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Abstract—In the field of mutation analysis, mutation is the
systematic generation of mutated programs (i.e., mutants) from
an original program. The concept of mutation has been widely
applied to various testing problems, including test set selection,
fault localization, and program repair. However, surprisingly little
focus has been given to the theoretical foundation of mutation-
based testing methods, making it difficult to understand, orga-
nize, and describe various mutation-based testing methods.

This paper aims to consider a theoretical framework for
understanding mutation-based testing methods. While there is
a solid testing framework for general testing, this is incongruent
with mutation-based testing methods, because it focuses on the
correctness of a program for a test, while the essence of mutation-
based testing concerns the differences between programs (includ-
ing mutants) for a test.

In this paper, we begin the construction of our framework
by defining a novel testing factor, called a test differentiator, to
transform the paradigm of testing from the notion of correctness
to the notion of difference. We formally define behavioral
differences of programs for a set of tests as a mathematical
vector, called a d-vector. We explore the multi-dimensional space
represented by d-vectors, and provide a graphical model for
describing the space. Based on our framework and formalization,
we interpret existing mutation-based fault localization methods
and mutant set minimization as applications, and identify novel
implications for future work.

I. INTRODUCTION

In the field of mutation analysis, mutation is the systematic

generation of mutated programs (i.e., mutants) from an original

program. DeMillo et al. [1] first proposed the notion of muta-

tion for measuring the quality of a set of tests using mutants

in the late 1970s. Mutation-based testing has been widely

studied with the aim of addressing various testing problems,

such as test set selection [2]–[4], robustness testing [5], fault

localization [6], [7], and program repair [8]–[10]. However,

surprisingly little focus has been given to the theoretical foun-

dation of mutation-based testing methods, making it difficult

to understand, organize, and describe various mutation-based

testing methods.

This paper aims to consider a theoretical framework for

understanding mutation-based testing methods. A theoretical

framework is a well-formed model of the general entities that

are under investigation, which facilitates a clear understanding

of the fundamentals of complex problems. For example, in the

early 1980s Gourlay [11] organized the existing foundational

studies in software testing [12]–[14], and defined a formal

model for testing, called a testing system. This includes funda-

mental testing factors (i.e., programs, specifications, tests) and

their formal relationships. Staats et al. [15] recently revisited

the testing system by introducing a fourth testing factor, a test

oracle, which had previously been implicitly considered. This

testing system delivers a holistic view of the testing factors,

and serves as a guide for discussions in studies such as [16]–

[19]. However, this is incongruent with mutation-based testing

methods, because it focuses on the correctness of a program

for a test, while the essence of mutation-based testing concerns

the differences between programs (including mutants) for a

test.

For example, consider the recent mutation-based fault lo-

calization studies of Papadakis and Traon [6] and Seokhyeon

et al. [7]. In these studies, in order to find the exact locations

of faults in a program (i.e., the original program with regard

to mutants) it is essential to analyze the behavioral differences

between mutants, the original program, and the specification

(i.e., intended behavior), for a given set of tests. However,

none of the existing theoretical frameworks can consistently

describe these various behavioral differences.

In this paper, we provide a solid theoretical framework

for the notion of behavioral differences between programs

in mutation-based testing. We begin the construction of our

framework by defining a novel testing factor, called a test

differentiator, to transform the paradigm of testing from the

notion of correctness to the notion of difference. Using the

test differentiator, we formally define behavioral differences

between programs for a set of tests as a mathematical vector,

called a d-vector. Based on the fact that a vector can be

regarded as representing a point in a multidimensional space,

we define the space of program behaviors for a set of tests, and

explore the theoretical properties of that space. We conclude

our theoretical framework with a graphical model to describe

the space of behavioral differences. Based on our framework

and formalization, we interpret existing mutation-based fault

localization methods and mutant set minimization as applica-

tions, and identify novel implications for future work.

The remainder of this paper is structured as follows. Section

II introduces some background material, and describes the

scope of the mutation-based testing to be considered in this
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paper. Section III describes our theoretical framework for

mutation-based testing, including the new testing factor, the

formal definition of behavioral differences, and our graphical

model for behavioral differences. Section IV presents applica-

tions of the proposed formal framework. Section V concludes

the paper.

II. MUTATION-BASED TESTING

Mutation analysis is a method for measuring the quality

of the set of tests, using artificially injected faults (mutants)

generated from the original program using predefined rules

(mutation operators). If a mutant and the original program

return different results for a test, then the test kills the mutant.

Mutation adequacy is satisfied when all of the generated

mutants are killed by the set of tests.

On the other hand, mutation testing provides a process

for detecting faults in the original program. It starts with

the generation of mutants from the original program, and

tests are generated with the aid of automatic test generation

methods. The generation of new tests and execution of live

mutants are automatically repeated until the set of tests kills

all of the mutants. This loop is the key element of mutation

testing, which provides a set of tests satisfying the mutation

adequacy condition. After all of the mutants are killed, the

loop terminates and the original program is executed using

the resulting test set to detect faults.

There are two main hypotheses justifying mutation testing:

The Competent Programmer Hypothesis (CPH) [1] claims

that the original program is made by competent programmers

so the program has few simple faults. The coupling effect

hypothesis [20] states that complex faults are coupled to

simple faults so the tests that kill simple mutants will detect

a large percentage of complex faults.

Several authors explored the theory of mutation in terms

of test set selection for demonstrating the correctness of

a program. Budd et al. [21] and Budd and Angluin [22]

presented the theoretical discussion on the test set selection

problem in mutation testing. Morell [23] also discussed a

theory of fault-based testing and considered the absence of

prescribed faults in a program. On the other hand, many

experimental studies have reported that tests satisfying the

mutation adequacy are effective at detecting faults [2], [3],

[24]. While these theoretical and empirical studies provide

solid background for mutation testing in terms of the correct-

ness of a program, to the best of our knowledge, there is no

theoretical frameworks for mutation-based testing based on the

differences of programs.

By mutation-based testing we mean all mutation-based

methods which attempt to solve various testing problems, not

limited to fault detection problems. Mutation-based testing

includes mutation-based fault detection, mutation-based fault

localization, and mutation-based fault removal. In other words,

if a testing method utilizes many mutants generated from an

original program, then the method is regarded as one of the

mutation-based methods.

Mutation-based testing differs from mutation analysis or

mutation testing in terms of the way it utilizes mutants.

Both mutation analysis and mutation testing are based on

mutation adequacy, which means that they are based on the

differences between each of mutants and an original program.

However, mutation-based testing considers the differences not

only between each of mutants and an original program, but

also between each of mutants and a correct program (i.e.,

specification). The differences between a mutant and a correct

program are particularly useful for fault localization and

program repair [7], [9], [10]. In this context, a correct program

implies the intended behaviors of an original program for a

given set of tests. While a correct program does not take the

form of an executable program with source codes, in practice

a human may play the role of the correct program, acting as

human oracle.

As Offutt noted in [25], mutation applied to a program

represents only one instance of a general class of applications.

A general definition of mutation includes systematic changes

to the syntax or to objects developed from the syntax. While

this paper mainly focuses on program mutation, the application

of results on this paper is not necessarily limited to programs,

but can be extended to general syntax or objects.

III. THEORETICAL FRAMEWORK

To serve as a guide for discussions for both theoretical and

empirical studies, we focus on a concise framework rather

than a theory including axioms, theorems, and proofs used to

solve theoretical problems. In the following subsections, we

explain the foundational concepts, definitions, and examples

of our theoretical framework for understanding mutation-based

testing methods. The applications of the theoretical framework

are presented in Section IV.

A. Basic Terms and Notations

Here, we will clarify the meanings of basic terms and no-

tations used in this paper, including programs, specifications,

tests, oracles, behaviors, and faults. We will then address the

scope of mutation-based testing in comparison with mutation

analysis and mutation testing.

In terms of programs, specifications, tests, and oracles, we

will adopt the testing system used by Staats et al. [15], because

it has a solid historical background, and provides an intuitive

portrayal of the general testing process. The testing system is

a collection (P , S, T , O, corr, corrt), where

• S is a set of specifications

• P is a set of programs

• T is a set of tests

• O is a set of oracles

• corr ⊆ P × S
• corrt ⊆ T × P × S

A specification s ∈ S represents the true requirements of the

program p ∈ P . A test t ∈ T is a sequence of inputs accepted

by some program. The correctness of a program is defined by

the predicate corr. For a program p ∈ P and a specification

s ∈ S, the predicate corr(p, s) implies that p is correct with



respect to s. Similarly, the predicate corrt implies correctness

with respect to a test t ∈ T . In other words, corrt(t, p, s)
holds if and only if s holds for p when running t. The values

of corr(p, s) and corrt(t, p, s) are theoretical, and are used to

describe the relationship between testing and correctness. By

definition, corrt(t, p, s) is always true for all tests if corr(p, s)
is true. Because the predicate corrt is theoretical, an oracle

o ∈ O is defined as a predicate o ⊆ T ×P , which determines

the passing or failure of t for p in practice. In general, it

is assumed that o approximates corrt, even though it is not

perfect.

In terms of the behaviors of programs in testing, we adopt

the informal description given by Morell [23]: the behavior

may include any test execution results, for example its output,

its internal variables, its execution time, or its space consump-

tion. For example, the correctness of p for t refers to the

correctness of the behavior of p for the execution of t. For the

sake of simplicity, we assume that the behavior of a program

for a test is deterministic and independent of the previous

behavior. In the remainder of this paper, we will use the

terms program and behavior of the program interchangeably.

Note that we do not take a black-box perspective, because the

behavior includes internal variables and more.

In terms of the faults of programs in testing, we say that t
detects a fault of p when the behavior of p for t is inconsistent

with s. In other words, a fault is a static defect in p that results

in an inconsistency between the intended behavior (i.e., s) and

the behavior of p.

Throughout the remainder of this paper, po ∈ P refers to

the original program implemented to meet the specification

s, and ps ∈ P refers to the projection of s that represents

the expected behaviors specified by s. While ps is not a real

program, this is not a serious assumption, because we only

require the behavior of ps for a given set of tests. In practice,

a human may play the role of s or ps, acting as a human oracle.

The notation m ∈ M ⊆ P refers to a mutant generated from

po, and the set of programs M refers to a set of mutants. Note

that po, ps, and m are general entities, and largely separated

from any specifics such as programming languages or mutation

methods.

B. Test Differentiator: A New Testing Factor

The notion of difference is an abstract concept. In order

to concretize and formalize the notion of difference in our

framework, we define a new testing factor, called a test

differentiator, as follows:

Definition 1: A test differentiator d : T × P × P → {0, 1}
is a function,1 such that

d(t, px, py) =

{

1 (true), if px is different with py for t

0 (false), otherwise

for all tests t ∈ T and programs px, py ∈ P .

1This function-style definition is replaceable by a predicate-style definition,
such as d ⊆ T × P × P .

By definition, a test differentiator concisely represents

whether the behaviors of px ∈ P and py ∈ P are different

for t. Note that we make no attempt to incorporate any

specific definition of program differences in our framework.

The specific definition of differences can only be decided in

context. For example, while 0.3333 is different with 1/3 in

the strict sense, 0.3333 will be regarded as the same as 1/3 in

some cases. To keep things general, we consider a set of test

differentiators D that includes all possible test differentiators.

Having a test differentiator d as the fundamental testing

factor makes it possible to formalize many important concepts

in mutation-based testing methods. For example, the notion of

mutation adequacy, which is the essence of mutation-based

testing, can be clearly and concisely formalized as follows:

∀m ∈ M, ∃t ∈ TS, d(t, po,m). (1)

In other words, all mutants are killed by at least one test in the

test suite TS ⊆ T . By the formalization of mutation adequacy

in (1), it is shown that mutation adequacy is determined not

only by po, m, and t, but also d. For example, there is a

spectrum of mutation approaches from a strong mutation [1]

to a weak mutation [26], depending on which d is used. In a

strong mutation analysis, a test t kills a mutant m when the

output of m differs from the output of the original program po
for t. In a weak mutation analysis, t kills m when the internal

states of m and po are different for t. As a result, (1) implies

that the holistic view of po, m, t, and d should be carefully

considered to meet a certain level of mutation adequacy.

Consider an oracle o and a differentiator d, they are similar

in terms of their role in testing; o implies the correctness of

a program for a test, and d implies the differences between

programs for a test. In fact, for all o ∈ O, there are proper

d ∈ D and ps ∈ P where

∀t ∈ T, ∀p ∈ P, o(t, p) ⇔ ¬d(t, p, ps)

In other words, d can play the role of o with the aid of ps.

For example, the correctness of a program p for a test t is

written by not only o(p, t) but also d(t, p, ps). However, it is

clear that o cannot play the role of d in general. This means

that d is more general than o. In the rest of this paper, d is

consistently used without o.

We should note that Staats et al. [15] formulated mutation

adequacy as ∀m ∈ M, ∃t ∈ TS,¬o(t,m). However, as they

already mentioned, their formulation is inaccurate, because

general mutation adequacy does not include the term o(t,m),
which implies the correctness of m for t. Mutation adequacy

is based on the differences between po and m for t, which is

exactly captured by d(t, po,m).

C. Behavioral Difference

Before we formally describe behavioral differences between

programs for a set of tests, we introduce a test vector, to

formalize an ordered set of tests as follows:



Fig. 1. Running example for tests, program behaviors, and d-vectors

Definition 2: A test vector t = 〈t1, t2, ..., tn〉 ∈ Tn is a

vector where ti ∈ T .

A test vector t ∈ Tn is the same as a test suite TS with

size n, except that t contains numbered tests. For example, two

tests tx, ty ∈ TS could form a test vector t = (t1, t2) ∈ T 2.

In this paper, bold letters represent vector forms.

With the aid of d and t, we define d-vectors, which

formulates behavioral differences, as follows:

Definition 3: A d-vector d : Tn × P × P → {0, 1}n is an

n-dimensional vector, such that

d(t, px, py) = 〈d(t1, px, py), ..., d(tn, px, py)〉

for all t ∈ Tn, d ∈ D, and px, py ∈ P .

By definition, a d-vector d(t, px, py) represents the behav-

ioral differences between px and py for all tests in t in vector

form. In other words, d(t, px, py) effectively indicates the tests

t ∈ t for which the two programs px and py exhibit different

behaviors. For example, if d(ti, px, py) = 1 for some test

ti ∈ t, this means that px and py are different for the particular

test ti contained in the set of tests t.

In Figure 1, in a running example that we shall refer to

through the remainder of Section III, we present the program

behaviors of ps, po, and m for t = 〈t1, t2, t3, t4〉 with d. Each

behavior of a program for a test is abstracted by a Greek

letter, and d determines a difference between behaviors by a

difference between Greek letters. On the right-hand side, there

are d-vectors that represent the behavioral differences among

the programs for the tests.

In the example, d(t, ps, po) is equal to 〈0, 1, 1, 1〉, because

d(t1, ps, po) = 0, d(t2, ps, po) = 1, d(t3, ps, po) = 1, and

d(t4, ps, po) = 1, respectively. Note that all of the behavioral

differences among ps, po, and m are represented by d-vectors.

A d-vector provides a quantitative difference by taking a

mathematical norm of vectors. In the example, for the d-

vector d(t, ps, po) = 〈0, 1, 1, 1〉, the Manhattan norm2 gives

the quantitative difference as 0 + 1 + 1 + 1 = 3, in terms of

d. This means that the behavioral difference between ps and

po is 3, quantitatively, in terms of the given t and d. This is

written as ||d(t, ps, po)|| = 3.

2In general, considering the behavior of a program for a test as a string, the
quantitative difference between two behaviors is measurable by the Hamming
distance between two strings for the behaviors. Interestingly, it is consistent
with the Manhattan norm of a d-vector: the Hamming distance between the
behaviors of px and py for t is equivalent to the Manhattan norm of the
d-vector d(t, px, py).

D. Position: A New Interpretation of Behavioral Differences

A vector can be regarded as representing the position of a

point in a multi-dimensional space. For example, considering

a n-dimensional space, a vector v = 〈v1, ..., vn〉 represents

the point whose position in the i-th dimension (relative to the

origin of the space) is vi, for i = {1, ..., n}. In this way, we

can think of a d-vector as the representation of a position in a

multi-dimensional space. We introduce this new interpretation

of d-vectors as follows:

Definition 4: The position of a program px relative to an-

other program pr in a multi-dimensional space corresponding

to a set of tests t is

dt
pr

(px) = d(t, pr, px),

where d(t, pr, px) is the d-vector between px and pr for t,

with regard to d. This multi-dimensional space is called the

program space induced by (t, pr, d), where t corresponds to

the set of dimensions, pr corresponds to the origin, and d
corresponds to the notion of differences between positions.

In other words, for all t ∈ t, the behavioral difference

between pr and px for t is indicated by the position of

a program px relative to the origin pr in the dimension t.
Because d returns either 0 or 1, there are only two possible

positions in each dimension: the same position as the origin

(i.e,. 0) and a different position from the origin (i.e., 1). It

means that the semantics of a program px in the space of

(t, pr, d) is indicated by the n-bit binary vector dt
pr

(px) where

n = |t|.
The origin of a program space is important, because it

determines the meaning of positions in the program space. In

other words, the origin determines the meaning of the program

space. For example, if the correct program ps is used for the

origin, then the position dt
ps

(px) indicates how correct the

program px is with regard to t. On the other hand, if the

original program po is used for the origin, and a mutant m
generated from po is used for the target program px, then the

position dt
po

(m) indicates the killing of m with regard to t.

Conceptually, the position of a program in an n-dimensional

program space translates the program behavior as an n-bit

binary string. Each bit represents the behavioral difference

between the program and another program at the origin of

the space. In our example, the position of m relative to po
is dt

po

(m) = 〈0, 0, 1, 1〉. This means that m is represented

by 0011 in the program space (t, po, d). Such a concise

representation makes it favorable to consider positions rather

than d-vectors.

It is worthwhile to consider the norm of a position as well.

The norm of the position of px relative to pr naturally indicates

the distance from pr to px in the program space. For example,

the norm of the position of m relative to po is ||dt
po

(m)|| = 2
which means that the distance from po to m is 2. For an

arbitrary program p including mutants, ||dt
ps

(p)|| indicates the

incorrectness of p with respect to t and d. For an arbitrary

mutant m, ||dt
po

(m)|| indicates the easiness of killing m with

respect to t and d.



In our running example, there are two d-vectors d(t, ps, po)
and d(t, ps,m). These indicate the two positions dt

ps

(po)
and dt

ps

(m) in the same program space, by Definition 4. In

other words, we have a four-dimensional space, the origin is

ps, and the two programs po and m are in 〈0, 1, 1, 1〉 and

〈0, 1, 1, 0〉, respectively. m is closer to the origin ps than po
which means that m is more correct than po. This shows

that mutation can generate partially correct mutants. This

idea is used to the foundational concept for mutation-based

fault localization and mutation-based program repair [7], [9],

[10]. Considering positions of many mutants makes it easy to

understand and discuss the mutation-based methods. We will

shows the specific application in Section IV-A.

E. Different Positions and Different Behaviors

In this subsection, we discuss the relationship between the

positional difference of two programs and their behavioral

difference. Let us consider two arbitrary positions in the same

program space, in terms of Definition 4. Because the position

of a program indicates the behavioral difference of the program

relative to the origin, it is expected that there is a relationship

between programs’ positions and behaviors. For example, if

two programs are in different positions in one dimension, it

implies that the two programs have different behaviors for the

corresponding test. This fact can be generalized as follows:

(dt
pr

(px) 6= dt
pr

(py)) =⇒ (d(t, px, py) 6= 0), (2)

for all px, py, pr ∈ P, d ∈ D, and t ∈ Tn, with arbitrary

n. In (2), the left-hand side (LHS) implies that px and py
are in different positions in the program space of (t, pr, d).
The right-hand side (RHS) implies that px and py have dif-

ferent behaviors for t. Roughly speaking, (2) implies that the

difference of positions of programs guarantees the difference

of behaviors for the programs. The proof of this is omitted,

because it is trivial. By (2), it is safe to conclude that programs

in different positions have different behaviors for a given set

of tests in a space.

Note that the inverse of (2) does not hold. In other words,

even if two programs are in the same position in a program

space, this does not imply that the two programs have the same

behaviors for the tests corresponding to the program space.

This can be formalized as follows:

(dt
pr

(px) = dt
pr

(py)) 6=⇒ (d(t, px, py) = 0). (3)

Again, this holds for all px, py, pr ∈ P, d ∈ D, and t ∈ Tn,

with arbitrary n. In (3), the reason why the LHS does not

imply the RHS is because of the case where px, py , and pr
are all different to each other. An example of this is presented

in Figure 1. Consider t′ = 〈t3〉, where the three programs ps,

po, and m have different behaviors. However, the position of

po relative to ps is the same as the position of m relative to

ps, because dt′

ps

(po) = dt′

ps

(m) = 〈1〉.
To summarize, the position of a program in a program space

indicates its behavioral difference with respect to the origin of

the program space. The meaning of the position depends on

what program is used as the origin of the space. The meaning

of the difference between two positions is related with the

behavioral differences of programs in those positions. If two

programs are in different positions, this guarantees that the two

programs’ behaviors are different. However, if the positions are

not different, this does not guarantee that the two programs’

behaviors are equal.

F. Formal Relation on Positions

In the previous section, we discussed the relationship

between the difference of positions and the difference of

behaviors. In this section, we introduce the formal relation

on positions, called the deviance relation, as follows:

Definition 5: For a program space defined by (t, pr, d),
the position dt

pr

(py) is transitively deviant from the position

dt
pr

(px) by td ⊆ t, if the following conditions hold:

(1) ∀t ∈ t− td, d(t, pr, px) = d(t, pr, py),
(2) ∀t ∈ td, d(t, pr, px) = 0,

(3) ∀t ∈ td, d(t, pr, py) = 1,

for all px, py ∈ P . This is written as dt
pr

(px)
td−→ dt

pr

(py) or

simply px
td−→ py.

In other words, (1) the position of px is the same as the

position of py in all dimensions except for td, (2) the position

of px in td dimensions is the same as the origin, (3) the

position of py in td dimensions is the opposite of the origin.

Here, td represents every test t ∈ t where d(t, px, py) = 1.

When the triple (t, pr, d) is not the main concern, we shorten

the notation for the position of a program p to the position

(vector) p.

The deviance relation indicates how tests influence positions

in a testing process. In general, a set of tests increases in size to

become more effective at detecting faults. This growth of the

test set is described by td in Definition 5: td makes py deviant

from px. For example, if a correct program ps is given by px,

then td becomes the set of tests that detects faults in every

program in py. On the other hands, if an original program

po is at px, then td becomes the set of tests that kills every

mutant in py.

The deviance relation is asymmetric. For all positions

px,py and tests td, the following is true:

px
td−→ py =⇒ ¬(py

td−→ px)

Interestingly, it is not only asymmetric but also transitive.

For all positions px,py,pz and tests tx, ty, the following is

true:

(px
tx−→ py) ∧ (py

ty
−→ pz) =⇒ (px

tx or ty
−−−−−→ pz).

In other words, all positions deviant from py are also deviant

from px if py is deviant from px. This transitivity of the

deviance relation on positions is closely related to the redun-

dancy of mutants. For example, it may be the case that

p0
t1−→ m1

t2−→ m2
t3−→ m3 → · · ·

tn−→ mn,

for an original program po, mutants m1,m2, · · · ,mn, and tests

t1, t2, · · · , tn. In this case, t1 is enough to make all positions



Fig. 2. Position deviance graph for a three-dimensional program space

deviant from p0 because of the transitivity of the deviance

relation, and this leads that t1 is enough to kill all mutants. In

other words, m2, · · · ,mn are redundant by m1 with respect

to the given tests in this case. Because there is a well-defined

method to find redundant mutants, introduced by Ammann et

al. [27], we analyze this using our framework in Section IV-B.

G. Position Deviance Lattice

The deviance relation naturally forms a lattice of positions3.

We introduce the Position Deviance Lattice (PDL) which

shows the positions and their deviance relationships as follows:

Definition 6: For a program space given by (t, pr, d), a

position deviance lattice is a directed graph G = (N,E)
consists of

(1) N = {p | p = dt
pr

(p) for p ∈ PS},

(2) E = {(px,py) | px
t
−→ py for single t ∈ t}

where (px,py) ∈ E refers to the directed edge from px to

py.

In other words, (1) the set of nodes includes all possible

positions in the program space corresponding to (t, pr, d), (2)

the set of edges includes every directed pair of positions having

the deviance relation with a single test. PDL represents the

frame of the n-dimensional program space by its positions

and deviance relations. Note that an n-dimensional program

space contains 2n possible positions, because each dimension

contributes two positions.

For example, Figure 2 presents the PDL that illustrates the

frame of a three-dimensional program space containing eight

positions. The arrows in the leftmost dashed-line box indicate

the directions of the three dimensions t = 〈t1, t2, t3〉. The

main graph illustrates all of the possible positions p0, · · · ,p7

in the program space and their deviance relations. The values

in the rightmost side indicate positions’ distance from the

origin.

3Strictly, the deviance relation provides a strict partial order which is not
a lattice but a directed acyclic graph. However, it is easy to consider the
corresponding non-strict partial order given by the “deviant from or equal to”
relation. This non-strict partial order is a lattice, and we simply saying that
the lattice is formed by the deviance relation on positions.

Fig. 3. Growth of the PDL from one-dimension to three-dimension

PDL is useful for analyzing mutation-based methods. For

example, we can analyze and improve the theoretical founda-

tion for the mutant set minimization recently established by

Ammann et al. [27]. We will explain this process in Section

IV-B.

PDL is worthwhile for considering the relationship between

the growth of tests and positions. To put it bluntly, PDL

grows by adding tests. Figure 3 demonstrates the growth of

PDL from one-dimension to three-dimension. In Figure 3 (c),

the PDL is the same as Figure 2, which represents a three-

dimensional program space. Figure 3 (a) and (b) show the

growth of the PDL as tests are individually added. Note that

the eight positions p0, · · · ,p7 are expressed in each PDL.

First, when the test set t has only one test t1, p1,p4,p5,p7

are deviant from p0 but p0,p2,p3,p6 are not deviant to each

other. After t2 is added, p2 and p6 are deviant from p0, but p3

is not yet deviant from p0. Similarly, p4 and p7 are deviant

from p1,p5, and there are four different nodes in Figure 2

(b). Finally, t3 makes p3 deviant from p0, p5 from p1, p6

from p2, and p7 from p4, respectively.

It is possible to consider testing process as the growth of

PDL. For example, in mutation testing, the generation of new

tests and execution of live mutants are repeated until the set of

tests kills all of the mutants. This means that the generation

of new dimensions is repeated until all of the positions of

mutants are deviant from the origin.

Mathematically, PDL is a form of hypercube graph, with

2n nodes, 2n−1n edges, and n edges touching each node,

where n is the number of dimensions in the corresponding

program space. When PDL is applied to mutation-based testing

methods, several mathematical properties of hypercube graphs

may guide for the elaboration of the mutation-based testing

methods.

IV. APPLICATIONS

A. Mutation-based Fault Localization

Program faults can be detected by fault detection methods

such as mutation testing; once a fault is detected, its location

must be analyzed so that the fault can be corrected. This

can be very tedious and time consuming, especially in large



and complex programs. Among the many contributions to the

field of fault localization, Spectrum-Based Fault Localization

(SBFL) has received significant attention, owing to its sim-

plicity and effectiveness [28]. A program spectrum contains

information recorded during the execution of a program, such

as its executed statements. The spectrum is used to identify

suspicious statements that cause a program test to fail. The

basic idea is that executed statements that cause the failed

test are associated with the failure. For example, if only

one executed statement is associated with a failed test, it is

obvious that the executed statement caused the test to fail;

thus, the location of the fault is that statement. After many

tests are executed, the suspiciousness value of each statement

is calculated based on the similarity of the program spectrum

and the testing results (i.e., pass or fail). All statements are

ordered by their suspiciousness value. The higher a statement’s

suspiciousness value, the higher its probability of being faulty.

An ideal fault localization method ranks the faulty statement

at the top, to allow programmers or even repair algorithms

to correct the fault. There are many suspiciousness (i.e.,

similarity) metrics, such as Tarantula [29], Ochiai [30], and

Jaccard [31]. Recently, Xie et al. [28] developed a theoretical

framework to analyze the efficacy of suspiciousness metrics.

Recently, several researchers developed a new fault lo-

calization concept called Mutation-Based Fault Localization

(MBFL) [6], [7]. Similar to SBFL, MBFL calculates the

suspiciousness value of each statement in a program, and

ranks the statements in the order of their suspiciousness value.

The key feature of MBFL is that the suspiciousness of each

statement is calculated according to the suspiciousness of the

mutants in the statement. Because many mutants are generated

from each statement in general, MBFL has finer granularity

than SBFL.

Interestingly, according to the experiments in [6], [7],

MBFL has significant advantages over SBFL. However, an-

alyzing and discussing MBFL can be difficult, because of its

lack of formal foundations. Thus, a program space is applied

to analyze and discuss the foundations of MBFL. Based on

the analysis results, there are two fundamental considerations

in MBFL: (1) considering a mutant as a potential fix, and (2)

considering a mutant as a fault.

1) Mutant as a partial fix: Seokhyeon et al. [7] considered

two types of mutants: mc, which represents a mutant generated

by mutating a correct statement, and mf , which represents

a mutant generated by mutating a faulty statement. They

observed that failed tests on the original program p of the

mutants are more likely to pass on mf than on mc. On the

other hand, passed tests on p are more likely to fail on mc than

on mf . Let nf→p(m) be the number of tests that failed on p
but passed on an arbitrary mutant m. Then, the proportion

of nf→p(m) over all failed tests implies the likelihood of

m = mf . Similarly, let np→f (m) be the number of tests

that passed on p but failed on an arbitrary mutant m; then,

the proportion of np→f (m) over all passed tests implies the

likelihood of m = mc. Based on these observations, the

suspiciousness value of m is calculated by the likelihood of

m = mf minus the likelihood of m = mc.

In a program space, a test t that failed on p but passed on

m corresponds to a dimension t such that:

d〈t〉
ps

(p) = 1 ∧ d〈t〉
ps

(m) = 0

⇔ (d〈t〉
ps

(p) 6= d〈t〉
ps

(m)) ∧ d〈t〉
ps

(m) = 0.

Let t′ be a collection of t satisfying d
〈t〉
ps
(p) 6= d

〈t〉
ps
(m).

Then, nf→p(m) is equal to the number of zeros in dt′

ps

(m).
In the same manner, np→f (m) is equal to the number of

ones in dt′

ps

(m). For example, if dt′

ps

(m) = 〈0, 1, 0, 0〉, then

nf→p(m) = 3 and np→f (m) = 1.

This signifies that the suspiciousness value of m increases as

the position of m moves towards the origin ps in the program

space. Note that the dimensions of the space are t′, not t.

In other words, Seokhyeon et al. [7] effectively found the m
close to ps by focusing on the dimensions that caused the test

result changes (i.e., p → f or f → p) for p and m.

2) Mutant as a fault: Papadakis and Traon [6] considered

the conduct4 of faults (including mutants) with regard to tests.

They affirmed that a mutant mx has the same conduct as

another mutant my if mx and my are killed by the same tests.

The key assumption of [6] is that mutants and faults located on

the same program statement will show similar motions. Based

on this assumption, for a mutant m and an unlocalized fault f ,

the location of f is given by m, whose conduct is similar to

the action of f . In other words, the suspiciousness value of m
is calculated according to the similarity between the conduct

of m and the conduct of f .

Unfortunately, this assumption is insufficient for calculating

the suspiciousness value of m when the conduct of faulty

program po is not clearly defined. In [6], the conduct of po is

implicitly defined as test results (i.e., pass or fail) instead of

kill results. This signifies that the conduct of po is based on

ps, while the conduct of m is based on p. The meaning of the

similarity between the conduct of m and the conduct of po
is ambiguous, because they have different bases. A program

space is applied to explore this ambiguousness.

In a program space, the conduct of a mutant m is

dt
po

(m)

for an original program po, a set of tests (as a test vector) t,

and a differentiator d. This indicates that the conduct of m
represents the position of the point of m relative to the origin

po. On the other hand, based on the implicit definition, the

conduct of a faulty program p is

dt
ps

(po)

for a correct program ps, t, and d. This indicates that the

conduct of po represents the position of po relative to the

4In [6], the term behavior is used, not conduct. Because behavior is used
as another means in this paper, here we use an alternative term conduct to
avoid confusion.



(a) Mutant as a partial fix (b) Mutant as a fault

Fig. 4. Two foundations of MBFL represented by program spaces

origin ps, not po. As a result, the suspiciousness value of m
is calculated according to the following similarity:

dt
po

(m) ∼ dt
ps

(po)

= dt
po

(m) ∼ dt
po

(ps).

This signifies that the suspiciousness value of m represents

the proximity between the positions of m and the position of

ps in the space whose origin is po. In other words, while it

is not explained in [6], m and ps are regarded as two faulty

programs based on po.

3) Implications: The conceptual foundations of MBFL are

summarized in Figure 4. Each of the dotted circles represents

a program space, and the crossed line at the center implies

the origin of each space. Each program space contains the

three major points corresponding to po, m, and ps. The arrow

represents the method for calculating the suspiciousness value

of m. For simplicity, MBFL-FIX refers to the MBFL methods

that consider a mutant as a partial fix, and MBFL-FLT refers

to the MBFL methods that consider a mutant as a fault. Figure

4(a) shows the foundation of MBFL-FIX, and Figure 4(a)

shows the foundation of MBFL-FLT.

It is clearly shown that both MBFL methods focus on the

same objective: the similarity (or proximity) between m and

ps. This indicates that MBFL is fundamentally the same as

program repair, in which the objective is to move toward

ps from p using m. This implication matches our intuition,

because the objective of fault localization is to find the location

that requires the correction. As m moves closer to ps, the

location of m in the program is more likely to be the location

requiring the correction. There are even cases in which m is

the direct correction of po in both MBFL methods [6], [7].

Regarding the differences between the two methods, MBFL-

FIX utilizes dt
ps

(m) ∼ 0, while MBFL-FLT utilizes

dt
po

(m) ∼ dt
po

(ps). As analyzed in (3), dt
po

(m) ∼ dt
po

(ps)
6=⇒ dt

ps

(m) ∼ 0. Specifically, if po, ps, and m are different

from each other in a test t, MBFL-FLT will determine that m is

the same as ps for t, while MBFL-FIX will determine that m is

different from ps for t. This shows that MBFL-FIX is, at least,

better than MBFL-FLT for calculating the similarity between

m and ps. We believe additional theoretical and experimental

studies will result in improved MBFL methods.

TABLE I
EXAMPLE: MUTANT KILL INFORMATION

m1 m2 m3 m4

t1 1 0 1 1
t2 0 1 0 1
t3 0 1 1 1

Fig. 5. PDL with mutants for finding a minimal set of mutants

B. Mutant Set Minimization

One long-standing problem that prevents mutation-based

testing from becoming practical is the high cost of executing

a very large number of mutants against a set of tests [32]. In

terms of reducing cost, minimizing mutant sets by removing

redundant mutants (with respect to given tests) is a promising

strategy. In this subsection, we introduce a mutant set mini-

mization method for a given set of tests, and apply a position

deviance lattice (PDL) to provide deeper implications.

Recently, Ammann et al. [27] established a theoretical

foundation for mutant set minimization based on the formal

relations of mutants, called dynamic subsumption. If a mutant

mx is killed by at least one test in a set of tests TS and another

mutant my is always killed whenever mx is killed, then mx

dynamically subsumes my with respect to TS. They provided

that a mutant set Mmin is minimal with respect to TS if and

only if there does not exist a distinct pair mx,my ∈ Mmin

such that mx dynamically subsumes my . This signifies that

if mx dynamically subsumes my , then my is redundant to

mx with respect to TS. For example, consider four mutants

m1,m2,m3, andm4, and a set of tests t = 〈t1, t2, t3〉. Table

I shows which mutants each test kills. Specifically, the (i, j)
element of the table is the value of d(ti, po,mj): if ti kills mj

then 1, otherwise 0.

According to the definition of dynamic subsumption, m1

dynamically subsumes m3 and m4, m2 dynamically subsumes

m4, and m3 dynamically subsumes m4. By removing all

dynamically subsumed mutants, Mmin = {m1,m2} becomes

the minimal set of mutants with respect to the test set TS =
{t1, t2, t3}. This provides a solid theoretical foundation for

mutant set minimization. We used our theoretical framework to

interpret this foundational study, and found more implications

to elaborate the mutant set minimization.

Let us create a PDL based on Table I. As we previously



discussed in Section III-D, dt
po

(m) = m implies which t ∈ t

kills m. From Table I, m1 = 〈1, 0, 0〉, m2 = 〈0, 1, 1〉,
m3 = 〈1, 0, 1〉, and m4 = 〈1, 1, 1〉. This provides the PDL,

as shown in Figure 5. The gray box refers to the position that

contains a mutant. In the PDL, it is easy to see that m1 → m3,

m1 → m4, m2 → m4, and m3 → m4. Note that the

deviance relations between positions precisely correspond to

the dynamic subsumption relations between mutants. Formally,

the following is true for all po ∈ P , mx,my ∈ Mmin

generated from po, t, and d:

po → mx → my in a program space of (t, po, d) (4)

⇔ ∃td ⊆ t (dt
po

(mx)
td−→ dt

po

(my)) (5)

∧ (dt
po

(mx) 6= 0) (6)

⇔ ∀t ∈ t ((d(t, po,mx) = 1) =⇒ (d(t, po,my) = 1)) (7)

∧ ∃t ∈ t d(t, po,mx) = 1 (8)

⇔ mx dynamically subsumes my with respect to t (9)

Briefly, (5) signifies mx
td−→ my for some td 6= ∅, and

(6) indicates that mx is killed by at least one test because

its position is deviant from po. (7) corresponds to (5), and

(8) corresponds to (7). Consequently, (4) is equivalent to (9).

This signifies that the deviance relation on positions in a

certain program space is the same as the dynamic subsumption

relation on mutants. In other words, deviance relations are a

more general and comprehensive concept for representing the

behavioral differences of programs, while dynamic subsump-

tion relations are a more specific concept for representing

the behavioral differences between mutants and an original

program. The comprehensiveness of deviance relations is also

shown in Figure 5. If we remove all nodes that do not have

a mutant from the PDL, the remaining graph will precisely

represent the dynamic mutant subsumption graph (DMSG)

introduced by Kurtz et al. [33]. The DMSG makes it easy

to identify Mmin, which is simply the set of root nodes; of

course, the PDL provides the same benefit.

The PDL provides more implications than the DMSG. In

Figure 5, the maximum number of positions that are not

deviant from the other is three. In other words, for an arbitrary

four (or more) positions, at least one position is deviant from

another position. This indicates that the theoretical maximum

size of Mmin is three, with respect to any test set |TS| = 3.

In general, the maximum size of Mmin is

max(|Mmin|) =

(

n

⌊n/2⌋

)

where n is the size of a test set. In other words, for an

arbitrary test set TS and an arbitrary mutants set M , the

theoretical maximum size of the minimal mutant set Mmin

with respect to TS is
(

n
⌊n/2⌋

)

. Further, max(|Mmin|) is given

without executing all m ∈ M against TS. For example, for

|TS| = 5, max(|Mmin|) is
(

5

2

)

= 10. This signifies that, with

respect to the given TS, any mutant set M will be reduced

to contain at most 10 mutants. This improves the theoretical

foundation for mutant set minimization by highlighting the

relationship between the size of Mmin and TS. Yet, the

relationship between TS and M should be investigated further

to determine, for example, the meaning of the ratio of |Mmin|
to max(|Mmin|), or the practical maximum of |Mmin| with

respect to TS, based on the theoretical framework.

V. CONCLUSION

In this paper, we considered a theoretical framework for

better understanding of mutation-based testing methods. In

particular, we defined a test differentiator to shift the paradigm

of testing from the correctness of a program to the difference

between programs. A test differentiator clearly and concisely

represents the behavioral differences between programs in a

test. With regards to a test set, we defined a d-vector that

represents the behavioral differences between two programs

in vector form.

Using the fact that a vector can be regarded as representing

a point in a multidimensional space, we define the space of

programs corresponding to d-vectors. In the program space,

the position of a program relative to the origin in each

dimension indicates the behavioral difference between the

program and the origin for the test corresponding to the

dimension. The relationship between different positions and

behaviors is clearly addressed. We then continued to define

the derivation relation on positions for representing how tests

influence positions in a testing process. The position derivation

lattice (PDL) is defined for providing visual aids for positions

and their derivation relations.

We then revisited the existing mutation-based fault local-

ization methods and the mutant set minimization method,

demonstrating the applicability of our theoretical framework.

For mutation-based fault localization methods, we found that

the common foundation is the proximity between mutants

and the correct program in the program space, while the

method of calculating the proximity is different. We also

found that one method is, at least, theoretically better than the

other method. Furthermore, we showed that our theoretical

framework is sufficiently general to include all theoretical

foundations for mutant set minimization. We also improved the

mutant set minimization theory by providing the theoretical

maximum size of a minimal mutant set. Given our results,

we demonstrated that our theoretical framework may serve

as a solid foundation for discussions in both empirical and

theoretical studies on mutation-based testing.
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