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PREDICTION OF BLAST LOADS USING MACHINE LEARNING 
APPROACHES 

Adam DENNIS1, Samuel RIGBY2 

Abstract: The assessment of human injuries and structural damage following the detonation of 
a high explosive requires an understanding of blast load parameters. Use of physical experiments 
or physics-based numerical tools require large amounts of time and expertise, often restricting 
their use to deterministic analyses. Since explosive events are inherently unpredictable and key 
variables (e.g. charge size, mass, composition, location) may not be known a priori, there is a 
clear need for rapid analysis tools that can embrace this uncertainty in a probabilistic framework. 
Machine learning tools have been developed for this purpose, however, the features of the 
problem that are selected as model inputs can result in predictions being fixed to a single domain, 
thus requiring the tool to be re-trained for every new scenario. This paper details how the 
Direction-encoded Neural Network (DeNN), a novel Machine Learning method, takes inspiration 
from the operation of robot vacuum cleaners to prevent this issue by considering the surroundings 
of each prediction point. Through comparisons to a traditional Artificial Neural Network (ANN), 
provided with global domain inputs, it is shown that the DeNN’s unique feature selection process 
allows for predictions in domains of variable sizes with movable obstacles, ultimately producing 
a tool that can be used in a range of studies without requiring additional task-specific training. 

Introduction 

With the continual presence of terrorist attacks, conflict and industrial accidents occurring all over 
the world, understanding the risk associated to the detonation of explosive materials is vital for 
designing and developing protective structures and procedures that can reduce any detrimental 
impact on human life. A key component of this involves developing an understanding of how the 
blast wave that emanates from an explosive compound propagates and interacts with its 
surroundings. 

Historically this was achieved using physical experiments in controlled test environments where 
the number of trials, extractable data points and variety of test scenarios is limited by cost, safety 
and expertise. However, the evolution of widely available computing power has meant that this 
approach is often replaced by validated numerical methods that can be evaluated without data 
limitations or health and safety risks. 

Semi-empirical tools, such as the Kingery and Bulmash method (Kingery and Bulmash, 1984), 
have been derived from experimental trials that enable the relationships between variables to be 
defined by simplified equations and charts. The can therefore be implemented rapidly with a 
reduced number of inputs, yet, this also restricts their use to a limited range of modelling 
scenarios. Conversely, validated Computational Fluid Dynamics (CFD) or Finite Element (FE) 
numerical models, such as Viper::Blast (Stirling, 2023), and LS-DYNA (Livermore Software 
Technology Company, 2015), obey conservation laws in a discretisation of space and time using 
estimated material properties in an attempt to accurately model the physics of the detonation and 
the subsequent wave interaction effects. They are therefore well suited to evaluating diverse 
problems, however, computation times can last many hours or days depending on the complexity 
of the problem and the desired level of predictive accuracy. 

At present, this computational analysis of explosive events is commonly performed using 
deterministic approaches, providing a single output to a well-defined problem. However, many 
researchers note that this ignores the variability of the explosion itself and the inherent uncertainty 
associated to the charge size, shape, location and material that is characteristic of the situations 
where explosions occur. Probabilistic approaches, such as the one shown in Figure 1, are 
therefore becoming more common so that the risk associated to a specific outcome can be 
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evaluated. Here, various input variables are randomly sampled from independent probability 
distributions 100 times. Each unique input combination is evaluated using a deterministic model 
with the outputs forming probability distributions that enable the risk of specific occurrences to be 
understood and used in decision making processes. 

 

 
Figure 1. Example probabilistic framework. 

Clearly, the move towards this approach still relies on a suitable deterministic model that can 
accurately represent the physics of the various scenarios being simulated. Moreover, the chosen 
model must be rapid in its execution of each unique scenario so that the time required to develop 
a comprehensive understanding of the threat is not unfeasible. 

This paper discusses recent progress made in this field in terms of the development of Machine 
Learning (ML) tools for blast load predictions that provide accuracy and reduced computation 
times for a range of scenarios. It is shown how consideration of an additional variable, versatility, 
is also essential when developing fast running engineering models (FREMs) that can be useful in 
a range of probabilistic scenarios. 

Machine Learning in Blast Engineering 

Background and example applications 

The requirement for rapid analysis tools to evaluate large batches of models in probabilistic 
frameworks with limited computational expense is highlighted by Figure 2. Here, a target zone is 
positioned such that the combination of rapid execution from the semi-empirical, quick running 
methods is met by the accuracy of the physics-based numerical models. 

Machine Learning methods present a means of achieving this goal due to their simplified 
calculation approaches that have been shown to provide low percentage errors and high 
correlation coefficients between targets and predictions in a wide range of disciplines. In simple 
terms ML tools learn the relationships between a series of input variables during a training process 
that optimises various parameters to improve the predictive accuracy of the model. The setup of 
each tool is initially dictated by a range of bespoke hyperparameters that control the structure and 
training progress, however, these can be tuned during development. This enables ML based 
approaches to generalise highly complex, multi-parameter problems to generate predictions for 
unseen input combinations, provided that they fall within the bounds of the training variables 
(Dennis et al., 2021). 

There are many instances of ML tools being used to solve problems related to Blast Engineering, 
including applications for near field loading, obstructed environments and behind blast walls. 
Table 1 provides a summary of a select range of studies to highlight the diversity in the way that 
problem-specific blast load predictions are generated. 
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Figure 2. Comparison of model computation time and solution accuracy, showing the zone that 
is commonly considered to be a target for the development of fast running engineering models 

(FREMs). 

Reference 
Machine 

learning tool 
Scenario Inputs Output(s) 

Dennis et al. 
2021 

Multi-layer 
perceptron 

Partially internal 
room 

POI x and y coordinate. Charge x 
and y coordinate. Charge size 

Peak Overpressure 

Pannell, Rigby 
and 

Panoutsos, 
2022a 

Transfer 
neural network 

Near field panel 
loading 

Angle of incidence. Scaled 
distance. Length/diameter ratio. 

Peak specific 
impulse 

Pannell, Rigby 
and 

Panoutsos, 
2022b 

Physics 
guided neural 

network 

Near field panel 
loading 

Angle of incidence. Scaled 
distance. 

Peak specific 
impulse 

Remennikov 
and Rose, 

2007 

Multi-layer 
perceptron 

Effectiveness of 
blast walls 

Wall, charge and target height. 
Distance from wall to target. 

Distance from wall to charge. All 
scaled according to charge size. 

Peak overpressure 
and specific impulse 

Li et al., 2023 
Transformer 

neural network 
Free air 

Tank failure pressure. Liquid fill 
ratio. Tank width, height and 

length. Explosive material height. 
Vapour and liquid temperature. 

Liquid status. Vapour height and 
stand-off distance. 

Peak overpressure 

Zahedi and 
Golchin, 2022 

XGBoost Protruded structure 
Protrusion length and height, 

charge size and stand-off, POI x, 
y and z coordinates. 

Peak overpressure 
and impulse 

 
Table 1. Applications of Machine Learning tools in blast related literature. Some inputs refer to a 

POI – point of interest. 

Each study presents notable developments related to how ML based tools could be created. For 
example, Pannell, Rigby and Panoutsos (2022) trained a neural network (NN) to predict the 
specific impulse from the detonation of cylindrical charges that incorporated a NN that was 
previously trained to predict the output from spherical charges. This transfer network ultimately 
enabled a reduction in prediction variability when compared to a new NN that had no integration 
with previous data. Furthermore, the gap in performance continued to increase as the training 
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dataset reduced, showing the transfer learning can be used to supplement problems where data 
collection is challenging. 

Similarly, Li et al. (2023) present a comparative study between a Gradient Boosted Decision Tree 
(GBDT), a multi-layer perceptron, an image recognition based Residual Network (ResNet), and 
a Transformer NN. Despite this type of network originally being developed to process sequential 
data (Vaswani et al., 2017), for the specific application, data processing approach and 
hyperparameter limitations applied in this study, the transformer was shown to provide the most 
accurate predictions for a regression based task. Li et al. (2023) therefore conclude that this 
approach provides the best performance, drawing attention to how many previous studies have 
defined the ‘best’ performing tool as the one with the lowest prediction errors, ignoring the 
requirements for training data, training time, and resulting tool versatility. 

Model versatility 

The idea of tool versatility is worth noting as ML models progress to deployment and use in 
industry based applications. In each example provided in Table 1 the input parameters are 
intrinsically linked to the scenario being modelled. In some cases this means that a change to the 
basic domain arrangement would require a new model to be developed. For example, in the study 
by Dennis et al. (2021), Cartesian coordinates are used to define where the point of interest (POI) 
and charge are positioned in a fixed domain. If a user required predictions in a domain of a 
different size or shape, the developed tool would not be able to provide reliable predictions, thus 
necessitating an entirely new training process with a new dataset. 

It is common for training datasets to be formed through a data collection process that requires 
the simulation of tens, or hundreds, of physics-based numerical models that encompass the 
problem that the tool is being developed to model. In situations where the developed tool is only 
applicable to a select range of explosive scenarios, the computation time associated to its 
development can therefore become comparable to exclusively using numerical models in the 
analysis of a given problem. For some ML based applications that are thought of as being 
positioned around the target zone of Figure 2, the underlying cost of development is ignored 
despite this being a key factor in determining if a tool is useful in practice. 

 

 

Figure 3. The proposed target zone for FREM development, incorporating the versatility of the 
tool being produced. 
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Consequently, Figure 3 provides an updated view of the target zone for FREM development 
considering a new set of axes that includes model versatility. This provides a distinction between 
ML tools that are developed with limited scope for reuse in alternative studies and tools that are 
able to be applied more generally to blast loading based problems. It is shown that the resulting 
network from the study by Dennis et al. (2021) may achieve suitable computation time and 
accuracy, but it’s limitations associated to varying domain arrangements restricts its versatility 
and use in probabilistic studies where obstacles and alternative domain shapes may need to be 
evaluated. 

The Direction-encoded Neural Network 

Introduction 

An example of a ML tool that aims to provide versatility in its application is the Direction-encoded 
neural network (DeNN) introduced by Dennis and Rigby (2023) and used to analyse a batch of 
models by Dennis, Stirling and Rigby (2023). Through a novel feature engineering process, the 
inputs to the multi-layer perceptron neural network are related to the surroundings of each 
prediction POI instead of any global domain properties. Predictions of peak overpressure can 
therefore be generated for points in obstructed environments of any shape and size, with movable 
obstacles and charge positions. 

Inspired by how autonomous robot vacuum cleaners use ultrasonic or infrared sensors to 
navigate their surroundings (Chiu, Yeh and Lin, 2009; Kang et al., 2014), Figure 3 shows how the 
inputs to the DeNN are formed with 16 directional ‘lasers’ that are projected from the POI. As with 
robot vacuum cleaners, each laser is used to calculate an obstruction distance to a surface. 
However, in this application, if no rigid surface is met, the corresponding directional input equals 
0. Conversely, identification of a rigid surface means that the directional input is evaluated using 
the following equation: 

 Directional input = max(Wave travel distance – Obstruction distance , 0) (1) 

 
Where the wave travel distance is calculated as the shortest path between the charge centre and 
each POI on a 2D plane.  

The wave travel distance is also used as an input to the DeNN to complete the set of 17 values 
that are used to form predictions at each individual point in a given domain. As shown in Figure 
3, directional input 1 must point towards the charge centre, removing symmetrical prediction 
issues by allowing the rosette of lasers to rotate relative to the position of the charge. 

  
 

Figure 4. Example application of the DeNN directional inputs. Only 8 directions shown on the 
domain plot for brevity. Note that direction 1 points towards the charge. 
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Performance overview 

In the introductory study for this approach by Dennis and Rigby (2023), the authors trained the 
DeNN using 25 domains that featured randomised object counts, object sizes and domain sizes. 
The developed tool can therefore be applied to any domain provided that the inputs associated 
to a new problem fall within the bounds of the original training dataset. This includes a requirement 
for all POIs to have an elevation, and minimum clear distance from the charge, of 1.5m. 

Figure 5 provides a comparison of two models that conform to these requirements when modelled 
using the numerical solver Viper::Blast and the DeNN. 

 

Figure 5. Peak overpressure comparison between the DeNN and Viper::Blast. White regions 
indicate points without a prediction due to being within a rigid obstacle, or the 1.5m exclusion 

zone around the charge. 

Domain MAE (kPa) Young’s correlation, 𝑹𝒕𝟐 Average percentage error (%) 

A 3.05 0.9970 9.4 

B 3.76 0.9965 13.4 

 
Table 2. DeNN performance statistics following a comparison with Viper::Blast. 

It is shown that the DeNN is able to qualitatively, and quantitatively, capture the distribution of 
peak overpressure for two unseen domains with sizes and obstacle locations that were not 
included in the development of the tool. The performance statistics shown in Table 2 prove that 
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this approach is capable of providing useful results in analyses the evaluation of large batches of 
domains with relative errors below 15%. 

 

 

Figure 6. Comparison between how the input pattern is formed for two nominally identical points 
for a Cartesian structured NN versus the DeNN. 
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Comparison with previous approach 

As mentioned previously, use of Cartesian coordinates for inputs to a ML tool that aims to model 
an obstructed/internal environment limits is application to scenarios that respect the same user-
defined origin. The understanding of the relationship between the charge and POI positions is 
dependent on this fixed location and so obstacles must also remain in the same positions relative 
to this point. The DeNN averts these issues by receiving inputs that are relative to the POI itself, 
meaning the surroundings can change without preventing the tool from being applied. 

Figure 6 provides a simple example of this to highlight the robust nature of the feature set used 
by the DeNN, where two POIs should be predicted with equal overpressures. Considering how 
points A and B are translated to the respective ML models, it is shown that use of Cartesian 
coordinates produces differing input patterns whereas the DeNN (with 8 directional inputs shown 
for clarity) provides consistent inputs to ensure equal predictions. 

 

 
 

Figure 7. Comparison between an ANN that uses Cartesian inputs and the Direction-encoded 
Neural Network, using inputs that are relative to the POI and the charge. 
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the overall topology of the output value, instead of the mechanics of the blast wave and the 
interaction effects that will alter its magnitude. 

Considering the benefit of the DeNN in terms of the development of FREMs, Figure 7 presents a 
comparison of the workflows that would be required when using an approach similar to the one 
explored by Dennis et al. (2021) and the DeNN. Using the former approach, a new dataset would 
have to be developed for each new application of the ML tool, while the generalised approach 
taken with the DeNN enables its use in a wider range of studies. 

Conclusion 

To conclude, it is well established that Machine Learning (ML) tools are capable of understanding 
the effects caused by the detonation of various explosive materials in a range of scenarios. Many 
studies that focus on this topic produce models with very good accuracy and low computation 
times, yet the versatility of the tool is rarely discussed.  

For predictions in obstructed/internal environments, previous work has relied on globally 
referenced inputs that prevent the developed model from being used if the domain layout is 
required to change. The models are required to understand how the topology of the parameter 
space changes relative to fixed global parameters, as opposed to learning about the blast wave 
and its interactions directly. It was shown that a change to the prediction domain would require 
an entirely new model to be developed, necessitating the collection of more training data that is 
often costly in terms of computation time. 

The Direction-encoded Neural Network (DeNN) therefore predicts peak overpressure based on 
the path that the blast wave has to take to reach the POI, in addition to the surrounding rigid 
reflecting surfaces that create coalescence effects (Dennis and Rigby, 2023). This results in the 
development of a robust model that can evaluate domains of any shape and size, with movable 
obstacles and charges. The approach acts as an example of how novel feature engineering can 
improve the versatility of ML tools that can ultimately be used in probabilistic studies where 
various domain parameters are required to change during the assessment of any given threat. 
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