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Machine learning-based predictions of buckling be-
haviour of cold-formed steel structural elements 

Seyed Mohammad Mojtabaei1,2, Jurgen Becque3, Rasoul Khandan1, Iman Hajirasouliha2 

1 Introduction 

Cold-formed steel (CFS) structural elements are produced 

from thin steel plate near room temperature. They offer 

numerous benefits, such as high strength-to-weight and 

stiffness-to-weight ratios, ease of handling, a flexible 

manufacturing process, and recyclability without any loss 

of quality [1-3]. However, due to their limited wall thick-

ness, they are susceptible to instabilities, which necessi-

tates a more complex design process.    

The traditional standard-prescribed design methods for 

cross-sectional instability, in particular the effective width 

approach, are based on ignoring the interaction between 

plate elements and treating them as hinged along adjoin-

ing lines. The Eurocode (EN1993-1-3) [4] and North-

American design specifications (AISI-S100) [5] follow this 

approach but become cumbersome when applied to more 

complex cross-sections. These rules are seen as an imped-

iment to further development, optimization and innovation 

in the field due to their reliance on traditional distinctions 

between flanges and webs, and their inability to accom-

modate non-traditional geometries.  

The Direct Strength Method (DSM) has therefore become 

a popular alternative design method [6]. The DSM requires 

the determination of the local, distortional, and global 

buckling stresses of a member and combines those with 

the yield stress of the material to define a slenderness 

value for each type of instability. The DSM has historically 

been linked to the Finite Strip Method (FSM), which can be 

used in the design process to determine the elastic buck-

ling stresses. However, difficulties can arise in practical 

application, such as the occurrence of indistinct minima 

and coupled modes [7]. Research into the modal decom-

position problem aims to determine the buckled shapes 

and buckling stresses of pure local, distortional, and global 

modes, as well as their contributions in a randomly de-

formed shape. Two more types of pure modes, namely 

shear modes and (transverse) extension modes, are typi-

cally added to enable a complete decomposition. The 

equivalent nodal forces method (ENFM) is the most robust 

and general solution to the modal decomposition problem 

and is employed in this research [8].  

The primary objective of this paper is to explore the feasi-

bility of utilizing Machine Learning to predict the buckling 

behavior of CFS members. Furthermore, this study aims 

2 

Department of Civil and Struc-

tural Engineering, The University 

of Sheffield, Sheffield S1 3JD, UK 
3 Department of Engineering, Uni-

versity of Cambridge, Cambridge 

CB2 1PZ, UK

Proceedings  
in civil engineering

https://doi.org/10.1002/cepa.2727 wileyonlinelibrary.com/journal/cepa

 ce/papers 6 (2023), No. 3-4© 2023 The Authors. Published by Ernst & Sohn GmbH.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits 
use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or 
adaptations are made. 

843



to offer a reliable and effective solution to the modal de-

composition problem.  

It is noted that several studies have previously used AI 

methods to predict the strength of CFS profiles and gen-

erate optimized shapes [9-16]. However, this study fo-

cused on the development of Artificial Neural Network 

(ANN) models, which is a subset of machine learning tech-

niques, to predict the elastic critical buckling load and the 

modal contributions in the buckled shape of CFS structural 

elements. The ANN models were trained on datasets com-

piled using Finite Strip Method (FSM) output to determine 

elastic critical buckling loads and moments, and Equivalent 

Nodal Force Method (ENFM) output to determine modal 

decompositions. The study aimed to develop a practical 

design tool for engineers and practitioners to understand 

the buckling behavior of CFS elements without nessesarily 

requiring programming skills or complex mechanical con-

cepts.  

 

2 Dataset and parameter space 

This study involved compiling a dataset of 4608 CFS ele-

ments with lipped channel cross-sections. The dataset in-

cluded various lengths, cross-sectional dimensions and 

thicknesses, and accounted for the possible presence of 

intermediate stiffeners in the web and/or flanges. Four 

cross-sectional shapes were considered, each correspond-

ing to 1170 data points. The input data consisted of seven 

independent parameters, including six cross-sectional pa-

rameters (the web height (ℎ), the flange width (𝑏), the lip 

length (𝑐), the plate thickness (𝑡), and the locations of the 

intermediate stiffeners in the flanges (𝑟1) and the web 

(𝑟2)), and the element length (L). Table 1 shows the details 

of the four cross-sectional shapes considered, which in-

clude a lipped channel (LP), a lipped channel with inter-

mediately stiffened flanges (LPF), a lipped channel with a 

stiffened web (LPW), and a lipped channel with stiffened 

flanges and web (LPFW). The intermediate triangular stiff-

eners consisted of two 10 mm legs at a 60° angle. It 

should be noted that the selected parameters were kept 

within the practical ranges of commercially avialable 

cross-sections, as listed in Table 1.  

The output data was obtained through FSM and ENFM 

analyses of the CFS elements, and included: (i) the elastic 

critical buckling load (𝑃𝑐𝑟), (ii) the modal contributions in 

the critical buckled shape associated with (𝑃𝑐𝑟), expressed 

through the local (𝐶𝐿,𝐶), distortional (𝐶𝐷,𝐶) and global (𝐶𝐺,𝐶) 

participation factors [8], (iii) the elastic critical moment 

(𝑀𝑐𝑟), and (iv) the modal contributions in the critical buck-

led shapes associated with (𝑀𝑐𝑟), expressed through the 

local (𝐶𝐿,𝐹), distortional (𝐶𝐷,𝐹) and global (𝐶𝐺,𝐹) participation 

factors.The present study only considered local, distor-

tional and global instabilities, due to the typically negligi-

ble contributions from other modes (i.e. transverse exten-

sion and shear modes). 

The material yield stress was taken as 350 MPa. Advice 

was sought from an industrial project partner to ensure 

the dataset's practicality. The member lengths in the da-

taset were limited to the practical span lengths of CFS 

members (500 𝑚𝑚 ≤ 𝐿 ≤ 3000 𝑚𝑚), typically resulting in 

lower modal contributions from global instabilities. A typi-

cal modal decomposition for a compressed lipped channel 

element is illustrated in Fig. 2. 

Table 1 Cross-sectional shapes and ranges of dimensions selected 

considered in the dataset 

   LP     LPF     LPW    LPFW 

  

 

 

120≤h≤360 

 50≤b≤120 

10≤c≤ 35 

1≤t≤4 

 500≤L≤3000 
 

 

120≤h≤360 
 50≤b≤120 

10≤c≤35 

1≤t≤4 

 500≤L≤3000 

0.2≤r1≤0.8 

d=10 

       θ=600 

120≤h≤360 
 50≤b≤120 

10≤c≤35 

1≤t≤4 

 500≤L≤3000 

0.1≤r2≤0.9 

d=10 

       θ=600 

120≤h≤360 

 50≤b≤120 

10≤c≤35 

1≤t≤4 

 500≤L≤3000 

0.2≤r1≤0.8 
0.1≤r2≤0.9 

d=10 

      θ=600 
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function with a bias, and this process continues until the 

output layer is reached. Information flows unidirectionally 

in the network, and the calculation process is illustrated in 

Fig. 2. 

The mathematical expression for the ANN procedure can 

be written as:  𝑎𝑖𝑗 = 𝑓𝑗(∑ 𝑤𝑖𝑘𝑗𝑘 𝑎𝑘𝑗−1 + 𝑏𝑖𝑗)                                                     (1) 

where the activations (𝑎 values) are determined by the 

activation function (𝑓) and the weighted sum of the acti-

vations from the previous layer, along with the bias term. 

The weights (𝑤) and biases (𝑏) are parameters of the ANN 

model, with the subscripts 𝑗 and 𝑖 denoting the corre-

sponding layer and node, respectively. In the input layer, 

each activation value (𝑎𝑖1) corresponds to the 𝑖𝑡ℎ input pa-

rameter (𝑥𝑖), while in the output layer, where 𝑗 = 𝑛 (𝑛 is 

the total number of layers in the network), the activation 

values (𝑎𝑖𝑗) represent the predicted output values (𝑦′). The 

weights and biases are initialized at the beginning of the 

training process and adjusted using the ‘backward propa-

gation of errors’ algorithm [18].  

After computing the activations (𝑎𝑖𝑗) for all network layers, 

the model determines a cost function 𝐽(𝑦, 𝑦′) based on the 

original output data (𝑦) and the predicted output values 

(𝑦′) of all training samples. This cost function can take on 

various forms, such as the Mean Absolute Error (MAE), the 

Mean Absolute Percentage Error (MAPE), or the Mean 

Squared Error (MSE). The training process of an ANN aims 

to identify the weights and biases that minimize the cost 

function. This study employed the Gradient Descent 

method [18] to achieve this objective, which involves nu-

merically calculating the following gradients: 

                                                                             𝐺𝑤 = 𝜕𝐽(𝑤,𝑏)𝜕𝑤                                                                 (2)    

𝐺𝑏 = 𝜕𝐽(𝑤,𝑏)𝜕𝑏                                                                     (3)    

The weights and biases are then updated in each iteration 

(𝑡) using the following equations: 𝑤𝑡 = 𝑤𝑡−1 − 𝛼𝐺𝑤,𝑡−1                                                               (4)    𝑏𝑡 = 𝑏𝑡−1 − 𝛼𝐺𝑏,𝑡−1                                                                   (5)    

where 𝛼 is the chosen learning rate, most often in the 

range between 0.0 and 1.0. 

 

Figure 2 Calculation process of ANN 

3.2 Data preparation 

The input parameters (𝑥) consisted of seven geometric 

features of the CFS element (ℎ, 𝑏, 𝑐, 𝑡, 𝑟1, 𝑟2, 𝐿), while the out-

put parameters (𝑦) included a single value representing 

the elastic critical buckling load (𝑃𝑐𝑟) or bending moment 

(𝑀𝑐𝑟), and a vector containing the participation factors of 

the critical compressive (𝐶𝐿,𝐶 , 𝐶𝐷,𝐶 , 𝐶𝐺,𝐶) or flexural 

(𝐶𝐿,𝐹 , 𝐶𝐷,𝐹 , 𝐶𝐺,𝐹) buckled shapes. To enhance the perfor-

mance of the algorithms, the input parameters were pre-

processed by standardizing them using the following equa-

tion: 𝑥 = 𝑥−𝜇𝜎                                                                           (6)      

where 𝑥 represents the original input, while 𝑥 is the stand-

ardized input. The mean and standard deviation of 𝑥 are 

represented by 𝜇 and 𝜎, respectively. Furthermore, it is 

likely that the output parameters exhibit skewed distribu-

tions. To address this issue and achieve a more uniform 

distribution, a logarithmic transformation was applied to 

the output data: �̂� = log(1 + 𝑦)                                                            (7) 

where �̂� and 𝑦 are the logarithmic and original values of 

the output data, respectively.                

In this study, the performance of the ANNs was evaluated 

based on the values of the MSE (mean squared error), the 

MAPE (mean absolute percentage error) and 𝑅2 (coeffi-

cient of determination), defined as: 𝑀𝑆𝐸 = 1𝑛 ∑ (𝑦 − 𝑦′)2𝑛𝑖=1                                                   (8) 

𝑀𝐴𝑃𝐸 = 100𝑛 ∑ |𝑦−𝑦′𝑦 |𝑛𝑖=1                                                           (9)                      

𝑅2 = 1 − ∑ (𝑦−𝑦′)2𝑛𝑖=1∑ (𝑦−�̅�)2𝑛𝑖=1                                                              (10) 

where 𝑛 is the number of samples and �̅� is the mean value 

of the 𝑦-values.        

     

3.3 K-fold cross-validation 

The K-fold cross-validation technique was implemented in 

the ANNs to evaluate the accuracy of the models for un-

seen data. K-fold cross-validation can be particularly use-

ful for predicting multiple outputs (i.e. the modal decom-

position problem). In traditional ANN methods, the 

available dataset is divided into training, validation, and 

test sets, which reduces the number of data points avail-

able for training and can make the model heavily depend-

ent on sample selection. In K-fold cross-validation, the da-

taset is randomly shuffled and divided into K folds, with K-

1 folds used for training, and one fold used for testing. 

Each sample is given the opportunity to be used in the test 

set once and is used to train the model K-1 times. The 

performance of the model is then taken as the average of 

all evaluation scores. In this study, the network was sub-

jected to 5-fold cross-validation with an 80%-20% propor-

tion of training and test set data. 
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3.4 Tuning of hyperparameters 

The accuracy of the ANN model depends on its hyperpa-

rameters, such as the learning rate, the number of layers 

and neurons, the activation functions, and the optimizer. 

The optimal hyperparameters were determined through a 

trial-and-error process called grid search, which examined 

the effects of using one to three hidden layers, 10 to 100 

neurons, and learning rates of 0.1, 0.2, and 0.3. Four ac-

tivation functions, including linear (Lin), rectified linear 

(Rel), log-sigmoid (Sig), and hyperbolic tangent-sigmoid 

(Tan), were studied, with only the latter two being used in 

the output layer (Fig. 3). Two cost functions, mean 

squared error (MSE) and mean absolute percentage error 

(MAPE), were employed to assess the model accuracy. 

      

 

Figure 3 Activation functions 

4 Results and discussions 

Following the tuning of the hyperparameters, the ANN 

model with the best performance for each prediction target 

was identified (more information can be found in [19]). 

Table 2 summarizes these models, including their hy-

perparameters and performance in terms of Mean Squared 

Error (MSE) and Mean Absolute Percentage Error (MAPE). 

While the elastic critical buckling loads (𝑃𝑐𝑟) and bending 

moments (𝑀𝑐𝑟) were predicted using a two-layer ANN 

model, the modal decomposition of the compressive (𝐶𝐿,𝑐, 𝐶𝐷,𝑐, 𝐶𝐺,𝑐) and flexural (𝐶𝐿,𝑓, 𝐶𝐷,𝑓, 𝐶𝐺,𝑓) buckled shapes re-

quired three hidden layers. The optimal number of neurons 

for the ANN models predicting the elastic buckling load and 

the modal decomposition was found to be 40 and 50, re-

spectively. The Tan activation function was used for both 

the hidden and output layers, in combination with a learn-

ing rate of 0.3. The MAPE was chosen as the cost function 

during the training process of all ANN models. 

The ANN models predicting elastic critical buckling loads 

and bending moments outperformed those predicting the 

modal decomposition of the compressive and flexural 

buckled shapes. The former ANN models achieved mean 

absolute percentage errors (MAPEs) of 2.75% and 2.98%, 

respectively, compared to MAPEs of 19.93% and 28.05% 

for the modal decompositions. Linear regression analyses 

were used to compare the network predictions to the ac-

tual responses obtained from the FSM and ENFM, and the 

statistical indicators such as 𝑅2, COV, and mean are pre-

sented in Figs. 4 to 7. Each ANN was independently re-

trained about five times to obtain the most accurate re-

sults, and the best performing model was retained. An ex-

cellent fit was obtained for the elastic critical buckling 

loads and bending moments, with 𝑅2> 0.99. However, 

predictions for the modal decomposition of the compres-

sive and flexural buckled shapes showed a slightly lower 

level of accuracy, with 𝑅2> 0.95. This is because predicting 

the modal decomposition is a multi-output problem, while 

only a single-output ANN model is required for the elastic 

buckling resistances. The distributions of the modal con-

tribution results were sometimes skewed, which also re-

sulted in less accurate predictions, especially for the global 

participation factors in bending. It is noted that ANN mod-

els are generally less accurate for data outside the ranges 

of the selected training dataset. 

Table 2 Summary of the selected ANN models  

Element 
type  

Target 

Hyperparameter features 
Performance 

metrics 

No. hid. 
layers 

No.  
neurons 

𝑓 𝛼 
Cost 

function 
MSE  

MAPE  
(%) 

Comp. 

𝑃𝑐𝑟 2 40 Tan 0.3 MAPE 
1.19 

(kN)2 
2.75 𝐶𝐿,𝑐, 𝐶𝐷,𝑐,  𝐶𝐺,𝑐 3 50 Tan 0.3 MAPE 23.77 19.93 

Flex. 

𝑀𝑐𝑟 2 40 Tan 0.3 MAPE 
10.15 

(kNm)2 
2.98 𝐶𝐿,𝑓, 𝐶𝐷,𝑓, 𝐶𝐺,𝑓 

3 50 Tan 0.3 MAPE 42.54 28.05 

 

 

Figure 4 Performance of the selected ANN model for the prediction of 

the elastic critical buckling load (𝑃𝑐𝑟) 

 

Figure 5 Performance of the selected ANN model for the prediction of 

the modal contributions in the critical buckled shape of thin-walled 

compression members (𝐶𝐿,𝑐, 𝐶𝐷,𝑐, 𝐶𝐺,𝑐)  

 

Figure 6 Performance of the selected ANN model for the prediction of 

the elastic critical buckling moment (𝑀𝑐𝑟)   

(a) Lin (b) Rel 

(c) Sig (d) Tan 
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Figure 7 Performance of the selected ANN model for the prediction of 

the modal contributions in the critical buckled shape of thin-walled 

flexural members (𝐶𝐿,𝑓, 𝐶𝐷,𝑓, 𝐶𝐺,𝑓) 

5 Conclusions  

In this study, ANN models were utilized to predict the elas-

tic critical buckling loads and bending moments of thin-

walled structural elements, as well as the contributions of 

the various pure buckling modes in the critical buckled 

shapes. It was demonstrated that well-tuned ANN models 

achieved a high level of accuracy in predicting the elastic 

buckling loads and the modal decomposition, with coeffi-

cients of determination of over 0.99 and 0.95, respec-

tively. This underscores the potential of machine learning 

as a solution technique for this highly non-linear problem. 

The slightly lower accuracy of the ANN models in predict-

ing modal decompositions was attributed to the skewed 

distribution of the global buckling mode participations 

within the dataset, itself a result of considering only prac-

tical member lengths. Besides, it was observed that the 

prediction of modal contributions, it being a multi-regres-

sion problem, is more sensitive to the size and quality of 

the training dataset in comparison to single-regression 

problems. 

References  

[1] Hasanali, M.; Roy, K.; Mojtabaei, S.M.; Hajirasouliha, 

I.; Clifton, G.C.; Lim, J.B.P. (2022) A critical review of 

cold-formed steel seismic resistant systems: Recent 

developments, challenges and future directions. Thin-

Walled Structures 180, 109953. 

[2] Papargyriou, I.; Mojtabaei, S.M.; Hajirasouliha, I.; 

Becque, J; Pilakoutas, K. (2022) Cold-formed steel 

beam-to-column bolted connections for seismic 

applications. Thin-Walled Structures 172, 108876. 

[3] Hasanali, M.; Mojtabaei, S.M.; Clifton, G.C.; 

Hajirasouliha, I.; Torabian, S.; Lim, J.B.P. (2022) 

Capacity and design of cold-formed steel warping-

restrained beam-column elements. Journal of 

Constructional Steel Research, 190, 107139. 

[4] CEN, Eurocode 3: design of steel structures, part 1.3: 

general rules—supplementary rules for cold formed 

members and sheeting, in, Brussels: European 

Comittee for Standardization, (2005). 

[5] AISI S100-16, North American specification for the 

design of cold-formed steel structural members. 

American Iron and Steel Institute (AISI), Washington, 

DC, USA, (2016). 

[6] Schafer, B.W.; Peköz, T. (1998) Computational 

modeling of cold-formed steel: characterizing 

geometric imperfections and residual stresses. Journal 

of Constructional Steel Research, 47 193-210. 

[7] Schafer, B.W. (2008) Review: The Direct Strength 

Method of cold-formed steel member design, Journal 

of Constructional Steel Research, 64 766-778. 

[8] Becque, J. (2015) A new approach to modal 

decomposition of buckled shapes, Structures, 4 2-12. 

[9] Xu, Y.; Zhang, M.; Zheng, B. (2021) Design of cold-

formed stainless steel circular hollow section columns 

using machine learning methods, Structures, 33 

2755-2770. 

[10] Zarringol, M.; Thai, H.-T.; Naser, M.Z. (2021) 

Application of machine learning models for designing 

CFCFST columns, Journal of Constructional Steel 

Research, 185 106856. 

[11] Ghaisari, J.; Jannesari, H.; Vatani, M. (2012) Artificial 

neural network predictors for mechanical properties of 

cold rolling products, Advances in Engineering 

Software, 45 91-99. 

[12] Brahme, A.; Winning, M.; Raabe, D. (2009) Prediction 

of cold rolling texture of steels using an Artificial 

Neural Network, Computational Materials Science, 46 

800-804. 

[13] Jamli, M.R.; Farid, N.M. (2019) The sustainability of 

neural network applications within finite element 

analysis in sheet metal forming: A review, 

Measurement, 138 446-460.  

[14] Dias, J.L.R.; Silvestre, N. (2011) A neural network 

based closed-form solution for the distortional 

buckling of elliptical tubes, Engineering Structures, 33 

2015-2024. 

[15] Pala, M. (2006) A new formulation for distortional 

buckling stress in cold-formed steel members, Journal 

of Constructional Steel Research, 62 716-722. 

[16] El-Kassas, E.M.A.; Mackie, R.I.; El-Sheikh, A.I. (2021) 

Using neural networks in cold-formed steel design, 

Computers & Structures, 79 1687-1696. 

[17] Mitchell, T.M. (2010) Machine Learning, New York : 

McGraw-Hill. 

[18] Dreyfus, S.E. (1990) Artificial neural networks, back 

propagation, and the Kelley-Bryson gradient 

procedure, Journal of Guidance, Control, and 

Dynamics, 13 926-928. 

[19] Mojtabaei, S.M; Becque, J.; Hajirasouliha, I.; 

Khandan, R. (2023) Predicting the buckling behaviour 

of thin-walled structural elements using machine 

learning methods. Thin-Walled Structures 184, 

110518.

 

847

 2
5
0
9
7
0
7
5
, 2

0
2
3
, 3

-4
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cep

a.2
7
2
7
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

0
/0

9
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se


