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ABSTRACT

PURPOSE This discussion paper outlines challenges and proposes solutions for suc-
cessfully implementing prediction models that incorporate patient-reported
outcomes (PROs) in cancer practice.

METHODS We organized a full-day multidisciplinary meeting of people with expertise in
cancer care delivery, PRO collection, PRO use in prediction modeling, com-
puting, implementation, and decision science. The discussions presented here
focused on identifying challenges to the development, implementation and use
of prediction models incorporating PROs, and suggesting possible solutions.

RESULTS Specific challenges and solutions were identified across three broad areas. (1)
Understanding decision making and implementation: necessitating multidis-
ciplinary collaboration in the early stages and throughout; early stakeholder
engagement to define the decision problem and ensure acceptability of PROs in
prediction; understanding patient/clinician interpretation of PRO predictions
and uncertainty to optimize prediction impact; striving for model integration
into existing electronic health records; and early regulatory alignment. (2)
Recognizing the limitations to PRO collection and their impact on prediction:
incorporating validated, clinically important PROs to maximize model gener-
alizability and clinical engagement; and minimizing missing PRO data
(resulting from both structural digital exclusion and time-varying factors) to
avoid exacerbating existing inequalities. (3) Statistical and modeling chal-
lenges: incorporating statistical methods to address missing data; ensuring
predictive modeling recognizes complex causal relationships; and considering
temporal and geographic recalibration so that model predictions reflect the
relevant population.

CONCLUSION Developing and implementing PRO-based prediction models in cancer care
requires extensive multidisciplinary working from the earliest stages, recog-
nition of implementation challenges because of PRO collection and model
presentation, and robust statistical methods tomanagemissing data, causality,
and calibration. Prediction models incorporating PROs should be viewed as
complex interventions, with their development and impact assessment carried
out to reflect this.

INTRODUCTION

Cancer care and research have progressed rapidly over recent
decades. Restricted patient cohorts in clinical trials of new
treatments, however, limit the direct relevance of trial re-
sults in routine care settings.1 Partly in response to this,
studies now aim to develop models capable of predicting

outcomes (eg, survival or symptom trajectories) to support
clinicians and patients in making shared and personalized
decisions in routine cancer care.2,3 Given the documented
optimism of clinicians delivering cancer care, such predic-
tions may help patients and clinicians make more informed
treatment decisions that align with patient preferences,
reduce the likelihood of decisions to pursue overly aggressive
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cancer care in the final months of life, inform trial partici-
pation, when and what to tell family members, and how to
prepare for the end of life.4-10

Models are developed in curative and adjuvant,11,12 as well as
advanced incurable cancer settings.13-15 The models effec-
tively identify a weighting for observed characteristics to
provide predictions of expected outcomes for individuals.
These models, however, rarely make it into clinical practice,
meaning opportunities to better inform treatment decisions
are missed.2,16,17

Models predicting outcomes may be prognostic (indicating
expected prognosis or outcomes) or predictive (indicating
expected outcomes conditional upon a given treatment
approach). Here, we will use the term prediction models to
encompass both modeling approaches.

Models in Cancer Care

Typically, predictionmodels in cancer care include a range of
clinical parameters, such as clinical test results, patient or
tumor characteristics, biomarkers, and performance status
(ie, physician-assessed measurement of function).13,18-21

Performance status is a key parameter in many such
models but was originally developed to inform patient se-
lection for clinical trials and, although never formally val-
idated beyond this, is now widely used to assess suitability
for systemic anticancer treatment.22 Its subjectivity and lack
of granularity are increasingly recognized limitations for its
ability to assess patients’ functioning and suitability for
treatment,22-24 leading to a call for incorporating more
comprehensive measures of functioning and frailty into
treatment decisions, particularly in the context of an aging
population.22,25 Indeed, patient-reported outcome (PRO)
measures are now available to support this.26-28 For example,
both the Geriatric-8 and Vulnerable Elders Survey-13 offer
patient-reported questionnaire–based tools that assess
frailty on the basis of multiple domains, including function/
mobility, nutrition, and polypharmacy.26,29

PROs in Prediction Models

There iswide consensus that PROs canenhance routine cancer
care by streamlining consultations to focus on areas that
are important to patients, thus aiding symptom control,
empoweringpatients, reducinghealth serviceutilization, and,
in some circumstances, improving overall survival and quality
of life (QOL).30-36 Furthermore, PROs have prognostic
value,37-40 while also providing a patient-reported analog for
specialist clinician assessment of symptoms.30 This makes
PROs suitable for capturing clinically important informa-
tion for prediction modeling ahead of or in the absence of
specialist review. Finally, when captured repeatedly over
time in specialist settings, they may also replace variables
such as performance status in prediction models.41 To-
gether, this suggests that incorporating PROs into pre-
dictionmodels for cancer care should be explored further. A

conceptual framework for the role of such models is pre-
sented in Figure 1.

Improving the Uptake of PRO-Based Prediction
Models—A Multidisciplinary Workshop

We conducted amultidisciplinary workshop to further explore
and reach consensus on the challenges and approaches for
research into harnessing PROs for prediction modeling in
cancer care. This perspective paper reports on the outcomes of
theworkshop, considering thewhole (often leaky42,43) pipeline
from identifying the decision problem through to successful
implementation in clinical practice (Fig 2), with specific focus
on how these challenges relate to the use of PROs.

The workshop identified the crucial need, applicable to any
prediction model pipeline, to start by carefully defining the
decision problem, that is, the clinical decision the model
aims to influence (Fig 1A). Following immediately from this
is the need to identify key stakeholders and consider the
pathway to implementation.17 As such,we start our summary
with key aspects of model implementation, given the crucial
role this has in underpinning all subsequent progress. We
then move on to considering how the capture of PROs in
routine care will affect model development and highlight
some key statistical considerations. In doing this, we aim to
suggest next steps by which the leaky pipeline may be fixed.
Table 1 displays a summary of the points raised.

METHODS

Two authors (K.L.S. and H.L.B.) developed an outline for a
full-day meeting (7 hours) to cover key areas as outlined by
the PROGRESS reports (the PROGnosis RESearch Strategy
series, which seeks to explain how prognostic modeling
research can be used to improve clinical outcomes).17 Rel-
evant multidisciplinary attendees were identified from the
author’s existing networks, snowballing from these to en-
sure program coverage. Attendees were invited by email.

Twenty-three people attended, including those with ex-
pertise in routine cancer care delivery (n 5 6); the use of
PROs in cancer care (n 5 4); large-scale PRO data analysis
(n 5 6) and prediction modeling (n 5 5); health informatics
(n 5 4) and computing (n 5 4); implementation (n 5 7); and
decision science (n 5 1). Some attendees had expertise in
more than one area. The first author (K.L.S.) facilitated the
meeting. Expert presentations included the challenges of
PRO implementation in cancer care; PRO-based analyses in
cancer care (including prognostic modeling); the challenges
of translating model predictions into clinical practice from a
clinician perspective and separately from an informatics and
implementation science perspective; and how model pre-
dictionsmay inform decisionmaking. Each presentationwas
followed by an extended opportunity for discussion. Key
points were documented during the meeting and subse-
quently thematically analyzed and synthesizedwithmultiple
rounds of review by all coauthors.
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Discussions focused principally on the high-resource set-
ting, extending to low-resource settings, where possible, if
expertise was available within the group.

Starting With the Last Drop—Understanding
Implementation and Decision Making Ahead
of Modeling

Defining the Decision Problem

An insufficient understanding of the decision problem and
the intended role of the prediction model in this will hamper
model implementation (Figs 1A, 1D and 2). Decision scien-
tists have provided evidence and theories to understand how
people make decisions under (un)certainty and risk.44 The
theoretical approaches are informed by (1) economic and
statistical modeling of the ideal decision,45 (2) descriptions
of how people make decisions naturalistically,46 and (3)
evidence to inform active thinking in real-world contexts.47

Broadly, these models identify the components on which
peopledraw tomakedecisions suchas theoptions (eg, available
treatments), attributes (eg, treatment practicalities and side

effects), probabilities (eg, expected survival and side-effect
probabilities), and values individuals place on these con-
sequences. Decision science has identified the types of
factors that affect our attention and help or hinder our
decision-making processes. Furthermore, in health care,
most decisions are made by multiple stakeholders with
different goals (Fig 1B).48 Actions arising from multiple
stakeholder decision making require a shared under-
standing of other people’s perspectives to agree and im-
plement a health care choice of benefit and relevance to the
patient.49 Prediction models could contribute to interven-
tions designed to support clinical reasoning and shared
decision making between multiple stakeholders.

When developing a prediction model, working within a mul-
tidisciplinary team from the earliest possible stage, there is a
need to use decision science theories and all available evidence
to pinpoint the specific clinical decision (Fig 1A); determine the
aims of providing model predictions (eg, to communicate risk,
inform patients/clinicians, or reduce variation; Fig 1E); and
identify the individual/s who will interact with these (Fig 1D).
On the basis of this information, it is then critical to define
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FIG 1. Conceptual framework for the role of PROs in predictive modeling. PROs, patient-reported outcomes.
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which outcomes (and time horizons) will be of most value;
determining the key outcomes of interest at an early stage can
ensure that model outcomes will be actionable (Figs 1D and 2).

Models as Complex Interventions

The greater regulation of prediction models as medical
devices and increasing desire to use them in routine care
highlight the need to assess model impact ahead of wide-
spread implementation.17,50 The complexity of the decisions
and environments in which these models are implemented
warrants consideration of the updated Medical Research
Council guidance on developing and evaluating complex
interventions.51 A program theory should describe as-
sumptions on how the model is expected to deliver the

desired outcomes and how different individuals and features
of the context may interact with the final model to influence
the success of implementation51 (eg, on then basis of Fig 1).
These assumptions may need revisiting and refinement
during exploratory and preparatory phases (considering
feasibility) with input from relevant stakeholders (eg, pa-
tients, clinicians, and information technology teams) ahead
of impact assessment.50,51 For example, is it realistic to think
that predictions will be acted upon, even if they conflict with
hoped-for outcomes or interventions? Do all stakeholders
accept the role of PROs as predictors or outcomes (Figs 1C
and 2C)? Furthermore, clinicians may be concerned about
issues of overdependence on models, loss of clinical au-
tonomy, and lack of confidence in the model predictions
(Figs 1B, 1C and 2).52 These concerns/considerations should
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FIG 2. The leaky pipe—why developed prognostic and predictive models do not make it into clinical
practice. IT, information technology; PRO, patient-reported outcome. Adapted with permission from
Royen et al.43
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be documented and addressed (eg, through training for
clinicians and parallel patient information) to support wider
implementation and dissemination.

Enabling Implementation

A range of factors should be considered when planning
implementation. Model predictions must be presented in a
timely way to influence clinical care (Figs 1C, 1D and 2). With
PRO prediction models, wider integration of PROs into elec-
tronic health records (EHRs)may enable this (Fig 2D)53-55 and
avoid the presentation of predictions after the decision point.
This also minimizes the need for multiple logins or opening a
separate webpage to access predictions, both of which are
recognized barriers to implementing routine PRO collection
and model-based interventions.52,56,57 When integrated, the
risk of repeated alerts interrupting clinical workflows and
leading to alert fatiguemay also be a potential barrier tomodel
implementation.56,57 Conversely, the presentation of predic-
tions should not introduce attention bias, as the decision-
maker allocates greater importance to themodel outputs than
other relevant domains that inform the decision-making
process (Fig 1B).

Finally, prediction models are increasingly used in
low-resource cancer care settings58,59 because of wider EHR
system implementation alongside increasing recognitionof the
role and value of PROs.60,61 PROs can be readily delivered with

the support ofmobile devices to facilitate patient-centered care
in geographically dispersed populations and inform health
service responses, for example, in patients nearing the end of
life.61,62 Context-specific model implementation strategies are,
however, required. For example, they must be congruent with
clinical workflows and a limited health workforce,63,64 recog-
nize the high frequency of advanced disease in low-resource
settings,65 account for treatment availability and financial
toxicity (Figs 1Cand2), adapt tounreliable internet connections
and electricity supply, and support a business case for in-
vestment in infrastructure to enable access to timely, reliable,
and practical health information, a prerequisite for delivering
universal health coverage.66

Presenting Model Outcomes

Once the mechanism for presenting model predictions has
been defined, the presentation needs tailoring to the
decision-makers’ needs (Fig 2C). Prediction models that are
directive rather than assistive when implemented (ie, not
only present an expected outcome but also a decision rec-
ommendation) may be more readily incorporated into
clinical practice.52 This may be challenging, however, where
predictions of PRO domains are included, as the relative
value placed on domains may differ between patients
(whether due to language, culture, or personal preference;
Fig 2B). It may also be necessary to provide details of the
model inputs (eg, PRO dimensions) and rationale behind the

TABLE 1. Summary of Meeting Findings

Section Findings

Understanding implementation and decision
making ahead of modeling

The acceptability of PROs as predictors should be assessed with stakeholders
The proposed PROs for inclusion in prediction models should align with those of clinical value
The proposed, context-specific, mechanism formodel implementation should be identified early (eg, PRO

and model integration into the EHR)
Like all potential predictor variables, the benefit of PRO inclusion in a prediction model should be

assessed during model development
Presentation of PRO outcomes and uncertainty should be discussed with key stakeholders
Where model implementation is planned to involve integration in an EHR or other existing system, the

regulatory requirements for this should be considered early on

Limitations to PRO collection and their impact upon
prediction

The impact of challenges to implementing PRO collection in the relevant routine care setting should be
considered during model development

Missing data should be minimized as far as possible when capturing PROs, including through
consideration of proxy completion

The systematic exclusion of populations less likely to complete digital PROs must be assessed and
model validity in these populations determined

The use of validated PRO questionnaires may support more widespread model implementation by
ensuring predictors are consistent between health care providers

Overlap between PROs of use in delivering clinical care and those used as model predictors may help
increase PRO engagement, minimizing missing data and ultimately increasing the likelihood of
successful model implementation

Statistical and modeling challenges Missing PRO data should be characterized and, where possible, techniques to reduce and manage this
used

Where proxy PRO collection is used to minimize missingness, the predictive value of proxy completion
should be considered in model development

Decision curve analysis can be used to determine the incremental benefit of additional PRO predictors
and balance this against questionnaire burden and possible increased risk of missing data

Causal relationship between treatment options and PRO outcomes appropriately incorporated to
minimize bias by confounding

Mechanisms to ensure recalibration and to address regional and temporal variation should be
considered

Abbreviations: EHR, electronic health record; PRO, patient-reported outcome.
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recommendation (Figs 1C and 2).52 Although, patients may
value model accuracy more than explainability for health
care decision making, and are therefore willing to accept the
black-box nature ofmodels,67 cliniciansmay bemorewilling
to use model predictions if clinical utility and validity has
been demonstrated (Figs 1D and 2).52

The presentation of statistical uncertainty should also be
considered during model development; for example, how
should survival and patient-reported QOL, and the uncer-
tainty around it, be presented, especially if communicated to
patients? Presentation and visualization is particularly im-
portant when considering longitudinal PRO-based models.
Although these allow for dynamic predictions reflecting the
patient’s changing clinical condition, they also raise addi-
tional challenges in communicating risk trajectories to both
clinical and public audiences (Figs 1C and 2). Early stake-
holder engagement should ensure that the presentation of
model outcomes and uncertainty supports the clinical
decision-making process rather than confusing it (Figs 1B
and 1D). Patient, or indeed clinician, education maybe re-
quired, particularly to ensure accurate interpretation and
communication of the model outcomes (eg, where causal
relationships are represented or around prediction uncer-
tainty). There is a danger otherwise that a lack of under-
standing may hamper successful implementation and thus a
positive impact on outcomes (Figs 1D and 2).

Regulatory Approval

After assessing the impact of a model, regulatory approval
can be sought. Regulators across health care jurisdictions
increasingly recognize that software tools with an expert
function for the diagnosis, prevention, monitoring, or
treatment of individual patients, including risk prediction,
require regulation similar to more traditional medical de-
vices (Figs 1D and 2).68-70 This has consequences for the
implementation of prediction models that aim to inform
patient care. Robustly determining the model’s impact in
clinical practice is crucial in this context (Figs 1D and 2). This
should consider not only model accuracy in routine care, but
also the experience of those using themodel, and its effect on
delivered care, outcomes, and cost-effectiveness (ideally in
the context of a clinical trial),17,71 all of which support reg-
ulatory approvals.

As stated earlier, models are more likely to be implemented
successfully if integrated in existing systems and EHRs
(Figs 1D and 2D). Consideration of regulatory approval will,
however, be needed at an early stage to determine if the
model will be approved as part of an existing medical
device/software (potentially aligning with PRO collection)
or as a standalone tool.68 These regulations have only re-
cently been defined or are undergoing development
currently.70,72 Indeed, a recent scoping review of guidelines
informing the development of artificial intelligence–based
prediction models highlighted a dearth of relevant guidance

addressing the later phases of development: software devel-
opment, impact assessment, and implementation.73 Vigilance
is required to identify ongoing regulatory requirements at all
stages of model development.

Limitations to PRO Collection and Their Impact
Upon Prediction

Challenges to Capturing Routine PROs in Cancer Care

Despite extensive evidence of their benefits, PRO imple-
mentation within routine clinical care has been patchy and
not without challenges. These have been widely considered
in qualitative and implementation research.74Manywill have
consequences for the use of PROs in predictionmodels, while
other more general issues (such as the cost and perceived
workload associated with routine PRO collection) may limit
implementation entirely (Figs 2A-2C), despite examples of
successful implementations with evidence of improved
symptom awareness and streamlining of consultations.36,75

Reasons for Absent/Missing Data and How to Address
Them

An issue particularly relevant for prediction modeling is that
of absent or missing data, and crucially, its potential causes
(Figs 2A and 2C). Where paper questionnaire completion
comes with inherent physical limitations with delayed/
missing responses and risk of human error in subsequent
input to electronic systems,76 patient participation in elec-
tronic PRO collection depends upon digital engagement. For
example, although mechanisms to reduce barriers to digital
engagement have been identified,77,78 people who are older or
who have cognitive impairment, language or literacy barriers,
or limited digital access and skills, among others, are less
likely to engage with electronic PROs in their routine cancer
care (Fig 2C).74,79,80 Recent improvements notwithstanding,81

it is paradoxical that irrespective of the desire to inform
decisions for those not routinely included in clinical trials, this
structural digital exclusion may systematically exclude the
same patient groups, further exacerbating existing inequal-
ities as a result of absent data.82 Consequently, a review is now
underway in the United Kingdom to determine the extent and
impact of this on inequalities in health care.83

Beyond these patient-level characteristics, there are also
time-varying characteristics that may diminish PRO use;
crucially, in this context, qualitative studies have found that
patients report feeling unable to complete PROswhen feeling
too unwell (Fig 2C).74,84 Deterioration in QOL with proximity
to death is well documented,85 thus risking systematic ex-
clusion of individuals with poorer prognosis and introducing
bias in prediction models through missing data. Conversely,
patients are unlikely to continue engaging with PROs if they
do not feel that this enhances their clinical care74; using PROs
for prediction may therefore provide an additional way to
make it worthwhile for patients to complete PROs.
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Mechanisms to address both person-level and time-varying
challenges for PRO collection are required.78,86,87 These can
include alternative mechanisms to collect PROs; support for
patients to complete PROs inside and outside the clinic;
minimizing literacy and language barriers (resulting from,
eg, sensory and cognitive impairment, or reduced health
literacy) through PRO development and selection; cross-
cultural validation of PROs to ensure understanding and
accessibility for ethnically diverse patient groups; support
for clinician engagement with PROs to—in turn—encourage
ongoing patient engagement; allowing proxy PRO comple-
tion if appropriate, for example, by family or carers88-90;
identifying tools that maximize patient engagement, par-
ticularly near the end of life; minimizing data sets for model
development, with clear justification for adding items; and
the use of statistical approaches to addressmissing data (see
below; Figs 2A-2C).91

PRO Selection

An extensive array of PROmeasures have been developed and
validated for many cancer types and populations (eg,
Reinhardt et al,92 Engstrom et al,93 and Salas et al94). When
selecting which PROs to use for routine collection, meeting
the needs of clinicians and patients is of primary importance
(Fig 2B). Recommendations detailing possible PRO sets have
been developed by the International Consortium for Health
Outcome Measurement covering some, but not all, cancer
diagnoses.95 Avoiding the use of unvalidated PRO measures
to capture the same outcome (eg, nausea/sickness, overall
QOL) can help subsequent transferability of model outcomes
(Fig 2B).96

An additional criterion for selecting PROs may be their
predictive value (Fig 2A). Some PROs may be strongly pre-
dictive for outcomes in the final months of life but less so
where prognosis is over a year,41 and there will inevitably be
variation between different PRO dimensions.37 As with all
predictors, the role of PROs within a final model should be
justified based on the benefit they offer in themodel (further
discussed below). However, selecting those of greatest rel-
evance to routine care may facilitate wider use of routinely
collected PROs, enable integration of the model into EHR
systems, reduce variation of PRO collection between health
care providers, and support external validation of developed
models (Figs 2A-2C). Finally, despite cognitive interviews
undertaken in the development of PROs, interpretation of
PRO questions may differ between patients (Fig 2B)
depending on their cultural background, language skills, or
other individual differences.97,98 This may lead to increased
variation in the reported outcome between patient groups,
which affects model development and validity.

Statistical and Modeling Challenges

Existing guidelines for the development, reporting, and as-
sessment of bias in prediction models should inform the
development of any prediction model, including those

incorporating PROs17,99,100 (Figs 1B and 2). Updates to these,
recognizing aspects specific to the use of artificial intelligence
in modeling—such as additional model complexity, the
increased risk of overfitting to data, and subsequent lack of
transparency—are in progress.101 There are, however, a
number of specific challenges in the development ofmodels
incorporating PROs.

Handling Missing Data

Many of the statistical challenges of developing and imple-
menting prediction models relate to those outlined above in
the implementation of PROs, particularly resulting inmissing
data (Figs 2A and 2C), whether due to the absence of patient
subgroups or time-varyingmissingness. Both of these can, to
a degree, be addressed using statistical methods to comple-
ment strategies for improving data completeness. The sys-
tematic absence of PRO data from specific subgroups can be
partially addressed through the use of inverse probability
weighting, giving greater weight to data relating to individ-
uals who are less likely to complete PROs (Fig 2C).102,103 This
can enhance representativeness of models for the relevant
population and aligns with an increasing recognition among
regulators of the risk that models pose in introducing bias in
decision making as a result of missing data and limited
applicability.99,104 In terms of managing missingness because
of, for example, deteriorating clinical condition, multiple
imputation can be considered where missingness occurs
at random (ie, conditional upon observed covariables, eg,
when a concurrent decline in PROs and blood parameters is
observed105-107; Fig 2A). The plausibility of underpinning as-
sumptions and alternative methods should be assessed, as
imputation where data are missing not at random will rein-
force bias. Finally, when considering proxy PRO reporting
(eg, by family or carers in the context of increasing frailty),
understanding of the impact of this on the predictive value of
PROs is required.

Assessing the Benefit of Alternative/Additional PRO
Questions in Prediction Models

Once mechanisms to reduce and mitigate missing data have
been identified, analysts should carefully consider the value
offered by incorporating and thus asking additional PRO
questions; excessive questions may reduce engagement,108

particularly near the end of life (Fig 2C).109 Equally, differing
question structures may offer varying predictive value, for
example, the three-level versus five-level EQ-5D ques-
tionnaire (with the latter providing greater detail, whichmay
be valuable for model development; Fig 2A). Decision curve
analysis can assess the comparative utility of adding further
questions or the yield from additional detail.110 The results can
then be presented to themultidisciplinary team to identify the
extent to which the benefit delivered by these variables is
clinically meaningful and worth pursuing through modifi-
cations to data collection methods. Conversely, if free-text
answers are sought from patients, the use of qualitative
analysis and natural language processing can be considered to
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inform model development and incorporate these responses
in prognostic or predictive models.

Ensuring Calibration Here and Now

Models will, inevitably, reflect the populations in which they
are developed and the treatments available at the time. In a
rapidly changing area, such as cancer care, model predic-
tions should be monitored for temporal drift (eg, using
statistical process control methods) and recalibrated when
necessary (Figs 1C and 2).111,112 This is increasingly recognized
by regulators, and mechanisms to enable recalibration in
implemented models must be planned into their design, for
example, through dynamic prediction systems.113 Indeed,
such approaches can enable calibration to institution specific
outcomes, thus ensuring predictions reflect local care and
outcomes.114-116 This can be deliveredwithin anEHR (offering
a potential benefit for the implementation of PRO-based
models) and will not only improve predictive performance
but may also deliver greater clinical acceptance if it is un-
derstood that the model is appropriately calibrated to reflect
the local population. Caution is required, however, to avoid
embedding inequalities in care and outcomes through the
use of such local calibration.117

Beyond these changes with time and place, there is a need to
capture alternative treatment approaches within developed
models; the question of “but what if I have this treatment?”
is highly relevant to clinicians and patients alike. As such,
predictions may need to incorporate causal assumptions and
counterfactual predictions, requiring careful consideration
of which parameters would deliver robust predictions with
minimal risk of unobserved confounding.104,118,119 Fully
addressing confounding variables (eg, because of comor-
bidities) is challenging; the extent to which this can be
achieved must be recognized and documented to prevent
model predictions being applied to individuals for whom
they are not appropriate to inform clinical decisions. This can
be undertaken in parallel withwider documentation ofmodel
limitations that helps to ensure model use aligns with the

population, parameters, and limitations ofmodel development
(Fig 2C). For example, where prediction is the focus, comor-
bidities may remain important, as they can result in reduced
model performance for specific populations (eg, as a result of
reduced precancer mobility).

Strengths and Limitations

This summary and the meeting it represents include the
perspectives of a broad multidisciplinary group ensuring
inclusion of all disciplines relevant to developing and
implementing PRO-based prediction models with a potential
to improve outcomes for patients with cancer. The structured
meeting ensured all key areas were discussed, while the
limited group size provided opportunities for all to contribute.
A larger, international group including patient and public
representatives might, however, have enabled incorporation
of further aspects not captured here. Themeeting was funded
by the EuroQoL group; however, EuroQoL had no influence
over the content or outcomes of the meeting.

In conclusion, this workshop and the findings generated
from it, alongside the existing literature, have shown that
although PROs are increasingly used in cancer care to
provide a more complete picture of a patient’s symptoms
and QOL, they can also be useful for enriching prediction
models. Although cancer care formed the primary clinical
context for the workshop discussions, we anticipate this
discussion paper to also be relevant for other clinical areas.
In all settings, multidisciplinary working, from the earliest
stages of such model development, can help to define the
decision problem, deliver broad stakeholder engagement,
identify and mitigate the causes of missing PRO data, and
ensure the proposed model implementation strategy aligns
with the clinical pathway to be addressed and the wider
health care context. Although outside of the sphere of
expertise for many researchers involved in early model
development and validation, this work is crucial to ensuring
that the predictions produced can ultimately be used to
deliver benefit to patients with cancer.
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