide increasing res-

olution of the total resource availability. First, using visual

surveys conducted by at least two individuals, we estimated

the total per cent dieback for each tree crown to the nearest 5%

and took the average between the two when different [64].

We multiplied this percentage by the basal area to produce a

weighted proxy of available resources that accounted only for

dead wood (i.e. the actual nesting resource). We also counted

the total number of dead stems present in each tree crown.

Finally, we quantified the total volume of dead wood in each

tree by measuring every piece of dead wood by hand and

calculating individual stem volume using Newton’s Formula

(L (Abase + 4Amiddle +Atip)/6) which was then summed for the

whole tree [65].

(ii) Resource network scale: nest network
In ant nest networks, reducing the number of nodes or junctions

that an individual ant has to traverse may be more important for

travel time than reducing physical distances between nests

[24,66,67]. Therefore, we measured all possible paths between

every nest and all other nests in a tree, recording all intervening

junctions between nest pairs (e.g. branching forks in a tree stem,

vines crossing a tree stem, two stems crossing each other or

leaves from one stem touching another branch) to generate two dis-

tance measurements: the shortest physical distance between nest

pairs and the smallest number of junctions between nest pairs.

Physical distance was measured as the minimum distance an ant

needs to walk between two nests (in cm) and ‘junction distance’

was measured as the fewest number of junctions encountered

along any path between two nests. These measurements each pro-

duce two types of nest networks: (i) a community-wide nest

network for a tree that includes all ant nests and (ii) an intraspecific

nest network for each resident ant species that connects only nests

within a colony together.

(iii) Individual resource scale: individual nests
For every stem containing an ant nest, we calculated stem

volume using Newton’s Formula as described above and then

destructively harvested the stem at the end of the study. To har-

vest, we visited each nest at a time of day when each target

species was not active, sealed all nest entrances and then

removed the entire stem from the tree. This ensured all colony

members were in their respective nests at the time of collection,

and none escaped subsequently. Collected nests were shipped

overnight back to the lab where they were immediately frozen

at −20°C. All nests were dissected in the lab and the contents

were quantified. Specifically, for each nest we confirmed the

identity of the resident species and counted all eggs, larvae,

worker pupae, soldier pupae, queen pupae, workers, soldiers,

alate queens, dealate queens and males.

(d) Statistical analyses
(i) Whole tree analyses
We tested how tree characteristics shaped the arboreal ant commu-

nity at the scale of an individual tree. We used linear regression

to explore whether ant species richness or total ant nest count

across all species in a tree were best predicted by each of tree

basal area, crown dieback-weighted basal area, total dead stem

count or total dead wood volume. The four predictor variables

were highly correlated (correlation coefficient > 0.62) so we separ-

ately modelled each predictor for both species richness and

total nest count (eight total models) and evaluated model fit by

comparing Akaike Information Criterion (AIC) values (electronic

supplementary material, table S1).
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Individual ant species could also respond differently to tree

characteristics and to the presence of other ant species on a tree.

To explore this, we created four separate linear models each of

eight different response variables: a binary presence/absence

variable for each of the four focal ant species (four response vari-

ables) or the total nest count in a tree for each species (four

response variables). All models included four predictors; three

variables reporting total nest counts for the non-focal species of

the analysis along with one of the four tree characteristic metrics

listed above (32 models in total). For the presence/absence tests,

we used generalized linear models with binomial errors and a

log link function [68]. We reduced the models using backwards

stepwise AIC selection [69] and AIC comparisons were used to

determine best-fit model. Final models for all 32 tests are

provided in electronic supplementary material, table S2.

(ii) Nest network analyses
We explored how the network of all ant nests within a tree was

shaped by tree-level characteristics and the composition of the

local ant community. We constructed six linear models with

one of two response variables: the average physical distance or

the average junction distance between any two nests in a tree.

All models included five predictors; four predictors representing

number of nests occupied by each of the four focal species, and a

fifth predictor related to one of three metrics of dead wood avail-

ability within each tree (weighted basal area, dead twig count or

total dead wood volume). To explore how the nest networks of

each focal species responded to tree characteristics and the pres-

ence of other ant species, we evaluated another 24 models with

the same set of predictors, with the response variables as either

the average physical distance or the junction distance among

nests of the same species in each tree (intraspecific nest dis-

tances). We reduced the models using backwards stepwise AIC

selection and AIC comparisons were used to determine best-fit

model. The final models for each of the tests are provided in

electronic supplementary material, table S3.

Individual ant species could also display species-specific

spatial nesting patterns. To examine these patterns, we explored

differences in pairwise distance between all focal nests within

each tree. We expanded the initial dataset by adding 19 more

trees (n = 50 trees) with complete information on the ant commu-

nity and nest networks, but lacking complete dead wood data.

We documented 365 intraspecific pairwise nest distances split

among the four focal ant species (e.g. distance between two

C. varians nests, two P. ejectus nests, two P. gracilis nests or

two P. simplex nests). We used two linear mixed models with

physical or junction distance between two nests as the response

variable, nest pair category as the predictor variable (four

levels; one for each species) and Tree ID as a random grouping

factor. We used a Tukey’s post hoc test to explore differences in

means per category.

(iii) Individual nest analyses
We first explored whether the mean volume of occupied stems

differed among the four focal species and from the mean

volume of unoccupied dead stems on a tree. We chose volume

because nest quality is generally determined by cavity volume

as it dictates how much space there is for colony growth (e.g.

[39]). We fit stem volume as a function of species nest occupancy

using a mixed-effects ANOVA, where species nest occupancy

was a categorical variable with five levels (unoccupied, C. var-

ians, P. ejectus, P. gracilis and P. simplex). Tree ID was included

as a random grouping factor, and we used Tukey’s post hoc

tests to explore any differences among ant species nest selection.

We next explored whether the contents of a nest were pre-

dicted by stem volume, nesting ant species identity, and

distance to the nearest nest of each of the four focal ant species

(eight predictors; two for each species to account for two different

distance measurements) using zero-inflated generalized linear

mixed models with negative binomial errors and a log link func-

tion. [41]. In each model, we included either the total count of the

combination of all adult ants and brood, only adult ants or only

brood as the response variable. We selected these metrics as nest

defensibility is determined by defensive strategies of individual

ant species [38,40,41,51] and competitor pressure depends on

the neighbourhood of enemies trying to usurp the nest for them-

selves [41]. Ants will also differentially move their brood and

redeploy adult ants based on perceived threat or nest defensibility.

We started with 24 models (three response variables with all

models including stem volume, nest ant species identity and

one of eight distance measures). Model reduction and AIC com-

parison resulted in all models reducing to only ant species

identity and the interaction between species identity and distance

to the nearest P. gracilis nest as the best-fit models. Tree ID was

treated as a random grouping variable for all models. We used a

Tukey’s post hoc test to explore any pairwise differences in nest

contents between ant species.

All statistical tests were performed in the R environment

version 4.2.2 [70] including packages lme4 [71], lmerTest [72]

and glmmTMB [73]. In all models, metrics of tree size, species

richness, network distances, stem volumes and individual ant

counts were log transformed to meet model assumptions

where necessary and to match the expectation of a log–log

linear relationship between species richness and area measure-

ments [74]. Finally, we confirmed normality for all parametric

models using Shapiro–Wilk tests on model residuals and per-

formed residual diagnostics to confirm models conformed to

model assumption using DHARMa [75].

3. Results

(a) Resource patch scale: whole tree
At the scale of discrete resource patches, whole trees with

more nesting habitat had more ant nests and ant species,

but species richness was not related to tree size. Specifically,

trees with larger basal areas and more dead stems had

more ant nests, but only dead stem count predicted variation

in ant species richness. Basal area alone did not predict the

number of ant species (figure 1; electronic supplementary

material, table S1). Of the three metrics of dead wood avail-

ability, the number of dead stems in a tree was the best

predictor of both species richness and total nests (electronic

supplementary material, table S1).

The four focal ant species responded differently to nesting

resource availability and potential species interactions.

Cephalotes varians was influenced only by nesting resource

availability, with its likelihood of being present on a tree

higher in trees with more dead wood, with weighted basal

area specifically functioning as the best predictor (electronic

supplementary material, figure S2 and table S2). By contrast,

the two native small-bodied Pseudomyrmex, P. ejectus and

P. simplex, were influenced only by the presence of other

ant species. These two species generally did not co-occur,

but when both were present in a tree, the number of nests

of the two species were negatively associated (electronic

supplementary material, figure S3). Additionally, P. ejectus

frequently co-occurred with C. varians, whereas P. simplex

had a lower frequency of occurrence in trees that also

hosted the non-native P. gracilis (electronic supplementary

material, figure S4a, S4b and table S2). P. gracilis was influ-

enced only by resource availability, establishing more nests
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in trees with a higher volume of dead wood (electronic

supplementary material, figure S5 and table S2).

(b) Resource network scale: nest network
For the resource network scale, both habitat availability and

the presence of specific ant species shaped the community-

wide nest network formed by all resident colonies on a

tree. Specifically, both the physical distance and junction

distance between any two nests in a tree increased with

increasing dead wood availability, with dead stem volume

acting as the best predictor for physical distance (figure 2a)

and dead stem count as the best predictor for junction dis-

tance (figure 2b; electronic supplementary material, table

S3). In addition, the average physical distances between ant

nests in a tree were higher in trees with more Cephalotes

nests (figure 2c).

The intraspecific nest networks of individual ant species

responded differently to resource versus competitor press-

ures. The nest networks of P. ejectus and P. simplex were

more spread out in trees with greater dead wood volume

(both physical and junction distances for P. ejectus and

physical distances for P. simplex; figure 3a,b; electronic sup-

plementary material, table S3). Cephalotes and the two

native Pseudomyrmex species also responded to competitor

abundance. Specifically, the average intraspecific nest dis-

tances for both C. varians and P. simplex was smaller in

trees with greater numbers of P. gracilis nests (figure 3c,d;

electronic supplementary material, table S3). Pseudomyrmex

ejectus also had a more clustered nest network in trees with

more C. varians nests (figure 3e; electronic supplementary

material, table S3), whereas P. simplex had a less clustered

nest network in trees with C. varians. Neither resource vari-

ables nor other ant species influenced the intraspecific

distances among P. gracilis nests.

Measuring all intraspecific pairwise nest distances also

revealed species-specific nesting patterns. Cephalotes varians

and P. ejectus nests were, on average, more closely clustered

together in space (both physical and junction distances)

than the nests of P. gracilis or P. simplex (electronic sup-

plementary material, figure S6; global tests—F3,355 > 7.62,

p < 0.0006; Tukey Honestly Significant Difference (HSD)—

z > 2.67, p < 0.04).

(c) Individual resource scale: individual nests
At the scale of an individual resource, defined by an individ-

ual ant nest within a nest network, C. varians, P. ejectus and

P. gracilis all nested in stems that were of similar size and

were larger than the average unoccupied dead stem on a

tree (electronic supplementary material, figure S7). By con-

trast, P. simplex nested in smaller stems that were similar to

average size of unoccupied dead stems on a tree (electronic

supplementary material, figure S7; Tukey HSD—z > 2.94,

p < 0.02). Exploring nest contents revealed that C. varians

had more adult ants per nest than P. ejectus or P. gracilis (elec-

tronic supplementary material, figure S8; Tukey HSD—z >

3.01, p < 0.02). In addition, C. varians and the two native

Pseudomyrmex ants showed consistent patterns for how they

distributed brood and adult ants relative to their proximity
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Figure 1. The relationships between arboreal ant species richness and total nests across tree basal area (a,c) or the total count of dead stems in a tree (b,d).
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to a P. gracilis nest (electronic supplementary material,

table S4). Specifically, C. varians had fewer total ants and

brood in nests that were only a few junctions from the nearest

P. gracilis nest (figure 4a), and P. simplex had fewer total ants

and brood in nests that were physically closer to P. gracilis

nests (figure 4b). By contrast, P. ejectus had more ants and

brood in nests closer to nests of P. gracilis measured by

both physical and junction distance (figure 4c,d).

4. Discussion
Our results broadly support our central hypothesis that

resource availability has an overarching influence on local

community structure, and that species interactions emerge

as more important at finer-grained local scales. Specifically,

we observed that availability of dead wood was the primary

driver of ant diversity at the scale of a tree, that the nest net-

work was shaped by interactions between resources and

competition, and that the distribution of ants within a nest

was entirely driven by competition. Resource limitations

and competitive species interactions are frequently proposed

as contrasting drivers of diversity in arboreal ant commu-

nities [40,61,76,77]. By incorporating multiple spatial scales

into this current study, we are able to demonstrate that both

processes are acting in tandem and that the strength of

their effects is scale dependent. These findings provide rare

empirical support for the theoretical and computational

framework of habitat characteristics imposing limitations on

local diversity prior to [78,79] or in concert with [80,81]

species interactions. The results also further highlight the

need to match observations to the scale at which interactions

occur, to avoid masking competition and other biotic

interactions [13].

Species–area relationships are common among taxa and

across spatial scales [82], but it is typically unclear what

specific resources are underpinning these relationships [83].

At the scale of a whole tree, representing a discrete resource

patch, we did not detect a direct relationship between species

richness and tree size (basal area) despite this relationship

being a common feature of arboreal ant communities

[30–32,45]. We instead detected a species–resource relation-

ship between ant species richness and dead wood

availability, suggesting that nest site availability is the specific

habitat limitation underlying area-based relationships within

this arboreal ant community. We expect that this trend is

widespread among arboreal ant communities, and we predict

that where species–area relationships exist between tree size

and ant species richness, incorporating measurements of

nesting resources would better predict diversity patterns.

Ultimately, habitable patch area is a proxy for a broad

series of scale-dependent resources and ecological processes

ranging from likelihood of encounter during dispersal, avail-

able food and nest sites and proximity to competitors [11,84].

These patterns suggest that habitat limitations on a commu-

nity can be masked when fine-scale resource availability is

not considered [13].

Resource availability provides a foundation for determin-

ing local diversity and community structure [14,18] but

species interactions and behaviours can mediate the final out-

come and dynamics [1,3,21]. We demonstrate that the

arboreal ants in this forest follow these general trends in
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Figure 2. Statistically significant relationships between the community-wide distances between nests and the amount of dead wood or the number of ant nests in a

tree. The shaded region around the regression lines indicates the 95% CI. Axes are on log-scales.
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terms of their resource networks, represented by networked

nests that each colony occupies. For example, C. varians is a

nest defence specialist that typically clusters its nests in a

laboratory setting [25] and has a soldier caste that uses an

armoured head dish to barricade the colony’s nest entrances

[59]. In a natural setting, we demonstrate that, compared with

commonly co-occurring species, C. varians not only has

the most clustered intraspecific nest network, as would be

indicative of a species prioritizing defensibility, but also

further shrinks its network in the presence of the aggressive,

non-native competitor P. gracilis. By contrast, P. gracilis dis-

perses its nests broadly across a tree crown, as expected of

a non-native under less competitive pressure [3,85,86]. In

addition, P. simplex has a broadly dispersed nest network

but has a significantly contracted nest network in the pres-

ence of P. gracilis. Collectively, these observations lend

additional support to the idea that P. gracilis is using its

widely dispersed nesting strategy to limit nest acquisition
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by other members of the community and that less aggressive

native species shrink their nest networks in response to

this competitor.

Biotic interactions at finer spatial scales can also havemean-

ingful impact on species growth within the community, even

when it is not reflective in measurements of species richness

or composition. However, the subtle impact of species inter-

actions on growth patterns are frequently impossible to

detect without extensive multi-year studies tracking individ-

uals through time [87]. Here, we were able to collect data

across local spatial scales, including at the fine-grained local

scale of individual resources via distances between nests and

the distribution of ants among nests. These data allowed us

to demonstrate in a snapshot that the aggressive, non-native

P. gracilis exerts competitive pressure on C. varians and P. sim-

plex that limits the spatial extent and pattern of colony growth.

More specifically, both ants have more clustered networks in

trees with P. gracilis and tend to have fewer ants and brood in

nests near P. gracilis. By contrast, P. ejectus tends to have more

ants and brood in nests nearest to P. gracilis. Considering

P. ejectus and P. simplex exhibit almost complete competitive

exclusion, the distribution of P. ejectus ants in nests near to

P. gracilis could arise from a form of competitive release

[88,89] wherein P. gracilis limits P. simplex allowing for P. ejectus

to better perform nearer to P. gracilis. Experimental manipula-

tions of the ant community would be necessary to confirm

these observations, but being able to detect these patterns

further highlights the value of multi-scale collection regimens

for local community ecology data.

The outcome of multispecies interactions on the diversity

and stability of ecological communities is notoriously diffi-

cult to understand and predict [6,22,90]. The majority of

work on the subject is carried out in laboratory or mesocosm

experiments [19,91], in plant systems where individuals can

be more easily tracked [92,93] or via simulations [94]. The

arboreal ant community of the Florida Keys hammock

forest exhibits considerable utility in parsing the outcome of

multispecies interactions in a complex but manageable

animal community of conservation concern. The results of

this study suggest that while nest site availability is the

main determinant of ant species richness and abundance at

the scale of a tree, competitive interactions between species

shape the spatial distribution of nests within trees and ants

within nests. Experiments modifying nest site availability

via artificial nest additions [32,33,40,61] and modifying

community structure via relocating ants species among

trees [35] could provide further evidence for the outcomes

recorded here. The arboreal ant community of the Florida

Keys presents an opportunity to explore ecological processes

across multiple scales of ecological organization in a system

that is both accessible and amenable to experimental manip-

ulations. Ultimately, the key to determining the drivers
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of diversity is matching observations to the scale where

interactions occur.
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