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Abstract
A device-independent randomness expansion (DIRE) protocol aims to take an initial random
string and generate a longer one, where the security of the protocol does not rely on knowing the
inner workings of the devices used to run it. In order to do so, the protocol tests that the devices
violate a Bell inequality and one then needs to bound the amount of extractable randomness in
terms of the observed violation. The entropy accumulation theorem lower bounds the extractable
randomness of a protocol with many rounds in terms of the single-round von Neumann entropy of
any strategy achieving the observed score. Tight bounds on the von Neumann entropy are known
for the one-sided randomness (i.e. where the randomness from only one party is used) when using
the Clauser–Horne–Shimony–Holt game. Here we investigate the possible improvement that could
be gained using the two-sided randomness. We generate upper bounds on this randomness by
attempting to find the optimal eavesdropping strategy, providing analytic formulae in two cases.
We additionally compute lower bounds that outperform previous ones and can be made arbitrarily
tight (at the expense of more computation time). These bounds get close to our upper bounds, and
hence we conjecture that our upper bounds are tight. We also consider a modified protocol in
which the input randomness is recycled. This modified protocol shows the possibility of rate gains
of several orders of magnitude based on recent experimental parameters, making DIRE
significantly more practical. It also enables the locality loophole to be closed while expanding
randomness in a way that typical spot-checking protocols do not.

1. Introduction

Random numbers have a wide variety of uses. In some applications, only the distribution of the random
numbers matters, while in others it is important that the generated numbers are also private, for instance
when used for cryptography. According to our current understanding of physics, generating fundamentally
random numbers requires quantum processes. While it is easy to come up with a quantum process that can
in theory generate random numbers, given a candidate quantum random number generator, verifying that it
is indeed generating random numbers and at what rate is a difficult task that usually requires detailed
understanding of the physical device. Any mismatch between the model of the device used in the security
proof and the real device could in principle be exploited by an adversary.

Device-independent protocols aim to circumvent the mismatch problem by designing the protocol to
abort unless the devices used are performing sufficiently well, and without needing to know the internal
mechanism by which they operate. In the context of device-independent randomness expansion (DIRE) the
main idea is that the ability to violate a Bell inequality implies that the devices doing so must be generating
randomness [1, 2]. Thus, in a sense, the protocol self-tests [3] the devices during its operation, leading to
enhanced security. Although challenging to accomplish, recently the first experimental demonstrations of
DIRE were performed [4–6], following earlier experiments considering randomness generation [7–9]. On
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the theoretical side, an increasingly sophisticated series of proofs [10–12] led to the current state of the
art [13, 14]. In this work we consider the proofs based on the entropy accumulation theorem [15, 16], which
establishes a lower bound on the amount of randomness after many Bell tests in terms of the von Neumann
entropy of a single round achieving the observed score (see appendix E for a precise statement). Bounds on
the von Neumann entropy will hence be a focus of this work.

In a DIRE protocol, randomly chosen inputs are made to two separated devices in such a way that each
device cannot learn the input chosen by the other. We use X and Y to label the inputs and A and B to label
the outputs, and consider an adversary with side information E. This side information could be quantum,
i.e. the general strategy has an adversary hold the E part of a state ρA ′B ′E where the A′ and B′ systems are held
by the devices. Each input X to the first device corresponds to a measurement on A′ giving outcome A and,
analogously, for each input Y to the other device there is a corresponding measurement on B′ with outcome
B. There are two quantities of interest, both of which depend on the post-measurement state: the first is the
score in some non-local game, which is a function of the conditional distribution pAB|XY; the second is the
von Neumann entropy of either one or both of the outputs. More precisely, we want to express the minimum
von Neumann entropy as a function of the score. In this work we study six such von Neumann entropies:
H(AB|X= 0,Y= 0,E), H(AB|XYE), H(AB|E), H(A|X= 0,Y= 0,E), H(A|XYE) and H(A|E).1

The difficulty in bounding these stems from the fact that a priori there is no upper bound on the
dimension of the systems A′, B′ and E that need to be considered. For instance, for some Bell inequalities it is
known that the maximum quantum violation cannot be achieved if A′ and B′ are finite dimensional [17],
and there is evidence that this is true even in the case where X and Y are binary and where A and B have three
possible values [18]. However, in the case where A, B, X and Y are all binary, Jordan’s lemma [19] implies
that there is no loss in generality in considering a convex combination of strategies in which A′ and B′ are
two-dimensional. This observation was used to give a tight analytic lower bound on H(A|X= 0,Y= 0,E) in
terms of the Clauser–Horne–Shimony–Holt (CHSH) score [20] and is also crucial for the present work. This
analytic bound was also extended to a family of CHSH-like inequalities in [21]. As well as Jordan’s lemma,
such bounds rely on a series of additional simplifications. In cases where such simplifications do not hold,
alternative ways to lower bound the single-round von Neumann entropy are needed. One way is to bound it
using the single-round min entropy, which can be optimized at a particular level of the semi-definite
hierarchy [22]. Although this method can generate numerically certified lower bounds for arbitrary
protocols [23], there is a significant loss in tightness when moving to the single-round min entropy. More
recent methods give tighter computational bounds on the von Neumann entropy [24–26]. Forming more
direct and tighter bounds is a key open problem in the field of device-independence and useful for increasing
the practicality of device-independent tasks.

We discuss when each of the six entropic quantities is of most interest in section 2. In summary, the
one-sided entropies are most-relevant in the context of device independent quantum key distribution
(DIQKD), while using both outputs is useful for DIRE. The quantities that are conditioned on X= 0 and
Y = 0 are useful for spot-checking protocols in which particular fixed measurements (taken here to be the
X= 0 and Y = 0 measurements) are used to generate randomness/key, and where the other measurements
are used only rarely to check that the devices are behaving honestly. The quantities conditioned on X and Y
are useful for analysing protocols in which the generation rounds involve multiple settings, where the input
randomness is recycled, and can also be used to close the locality loophole in randomness generation. The
remaining quantities, H(AB|E) and H(A|E), tell us something about the fundamental randomness based on
the Bell violation, and the second of these can be useful for DIQKD protocols in which the measurement
settings in the generation rounds are chosen randomly and to which an adversary, Eve, does not have access.

In section 3 we discuss the computation of the von Neumann entropy bounds before giving numerically
generated upper bound curves for each of the six quantities when using the CHSH game as the Bell test in
section 4. For H(A|XYE) and H(AB|XYE) we additionally give conjectured analytic forms for the curves. We
also compute lower bounds in the cases of H(A|XYE) and H(AB|X= 0,Y= 0,E) that are tighter than those
previously known and in principle converge to these quantities by increasing the accuracy of the
computation. We use our bounds with the EAT to show how the potential improvement carries over to finite
statistics. To do so, in section 5 we consider not only the usual spot-checking type protocol, but also modified
protocols. The first modification is to replace the spot-check with a biased random number generator, and
the second is to remove the biasing while recycling the input randomness in order to still enable expansion.
Taking the experimental conditions from [6], using the two sided randomness and randomness recycling
gives a rate increase of several orders of magnitude with our new bounds.

1 In the one sided cases, conditioning on Y is irrelevant, but we keep this for notational symmetry.
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2. The significance of various entropic quantities

In this section we discuss the significance of the six entropic quantities given above in the context of DIRE,
noting that the one-sided quantities are also useful for DIQKD. To do so we first describe the general
structure of the raw randomness generation part of a spot-checking and non-spot-checking DIRE protocol.
A more complete description of the protocols is in section 5.

In a protocol without spot-checking, there are two untrusted devices, and in every round their inputs Xi

and Yi are generated according to some distribution pXY . Often two independent random number generators
are used for this, so that pXY = pXpY. The generated numbers are used as inputs to the devices, which return
two outputs Ai and Bi respectively. This is repeated for n rounds generating the raw randomness A, B, where
the bold font denotes the concatenation of all the outputs.

In a spot-checking protocol there is an additional step in which each round is declared to be either a test
round (Ti = 1) or a generation round (Ti = 0), where test rounds occur with probability γ, which is
typically small. On test rounds Xi and Yi are generated according to some distributions pXY . On generation
rounds, Xi and Yi are set according to some other distribution—in this work we use the deterministic
distribution Xi = Yi = 0. These are used as inputs to the devices, which return two outputs Ai and Bi

respectively. The rationale behind using a spot-checking protocol is that randomness is required to perform a
Bell test and it is desirable to be able to run the protocol with a smaller requirement on the amount of input
randomness required. Choosing whether to test or not requires roughly Hbin(γ) bits of randomness per
round2, so choosing γ small enough leads to an overall saving. Furthermore, protocols often discard the
input randomness, in which case for many Bell tests spot-checking is necessary in order to achieve
expansion. In the CHSH game, for instance, if pXY is chosen uniformly, each test round requires 2 bits of
randomness, but the amount of two-sided randomness output by the quantum strategy with the highest
possible winning probability is only 1+Hbin(

1
2 (1+

1√
2
))≈ 1.60 bits. However, as we discuss later, the input

randomness need not be discarded.
In the case of small γ, almost every round is a generation round and hence an eavesdropper wishes to

guess the outputs for the inputs X= 0 and Y = 0. The entropy H(AB|X= 0,Y= 0,E) is thus the relevant
quantity for spot-checking DIRE protocols. The one-sided quantity H(A|X= 0,Y= 0,E) has often been
used instead because of the existing analytic bound for this [20, 21], but, because this ignores one of the
outputs, it is wasteful as an estimate of the generated randomness. For DIQKD protocols, on the other hand,
the one-sided entropy is the relevant quantity, since to make key Alice’s and Bob’s strings should match. We
also remark that these quantities can be useful bounds for protocols without spot-checking if the distribution
pXY is heavily biased towards X= Y= 0.

The quantities H(AB|XYE) and H(A|XYE) are useful for protocols without spot checking. One might
imagine, for example, using a source of public randomness, such as a randomness beacon to choose the
inputs to the protocol, in which case X and Y become known to the adversary (but are not known before the
devices are prepared). In this case, rather than being interested in randomness expansion, the task is to turn
public randomness into private randomness in a device-independent way. One can also use H(AB|XYE) and
H(A|XYE) in protocols when the input randomness is recycled. In this case we are really interested in
H(ABXY|E), but, because X and Y are chosen independently of E, this can be expanded as
H(XY)+H(AB|XYE). Hence H(AB|XYE) is the relevant quantity in this case as well. The one-sided quantity
H(A|XYE) could also be used for DIQKD without spot-checking.

In addition we consider the quantities H(AB|E) and H(A|E). The second of these could be useful for
QKD protocols in which the key generation rounds do not have a fixed input and where Alice and Bob do
not publicly reveal their measurement choices during the protocol. For instance, the sharing of these choices
could be encrypted using an initial key, analogously to a suggested defence against memory attacks [27].3

H(AB|E) would be a useful quantity for randomness generation in a protocol without spot-checking and in
which X and Y are kept private after running the protocol and not used in the overall output. When such
protocols are based on the CHSH inequality, they cannot allow expansion. These quantities can also be
thought of as quantifying the fundamental amount of randomness obtainable from a given Bell violation.
Although we have computed the graphs for H(AB|E) and H(A|E), existing versions of the EAT cannot be
directly applied to them—see appendix E.

2 Here Hbin denotes the binary entropy.
3 Note that such protocols would only be useful if more key is generated than is required, so the protocol we are thinking of here is really
quantum key expansion. Furthermore, the results presented in figure 1 show that the use of H(A|E) only gives a minor advantage over
H(A|XYE).
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3. Rates for CHSH-based protocols

We calculate various one sided and two sided rates for protocols based on the CHSH game, which involves
trying to violate the CHSH Bell inequality [28]. In this game, each party makes a binary input and receives a
binary output and the game is won if A⊕B= XY. We define the CHSH score by

1

4

(

∑

a

pAB|00(a,a)+
∑

a

pAB|01(a,a)+
∑

a

pAB|10(a,a)+
∑

a

pAB|11(a,a⊕ 1)

)

,

which is the probability of winning the CHSH game when the inputs are chosen at random4. Classical
strategies can win this game with probability at most 3/4, while quantum strategies can get as high as
1
2

(

1+ 1√
2

)

≈ 0.85. For a fixed CHSH game score, ω, we wish to compute the minimum von Neumann

entropy over all strategies achieving that score. In this context a strategy comprises three Hilbert spacesHA ′ ,
HB ′ andHE, POVMs {Ma|x}a onHA ′ for both x= 0 and x= 1, POVMs {Nb|y}b onHB ′ for both y= 0 and
y= 1, and a state ρA ′B ′E onHA ′ ⊗HB ′ ⊗HE. Given a strategy, and a distribution pXY there is an associated
channelN that acts on A ′B ′ and takes the state to the post-measurement state, i.e.

τABXYE = (N ⊗IE)(ρA′B′E) =
∑

abxy

pXY(x,y)|a〉〈a|A ⊗ |b〉〈b|B ⊗ |x〉〈x|X ⊗ |y〉〈y|Y

⊗ trA′B′

(

(Ma|x ⊗Nb|y ⊗1E)ρA′B′E

)

,

where IE is the identity channel on E. The entropic quantities we consider all pertain to this state5. Note also
that the score is a function of τ , which we denote S(τ)—in particular,
pAB|xy(a,b) = tr

(

(Ma|x ⊗Nb|y ⊗1E)ρA ′B ′E

)

.
For each of the six entropic quantities previously discussed we consider the infimum over all strategies

that achieve a given score. We use this to define a set of curves. We write FAB|XYE(ω,pXY) = infH(AB|XYE)τ ,
where the infimum is over all strategies for which S(τ) = ω. In the same way we define FAB|E(ω,pXY),
FA|XYE(ω,pXY) and FA|E(ω,pXY), replacing the objective function by the corresponding entropy. We also
define FAB|00E(ω) and FA|00E(ω) analogously, noting that these are independent of pXY . Furthermore, if we
write FAB|XYE(ω) etc (i.e. leaving out the pXY ), we refer to the case where pXY is uniform over X and Y. For a
more precise writing of these optimizations, see (B6).

We also consider a related set of functions GAB|XYE(ω,pXY), GAB|E(ω,pXY) etc that are defined analogously,
but while optimizing over a smaller set of allowed strategies. More precisely, the G functions are defined by
restrictingHA ′ andHB ′ to be two dimensional andHE to have dimension 4, taking ρA ′B ′E to be pure with
ρA ′B ′ diagonal in the Bell basis, and taking the POVMs to be projective measurements onto states of the form
cos(α)|0〉+ sin(α)|1〉 (see (C2)).

It turns out that FAB|00E(ω) = GAB|00E(ω), FA|00E(ω) = GA|00E(ω), and that in each of the other four cases
F is formed from G by taking the convex lower bound. The underlying reason for this is that Jordan’s
lemma [19] implies that in the case of Bell inequalities with two inputs and two outputs, any strategy is
equivalent to a convex combination of strategies in which A′ and B′ are qubit systems. This means that if we
solve the qubit case, the general case follows by taking the convex lower bound6. Such an argument was made
in [20] and we give the details in appendix B.

A note on notation: in this work we measure entropies in bits, taking log to represent the logarithm base
2, and ln for the natural logarithm where needed.

4. Numerically computing rates

The optimizations that define the G functions can be expressed in terms of 7 real parameters (3 to specify the
state and 4 to choose the measurements). They are hence amenable to numerical optimizations. We note also

4 Note that even if nonuniform distributions of inputs are used when running protocols, in this work the CHSH score is always defined
as here.
5 In the cases where we condition on X= 0 and Y = 0, we can project this state onto |0⟩⟨0|X ⊗ |0⟩⟨0|Y and renormalize—see appendix C
for more detail.
6 The convex lower bound is not needed in the cases where we condition on X= 0 and Y = 0 because G is already convex in these cases.
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Figure 1. Graphs of the rates for (a) the one-sided and (b) the two-sided randomness with uniformly chosen inputs. Each of these
curves has a non-linear part and the blue curves do not have a linear part.

that except in the cases GAB|E(ω,pXY) and GA|E(ω,pXY) we can remove an additional parameter. We discuss
simple ways to write the entropic expressions in appendix C.

4.1. Upper bounds
We obtain upper bounds by using numerical solvers that attempt to compute G (these give upper bounds
because the computations are not guaranteed to converge). Our program for computing G runs in N
iterations. In each iteration the program starts by making a random guess for the parameters from within the
valid range. It then uses sequential quadratic programming to minimize H̄((N ⊗IE)(ρA ′B ′E)) subject to the
CHSH score being fixed [here H̄ is a placeholder for one of the entropic quantities of interest]. On each
iteration, the program arrives at a candidate for the minimum value, and we run N≈ 104 iterations to arrive
at the conjectured minimum value for H̄((N ⊗IE)(ρA ′B ′E)). The numerical optimization is performed in
Python using the sequential least squares programming solver in SciPy. The curves obtained were found to
match those generated by solving numerically in MATHEMATICA.

Since these optimizations are not guaranteed to converge, the generated curves are upper bounds on the
infima. Some confidence of their tightness comes from the smoothness of the curves, the consistency across
different numerical solvers, and that the generated points match the known analytic tight bound in the case
H(A|X= 0,Y= 0,E). They also closely match the numerical lower bounds we computed for GA|XYE and
GAB|X=0,Y=0,E discussed in section 4.2.

GAB|00E and GA|00E are convex functions, and hence F=G for these. For the other cases we generate the
graphs in the case where pXY is uniform, observing that each of the G curves starts with a concave part and
switches to convex for larger CHSH scores. Since the minimum entropy is always zero for classical scores,
each of the G curves approach 0 as ω approaches 3/4. Each of the F curves can be found from G by finding
the tangent to G that passes through (3/4,0). We call the score at which this tangent is taken ω∗, defined by
(ω∗ − 3/4)G ′(ω∗) = G(ω∗). We then have

F(ω) =

{

G ′(ω∗)(ω− 3
4 ) if ω ⩽ ω∗

G(ω) otherwise
. (1)

We give estimates for ω∗ for each of the cases below. In essence, what this means is that for ω < ω∗ the
optimal strategy for Eve is to either use a deterministic classical strategy with score 3/4 or a strategy that
achieves score ω∗, mixing these such that the average score is ω. Eve can remember which strategy she used,
and hence the entropy from her perspective is also the convex mixture of the entropies of the endpoints.

Figure 1 shows the curves we obtained for the functions F in each of the six cases. Note that, except in the
cases where we condition on X= 0 and Y = 0, the graphs all have linear sections as a result of taking the

5



New J. Phys. 25 (2023) 093035 R Bhavsar et al

convex lower bound. In appendix A we show the graphs for G together with those for F. The approximate
coordinate of the top of the linear segment for FAB|E is (0.8523,1.8735) and for FA|E it is (0.8505,0.967).

Note also that 1+Hbin

(

1
2 +

1√
32

)

≈ 1.908 is the maximum value on the graph FAB|E(ω).

By examining the parameters that come out of the numerical optimizations we have the following.

Lemma 1. Consider the curve g1(ω) = 1+Hbin(ω)− 2Hbin(
1
2 +

2ω−1√
2
). FAB|XYE(ω) can be upper bounded in

terms of g1 as follows

FAB|XYE(ω)⩽







g1(ω) ω∗
AB|XYE ⩽ ω ⩽ 1

2

(

1+ 1√
2

)

g ′1(ω
∗
AB|XYE)(ω− 3/4) 3/4⩽ ω ⩽ ω∗

AB|XYE
. (2)

where ω∗
AB|XYE ≈ 0.84403 is the solution to g ′1(ω)(ω− 3/4) = g1(ω). Note that g1(ω∗

AB|XYE)≈ 1.4186 and the

maximum value reached is 1+Hbin(1/2+ 1/(2
√
2))≈ 1.601.

Proof. We first consider an upper bound on GAB|XYE(ω). In appendix C we give a parameterization of a two-
qubit state (with parameters R, θ and δ) and measurements (with parameters α0, α1, β0 and β1) before com-
puting an expression forH(AB|XYE) in terms of these (cf (C77)). We also obtain an expression for the CHSH
score (cf (C15)). ChoosingR=

√
2(2ω− 1), θ= 0, δ = R2/4,α0 = 0,α1 = π/4,β0 = π/8,β1 =−π/8we find

a score ω, and calculating H(AB|XYE) we obtain H(AB|XYE) = g1(ω) and hence GAB|XYE(ω)⩽ g1(ω). Since,
GAB|XYE(3/4) = 0, and FAB|XYE is formed from GAB|XYE by taking the convex lower bound, we establish the
claim.

Lemma 2. Consider the curve g2(ω) = 1−Hbin

(

1
2 +

2ω−1√
2

)

. FA|XYE(ω) is upper bounded by the convex lower

bound of g2(ω). In other words,

FA|XYE(ω)⩽







g2(ω) ω∗
A|XYE ⩽ ω ⩽ 1

2

(

1+ 1√
2

)

g ′2(ω
∗
A|XYE)(ω− 3/4) 3/4⩽ ω ⩽ ω∗

A|XYE
. (3)

where ω∗
A|XYE ≈ 0.846 98 is the solution to g ′2(ω)(ω− 3/4) = g2(ω). Note that g2(ω∗

A|XYE)≈ 0.923 94.

Proof. The proof is the same as for lemma 1, except that g1 is replaced by g2—the choice of state and meas-
urements remains the same.

4.2. Lower bounds
Lemma 2 gives an upper bound on the one-sided randomness using an explicit strategy. However, for
security proofs a lower bound is needed. We compute such lower bounds for GA|XYE and GAB|X=0,Y=0,E. The
relevant computations can be found in appendices C.2 and C.5.3 (corollary 4 and lemma 32) and are
displayed in figure 2 alongside the upper bounds and a lower bound from [26].

The idea is behind our lower bounds is as follows. We first show that for every fixed value of ω the
functions GA|XYE(ω) and GAB|X=0,Y=0,E(ω) can each be expressed as a minimization over 3 real parameters.
For fixed ω we compute the values of the objective function on a grid of points comprising these parameters.
By bounding the derivative of the objective function within the cuboids generated by the grid we establish a
lower bound on the function over the possible parameters. The lower bound we generate can in principle be
made arbitrarily good by decreasing the grid spacing (at the expense of taking more time to evaluate).

Given lower bounds on GA|XYE(ω) and GAB|X=0,Y=0,E(ω) for a finite set of values of ω, we can get lower
bounds for all values of ω by using that the G functions are monotonically increasing in ω, so we have
G(ω)⩽ G(ω− ν), where ν is the spacing between the finite set of values of ω. Hence, we consider forming
lower bounds as above for a set of valuesW = {ω1,ω2, . . .} in the range (3/4,(1/2)(1+(1/2)1/2)]. We can
then consider the points {(ω1,0),(ω2,G(ω1)),(ω3,G(ω2)), . . .}, i.e. where each is shifted one place. Taking
the convex lower bound of these shifted points gives a convex lower bound for GA|XYE and GAB|X=0,Y=0,E. By
taking more points in the setW tighter lower bounds can be obtained.

Lower bounds generated in this way are shown in figure 2, and can be seen to be close to the upper
bounds. In figure 2(b) we also compare with a lower bound on GAB|X=0,Y=0,E from [26]. The lower bounds
from our technique can be improved by refining the partition of the domain at the expense of increasing the
computational time required. As seen in figure 2(b), refining the partition moves the lower bound closer to
the upper bound, leading us to the following conjecture.

6
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Figure 2. Graphs of the conjectured rates and lower bounds for (a) GA|XYE (b) GAB|X=0,Y=0,E with uniformly chosen inputs. For
GAB|X=0,Y=0,E we also show a lower bound from Brown et al [26]. We also demonstrate that the lower bound for GAB|X=0,Y=0,E
can be tightened by refining the partitioning of the domain for a specific point (due to the increased computation time, we did
not do this throughout).

Conjecture 1. The upper bounds in lemmas 1 and 2 are tight.

One technique for generating finite key rates is to use so-called min-tradeoff functions, which are affine
lower bounds on the von Neumann entropy (see appendix E and [15, 16]). Based on an experimental setup,
an affine lower bound on GAB|X=0,Y=0,E can be generated at the value of ω corresponding to that obtainable
in the experiment, hence a refined partition can be used, based only on values of ω close to the experimental
value.

5. Protocols for randomness expansion

In this section we discuss CHSH-based protocols for DIRE of both the spot-checking and non spot-checking
types. We pick specific protocols for concreteness, but there are many possible variations. For instance, the
protocols we discuss condense the observed statistics to a single score, but this is not necessary, and in some
cases and for some sets of experimental conditions it can be advantageous to use multiple scores [23, 29].

Before getting to the protocols, we first describe the setup, assumptions and security definition. Although
DIRE requires no assumptions on how the devices used operate, the setup for DIRE involves a user who
performs the protocol within a secure laboratory, from which information cannot leak. Individual devices
can also be isolated within their own sub-laboratory and the user can ensure that these devices only learn the
information necessary for the protocol (in particular, they cannot learn any inputs given to other devices).
The user has access to a trusted classical computer and an initial source (or sources) of trusted randomness.

The quantum devices used for the protocol are only limited by the laws of quantum theory and may share
arbitrary entanglement with each other and with an adversary. However, they cannot communicate with
each other, or to the adversary after the protocol starts. Furthermore, we assume they are kept isolated after
the protocol (cf the discussion in appendix F).

For security of the protocols, we use a composable security definition. Consider a protocol with output Z
and use Ω to denote the event that it does not abort. The protocol is (ϵS, ϵC)-secure if

(1) 1
2pΩ||ρZE|Ω − 1

dZ
1Z ⊗ ρE|Ω||1 ⩽ ϵS, where E represents all the systems held by an adversary and dZ is the

dimension of system Z; and
(2) There exists a quantum strategy such that pΩ ⩾ 1− ϵC.

Here ϵS is called the soundness error, and ϵC is the completeness error.

5.1. CHSH-based spot-checking protocol for randomness expansion
We now describe a spot-checking protocol for randomness expansion. It uses a central biased random
number generator RT and two other random number generators, RA and RB that are near each of the devices
used to run the protocol.

7
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Protocol 1 (Spot-checking protocol).
Parameters:

n—number of rounds
γ—test probability
ωexp—expected CHSH score
δ—confidence width for the score

(1) Set i= 1 for the first round, or increase i by 1.
(2) Use RT to choose Ti ∈ {0,1} where Ti = 1 occurs with probability γ.
(3) If Ti = 1 (test round), RA is used to choose Xi uniformly, which is input to one device giving output Ai.

Likewise RB is used to choose Yi uniformly, which is input to the other device giving output Bi. SetUi = 1
if Ai ⊕Bi = XiYi and Ui = 0 otherwise.

(4) If Ti = 0 (generation round), the devices are given inputs Xi = Yi = 0, and return the outputs Ai and Bi.
Set Ui =⊥.

(5) Return to Step 1 unless i= n.
(6) Calculate the number of rounds in which Ui = 0 occurred, and abort the protocol if this is larger than

nγ(1−ωexp + δ).
(7) Process the concatenation of all the outputs with a quantum-proof strong extractor Ext to yield Ext(AB,R),

where R is a random seed for the extractor. Since a strong extractor is used, the final outcome can be taken
to be the concatenation of R and Ext(AB,R).

There are a few important points to take into account when running the protocol. Firstly, it is crucial that
each device only learns its own input and not the value of the other input, or of Ti. If this is not satisfied it is
easy for devices to pass the protocol without generating randomness. Secondly, for implementations in
which devices can fail to record outcomes when they should, it is important to close the detection loophole,
which can be done by assigning an outcome, say 0, when a device fails to make a
detection and otherwise using the same protocol.

In order to run the protocol, some initial randomness is needed to choose which rounds are test rounds,
to choose the inputs in the test rounds and to seed the extractor. Since the extractor randomness forms part
of the final output, it is not consumed in the protocol, so for considering the rate at which the protocol
consumes randomness we can work out the amount of uniform randomness needed to supply the inputs.
Using the rounded interval algorithm [30] to make the biased random number generator,
n(Hbin(γ)+ 2γ)+ 3 is the expected amount of input randomness required. To achieve expansion the
number of output bits must be greater than this. We use the entropy accumulation theorem (EAT) to lower
bound the amount of output randomness. Asymptotically the relevant quantity is H(AB|X= 0,Y= 0,E).
The quantity H(A|X= 0,Y= 0,E) acts as a lower bound for this, and can be used in its place if convenient,
for instance in analyses that are more straightforward with an analytic curve.

5.2. CHSH-based protocols without spot-checking
In this section we discuss two such protocols. Protocol 2 uses two biased local random number generators to
choose the inputs on each round. Protocol 3 eliminates the bias, but also recycles the input randomness.
Recycling the input randomness is necessary when unbiased random number generators are used, since
otherwise more randomness is required to run the protocol than is generated. Protocol 3 gives the highest
randomness generation rate of all the protocols we discuss.

Protocol 2 (Protocol with biased local random number generators).
Parameters:

n—number of rounds
ζA—probability of 1 for random number generator RA (taken to be below 1/2)
ζB—probability of 1 for random number generator RB (taken to be below 1/2)
ωexp—expected CHSH score.
δ—confidence widths for each score.

(1) Set i= 1 for the first round, or increase i by 1.
(2) Use RA to choose Xi ∈ {0,1}, which is input to one of the devices giving output Ai ∈ {0,1}. Likewise

use RB to generate Yi ∈ {0,1}, which is input to the other device giving output Bi ∈ {0,1}. Here Xi = 1
occurs with probability ζA and Yi = 1 occurs with probability ζB. SetUi = (Xi,Yi,1) if Ai ⊕Bi = XiYi and
Ui = (Xi,Yi,0) otherwise.

(3) Return to Step 1 unless i= n.
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(4) Compute the value

ω =
1

4

∑

x,y

|{i : Ui = (x,y,1)}|
npX(x)pY(y)

(4)

and abort the protocol if ω < ωexp − δ. Here pX(1) = ζA, pX(0) = 1− ζA, pY(1) = ζB and pY(0) = 1− ζB.
(5) Process the concatenation of all the outputs with a quantum-proof strong extractor Ext to yield Ext(AB,R),

where R is a random seed for the extractor. Since a strong extractor is used, the final outcome can be taken
to be the concatenation of R and Ext(AB,R).

Note that the quantity |{i : Ui = (x,y,1)}|/(npX(x)pY(y)) in (4) is an estimate of the probability of
winning the CHSH game for inputs X= x and Y = y, and hence the ω computed in Step (4) is an estimate of
the CHSH value that would be observed if the same setup was used but with X and Y chosen uniformly.

The input randomness required per round in this protocol is roughly Hbin(ζ
A)+Hbin(ζ

B). To quantify
the amount of output randomness (before randomness extraction is performed), in the asymptotic limit
similar to the spot checking protocol, the relevant operational quantity is the von Neumann entropy
H(AB|XYE). Expansion hence cannot be achieved if H(AB|XYE)−Hbin(ζ

A)−Hbin(ζ
B)< 0, which places

constraints on the pairs of possible (ζA, ζB). For ζA and ζB smaller than 1/2, the quantity
H(AB|XYE)−Hbin(ζ

A)−Hbin(ζ
B) increases as ζA and ζB decrease, and hence we want to take these to be

small. They only need to be large enough to ensure that X= 1,Y= 1 occurs often enough to give a good
estimate of the empirical score.

Since

H(AB|XYE) =
∑

xy

pXY(x,y)H(AB|XYE)

⩾min
x,y

H(AB|X= x,Y= y,E) (5)

we can use the bounds formed for H(AB|X= 0,Y= 0,E) instead7, albeit with a loss of entropy (this loss of
entropy is small if ζA and ζB are small).

One reason for using protocol 2 rather than protocol 1 is that the former enables the locality loophole to
be closed while expanding randomness. In order to perform the Bell tests as part of a device-independent
protocol we need to make inputs to two devices in such a way that neither device knows the input of the
other. One way to ensure this is by using independent random number generators on each side of the
experiment, and ensuring the outcome of each device is given at space-like separation from the production
of the random input to the other. Although space-like separation can provide a guarantee (within the laws of
physics) that each device does not know the input of the other8, in a cryptographic setting it is necessary to
assume a secure laboratory to prevents any unwanted information leaking from inside the lab to an
eavesdropper. The same mechanism by which the lab is shielded from the outside world can be used to shield
devices in the lab from one another and hence can prevent communication between the two devices during
the protocol. However, although unnecessary for cryptographic purposes, it is interesting to consider closing
the locality loophole while expanding randomness.

This is not possible in a typical spot-checking protocol, where a central random number generator is
used to decide whether a round is a test round or not. Considering protocol 1, the locality loophole can be
readily closed during the test rounds, but the use of the central random number generator means that, if one
is worried that hidden communication channels are being exploited, there is a loophole that the devices
could behave differently on test rounds and generation rounds. For instance, measurement devices that know
whether a round is a test or generation round could supply pre-programmed outputs in generation rounds,
while behaving honestly in test rounds. Thus, spot-checking protocols do not enable fully closing the locality
loophole while expanding randomness.

When using protocol 2 with ζA = ζB = ζ , the main difference to protocol 1 is that the distribution of X
and Y is ((1− ζ)2, ζ(1− ζ), ζ(1− ζ), ζ2) rather than (1− 3γ/4,γ/4,γ/4,γ/4). In the analysis this manifests
itself in the statistics, and the much lower probability of X= 1,Y= 1 requires an adjustment of δ to achieve
the same error parameters for the protocol. A comparison between the output rates for protocols 1 and 2 is
shown in figures 3 and 4.

7 There is nothing special about the choice X= 0 and Y = 0 when computing the bounds for H(AB|X= 0,Y= 0,E).
8 Provided we have a reasonable way to give a time before which the output of RA and RB did not exist.
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Figure 3. Graphs of the net rate of certifiable randomness according to the EAT for (a) the spot checking protocol (protocol 1),
(b) the protocol with recycled input randomness (protocol 3), and (c) the protocol with biased local random number generators
(protocol 2), showing the variation with the number of rounds for three different scores, ω. The error parameters used were
ϵS = 3.09× 10−12 and ϵC = 10−6. For each point on the curve (a) an optimization over γ was performed to maximize the
randomness; similarly, the values of ζA = ζB were optimized over to generate the curves in (c).

Protocol 3 (Protocol with recycled input randomness).
Parameters:

n—number of rounds
ωexp—expected CHSH score.
δ—confidence width.

(1) Set i= 1 for the first round, or increase i by 1.
(2) UseRA to chooseXi ∈ {0,1} uniformly, serving as the input to one of the devices giving outputAi ∈ {0,1}.

Likewise use RB to generate Yi ∈ {0,1} uniformly, which is input to the other device giving output Bi ∈
{0,1}. Set Ui = 1 if Ai ⊕Bi = XiYi and Ui = 0 otherwise.

(3) Return to step 1 unless i= n.
(4) Count the number of rounds for whichUi = 0 occurred and abort the protocol if this is above n(1−ωexp +

δ).
(5) Process the concatenation of all the inputs and outputs with a quantum-proof strong extractor Ext to

yield Ext(ABXY,R), where R is a random seed for the extractor. Since a strong extractor is used, the final
outcome can be taken to be the concatenation of R and Ext(ABXY,R).

An important difference in this protocol compared to protocols 1 and 2 is in the extraction step, which
now extracts randomness from the input strings X and Y as well as the outputs. Without recycling the inputs
expansion would not be possible in protocol 3. With the modification the relevant quantity to decide the
length of the output is H(ABXY|E), and so H(AB|XYE) =H(ABXY|E)−H(XY) =H(ABXY|E)− 2 is the
relevant quantity for calculating the rate of expansion. Note that in order to reuse the input in a composable
way, it also needs to be run through an extractor [2] (for a discussion of why it is important to do so and a
few more composability-related issues, see appendix F).

We could also consider an adaptation of protocol 1 in which the input randomness is recycled, forming
protocol 1 ′ from protocol 1 by replacing step (7) by

(7′) Process the concatenation of all the inputs and outputs with a quantum-proof strong extractor Ext to
yield Ext(ABXY,R), where R is a random seed for the extractor. Since a strong extractor is used, the
final outcome can be taken to be the concatenation of R and Ext(ABXY,R).

In this case, as the number of rounds, n, increases the advantage gained by this modification decreases,
becoming negligible asymptotically. This is because as n increases, the value of γ required to give the same
overall security tends to zero, and hence the amount of input randomness required becomes negligible. Note
that recycling the input randomness in protocol 2 in the case where ζA = ζB = 1/2 is equivalent to protocol 3.

Like protocol 2, protocol 3 also allows the locality loophole to be closed if on each round i, the random
choice Xi is space-like separated from the output Bi and the random choice Yi is space-like separated from
the output Ai.

In each of the protocols, the parameter δ should be chosen depending on the desired completeness error.
For the spot-checking protocol, the relation between the two is discussed in [6, Supplementary Information
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Figure 4. Graphs of the net rate of certifiable randomness according to the EAT for (a) the spot checking protocol (protocol 1),
(b) the protocol with recycled input randomness (protocol 3), and (c) the protocol with biased local random number generators
(protocol 2), showing the variation with the CHSH score ω. The round numbers, n, are indicated in the legend. The error
parameters used were ϵS = 3.09× 10−12 and ϵC = 10−6. As in figure 3, the values of γ (for (a)) and ζA = ζB (for (c)) were
optimized over for each point.

I D]. The analysis there can be applied to the protocol with recycled input randomness by setting γ= 1 and
the protocol with biased local random number generators is discussed in appendix E.3.2. The chosen
soundness error affects the length of the extractor output, and, if chosen too small the output length becomes
zero (see appendix E for further discussion).

Figures 3 and 4 show how the amount of certifiable randomness varies with the score, ω, and round
number, n. Note that in the cases where the rate curves of figure 1 have linear sections, they are linear for
most of their ranges. Extending the linear part to the full range of quantum scores makes it easier to use the
EAT while only resulting in a small drop in rate for scores close to the maximum quantum value. Note that,
as mentioned above, strictly the numerical curves we gave for the von Neumann entropy are upper bounds;
the curves in figures 3 and 4 are generated under the assumption that these upper bounds are tight. [In the
case of the spot-checking protocol (protocol 1) we could use our lower bound instead. This would result in a
small down-shifting of the curves, but mean that the bounds are provably reliable.]

To demonstrate the increased practicality of the two-sided curves, we use the parameters from a recent
experiment [6] with protocol 1. There a score of just over 0.752 was obtained, for which it would require
about 9× 1010 rounds to achieve expansion using protocol 1 with γ = 3.383× 10−4, ϵS = 3.09× 10−12,
ϵC = 10−6 and taking the one-sided randomness [6]. Using protocol 3 instead, and taking the two-sided
randomness for the same score and error parameters (assuming conjecture 1 holds) allows expansion for
n≳ 8× 107, significantly increasing the practicality. For instance, the main experiment of [6] was based on a
spot-checking protocol and took 19.2 hours; the use of protocol 3 instead would allow the same amount of
expansion in about 60 seconds (this time holds under the assumption that the same repetition rate of the
experiment can be met in the non-spot checking protocol9). Protocol 2, however, produces lower
randomness rates compared to the spot-checking protocol. This is partly because more input randomness is
required, and also because the completeness error has a worse behaviour. Protocol 2 is hence useful when
inputs are not recycled and when closing the locality loophole is desirable.

When discussing randomness expansion we have considered the figure of merit to be the amount of
expansion per entangled pair shared. An alternative figure of merit is the ratio of the final randomness to the
initial randomness, i.e. here we are considering how much randomness we can get from a given amount of
initial randomness. For the latter figure of merit, protocol 3 is no longer optimal, since the amount of
expansion cannot exceed the amount of input randomness. For the other two protocols the ratio of output
randomness to input randomness can be made much higher by taking either γ or ζAζB to be small.

6. Discussion

In this paper, we have given numerical bounds on various conditional von Neumann entropies that are
relevant for CHSH-based device-independent protocols and discussed when each can be applied. We have
investigated their implications using explicit protocols, comparing the finite statistics rates using the EAT,

9 In some experiments, the rate at which we can switch between the twomeasurements is relatively slow, and hence when using protocol 3,
where switching is required on most rounds, the switching rate dominates, slightly increasing the time.
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showing use of two-sided randomness has the potential to make a big difference. We also looked at protocols
beyond the usual spot checking type. The first removes the spot checking to allow expansion while closing
the locality loophole, and the second recycles the input randomness, so allowing expansion while performing
a CHSH test on every round.

It remains an open question to find an analytic form for FAB|X=0,Y=0,E, FA|E and FAB|E. Since the curves
FA|E and FAB|E are linear for all but the very highest (experimentally least achievable) scores, in these cases
not much is lost by extending the line to all scores forming a lower bound that tightly covers all of the
experimentally relevant cases. On the other hand FAB|X=0,Y=0,E is a convex curve throughout and hence a
tight analytic form would be particularly useful in this case. Our initial analysis suggests that form of the
parameters achieving the optima for these is sufficiently complicated that any analytic expression would not
be compact. A reasonably tight analytic lower bound for FAB|X=0,Y=0,E could also be useful for theoretical
analysis. Note also that the bound FA|E ⩾ FA|XYE appears to be fairly tight (see figure 1(a)) so the analytic
form for FA|XYE can be used to bound FA|E with little loss. Another open problem is to find a concrete
scenario in which FAB|E is directly useful.

The use of Jordan’s lemma in this work prevents the techniques used being extended to general protocols,
and finding improved ways to bound the conditional von Neumann entropy numerically in general cases
remains of interest. For example, protocols that use three inputs for one party can allow up to 2 bits of
randomness per entangled pair (see, e.g. [23]), and a way to tightly lower bound the von Neumann entropy
in this case would further ease the experimental burden required to demonstrate DIQKD in the lab.
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Additional note

While completing this work a new paper appeared [31], which also found numerical curves for H(A|XYE)
and used them with some new protocols to generate improved rates for DIQKD.

Appendix A. Additional graphs

Figure 5(a) gives the graphs of FAB|XYE(ω) and GAB|XYE(ω), while figure 5(b) shows those for FA|XYE(ω) and
GA|XYE(ω). In each case the G graphs have a concave and convex part and the F graphs are formed by taking
the convex lower bound. For these cases the points at which the tangents are taken are ω∗

AB|XYE ≈ 0.8440 and
ω∗
A|XYE ≈ 0.8470.
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Figure 5. (a) Two-sided and (b) one-sided entropy curves conditioned on X, Y and E with uniform input distribution.

Figure 6. (a) Two-sided and (b) one-sided entropy curves conditioned on E with uniform input distribution.

Figure 6(a) gives the graphs of FAB|E(ω) and GAB|E(ω), while figure 6(b) shows those for FA|XYE(ω) and
GA|XYE(ω). Again, in each case the G graphs have a concave and convex part and the F graphs are formed by
taking the convex lower bound. For these cases the points at which the tangents are taken are ω∗

A|E ≈ 0.8505
and ω∗

AB|E ≈ 0.8523.

Appendix B. Simplifying the strategy

Given a Hilbert spaceH, we use P(H) to be the set of positive semi-definite operators onH, and S(H) to be
the set of density operators, i.e. elements of P with trace 1. The pure states onH (elements of S(H) with
rank 1) will be denoted SP(H). A POVM onH is a set of positive operators {Ei}i with Ei ∈ P(H) for all i and
∑

i Ei = 1H, where 1H is the identity operator onH. A projective measurement onH is a POVM onH
where E2i = Ei for all i. We define the Bell states

|Φ0〉=
1√
2
(|00〉+ |11〉) (B1)

|Φ1〉=
1√
2
(|00〉− |11〉) (B2)

|Φ2〉=
1√
2
(|01〉+ |10〉) (B3)

|Φ3〉=
1√
2
(|01〉− |10〉) , (B4)
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and use σ1 = |1〉〈0|+ |0〉〈1|, σ2 = i|1〉〈0| − i|0〉〈1| and σ3 = |0〉〈0| − |1〉〈1| as the three Pauli operators.
In this section we make a series of simplifications of the form of the optimization. The argument given

broadly follows the logic of [20] (see also [21] for an alternative).

Definition 1. A single-round CHSH measurement strategy is a tuple (HA ′ ,HB ′ ,{Ma|x}x,a,{Nb|y}y,b), where
HA ′ andHB ′ are Hilbert spaces, and {Ma|x}a is a POVM onHA ′ for each x ∈ {0,1} and likewise {Nb|y}b is a
POVM onHB ′ for each y ∈ {0,1}. In the case that all the POVMs are projective we will call this a single-round
CHSH projective measurement strategy.

Definition 2. A single-round CHSH strategy is a single-round CHSH measurement strategy together with a
state ρA ′B ′E ∈HA ′ ⊗HB ′ ⊗HE, whereHE is an arbitrary Hilbert space.

Note that in a device-independent scenario, such a strategy can be chosen by the adversary.

Definition 3. Given a single-round CHSH measurement strategy and a distribution pXY over the settings X
and Y, the associated CHSH channel is defined by

N : S(HA′ ⊗HB′)→S(HA ⊗HB ⊗HX ⊗HY) : σ 7→
∑

abxy

pXY(x,y)|a〉〈a| ⊗ |b〉〈b|

⊗ |x〉〈x| ⊗ |y〉〈y|tr
(

(Ma|x ⊗Nb|y)σ
)

,

where HA, HB, HX and HY are two dimensional Hilbert spaces. The union of the sets of associated CHSH
channels for all single-round CHSH measurement strategies for some fixed input distribution pXY is denoted
C(pXY). The union of the sets of associated CHSH channels for all single-roundCHSHprojectivemeasurement
strategies is denoted CΠ(pXY).

The output of the associated CHSH channel is classical, andHA ⊗HB ⊗HX ⊗HY stores the outcomes
and the chosen measurements. We will usually apply this channel to the AB part of a tripartite system, giving

(N ⊗IE)(ρA ′B ′E) =
∑

abxy

pXY(x,y)pAB|xy(a,b)|a〉〈a| ⊗ |b〉〈b| ⊗ |x〉〈x| ⊗ |y〉〈y| ⊗ τ
a,b,x,y
E , (B5)

where τ a,b,x,yE ∈ S(HE) for each a,b,x,y (it is the normalization of trA ′B ′

(

(Ma|x ⊗Nb|y ⊗1E)ρA ′B ′E

)

).
Note that the CHSH score, which we denote S((N ⊗IE)(ρA ′B ′E)) does not depend on the distribution

pXY of input settings.
We will be interested in optimization problems of the form

F(ω,pXY) = inf
R
H̄((N ⊗IE)(ρA ′B ′E)) where (B6)

R= {(N ,ρA′B′E) :N ∈ C(pXY), S((N ⊗IE)(ρA′B′E)) = ω}

whereHE is an arbitrary Hilbert space and the spacesHA ′ andHB ′ are those from the chosen element of
C(pXY), i.e. the setR(ω) runs over all possible dimensions of these spaces, and ω is some fixed real number.
Here H̄ can be any one of the following entropic quantities defined on the state (N ⊗IE)(ρA ′B ′E):
H(AB|X= 0,Y= 0,E), H(AB|XYE), H(AB|E), H(A|X= 0,Y= 0,E), H(A|XYE) or H(A|E). We consider the
family of optimizations in this work and many of the arguments that follow are independent of this choice.

B.1. Reduction to projective measurements
In this section, we conclude that there is no loss in generality in assuming that the devices perform projective
measurements. More precisely, we prove the following lemma.

Lemma 3. The sets

T1 := {(N ⊗IE)(ρA′B′E) :N ∈ C(pXY),ρA′B′E ∈ S(HA′ ⊗HB′ ⊗HE)} and
T2 := {(N ⊗IE)(ρA′B′E) :N ∈ CΠ(pXY),ρA′B′E ∈ S(HA′ ⊗HB′ ⊗HE)}

are identical.

This is a corollary of Naimark’s theorem, which we state in the following way.
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Theorem 1 (Naimark’s theorem). Let {Ei}i be a POVM onH. There exists a Hilbert spaceH ′ and a projective
measurement {Πi}i onH⊗H ′ such that for any ρ ∈ S(H)

∑

i

|i〉〈i |tr(ρEi) =
∑

i

|i〉〈i |tr(Πi(ρ⊗ |0〉〈0|)) .

Proof. We can directly construct this measurement as follows. Consider the isometry V :H→H⊗H ′ given
by V=

∑

i

√
Ei ⊗ |i〉, and let U be the extension of V to a unitary with the property that U(|ψ 〉⊗ |0〉) =

∑

i

√
Ei|ψ 〉⊗ |i〉 for any |ψ 〉 ∈ H. This construction ensures that the channels

E : ρ 7→
∑

i

|i〉〈i |tr(Eiρ) and

E ′ : ρ 7→
∑

i

|i〉〈i |tr
(

(1⊗ |i〉〈i |)U(ρ⊗ |0〉〈0|)U†)

are identical. The second of these can be rewritten

ρ 7→
∑

i

|i〉〈i |tr(Πi(ρ⊗ |0〉〈0|)) ,

where we take Πi = U†(1⊗ |i〉〈i |)U, as required.

Proof of lemma 3. By definition T2 ⊆ T1. For the other direction, consider a state ρA ′B ′E and POVMs
{Ma|x}a,x and {Nb|y}b,y forming a single-round CHSH strategy in T1. We use the construction in the proof
of theorem 1 to generate the projectors ΠA

a|x and ΠB
b|y as Naimark extensions of the POVMs. Instead of creat-

ing the state ρA ′B ′E, the state ρA ′B ′E ⊗ |0〉〈0|A ′ ′ ⊗ |0〉〈0|B ′ ′ is created instead, where the projectors ΠA
a|x act on

A ′A ′ ′ andΠB
b|y act onB

′B ′ ′. Since the latter is a strategy in T2 leading to the same post-measurement state (B5),
we have T1 ⊆ T2, which completes the proof.

B.2. Reduction to convex combinations of qubit strategies
This is a consequence of Jordan’s lemma [19] and is a special feature that applies only because the Bell
inequality has two inputs and two outputs for each party.

Lemma 4 (Jordan’s lemma). Let A1 and A2 be two Hermitian operators onH with eigenvalues±1, then we can
decomposeH=

⊕

αHα such that A1 and A2 preserve the subspacesHα, and where eachHα has dimension at
most 2.

Corollary 1. Let Π1 and Π2 be two projections onH. We can decomposeH=
⊕

αHα such that Π1, 1−Π1,
Π2 and 1−Π2 preserve the subspacesHα, and where eachHα has dimension at most 2.

Proof. Apply Jordan’s lemma to the Hermitian operators A1 = 2Π1 −1 and A2 = 2Π2 −1 with eigenvalues
±1, and consider |ψ 〉 ∈ Hα for someα. By construction A1|ψ 〉 ∈ Hα fromwhich it follows thatΠ1|ψ 〉 ∈ Hα,
and hence also (1−Π1)|ψ 〉 ∈ Hα. Thus, Π1 and 1−Π1 preserve the subspace; likewise Π2 and 1−Π2.

This implies the following

Lemma 5. Let C2×2(pXY) be the set of CHSH channels associated with the single-round CHSH projective
measurement strategies where each of the four projectors Ma|x is block diagonal with 2× 2 blocks, and each of the
four projectors Nb|y is block diagonal with 2× 2 blocks. The sets

T2 := {(N ⊗IE)(ρA′B′E) :N ∈ CΠ(pXY),ρA′B′E ∈ S(HA′ ⊗HB′ ⊗HE)} and
T3 := {(N ⊗IE)(ρA′B′E) :N ∈ C2×2(pXY),ρA′B′E ∈ S(HA′ ⊗HB′ ⊗HE)}

are identical.

Proof. This follows by applying corollary 1 to the projectorsM0|0 andM0|1 to get the blocks onHA ′ and to the
projectors N0|0 and N0|1 to get the blocks on HB ′ . Although some of the blocks may be 1× 1, we can collect
these together and treat them as a 2× 2 block, or add an extra dimension to the space (on which the state has
no support) to achieve all 2× 2 blocks.

We can also make the state only have support on the 2× 2 blocks.
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Lemma 6. The sets

T3 := {(N ⊗IE)(ρA′B′E) :N ∈ C2×2(pXY),ρA′B′E ∈ S(HA′ ⊗HB′ ⊗HE)} and
T4 := {(N ⊗IE)(ρA′B′E) :N ∈ C2×2(pXY),ρA′B′E ∈ S2×2(HA′ ⊗HB′ ⊗HE)}

are identical. Here S2×2(HA ′ ⊗HB ′ ⊗HE) is the subset of S(HA ′ ⊗HB ′ ⊗HE) such that
ρA ′B ′E ∈ S2×2(HA ′ ⊗HB ′ ⊗HE) implies

ρA′B′E =
∑

α,β

(Πα
A′ ⊗Πβ

B′ ⊗1E)ρA′B′E(Π
α
A′ ⊗Πβ

B′ ⊗1E) ,

where {Πα}α are projectors onto the 2× 2 diagonal blocks.

Proof. Consider a state ρA ′B ′E and sets of projectors {Ma|x}a,x and {Nb|y}b,y from the set T3. For brevity, write
Πα,β =Πα

A ′ ⊗Πβ
B ′ . Then, since

Ma|x ⊗Nb|y =
∑

α,β

(Πα
A′ ⊗Πβ

B′)(Ma|x ⊗Nb|y)(Π
α
A′ ⊗Πβ

B′) ,

we have

trA′B′((Ma|x ⊗Nb|y ⊗1)ρA′B′E) = trA′B′





∑

α,β

(Πα,β ⊗1E)(Ma|x ⊗Nb|y ⊗1)(Πα,β ⊗1E)ρA′B′E





= trA′B′





∑

α,β

(Ma|x ⊗Nb|y ⊗1)(Πα,β ⊗1E)ρA′B′E(Π
α,β ⊗1E)





= trA′B′((Ma|x ⊗Nb|y ⊗1)ρ′A′B′E) ,

where ρ ′
A ′B ′E =

∑

α,β(Π
α,β ⊗1E)ρA ′B ′E(Π

α,β ⊗1E). Thus, if we replace ρA ′B ′E by ρ ′
A ′B ′E we obtain the same

post-measurement state (B5). Hence T3 ⊆ T4, and, since the other inclusion is trivial, T3 = T4.
Lemma 7. LetN ∈ C2×2(pXY) and ρA ′B ′E ∈ S2×2(HA ′ ⊗HB ′ ⊗HE). The state (N ⊗IE)(ρA ′B ′E) can be
formed as a convex combination of states (Nλ ⊗IE)(ρλA ′ ′B ′ ′E), where for each λ, the channelNλ is that
associated with a single-round measurement strategy with two 2-dimensional Hilbert spaces and distribution
pXY.

Proof. Since ρA ′B ′E ∈ S2×2(HA ′ ⊗HB ′ ⊗HE) the 2× 2 block structure means we can write ρA ′B ′E =
∑

α,β pα,βρ
α,β
A ′B ′E, where pα,βρ

α,β
A ′B ′E = (Πα,β ⊗1E)ρA ′B ′E(Π

α,β ⊗1E) and tr(ρα,βA ′B ′E) = 1 for all α and β.

Likewise, taking Mα
a|x =Πα

A ′Ma|xΠα
A ′ and Nβ

b|y =Πβ
B ′Nb|yΠ

β
B ′ we can write Ma|x =

∑

αM
α
a|x and Nb|y =

∑

βN
β
b|y. In terms of these we have

trA′B′((Ma|x ⊗Nb|y ⊗1)ρA′B′E) =
∑

α,β

pα,βtrA′B′((Mα
a|x ⊗Nβ

b|y ⊗1)ρα,βA′B′E).

We can then associate a value of λ with each pair (α,β), replace each ρα,βA ′B ′E by a state on A ′ ′B ′ ′E in which

A
′′

and B
′′

are two-dimensional (the support of ρα,βA ′B ′ has dimension at most 4), and likewise replace the
projectors by qubit projectors. In terms of these we have

(N ⊗IE)(ρA′B′E) =
∑

λ

pλ(Nλ ⊗IE)(ρλA′′B′′E) .

In other words, any post-measurement state (B5) that can be generated in the general case, can also be
generated if Eve sends a convex combination of two qubit states, and where the measurements used by the
separated devices depend on the state sent. Eve could realise such a strategy in practice by using pre-shared
randomness. We can proceed to consider strategies in which qubits are shared between the two devices, and
then consider the mixture of such strategies after doing so.
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B.3. Qubit strategies
In this section we consider the single-round CHSH measurement strategies in whichHA ′ andHB ′ are
two-dimensional and the measurements are rank-1 projectors. Given a distribution pXY we use CΠ1,2(pXY) to
denote the set of associated CHSH channels. We restrict to rank-1 projectors because if one of the projectors
is identity it is not possible to achieve a non-classical CHSH score, and the non-classical scores are the ones of
interest.

Lemma 8. Consider a single-round CHSH measurement strategy for which one of the POVM elements is
identity and letN be the associated CHSH channel. For any state ρA ′B ′ on whichN can act we have
S(N (ρA ′B ′))⩽ 3/4.

Proof. Suppose the identity element corresponds toM0|0 (the other cases follow symmetrically). The condi-
tional distribution pAB|XY then takes the form

X= 0 X= 1

A= 0 A= 1 A= 0 A= 1

Y = 0 B= 0 µ 0 ν µ− ν

B= 1 1−µ 0 ζ 1−µ− ζ

Y = 1 B= 0 γ 0 ξ γ− ξ

B= 1 1− γ 0 ν+ ζ − ξ 1+ ξ− γ− ν− ζ

where we have used the no-signalling conditions. The associated score is

1

4
(µ+ ν+(1−µ− ζ)+ γ+(γ− ξ)+ (ν+ ζ − ξ)) =

1

4
(1+ 2ν+ 2γ− 2ξ) .

Since every element of the distribution must be between 0 and 1 we have 1+ ξ− γ− ν− ζ ⩾ 0, and hence
1+ 2ν+ 2γ− 2ξ ⩽ 3− 2ζ ⩽ 3, from which the claim follows.

We will then consider an optimization of the form (B6), but restricting to CΠ1,2, i.e.

h(ω) = inf
R(ω)

H̄((N ⊗IE)(ρA ′B ′E)) where (B7)

R(ω) = {(N ,ρA ′B ′E) :N ∈ CΠ1,2(pXY), S((N ⊗IE)(ρA ′B ′E)) = ω}.

The next step is to show that without loss of generality we can reduce to states that are invariant under
application of σ2 ⊗σ2 on A ′B ′.

Lemma 9. Let pXY be a distribution,N ∈ CΠ1,2(pXY) and ρA ′B ′E ∈ S(HA ′ ⊗HB ′ ⊗HE) be such that
S((N ⊗IE)(ρA ′B ′E)) = ω. There exists a state ρ̃A ′B ′EE ′ ∈ S(HA ′ ⊗HB ′ ⊗HE ⊗HE ′) such that
S((N ⊗IEE ′)(ρ̃A ′B ′EE ′)) = ω, ρ̃A ′B ′EE ′ = (σ2 ⊗σ2 ⊗1EE ′)ρ̃A ′B ′EE ′(σ2 ⊗σ2 ⊗1EE ′) and
H̄((N ⊗IEE ′)(ρ̃A ′B ′EE ′)) = H̄((N ⊗IE)(ρA ′B ′E)) for all six of the entropic functions given earlier.

Note that this implies that pA|X and pB|Y can be taken to be uniform.
This is a consequence of the following lemmas.

Lemma 10. Let {Π0|0,Π1|0} and {Π0|1,Π1|1} be two rank-one projective measurements on a two dimensional
Hilbert spaceH. There exists a basis {|ei 〉}2i=1 such that 〈el|Πi|j|ek〉 ∈ R for all i, j,k, l.

Proof. Without loss of generality, we can take Π0|0 = |0〉〈0| and Π1|0 = |1〉〈1|, and then write Π0|1 =
|α0|1〉〈α0|1| and Π1|1 = |α1|1〉〈α1|1|, where |α0|1〉= cos(λ)|0〉+ eiχ sin(λ)|1〉 and |α1|1〉= sin(λ)|0〉−
eiχ cos(λ)|1〉. Then, we can re-define |1〉 → eiχ|1〉 so that |α0|1〉= cos(λ)|0〉+ sin(λ)|1〉 and |α1|1〉=
sin(λ)|0〉− cos(λ)|1〉, with λ ∈ R.

Lemma 11. Let {Π0|0,Π1|0} and {Π0|1,Π1|1} be two rank-one projective measurements on a two dimensional
Hilbert spaceH, then, there exists a unitary transformation U such that UΠj|iU† =Πj⊕1|i for all i, j.

Proof. Let Πj|i = |α0|1〉〈α0|1| for all i, j. From lemma 10, we can change basis such that |α0|0〉= |0〉, |α1|0〉=
|1〉, |α0|1〉= cos(λ)|0〉+ sin(λ)|1〉 and |α1|1〉= sin(λ)|0〉− cos(λ)|1〉 for someλ ∈ R. Any unitary of the form
U= eiϕ(|0〉〈1| − |1〉〈0|), with ϕ ∈ R then satisfies the desired relations.

The following lemma is well-known (it follows straightforwardly from e.g. [32, section 11.3.5])

Lemma 12. For ρCZEE ′ =
∑

i piρ
i
CZE ⊗ |i〉〈i |E ′ we have H(C|ZEE ′)ρ =

∑

i piH(C|ZE)ρi .

We now prove lemma 9.
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Proof of lemma 9. Let UA andUB be the unitaries formed by applying lemma 11 to respective measurements
of each device and using the choice of basis specified in the proof of lemma 11 we can take UA = σ2 and
UB = σ2. Then define ρ ′

A ′B ′E = (σ2 ⊗σ2 ⊗1E)ρA ′B ′E(σ2 ⊗σ2 ⊗1E). The states (N ⊗IE)(ρ ′
A ′B ′E) and (N ⊗

IE)(ρA ′B ′E) are related by

(N ⊗IE)(ρ′A′B′E) = (1XYE ⊗σ1 ⊗σ1)(N ⊗IE)(ρA′B′E)(1XYE ⊗σ1 ⊗σ1) .

In otherwords (N ⊗IE)(ρ ′
A ′B ′E) is identical to (N ⊗IE)(ρA ′B ′E), except that the outcomes of each device have

been relabelled. It follows that S((N ⊗IE)(ρ ′
A ′B ′E)) = ω and H̄((N ⊗IE)(ρ ′

A ′B ′E)) = H̄((N ⊗IE)(ρA ′B ′E)).
Now consider the state ρ̃A ′B ′EE ′ = (ρA ′B ′E ⊗ |0〉〈0|E ′ + ρ ′

A ′B ′E ′ ⊗ |1〉〈1|E ′)/2. We have (N ⊗
IEE ′)(ρ̃A ′B ′EE ′) = ((N ⊗IE)(ρA ′B ′E)⊗ |0〉〈0|E ′ +(N ⊗IE)(ρ ′

A ′B ′E ′)⊗ |1〉〈1|E ′)/2. Since the CHSH score is
linear, we have S((N ⊗IEE ′)(ρ̃A ′B ′EE ′)) = ω. By construction, ρ̃A ′B ′E = (σ2 ⊗σ2 ⊗1E)ρ̃A ′B ′E(σ2 ⊗σ2 ⊗1E).
Finally, as a consequence of lemma 12, for any of the entropy functions H we have H̄(ρ̃A ′B ′EE ′) = H̄(ρA ′B ′E).

Corollary 2. Any optimization of the form (B7) is equivalent to an optimization of the same form but where
each of the projectors are onto states of the form α|0〉+β|1〉 with α,β ∈ R and ρA ′B ′E = (σ2 ⊗σ2 ⊗1)
ρA ′B ′E(σ2 ⊗σ2 ⊗1).

Next we consider the form of the reduced state ρA ′B ′ in the Bell basis.

Lemma 13. LetN be the channel associated with a single-round CHSH strategy in which each POVM element
is a projector of the form cos(α)|0〉+ sin(α)|1〉 with α ∈ R. The state ρPA ′B ′E satisfies
(N ⊗IE)(ρPA ′B ′E) = (N ⊗IE)(ρA ′B ′E), where ρPA ′B ′E is formed from ρA ′B ′E by taking the partial transpose on
A ′B ′ in the Bell basis.

Proof. By definition, the partial transpose generates the state

ρPA′B′E =
∑

ij

(|Ψi 〉〈Ψj| ⊗1E)ρA′B′E(|Ψi 〉〈Ψj| ⊗1E) .

Writing the partial trace out in the Bell basis, for any two projectors Π1 and Π2 onHA ′ andHB ′ we have

trA ′B ′((Π1 ⊗Π2 ⊗1E)ρ
P
A ′B ′E) =

∑

i

(〈Ψi |(Π1 ⊗Π2)⊗1E)ρ
P
A ′B ′E(|Ψi 〉⊗1E)

=
∑

ijk

((〈Ψi |(Π1 ⊗Π2)|Ψj〉〈Ψk|)⊗1E)ρA ′B ′E(|Ψj〉〈Ψk||Ψi 〉⊗1E)

=
∑

ij

〈Ψi |(Π1 ⊗Π2)|Ψj〉(〈Ψi | ⊗1E)ρA ′B ′E(|Ψj〉⊗1E) . (B8)

When Π1 and Π2 are each projectors onto states of the form cos(α)|0〉+ sin(α)|1〉 a short calculation reveals
〈Ψi |(Π1 ⊗Π2)|Ψj〉= 〈Ψj|(Π1 ⊗Π2)|Ψi 〉. Using this in (B8) we can conclude that

trA′B′((Π1 ⊗Π2 ⊗1E)ρ
P
A′B′E) = trA′B′((Π1 ⊗Π2 ⊗1E)ρA′B′E) ,

from which it follows that (N ⊗IE)(ρPA ′B ′E) = (N ⊗IE)(ρA ′B ′E).

Corollary 3. Any optimization of the form (B7) is equivalent to an optimization of the same form but where
each of the projectors are onto states of the form α|0〉+β|1〉 with α,β ∈ R,
ρA ′B ′E = (σ2 ⊗σ2 ⊗1)ρA ′B ′E(σ2 ⊗σ2 ⊗1) and ρA ′B ′E = ρPA ′B ′E.

Proof. We established the invariance under (σ2 ⊗σ2 ⊗1) in corollary 2. Since (N ⊗IE)(ρPA ′B ′E) = (N ⊗
IE)(ρA ′B ′E), if Eve uses the state (ρA ′B ′E ⊗ |0〉〈0|E ′ + ρPA ′B ′E ⊗ |1〉〈1|E ′)/2, then, by the same argument used
at the end of the proof of lemma 9, the entropy and scores are unchanged while the state satisfies the required
conditions.

The next step is to show that the state on A ′B ′ can be taken to come from the set of density operators that
are diagonal in the Bell basis. We define
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SB :=

{

λ0|Φ0〉〈Φ0|+λ1|Φ1〉〈Φ1|+λ2|Φ2〉〈Φ2|+λ3|Φ3〉〈Φ3| : 1⩾ λ0 ⩾ λ3 ⩾ 0, 1⩾ λ1 ⩾ λ2 ⩾ 0,

λ0 −λ3 ⩾ λ1 −λ2,
∑

i

λi = 1

}

, (B9)

where the states {|ϕi 〉}i are defined by (B1)–(B4).

Lemma 14. Any optimization of the form (B7) is equivalent to an optimization of the same form but where each
of the projectors are onto states of the form cos(α)|0〉+ sin(α)|1〉 with α ∈ R and ρA ′B ′ ∈ SB.

Proof. From corollary 3, we have that ρA ′B ′ can be taken to be invariant under σ2 ⊗σ2. Hence we can write

ρA ′B ′ =









λ ′
0 0 0 r1
0 λ ′

1 r2 0
0 r∗2 λ ′

2 0
r∗1 0 0 λ ′

3









(B10)

where the matrix is expressing the coefficients in the Bell basis. That ρA ′B ′ = ρTA ′B ′ then implies that r1 and r2
are real. Note that in order that ρA ′B ′ is a positive operator we require r21 ⩽ λ ′

0λ
′
3 and r22 ⩽ λ ′

1λ
′
2.

Let Uθ = cos(θ/2)|0〉〈0|+ sin(θ/2)|0〉〈1| − sin(θ/2)|1〉〈0|+ cos(θ/2)|1〉〈1|, so that Uθ preserves the set
{cos(α)|0〉+ sin(α)|1〉 : α ∈ R}. We proceed to show that for any state of the form (B10) with r1 and r2 real,
there exist values of θA and θB such that

ρ′A′B′ = (UθA ⊗UθB)ρA′B′(U†
θA
⊗U†

θB
)

is diagonal in the Bell basis. We can compute the form of ρ ′
A ′B ′ in the Bell basis. This has the same form

as (B10), but with r1 replaced by r1 cos(θA − θB)+
λ ′
0−λ ′

3
2 sin(θA − θB) and r2 replaced by r2 cos(θA + θB)+

λ ′
2−λ ′

1
2 sin(θA + θB). To make these zero we need to choose θA and θB such that cos2(θA − θB) =

(λ ′
0−λ ′

3 )
2

(λ ′
0−λ ′

3 )
2+4r21

and cos2(θA + θB) =
(λ ′

1−λ ′
2 )

2

(λ ′
1−λ ′

2 )
2+4r22

. If we write

ϕ1 = cos−1

(

λ′0 −λ′3
√

(λ′0 −λ′3)
2 + 4r21

)

, ϕ2 = cos−1

(

λ′1 −λ′2
√

(λ′1 −λ′2)
2 + 4r22

)

,

ζA =
ϕ1 +ϕ2

2
and ζB =

ϕ1 −ϕ2
2

then we can express the four solutions

(θA,θB) = (ζA, ζB), (ζA +π/2, ζB −π/2), (ζA +π/2, ζB +π/2), (ζA +π,ζB) .

Each of these brings the state into the form ρA ′B ′ = λ0|Φ0〉〈Φ0|+λ1|Φ1〉〈Φ1|+λ2|Φ2〉〈Φ2|+λ3|Φ3〉〈Φ3|. The
difference between the first two of these is an exchange of λ0 with λ3, the difference between the first and the
third is an exchange of λ1 with λ2 and the difference between the first and the fourth is an exchange of λ0
with λ3 and of λ1 with λ2. It follows that we can ensure λ0 ⩾ λ3 and λ1 ⩾ λ2. Finally, if λ0 −λ3 < λ1 −λ2 we
can apply σ3 ⊗1 to the resulting state, which simultaneously switches λ0 with λ1 and λ2 with λ3, while again
preserving the set {cos(α)|0〉+ sin(α)|1〉 : α ∈ R}.

The culmination of this section is the following.

Lemma 15. For given pXY, let

R1(ω) := {(N ,ρA′B′E) :N ∈ CΠ1,2(pXY), ρA′B′E ∈ S(HA′ ⊗HB′ ⊗HE), S((N ⊗IE)(ρA′B′E)) = ω} and

R2(ω) := {(N ,ρA′B′E) :N ∈ CΠ1,2(pXY), ρA′B′E ∈ S(HA′ ⊗HB′ ⊗HE), ρA′B′ ∈ SB, S((N ⊗IE)(ρA′B′E)) = ω} .

We have infR2(ω) H̄((N ⊗IE)(ρA ′B ′E)) = infR1(ω) H̄((N ⊗IE)(ρA ′B ′E)) for any of the six entropy functions H̄.
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B.4. Reduction to pure states
Here we show that it is sufficient to restrict any of the optimizations we are interested in to pure states.

Lemma 16. For given pXY letR2(ω) be as in lemma 15 and consider

R3(ω) := {(N ,ρA′B′E) :N ∈ CΠ1,2(pXY), ρA′B′E ∈ SP(HA′ ⊗HB′ ⊗HE), ρA′B′ ∈ SB, S((N ⊗IE)(ρA′B′E)) = ω} .

We have infR3(ω) H̄((N ⊗IE)(ρA ′B ′E)) = infR2(ω) H̄((N ⊗IE)(ρA ′B ′E)) for any of the six entropy functions H̄.

Proof. Since R3 ⊂R2, we have infR3(ω) H̄((N ⊗IE)(ρA ′B ′E))⩾ infR2(ω) H̄((N ⊗IE)(ρA ′B ′E)). For the
other direction, consider a state ρA ′B ′E from the set R2, and let ρA ′B ′EE ′ be its purification. Using the strong
subadditivity of the von-Neumann entropy, H(C|ZEE ′)⩽H(C|ZE), a new strategy in which the only change
is that Eve holds a purification of ρA ′B ′E cannot increase any of the entropic quantities of interest and makes
no change to the score. Thus, infR3(ω) H̄((N ⊗IE)(ρA ′B ′E))⩽ infR2(ω) H̄((N ⊗IE)(ρA ′B ′E)).

Note that this also means that we can restrictHE to be 4 dimensional.

Appendix C. Simplifications of qubit strategies for specific entropic quantities

In this section, we compute expressions for each of the entropies of interest, based on the simplifications
from the previous section. In other words, we are considering the optimizations

G(ω,pXY) :=min H̄((N ⊗IE)(ρA ′B ′E)) (C1)

HA ′ =HB ′ = C
2, HE = C

4, ρA ′B ′E ∈ SP(HA ′ ⊗HB ′ ⊗HE), ρA ′B ′ ∈ SB

N : σA ′B ′ 7→
∑

abxy

pXY(x,y)|a〉〈a| ⊗ |b〉〈b| ⊗ |x〉〈x| ⊗ |y〉〈y|tr
((

|ϕAa|x〉〈ϕAa|x| ⊗ |ϕBb|y〉〈ϕBb|y|
)

σA ′B ′

)

|ϕAa|x〉= cos(αa|x)|0〉+ sin(αa|x)|1〉 and |ϕBb|y〉= cos(βb|y)|0〉+ sin(βb|y)|1〉 (C2)

α1|x = π/2+α0|x and β1|x = π/2+β0|x (C3)

S((N ⊗IE)(ρA ′B ′E)) = ω. (C4)

For convenience we sometimes use αx = α0|x and βx = β0|x.
Let

τABXYE = (N ⊗IE)(ρA ′B ′E)

=
∑

abxy

pXY(x,y)|a〉〈a| ⊗ |b〉〈b| ⊗ |x〉〈x| ⊗ |y〉〈y| ⊗ trA ′B ′

((

|ϕAa|x〉〈ϕAa|x| ⊗ |ϕBb|y〉〈ϕBb|y| ⊗1E

)

ρA ′B ′E

)

=
∑

abxy

pXY(x,y)pAB|xy(a,b)|a〉〈a| ⊗ |b〉〈b| ⊗ |x〉〈x| ⊗ |y〉〈y| ⊗ τ
abxy
E , (C5)

where {τ abxyE } are normalized.
We make a few initial observations.
Consider pAB|xy(a,b)τ

abxy
E = trA ′B ′

((

|ϕAa|x〉〈ϕAa|x| ⊗ |ϕBb|y〉〈ϕBb|y| ⊗1E

)

ρA ′B ′E

)

. Since ρA ′B ′E is pure, we

can use the Schmidt decomposition to write ρA ′B ′E = |Φ〉〈Φ |A ′B ′E, where

|Φ〉A′B′E =
∑

i

√

λi|Ψi 〉⊗ |i〉

where {|i〉} is an orthonormal basis forHE. We have

pAB|xy(a,b)τ
abxy
E =

∑

ij

√

λiλj

(

〈ϕAa|x| ⊗ 〈ϕBb|y|
)

|Ψi 〉〈Ψj|
(

|ϕAa|x〉⊗ |ϕBb|y〉
)

|i〉〈j |= |ζabxy〉〈ζabxy| ,

where

|ζabxy〉=
∑

i

√

λi(〈ϕAa|x| ⊗ 〈ϕBb|y|)|Ψi 〉|i〉 and pAB|xy(a,b) =
∑

i

λi

∣

∣

∣(〈ϕAa|x| ⊗ 〈ϕBb|y|)|Ψi 〉
∣

∣

∣

2
. (C6)
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Hence τ abxyE is pure for each a,b,x,y. Note also that

(

〈ϕAa|x| ⊗ 〈ϕBb|y|
)

|Ψ0〉=
cos(βb|y −αa|x)√

2
(C7)

(

〈ϕAa|x| ⊗ 〈ϕBb|y|
)

|Ψ1〉=
cos(βb|y +αa|x)√

2
(C8)

(

〈ϕAa|x| ⊗ 〈ϕBb|y|
)

|Ψ2〉=
sin(βb|y +αa|x)√

2
(C9)

(

〈ϕAa|x| ⊗ 〈ϕBb|y|
)

|Ψ3〉=
sin(βb|y −αa|x)√

2
. (C10)

Because τABXYE is formed from ρA ′B ′E without acting on E, we have H(E)τ =H(E)ρ, and because ρA ′B ′E

is pure, H(E)ρ =H(A ′B ′)ρ =H({λ0,λ1,λ2,λ3}).10 For the same reason,
∑

ab pAB(a,b)τ
abxy
E = τE for all x,y.

Lemma 17. For σAXE =
∑

ax pAX(a,x)|a〉〈a| ⊗ |x〉〈x| ⊗σa,x
E , we have

H(A|XE) =H(A|X)+
∑

ax

pAX(a,x)H(σ
a,x
E )−

∑

x

pX(x)H

(

∑

a

pA|x(a)σ
a,x
E

)

.

Proof. We have

H(A|XE) =H(AXE)−H(XE) =H(AX)+
∑

ax

pAX(a,x)H(E|A= a,X= x)−H(X)−
∑

x

pX(x)H(E|X= x)

=H(A|X)+
∑

ax

pAX(a,x)

(

H(σa,x
E )−H

(

∑

a′

pA|x(a
′)σa′,x

E

))

.

We can parameterize the Bell diagonal state in the following way:

λ0 =
1

4
+

Rcos(θ)

2
+ δ (C11)

λ1 =
1

4
+

R sin(θ)

2
− δ (C12)

λ2 =
1

4
− R sin(θ)

2
− δ (C13)

λ3 =
1

4
− Rcos(θ)

2
+ δ (C14)

where 0⩽ R⩽ 1, 0⩽ θ ⩽ π/4 if R⩽ 1/
√
2, or 0⩽ θ ⩽ π/4− cos−1(1/(R

√
2)) if R> 1/

√
2 and

−1/4+Rcos(θ)/2⩽ δ ⩽ 1/4−R sin(θ)/2.

Lemma 18. For R> 1/
√
2,maxδH({λ0,λ1,λ2,λ3}) is achieved when δ = δ∗ := R2 cos(2θ)

4 .

Proof. One can compute the derivative of H({λ0,λ1,λ2,λ3}) with respect to δ to see that it is 0 only for

δ = δ∗ := R2 cos(2θ)
4 .

We next check that δ∗ is in the valid range of δ. The condition δ∗ ⩽ 1/4−R sin(θ)/2 rearranges to
2R2 sin2(θ)− 2R sin(θ)+ 1−R2 ⩾ 0. The roots of the quadratic equation 2R2x2 − 2Rx+ 1−R2 are at x=
1
2R (1±

√
2R2 − 1). For R⩾ 1√

2
the roots are real11. Our condition on θ implies that 0⩽ sin(θ)⩽ 1

2R (1−√
2R2 − 1), hence taking x= sin(θ) we are always to the left of the first root and so δ∗ ⩽ 1/4−R sin(θ)/2.

A similar argument shows δ∗ ⩾−1/4+Rcos(θ)/2.
We can then compute the double derivative of H({λ0,λ1,λ2,λ3}) with respect to δ and evaluate it at δ∗.

This gives − 32
ln(2)(2−4R2+R4+R4 cos(4θ)) , which can be shown to be negative for R> 1/

√
2 and any valid θ using

a similar argument to that above.

10 We use H for both the von Neumann and Shannon entropies; if a list of probabilities is given as the argument to H it signifies the
Shannon entropy.
11 If R< 1√

2
there are no real roots and the condition always holds.
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Using this state and the specified measurements, the probability table for the observed distribution has
the form given in the table below (whose entries correspond to pAB|XY):

X= 0 X= 1

A= 0 A= 1 A= 0 A= 1

Y = 0 B= 0 ϵ00
1
2 − ϵ00 ϵ10

1
2 − ϵ10

B= 1 1
2 − ϵ00 ϵ00

1
2 − ϵ10 ϵ10

Y = 1 B= 0 ϵ01
1
2 − ϵ01

1
2 − ϵ11 ϵ11

B= 1 1
2 − ϵ01 ϵ01 ϵ11

1
2 − ϵ11

where

ϵ00 =
1

4
(1+Rcos(θ)cos(2(α0 −β0))+R sin(θ)cos(2(α0 +β0)))

ϵ01 =
1

4
(1+Rcos(θ)cos(2(α0 −β1))+R sin(θ)cos(2(α0 +β1)))

ϵ10 =
1

4
(1+Rcos(θ)cos(2(α1 −β0))+R sin(θ)cos(2(α1 +β0)))

ϵ11 =
1

4
(1−Rcos(θ)cos(2(α1 −β1))−R sin(θ)cos(2(α1 +β1))) .

Note that

S(τABXY) = (ϵ00 + ϵ01 + ϵ10 + ϵ11)/2

=
1

2
+

Rcos(θ)

8

(

cos(2(α0 −β0))+ cos(2(α0 −β1))+ cos(2(α1 −β0))− cos(2(α1 −β1))
)

+
R sin(θ)

8

(

cos(2(α0 +β0))+ cos(2(α0 +β1))+ cos(2(α1 +β0))− cos(2(α1 +β1))
)

, (C15)

which is independent of δ.

C.1. H(A|X= 0,Y= 0,E)
This case was already covered in [20] where it was solved analytically (see also [21] for a slight generalization).

Lemma 19. For 3/4⩽ ω ⩽ 1
2 (1+

1√
2
) the solution to the optimization problem (C1) when

H̄=H(A|X= 0,Y= 0,E) is 1−Hbin

(

1
2 (1+

√

16ω(ω− 1)+ 3)
)

.

For completeness we give a proof here as well. We first show that the maximum CHSH score for a Bell
diagonal state depends only on R.

Lemma 20. Given a state ρA ′B ′E with ρA ′B ′ parameterized as in (C11)–(C14), ifN satisfies the requirements of
the optimization problem (C1), then τABXYE = (N ⊗IE)(ρA ′B ′E) satisfies S(τABXYE)⩽

1
2 +

R
2
√
2
, and there exists

a channelN achieving equality.

Proof. Consider the score function (C15). Collecting all the terms involvingα0 andα1 and somemanipulation
gives

S(τABXYE) =
1

2
+

R

2
√
2
cos(β0 −β1)

[

sin(2α0) sin(β0 +β1)cos
(π

4
+ θ
)

+ cos(2α0)cos(β0 +β1) sin
(π

4
+ θ
)]

+
R

2
√
2
sin(β0 −β1)

[

sin(2α1)cos(β0 +β1)cos
(π

4
+ θ
)

− cos(2α1) sin(β0 +β1) sin
(π

4
+ θ
)]

,

(C16)

where we have used cos(θ)+ sin(θ) =
√
2sin(π/4+ θ) and cos(θ)− sin(θ) =

√
2cos(π/4+ θ). For brevity

we write θ̄ = π
4 + θ. We then use that for r, t,ϕ ∈ R we have rcos(ϕ)+ t sin(ϕ)⩽

√
r2 + t2 with equality if ϕ is

chosen such that rcos(ϕ)+ t sin(ϕ)⩾ 0 and r sin(ϕ) = tcos(ϕ). This allows us to form the bound
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S(τABXYE)⩽
1

2
+

R

2
√
2

(

|cos(β0 −β1)|
√

sin2(β0 +β1)cos2(θ̄)+ cos2(β0 +β1) sin
2(θ̄)

+| sin(β0 −β1)|
√

cos2(β0 +β1)cos2(θ̄)+ sin2(β0 +β1) sin
2(θ̄)

)

(C17)

⩽
1

2
+

R

2
√
2
. (C18)

Choosing α0 = 0, α1 = π/4, β0 =
π
8 − θ

2 , β1 =−π
8 +

θ
2 achieves equality (for instance).

It follows that ω > 3/4 is only possible if R> 1/
√
2.

We now turn to the entropy. In this case we trace out B from the state τ ′ in section C.5 to give
τ ′
AE =

∑

a pA|00(a)|a〉〈a| ⊗
∑

b pB|a00(b)τ
ab00
E , so that H(A|X= 0,Y= 0,E)τ =H(A|E)τ ′ . Using lemma 17 we

have

H(A|E)τ ′ =H(A)τ ′ +
∑

a

pA|00(a)H

(

∑

b

pB|a00(b)τ
ab00
E

)

−H

(

∑

ab

pAB|00(a,b)τ
ab00
E

)

= 1+
∑

a

1

2
H

(

∑

b

pB|a00(b)τ
ab00
E

)

−H(E)ρ

= 1+
∑

a

1

2
H

(

∑

b

2pAB|00(a,b)τ
ab00
E

)

−H(E)ρ ,

where we have used the fact that pA|00(a) = 1/2 for a= 0,1. The eigenvalues of
∑

b 2pAB|00(a,b)τ
ab00
E turn

out to be

1

2

(

1±
√

2(λ0 −λ3)(λ1 −λ2)cos(4α0)+ (λ0 −λ3)2 +(λ1 −λ2)2
)

,

independently of a. Hence, we can write H(A|E)τ ′ in terms of the Bell diagonal state using

∑

a

1
2
H

(

∑

b

2pAB|00(a,b)τ
ab00
E

)

=Hbin

(

1
2

(

1+
√

2(λ0 −λ3)(λ1 −λ2)cos(4α0)+ (λ0 −λ3)2 +(λ1 −λ2)2
)

)

H(E)ρ =H({λ0,λ1,λ2,λ3}).

Having established this, we show the following.

Lemma 21. Let ρA ′B ′E be pure withHA ′ =HB ′ = C
2, and let ρA ′B ′ be a Bell diagonal state parameterized

by (C11)–(C14) with R> 1/
√
2. Let τ be the state defined by (C5), then

H(A|X= 0,Y= 0,E)τ ⩾ 1+Hbin

(

1

2

(

1+
√

2R2 − 1
)

)

where equality is achievable for α0 = 0.

Proof. We note that

∑

a

1

2
H

(

∑

b

2pAB|00(a,b)τ
ab00
E

)

⩾Hbin

(

1

2

(

1+
√

2(λ0 −λ3)(λ1 −λ2)+ (λ0 −λ3)2 +(λ1 −λ2)2
)

)

=Hbin(λ0 +λ1) ,

with equality for α0 = 0. Hence

H(A|E)τ ′ ⩾ 1+Hbin(λ0 +λ1)−H({λ0,λ1,λ2,λ3}) . (C19)

Using the parameterization of (C11)–(C14) we have λ0 +λ1 = 1/2(1+R(cos(θ)+ sin(θ))). Thus, the
minimum of H(A|E)τ ′ over δ is achieved for δ = δ∗ (as in the case H(AB|X= 0,Y= 0,E)). Taking δ = δ∗

and differentiating the resulting expression with respect to θ yields

R

2
(cos(θ)+ sin(θ)) log

(

1−Rcos(θ)+R sin(θ)

1+Rcos(θ)−R sin(θ)

)

.

Since cos(θ)+ sin(θ) =
√
2sin(π/4+ θ), the leading factor is always positive over our range of θ. The logar-

ithm term is always negative, except for θ = π/4 where it reaches zero. Thus, the minimum over θ is always
obtained at the largest possible θ, i.e. θ = π/4− cos−1

(

1/(R
√
2)
)

.
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With this substitution the right hand side of (C19) reduces to

1+Hbin

(

1

2

(

1+
√

2R2 − 1
)

)

,

establishing the claim.

Lemma 19 is then a corollary of lemmas 20 and 21.

Proof of lemma 19. From lemma 21 we have

H(A|X= 0,Y= 0,E)τ ⩾ 1+Hbin

(

1

2

(

1+
√

2R2 − 1
)

)

.

However, lemma 20 then implies

H(A|X= 0,Y= 0,E)τ ⩾ 1+Hbin

(

1

2

(

1+
√

4(2ω− 1)2 − 1
)

)

= 1+Hbin

(

1

2

(

1+
√

16ω(ω− 1)+ 3)
)

)

,

where we use the fact that Hbin(p) is decreasing and concave for p⩾ 1/2. Equality is achievable by taking
α0 = 0, α1 = π/4, β0 =

π
8 − θ

2 , β1 =−π
8 +

θ
2 .

We use this case to gain confidence in our numerics, since we can make a direct comparison to the
analytic curve.

C.2. H(A|XYE)
In this case lemma 17 gives

H(A|XYE) =H(A|XY)+
∑

axy

pAXY(a,x,y)H

(

∑

b

pB|axy(b)τ
abxy
E

)

−
∑

xy

pXY(x,y)H

(

∑

ab

pAB|xy(a,b)τ
abxy
E

)

= 1+
∑

axy

pXY(x,y)pA|xy(a)H

(

∑

b

2pAB|xy(a,b)τ
abxy
E

)

−H(E) .

The eigenvalues of
∑

b 2pAB|xy(a,b)τ
abxy
E can be computed to be

1

2

(

1±
√

2(λ0 −λ3)(λ1 −λ2)cos(4αx)+ (λ0 −λ3)2 +(λ1 −λ2)2
)

,

independently of a,y. If we define

g(α) :=
1

2

(

1+
√

2(λ0 −λ3)(λ1 −λ2)cos(4α)+ (λ0 −λ3)2 +(λ1 −λ2)2
)

then

H(A|XYE) = 1+
∑

x

pX(x)Hbin(g(αx))−H(E) .

Using the parameterization (C11)–(C14) we have

g(α) =
1

2

(

1+R
√

1+ sin(2θ)cos(4α)
)

.

Since this is independent of δ, we can again use δ = δ∗ (cf lemma 18) to remove one parameter when
minimizing H(A|XYE).

We now restrict to the case where pX(x) = 1/2 for x= 0,1. Since H(E) is independent of {αx}, we can
consider the optimization

min
α0,α1,β0,β1

Hbin(g(α0))+Hbin(g(α1))

subject to S(τABXYE) = ω (C20)

for some fixed values of ω, R and θ.
We proceed to make a series of simplifications of this optimization.
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Lemma 22. The optimization (C20) is equivalent to

min
u,v

Hbin(g((v+ u)/4))+Hbin(g((v− u)/4))

subject to S(u,v) :=
1

2
+

R

4

(

cos(u/2)
√

1+ cos(v) sin(2θ)+ sin(u/2)
√

1− cos(v) sin(2θ)
)

= ω (C21)

0⩽ u⩽ π .

Proof. Noting that the objective function in (C20) is independent of Bob’s angles (β0 and β1), analogously to
the derivation of (C17) we can bound the score function using

S(τABXYE)⩽
1

2
+

R

2
√
2

(

|cos(α0 −α1)|
√

sin2(α0 +α1)cos2(θ̄)+ cos2(α0 +α1) sin
2(θ̄)

+ |sin(α0 −α1)|
√

cos2(α0 +α1)cos2(θ̄)+ sin2(α0 +α1) sin
2(θ̄)

)

.

We now substitute v/2= α0 +α1 and u/2= α0 −α1 and rearrange (recalling that θ̄ = π/4+ θ) to give

S(τABXYE)⩽
1

2
+

R

4

(

|cos(u/2)|
√

1+ cos(v) sin(2θ)+ |sin(u/2)|
√

1− cos(v) sin(2θ)
)

.

Since GA|XYE(ω) is monotonically increasing in ω (cf appendix D), it follows that we wish to choose the angles
to achieve the largest possible score function.

We first note that if cos(u/2)< 0 we canmake the substitution α0 7→ π/2+α1 and α1 7→ α0 −π/2 which
maintains the objective function, constraint, v and sin(u/2), while changing the sign of cos(u/2). In addi-
tion, if sin(u/2)< 0, the substitution α0 7→ α1 and α1 7→ α0 maintains the objective function, constraint,
v and cos(u/2) while changing the sign of sin(u/2). It follows that the maximum of Hbin(g((v+ u)/4))+
Hbin(g((v− u)/4)) for fixed score is obtained when

S(τABXYE) = S(u,v) :=
1

2
+

R

4

(

cos(u/2)
√

1+ cos(v) sin(2θ)+ sin(u/2)
√

1− cos(v) sin(2θ)
)

and when both cos(u/2)⩾ 0 and sin(u/2)⩾ 0, or, alternatively 0⩽ u⩽ π.

Lemma 23. In the optimization (C21) we can restrict to 0⩽ u⩽ π/2 and 0⩽ v⩽ π/2 without affecting the
result.

Proof. Consider a u that satisfies 0⩽ u⩽ π. If cos(u/2)⩾ sin(u/2) then 0⩽ u⩽ π/2. Otherwise, consider
u 7→ π− u, v 7→ π− v. This maintains the constraint and the value of the objective function and hence the
optimal value can still be obtained, but now with cos(u/2)⩾ sin(u/2), so we can assume 0⩽ u⩽ π/2.

For the restriction on v, first note that transforming v 7→ −v has no affect on either the objective function or
the constraint so we can take sin(v)⩾ 0, or 0⩽ v⩽ π. If v> π/2, then cos(v+ u)< 0. Furthermore, cos(v−
u)+ cos(v+ u) = 2cos(v)cos(u)⩽ 0 and hence cos(v− u)⩽ |cos(v+ u)|. Let v̄= π− v. We have

S(u,v)− S(u, v̄) =
R

4

(

(sin(u/2)− cos(u/2))
(

√

1− cos(v) sin(2θ)−
√

1+ cos(v) sin(2θ)
))

⩽ 0 ,

where the inequality follows from cos(v)< 0, sin(2θ)⩾ 0 and cos(u/2)⩾ sin(u/2). Hence, the mapping v 7→
π− v increases S(u,v).

Consider now the effect on the objective function

J(u,v) :=Hbin

(

1

2

(

1+R
√

1+ sin(2θ)cos(v+ u)
)

)

+Hbin

(

1

2

(

1+R
√

1+ sin(2θ)cos(v− u)
)

)

.

Note that each binary entropy term decreases as its cosine term increases. We have

J(u, v̄) :=Hbin

(

1

2

(

1+R
√

1− sin(2θ)cos(v+ u)
)

)

+Hbin

(

1

2

(

1+R
√

1− sin(2θ)cos(v− u)
)

)

.

If cos(v− u)⩽ 0 then J(u, v̄)⩽ J(u,v), so the transformation decreases the objective function.
On the other hand, if cos(v− u)⩾ 0 we must have cos(v− u)⩽ |cos(v+ u)| and hence

√

1− sin(2θ)cos(v+ u)⩾
√

1+ sin(2θ)cos(v− u)⩾
√

1− sin(2θ)cos(v− u)⩾
√

1+ sin(2θ)cos(v+ u).

Thus, J(u, v̄)⩽ J(u,v) and the transformation decreases the objective function.
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Thus, in both cases the transformation decreases the objective function while increasing the score. Using
the monotonicity of GA|XYE(ω) with the score ω (cf appendix D), it follows that we can further reduce the
objective function while bringing the score back to its original level.

Let us turn to the constraint. We have

ω =
1

2
+

R

4

(

cos(u/2)
√

1+ cos(v) sin(2θ)+ sin(u/2)
√

1− cos(v) sin(2θ)
)

=
1

2
+

R

2
√
2
cos(u/2−ϕ) ,

where cos(ϕ) =
√

(1+ cos(v) sin(2θ))/2 and sin(ϕ) =
√

(1− cos(v) sin(2θ))/2. We can rearrange this to
cos(u/2−ϕ) =

√
2(2ω− 1)/R and hence there are two possibilities for u:

u± = 2cos−1
√

(1+ cos(v) sin(2θ))/2± 2cos−1(
√
2(2ω− 1)/R). (C22)

We can hence remove the constraint and consider the optimizations

min
v

J(u±(v),v).

Summarizing the above analysis we have the following.

Corollary 4. Let ω ∈ (3/4,(1+ 1/
√
2)/2] and K(R,θ) = 1−H({λ0(R,θ),λ1(R,θ),λ2(R,θ),λ3(R,θ)}),

where {λi(R,θ)}3i=0 are given by (C11)–(C14) with δ = δ∗. DefiningDω = {(R,θ,v) : R ∈ [
√
2(2ω− 1),1],

θ ∈ [0, π4 − cos−1
(

1/(
√
2R)
)

], v ∈ [0, π2 ]}, we have

GA|XYE(ω) = min
Dω,u∈{u+,u−}

J(u(v),v)/2+K(R,θ) . (C23)

C.2.1. Monotonicity of K(R,θ)
The following monotonicity properties of the function K(R,θ) will be useful later.

Lemma 24. For any ω ∈ (3/4,(1+ 1/
√
2)/2], and (R,θ) ∈ Dω we have ∂RK(R,θ)⩾ 0.

Proof. Note that

λ0λ3
λ1λ2

= 1

and λ0 > λ3 and λ1 > λ2. We differentiate K(R,θ) with respect to R

∂RK(R,θ) =
∑

i

(

log(λi)+
1

ln2

)∂λi
∂R

=
1

2

(

(cos(θ)+Rcos(2θ))

(

logλ0 +
1

ln2

)

+(sin(θ)−Rcos(2θ))

(

logλ1 +
1

ln2

)

−(sin(θ)+Rcos(2θ))

(

logλ2 +
1

ln2

)

− (cos(θ)−Rcos(2θ))

(

logλ3 +
1

ln2

))

=
1

2

(

log
(λ0
λ3

)

cos(θ)+ log
(λ1
λ2

)

sin(θ)+Rcos(2θ) log
(λ0λ3
λ1λ2

)

)

= log
(λ0
λ3

)

cos(θ)+ log
(λ1
λ2

)

sin(θ)⩾ 0

as claimed.

We derive a similar result for monotonicity of K(R,θ) with respect to θ

Lemma 25. For any ω ∈ (3/4,(1+ 1/
√
2)/2], and (R,θ) ∈ Dω we have ∂θK(R,θ)⩾ 0.

Proof. We differentiate K(R,θ) with respect to θ
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∂θK(R,θ) =
∑

i

(

log(λi)+
1

ln2

)∂λi
∂θ

=
∑

i

(

log(λi)
∂λi
∂θ

)

+
1

ln2

∑

i

∂λi
∂θ

=
∑

i

(

log(λi)
∂λi
∂θ

)

=
1

2

(

− log
(λ0
λ3

)

R sin(θ)+ log
(λ1
λ2

)

Rcos(θ)−R2 sin(2θ) log
(λ0λ3
λ1λ2

)

)

=−R sin(θ)

2
log
(λ0
λ3

)

+
Rcos(θ)

2
log
(λ1
λ2

)

.

We now consider the function

f(R,θ) =
2 ln2

R
∂θK(R,θ) =− sin(θ) ln

(

λ0(R,θ)

λ3(R,θ)

)

+ cos(θ) ln

(

λ0(R,θ)

λ3(R,θ)

)

. (C24)

Note that ω ∈ (3/4,(1+ 1/
√
2)/2] implies 1/

√
2< R⩽ 1 and 0⩽ θ ⩽ π/4− cos−1(1/(R

√
2)), or 0⩽ θ ⩽

π/4, 1/
√
2< R⩽ 1/(cos(θ)+ sin(θ)). We can extend the domain of f(R,θ) to 0⩽ θ ⩽ π/4, 0⩽ R⩽

1/(cos(θ)+ sin(θ)).
Taking derivative of f with respect to R gives

∂Rf(R,θ) =
2R2 sin(4θ)

(1−R2(cos(θ)+ sin(θ))2)(1−R2(cos(θ)− sin(θ))2)
. (C25)

Thus, ∂Rf(R,θ)> 0 whenever θ ∈ [0, π4 ]. We can then infer that ∂θK(R,θ) =
R

2 ln2 f(R,θ)⩾
R

2 ln2 f(0,θ) = 0.

C.2.2. Lower bounding the objective function
In this section, we propose a method to compute a lower bound on the function G.|.E by partitioning the
domain. We start by considering an abstract version of the problem, which has the form

min
x∈D

Q(x) (C26)

whereD ⊂ R
n is a compact set and Q :D 7→ R is bounded. Furthermore, we assume we know an upper

boundM such that Q(x)⩽M for all x ∈ D.
We use the notation Ca,b = [a1,b1]× [a2,b2]× ·· · × [an,bn], i.e. Ca,b is a hyper-cuboid with a and b as two

opposite vertices. Then let C ⊇ D be any hyper-cuboid that completely containsD. We say P = {Cai,bi}i is a
partition of C if

C =
⋃

i

Cai,bi (C27)

where {Cai,bi}i are cuboids whose intersection has zero volume.
The main idea behind our lower bounds is to find lower bounds on Q(x) that hold on each cuboid and

then to take the minimum of all the lower bounds. In some cases these bounds are formed by starting from a
corner and using bounds on the derivatives of Q(x) on the cuboid to form a bound that holds across the
cuboid. In other cases, we use monotonicity arguments to imply that evaluation at one of the corners lower
bounds the whole cuboid. Some of our cuboids lie entirely outside the original domainD. To save
calculation we assign the known upper bound on the function as the upper bound on cuboids in our
partition that lie outside ofD.

C.2.3. Obtaining a lower bound on GA|XYE
We now return to our optimization problem (C23). It is convenient to switch parameterization to use
η := cos−1(

√
2(2ω− 1)/R) instead of R. Taking x= (η,θ,v) we rewrite (C23) as

GA|XYE(ω) = min
x∈Dω,u∈{u+,u−}

F1(η,θ,v)+ F2(η,θ,v)+K(R(η),θ) (C28)
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where

F1(η,θ,v) =
1

2
Hbin

(1

2
+

R(η)

2

√

1+ cos(u(v)+ v) sin(2θ)
)

F2(η,θ,v) =
1

2
Hbin

(1

2
+

R(η)

2

√

1+ cos(u(v)− v) sin(2θ)
)

R(η) =

√
2(2ω− 1)

cos(η)
.

Here the domainDω is the set

Dω =
{

(η,θ,v) : η ∈ [0,cos−1
(
√
2(2ω− 1)

)

],θ ∈ [0,
π

4
− cos−1(cos(η)/(4ω− 2))],v ∈ [0,

π

2
]
}

. (C29)

Define a cuboid C ⊇ Dω as [0,cos−1
(√

2(2ω− 1)
)

]× [0, π4 − cos−1
(

1/(4ω− 2)
)

]× [0, π2 ]. We then

partition C as follows. We take {ηi}N+1
i=0 to be such that 0= η0 < η1 < η2 · · ·< ηN+1 = cos−1

(√
2(2ω− 1)

)

.

Similarly define {θ(i)j }M(i)+1
j=0 be such that 0= θ

(i)
0 < θ

(i)
1 < · · ·< θ

(i)
M(i)+1 =

π
4 − cos−1

(

1/(4ω− 2)
)

and

{v(i,j)k }P(i,j)+1
k=0 be such that 0= v(i,j)0 < v(i,j)1 < v(i,j)2 · · ·< v(i,j)P(i,j)+1 =

π
2 . Thus C =

⋃

i,j,k Ci,j,k, where, to
streamline the notation, we have used Ci,j,k := Cxi,j ,k,xi+1,j+1,k+1 with xi,j,k := (ηi,θ

(i)
j ,v

(i,j)
k ).

From (C22) there are two possible functional forms of u±. Taking derivatives we find

∂ηu± =±2

∂θu± =−2
cos(2θ)cos(v)

√

1− sin2(2θ)cos2(v)
∈ [−2,0] (C30)

∂vu± =
sin(2θ) sin(v)

√

1− sin2(2θ)cos2(v)
∈ [0,1].

We return to the problem of deriving an upper bound on the functions F1 and F2. To do so, we first need
bounds on the functions cos(u± ± v) sin(2θ). Our bounds use Taylor’s theorem, which we first state for
convenience.

Theorem 2 (Taylor). LetD ⊆ R
n be compact and f :D→ R be differentiable onD, then for all a,x ∈ D there

exists x ′ ∈ D such that

f(x) = f(a)+∇f
∣

∣

x′
· (x− a).

Since sin(2θ) is always positive and increasing in θ in our domain, we get the following result for any
(η,θ,v) ∈ Ci,j,k.

cos(u(x)± v) sin(2θ)⩽







maxx∈Ci,j,k

(

cos(u(x)± v)
)

sin(2θi+1) ifmaxx∈Ci,j,k

(

cos(u(xi,j,k)± v)
)

> 0

maxx∈Ci,j,k

(

cos(u(x)± v)
)

sin(2θi) ifmaxx∈Ci,j,k

(

cos(u(xi,j,k)± v)
)

< 0.

(C31)

Let x= (η,θ,v) ∈ Ci,j,k and, for brevity, write g±,y(x) = u±(x)+ (−1)yv with y ∈ {0,1}. Then, by Taylor’s
theorem (cf theorem 2), there exists x ′ ∈ Ci,j,k such that

cos(g±,y(x)) = cos(g±,y(xi,j,k))+ ∂η cos(g±,y(x))
∣

∣

x ′
(η− ηi)+ ∂θ cos(g±,y(x))

∣

∣

x ′
(θ− θ

(i)
j )

+ ∂v cos(g±,y(x))
∣

∣

x ′
(v− v(i,j)k ). (C32)

We upper bound this by upper bounding each of the partial derivatives on Ci,j,k:

∂η cos(g±,y(x)) =− sin(g±,y(x))∂ηu±

∂θ cos(g±,y(x)) =− sin(g±,y(x))∂θu±

∂v cos(g±,y(x)) =− sin(g±,y(x))(∂vu± +(−1)y).

We have bounded the derivatives of u on Ci,j,k in (C30).
We now consider the different cases. Firstly, suppose maxx∈Ci,j,k

[

− sin(g±,y(x))
]

⩾ 0.
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Consider the terms in (C32). Using the bounds in (C30), we have

∂η cos(g+,y(x))
∣

∣

x′
(η− ηi)⩽ 2 max

x∈Ci,j,k

[

− sin(g+,y(x))
]

(ηi+1 − ηi)

∂θ cos(g+,y(x))
∣

∣

x′
(θ− θ

(i)
j )⩽ 0

∂v cos(g+,y(x))
∣

∣

x′
(v− v(i,j)k )⩽

{

2maxx∈Ci,j,k [− sin(g+,0(x))] (v
(i,j)
k+1 − v(i,j)k ) y= 0

0 y= 1
.

Similarly,

∂η cos(g−,y(x))
∣

∣

x′
(η− ηi)⩽ 0

∂θ cos(g−,y(x))
∣

∣

x′
(θ− θ

(i)
j )⩽ 0

∂v cos(g−,y(x))
∣

∣

x′
(v− v(i,j)k )⩽

{

2maxx∈Ci,j,k [− sin(g−,0(x))] (v
(i,j)
k+1 − v(i,j)k ) y= 0

0 y= 1
.

Combining all of these, and bounding the− sin(g±,y(x)) terms by 1, we find

cos(g+,0(x))⩽ cos(g+,0(xi,j,k))+ 2(ηi+1 − ηi)+ 2(v(i,j)k+1 − v(i,j)k )

cos(g+,1(x))⩽ cos(g+,1(xi,j,k))+ 2(ηi+1 − ηi) (C33)

cos(g−,0(x))⩽ cos(g−,0(xi,j,k))+ 2(v(i,j)k+1 − v(i,j)k )

cos(g−,1(x))⩽ cos(g−,1(xi,j,k)).

Secondly, in the case maxx∈Ci,j,k

[

− sin(g±,y(x))
]

⩽ 0, we have

∂η cos(g+,y(x))
∣

∣

x′
(η− ηi)⩽ 0

∂θ cos(g+,y(x))
∣

∣

x′
(θ− θ

(i)
j )⩽−2 min

x∈Ci,j,k

[

− sin(g±,y(x))
]

(θ
(i)
j+1 − θ

(i)
j )

∂v cos(g+,y(x))
∣

∣

x′
(v− v(i,j)k )⩽

{

0 y= 0

−minx∈Ci,j,k [− sin(g+,0(x))] (v
(i,j)
k+1 − v(i,j)k ) y= 1

.

and

∂η cos(g−,y(x))
∣

∣

x′
(η− ηi)⩽−2 min

x∈Ci,j,k

[

− sin(g±,y(x))
]

(ηi+1 − ηi)

∂θ cos(g−,y(x))
∣

∣

x′
(θ− θ

(i)
j )⩽−2 min

x∈Ci,j,k

[

− sin(g±,y(x))
]

(θ
(i)
j+1 − θ

(i)
j )

∂v cos(g−,y(x))
∣

∣

x′
(v− v(i,j)k )⩽

{

0 y= 0

−minx∈Ci,j,k [− sin(g+,0(x))] (v
(i,j)
k+1 − v(i,j)k ) y= 1

.

Combining all of these, and bounding the− sin(g±,y(x)) terms by−1, we find

cos(g+,0(x))⩽ cos(g+,0(xi,j,k))+ 2(θ(i)j+1 − θ
(i)
j )

cos(g+,1(x))⩽ cos(g+,1(xi,j,k))+ 2(θ(i)j+1 − θ
(i)
j )+ (v(i,j)k+1 − v(i,j)k ) (C34)

cos(g−,0(x))⩽ cos(g−,0(xi,j,k))+ 2(ηi+1 − ηi)+ 2(θ(i)j+1 − θ
(i)
j )

cos(g−,1(x))⩽ cos(g−,1(xi,j,k))+ 2(ηi+1 − ηi)+ 2(θ(i)j+1 − θ
(i)
j )+ (v(i,j)k+1 − v(i,j)k ).

Combining (C33) and (C34) we define

∆+,0 =max(2(θ(i)j+1 − θ
(i)
j ), 2(ηi+1 − ηi)+ 2(v(i,j)k+1 − v(i,j)k ))

∆+,1 =max(2(ηi+1 − ηi), 2(θ
(i)
j+1 − θ

(i)
j )+ (v(i,j)k+1 − v(i,j)k )

∆−,0 =max(2(v(i,j)k+1 − v(i,j)k ), 2(ηi+1 − ηi)+ 2(θ(i)j+1 − θ
(i)
j ))

∆−,1 = 2(ηi+1 − ηi)+ 2(θ(i)j+1 − θ
(i)
j )+ (v(i,j)k+1 − v(i,j)k ).
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We hence have the following bounds for any x ∈ Ci,j,k:

cos(g+,y(x)) sin(2θ)⩽ ζ
i,j,k
+,y :=

{

(

cos(g+,y(xi,j,k))+∆+,y

)

sin(2θ(i)j ) if
(

cos(g+,y(xi,j,k))+∆+,y

)

< 0
(

cos(g+,y(xi,j,k))+∆+,y

)

sin(2θ(i)j+1) otherwise

cos(g−,y(x)) sin(2θ)⩽ ζ
i,j,k
−,y :=

{

(

cos(g−,y(xi,j,k))+∆−,y

)

sin(2θ(i)j ) if cos(g−,y(xi,j,k))+∆−,y < 0
(

cos(g−,y(xi,j,k))+∆−,y

)

sin(2θ(i)j+1) otherwise
.

With this established we return to the optimization problem (C28). We define the objective function
Q(η,θ,v) := F1(η,θ,v)+ F2(η,θ,v)+K(R(η),θ), which we want to optimize overDω and u ∈ {u+,u−}.
Lemma 26. Let P =

⋃

i,j,k Ci,j,k be a partition of C as specified above. Define gi,j,k and hi,j,k as follows

gi,j,k :=
1

2
Hbin

(

1

2
+

R(ηi+1)

2

√

1+ ζ
i,j,k
+,0

)

+
1

2
Hbin

(

1

2
+

R(ηi+1)

2

√

1+ ζ
i,j,k
+,1

)

+K
(

R(ηi),θ
(i)
j

)

hi,j,k :=
1

2
Hbin

(

1

2
+

R(ηi+1)

2

√

1+ ζ
i,j,k
−,0

)

+
1

2
Hbin

(

1

2
+

R(ηi+1)

2

√

1+ ζ
i,j,k
−,1

)

+K
(

R(ηi),θ
(i)
j

)

.

Let M ∈ R be any upper bound on Q, i.e. M⩾maxx∈DQ(x). Then

Q(x)⩾ fi,j,k :=

{

min{gi,j,k,hi,j,k} if x ∈ Ci,j,k such that Ci,j,k ∩D 6= ∅
M otherwise.

(C35)

Proof. From lemmas 24 and 25 we know that ∂RK> 0 and ∂θK> 0. In addition, ∂ηK(R(η),θ) =√
2(2ω−1) sin(η)

cos2(η) ∂RK(R,θ). Positivity of ∂ηK and ∂θK, implies K(R(η),θ)⩾ K(R(ηi),θ
(i)
j ) within Ci,j,k.

Furthermore, Hbin(
1
2 +

x
2 ) is decreasing for x⩾ 0. Since R(η)

√

1+ cos(v± u) sin(2θ)> 0,

Hbin

(

1

2
+

R(η)

2

√

1+ cos(u+ ± v) sin(2θ)

)

⩾Hbin

(

1

2
+

R(ηi+1)

2

√

1+ cos(u+ ± v) sin(2θ)

)

=Hbin

(

1

2
+

R(ηi+1)

2

√

1+ cos(g+,(1∓1)/2) sin(2θ)

)

⩾Hbin

(

1

2
+

R(ηi+1)

2

√

1+ ζ
i,j,k
+,(1∓1)/2

)

.

Similarly,

Hbin

(

1

2
+

R(ηi+1)

2

√

1+ cos(u− ± v) sin(2θ)

)

⩾Hbin

(

1

2
+

R(ηi+1)

2

√

1+ ζ
i,j,k
−,(1∓1)/2

)

,

which establishes the claim.

Combining the results in this section we obtain the following corollary.

Corollary 5. Let ω ∈ ( 34 ,
1
2 +

1
2
√
2
] be fixed. LetDω be defined as in (C29) and P =

⋃

i,j,k Ci,j,k be any partition
of the cuboid C = [0,cos−1

(√
2(2ω− 1)

)

]× [0, π4 − cos−1
(

(4ω− 2)−1
)

]× [0, π2 ]. Then

GA|XYE(ω)⩾min
i,j,k

fi,j,k. (C36)

where fi,j,k are defined in (C35).

This means that for fixed ω we can lower bound the randomness by evaluating fi,j,k at all grid points in
the relevant cuboid and taking the minimum. This is how our numerical algorithm works (note that the
lower bound gets tighter as the number of grid points is increased).
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C.3. Lower bounding FA|XYE
In the previous section, we derived a technique to lower bound the function GA|XYE(ω) for a fixed value of
the score, ω. In appendix B.2 we show that the asymptotic rate FA|XYE can be computed by taking the convex
lower bound on GA|XYE. In this section, we construct a lower bound on the function FA|XYE using a lower
bound on GA|XYE.

We start with a general lemma.

Lemma 27. Let a and b be real numbers, a< b and G̃ : [a,b]→ R be a lower bound on G : [a,b]→ R. Let
F̃[a,b]→ R and F[a,b]→ R be convex lower bounds on G̃ and G respectively. Then F̃ is a lower bound on F.

Proof. LetMω0 be the set of probability measures on the interval [a,b] satisfying
´

dµ(ω)ω = ω0.

F(ω0) = inf
µ∈Mω0

ˆ

dµ(ω)G(ω). (C37)

SinceG(ω)⩾ G̃(ω) for every value of ω ∈ [a,b], for every measure µ ∈Mω wemust have that
´

dµ(ω)G(ω)⩾
´

dµ(ω)G̃(ω). Thus

F(ω0) := inf
µ∈ω0

ˆ

dµ(ω)G(ω)⩾ inf
µ∈ω0

ˆ

dµ(ω)G̃(ω)⩾ F̃(ω0).

Since we can only compute our lower bound GP
A|XYE on GA|XYE for a finite set of values of ω, to form a

lower bound that holds for all values of ω, we construct a function G̃A|XYE as follows. Let {ωi}Ni=1 be an

ordered set of values in [ 34 ,
1
2 +

1
2
√
2
] with ω1 = 3/4 at which we have computed GP

A|XYE. We define G̃A|XYE(ω)

to be equal to GP
A|XYE(ωi) for ω ∈ [ωi,ωi+1), and equal to GP

A|XYE(ωN) for ω ⩾ ωN. Because GA|XYE is
monotonically increasing in ω (see lemma 35), it follows that for ω ∈ [ωi,ωi+1),
GA|XYE(ω)⩾ GA|XYE(ωi)⩾ GP

A|XYE(ωi) = G̃A|XYE(ω).

A lower bound F̃A|XYE of FA|XYE can then be formed by taking the convex lower bound of G̃P
A|XYE (cf

lemma 27).

C.4. H(A|E)
In this case lemma 17 gives

H(A|E) =H(A)+
∑

a

pA(a)H





∑

bxy

pBXY|a(b,x,y)τ
abxy
E



−H





∑

abxy

pAB(a,b)pXY|ab(x,y)τ
abxy
E





= 1+
1

2

∑

a

H





∑

bxy

2pABXY(a,b,x,y)τ
abxy
E



−H(E)

= 1+
1

2

∑

a

H





∑

bxy

2pXY(x,y)PAB|xy(a,b)τ
abxy
E



−H(E)

= 1+
1

2

∑

a

H

(

∑

x

2pX(x)trA′

((

|ϕAa|x〉〈ϕAa|x| ⊗1E

)

ρA′E

)

)

−H(E) .

Like in the case H(AB|E) the middle term cannot be removed and this term is not independent of δ.

C.5. H(AB|X= 0,Y= 0,E)
For H(AB|X= 0,Y= 0,E) we are interested in the state

τ ′ABE =
∑

ab

pAB|00(a,b)|a〉〈a| ⊗ |b〉〈b| ⊗ τ ab00E

since H(AB|X= 0,Y= 0,E)τ =H(AB|E)τ ′ . Note that, as above, H(E)τ ′ =H(E)ρ. Using lemma 17 we have

H(AB|E)τ ′ =H(AB)τ ′ +
∑

ab

pAB(a,b)H(τ
ab00
E )−H

(

∑

ab

pAB(a,b)τ
ab00
E

)

=H(AB)τ ′ +
∑

ab

pAB(a,b)H(τ
ab00
E )−H(E)τ ′ .
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However, since τ ab00E is pure for each a,b, H(τ ab00E ) = 0 and we find

H(AB|E)τ ′ =H(AB)τ ′ −H(E)ρ

=H({ϵ00, ϵ00,1/2− ϵ00,1/2− ϵ00})−H({λ0,λ1,λ2,λ3})
= 1+Hbin(2ϵ00)−H({λ0,λ1,λ2,λ3}) .

Lemma 18 shows that maxδH({λ0,λ1,λ2,λ3}) is achieved for δ = δ∗ = R2 cos(2θ)
4 . Since the score is

independent of δ we can take the state to satisfy δ = δ∗ and remove δ from the optimization.

C.5.1. Reparameterizing the optimisation problem
We introduce some notation for convenience. Let x= (R,θ,α0,α1,β0,β1) and define

ϵ̂00(x) := cos(θ)cos(2α0 − 2β0)+ sin(θ)cos(2α0 + 2β0) (C38)

ϵ̂10(x) := cos(θ)cos(2α1 − 2β0)+ sin(θ)cos(2α1 + 2β0) (C39)

ϵ̂01(x) := cos(θ)cos(2α0 − 2β1)+ sin(θ)cos(2α0 + 2β1) (C40)

ϵ̂11(x) :=−cos(θ)cos(2α1 − 2β1)− sin(θ)cos(2α1 + 2β1) (C41)

K(x) := K(R,θ) , (C42)

where K(R,θ) is given in corollary 4. In this notation, the equation for the constraint is

∑

ij

ϵ̂i,j =
4(2ω− 1)

R
, (C43)

and hence the optimization problem is

GAB|X=0,Y=0,E(ω) = min
x∈Dω

(

Hbin

(

1

2
+

R

2
ϵ̂00(x)

)

+K(x)

)

s.t.
∑

ij

ϵ̂ij(x) =
4(2ω− 1)

R
,

(C44)

whereDω = {R ∈ [
√
2(2ω− 1),1],θ ∈ [0,π/4− cos−1(1/(R

√
2))],(α0,α1,β0,β1) ∈ R

4} (see lemma 20 for
the justification of the range of R).

For brevity we use P(x) for the objective function. We call x ∈ Dω a solution to the optimization
problem (C44) if GAB|X=0,Y=0,E(ω) = P(x) and x satisfies the constraint. For reasons that shall be clear later,
we now define the following functions on the extended domain

Ĥbin(x) =

{

Hbin(x) if x ∈ [ 12 ,1]

1 otherwise
(C45)

and

K̂(R,θ) =

{

K(R,θ) if
√
2(2ω− 1)⩽ R⩽ 1 and 0⩽ θ ⩽ π

4 − cos−1
(

1√
2R

)

1 otherwise
. (C46)

Here K̂(R,θ) and Ĥbin both take the value 1 when the functions K(R,θ) and Hbin(x) are outside the stated
range. These values are chosen such that upon extension of the domain, the resulting optimization problem
still has the same minimum12.

Lemma 28. Let Xω be the set of solutions of (C44) for some ω ∈ ( 34 ,
1
2 +

1
2
√
2
]. There exists x ∈ Xω such that

ϵ̂00(x)> 0 and ϵ̂00(x) =max
i,j

|ϵij(x)|.

12 That Hbin(x) ⩽ 1 and K(R,θ) ⩽ 1 whenever defined justifies the choice made for defining Ĥbin(x) and K̂(R,θ).
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Proof. We first prove that we can choose

|ϵ̂00(x)|=max
i,j

|ϵ̂ij(x)|. (C47)

From the symmetry of the binary entropy, Hbin(
1
2 +

y1
2 )<Hbin(

1
2 +

y2
2 ) for |y1|> |y2|. Now consider the fol-

lowing cases

• Suppose |ϵ̂00(x)|< |ϵ̂10(x)|: Perform the transformation α0 ↔ α1 and β1 → β1 +
π
2 . Under this transform-

ation ϵ̂00(x)↔ ϵ̂01(x) and ϵ̂10(x)↔ ϵ̂11(x). The CHSH score is hence preserved. This transformation also
decreases the objective function, so x cannot have been an solution to (C44) prior to the transformation.

• Suppose |ϵ̂00(x)|< |ϵ̂01(x)|: Perform the transformation β0 ↔ β1 andα1 → α1 +
π
2 . Under this transforma-

tion ϵ̂00(x)↔ ϵ̂10(x) and ϵ̂01(x)↔ ϵ̂11(x). Again, this preserves the CHSH score while reducing the objective
function.

• Suppose |ϵ̂00(x)|< |ϵ̂11(x)|: Perform the transformation α0 → α1 +
π
2 , α1 → α0, β0 → β1 and β1 → β0 +

π
2 . Under this transformation ϵ̂00(x)↔ ϵ̂11(x) and ϵ̂01(x)↔ ϵ̂10(x). Again, this preserves the CHSH score
while reducing the objective function.

Finally, we can show that ϵ̂00(x)> 0 by observing that for ω ∈ ( 34 ,
1
2 +

1
2
√
2
] we have

R
∑

i,j

ϵ̂ij(x) = 4(2ω− 1)> 2. (C48)

In addition, for all i, j,

Rϵ̂ij(x)⩽ R(cos(θ)+ sin(θ))⩽ 1, (C49)

where the last inequality follows from (C11) and (C12) whose sum can be at most 1.
Now suppose that |ϵ̂00(x)|=max

i,j
|ϵ̂ij| and ϵ̂00(x)< 0. It follows that

R
∑

i,j

ϵ̂ij = R
(

ϵ̂00 + ϵ̂01
)

+R
(

ϵ̂10 + ϵ̂11
)

⩽ R
(

ϵ̂00 + ϵ̂01
)

+ 2

⩽ 2,

where the first inequality uses (C49). This is in contradiction with (C48).

Lemma 29. Let P̂ be the objective function with extended domain, i.e. P̂(x) := Ĥbin

(

1
2 +

Rϵ00(x)
2

)

+ K̂(x),

ω ∈ ( 34 ,
1
2 +

1
2
√
2
], and let X be a set such thatDω ⊆X ⊆ R

6. Then,

GAB|X=0,Y=0,E(ω) =min
x∈X

P̂(x)

s.t.
∑

ij

ϵ̂ij(x) =
4(2ω− 1)

R
,

(C50)

i.e. optimizing over P̂ on an extended domain X gives the same solution as the original optimization (C44).
Furthermore ∃x ∈ Dω that is a solution to both optimization problems.

Proof. Let x ′ ∈ Dω achieve the optimal value of P and have ϵ̂00(x ′)> 0. [From lemma 28 such an x ′ exists.]
Since P̂(x) = P(x)⩽ 2 for all x ∈ Dω , and P̂(x) = 2 for x ∈ R

6 \Dω , x ′ must also achieve the optimal value of
P̂, where it takes the same value.

C.5.2. Some simplifications
Lemma 30. Let Xω the set of solutions to the optimization problem (C44) for some ω ∈ ( 34 ,

1
2 +

1
2
√
2
]. There

exists x= (R,θ,α0,α1,β0,β1) ∈ Xω such that the following hold

• sin(β0 +β1)⩾ 0
• sin(β0 −β1)⩽ 0
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Proof. The expression for the CHSH score satisfies (cf (C16))

√
2(2ω− 1) = Rcos(β0 −β1)

[

sin(2α0) sin(β0 +β1)cos
(π

4
+ θ
)

+ cos(2α0)cos(β0 +β1) sin
(π

4
+ θ
)]

+R sin(β0 −β1)
[

sin(2α1)cos(β0 +β1)cos
(π

4
+ θ
)

− cos(2α1) sin(β0 +β1) sin
(π

4
+ θ
)]

.

Let α0,α1,β0,β1 be optimal parameters. Consider performing the following steps sequentially.

(1) If sin(β0 +β1)< 0, then perform the transformations βi →−βi and αi →−αi. We get sin(β0 +β1)⩾ 0.
(2) If sin(β0 −β1)> 0 then perform the transformations β0 → β0 +

π
2 , β1 → β1 − π

2 , αi → αi +
π
2 . This step

does not affect sin(β0 +β1). Thus we ensure that sin(β0 −β1)⩽ 0 and sin(β0 +β1)⩾ 0.

In each step, the values of ϵij for all i, j remain the same, hence the CHSH score and the objective function
remains invariant throughout. Thus, the transformations maintain optimal parameters.

C.5.3. Reduction in parameters
To rewrite the optimization in a way that removes the constraint we introduce the following functions

α̂0(λ,v,θ) :=−2tan−1

(

1

tan(λ) tan(π4 + θ)

)

+ tan−1

(

1

tan(v) tan(π4 + θ)

)

(C51)

ϵ̃(λ,v,θ) := cos(θ)cos(α̂0 − 2v+λ)+ sin(θ)cos(α̂0 + 2v−λ) (C52)

R̂(λ,v,θ) :=

√
2(2ω− 1)

cos(λ−v)
[

sin(α̂0) sin(v)cos(
π
4 +θ)+cos(α̂0)cos(v) sin(

π
4 +θ)

]

+ sin(λ−v)√
2

√

1−cos(2v) sin(2θ)
.

(C53)

We also state the following small lemma for convenience.

Lemma 31. Let a,b ∈ R with a 6= 0. The values of γ ∈ R that form extrema of acos(γ)+ b sin(γ) are

γ = tan−1(b/a)+ nπ (C54)

for any n ∈ Z. If a> 0 the maxima occur when n is even and the minima when n is odd, and vice-versa if a< 0.

Proof. The problem is equivalent to maximizing

a√
a2 + b2

cos(γ)+
b√

a2 + b2
sin(γ).

Let ϕ satisfy cos(ϕ) =
(

a√
a2+b2

)

and sin(ϕ) =
(

b√
a2+b2

)

. Thus, the expression is equivalent to cos(γ−ϕ)

which has maxima for γ = ϕ+ 2nπ and minima for γ = ϕ+π+ 2nπ for n ∈ Z.
If a> 0 then this gives maxima for γ = tan−1(b/a)+ 2nπ and minima for γ = tan−1(b/a)+ (2n+ 1)π.
Alternatively, if a< 0 then this gives maxima for γ = tan−1(b/a)+ (2n+ 1)π and minima for γ =

tan−1(b/a)+ 2nπ.

Lemma 32. Let ω ∈ ( 34 ,
1
2 +

1
2
√
2
] andD ′

ω =
{

(λ,v,θ) ∈ R
3 : λ ∈ [0,π],v ∈ [0,π],

θ ∈ [0, π4 − cos−1 (1/(4ω− 2))]
}

, then

GAB|X=0,Y=0,E(ω) = inf
D ′

ω

(

Ĥbin

(

1

2
+

R̂(λ,v,θ)ϵ̃(λ,v,θ)

2

)

+ K̂(R̂,θ)

)

. (C55)

Proof. Start from the form of G in lemma 29. The objective function P̂ is independent of the parameters
α1 and β1, and, as shown in lemma 29, the optimum is achieved for some x ∈ Dω . Because the function
GAB|X=0,Y=0,E(ω) is increasing in ω (see lemma 36), the optimal values of the parameters α1 and β1 must
maximize the CHSH score. Recall that the score can be related to αi and βi by (cf (C16))
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√
2(2ω− 1) =Rcos(β0 −β1)

[

sin(2α0) sin(β0 +β1)cos
(π

4
+ θ
)

+ cos(2α0)cos(β0 +β0) sin
(π

4
+ θ
)]

+R sin(β0 −β1)
[

sin(2α1)cos(β0 +β1)cos
(π

4
+ θ
)

− cos(2α1) sin(β0 +β1) sin
(π

4
+ θ
)]

.

(C56)

Consider maximizing this over α1. From lemma 30 we can assume sin(β0 −β1)⩽ 0, so we want to minimize
the second term in square brackets in (C56). This has the form of the expression in lemma 31. Since the sine
and cosine of π/4+ θ are both positive, and from lemma 30 we can assume sin(β0 +β1)⩾ 0, the minima of
the square bracket (and hence maxima overall) occur for

2α1 =− tan−1
(

cot(β0 +β1)cot
(π

4
+ θ
))

+ 2nπ. (C57)

The CHSH score is symmetric in the parameters for Alice and Bob, so we can re-write it as

√
2(2ω− 1) = Rcos(α0 −α1)

[

sin(2β0) sin(α0 +α1)cos
(π

4
+ θ
)

+ cos(2β0)cos(α0 +α0) sin
(π

4
+ θ
)]

+R sin(α0 −α1)
[

sin(2β1)cos(α0 +α1)cos
(π

4
+ θ
)

− cos(2β1) sin(α0 +α1) sin
(π

4
+ θ
)]

.

If we now maximize over β1, from lemma 30 the solutions either satisfy

2β1 =− tan−1
(

cot(α0 +α1)cot
(π

4
+ θ
))

+ 2nπ or

2β1 =− tan−1
(

cot(α0 +α1)cot
(π

4
+ θ
))

+(2n+ 1)π

for n ∈ Z. (Which one holds depends on the signs of sin(α0 −α1) and sin(α0 +α1).) In both cases, tan(2β1) =
cot(α0 +α1)cot

(

π
4 + θ

)

.
By symmetry (and because we can take sin(α0 −α1)⩽ 0 and sin(α0 +α1)⩾ 0 from lemma 30) the max-

ima of this over β1 occur for

2β1 =− tan−1
(

cot(α0 +α1)cot
(π

4
+ θ
))

+ 2nπ. (C58)

Rearranging gives

tan(α0 +α1) =−cot(2β1)cot
(π

4
+ θ
)

, (C59)

and hence

α0 =−α1 − tan−1
(

cot(2β1)cot
(π

4
+ θ
))

+ nπ

for n ∈ Z. Using (C57) we find

2α0 = tan−1
(

cot(β0 +β1)cot
(π

4
+ θ
))

− 2tan−1
(

cot(2β1)cot
(π

4
+ θ
))

+ 2nπ. (C60)

The proof proceeds as follows. We use (C57) to eliminate α1 from the constraint, noting that the value of
n in (C57) does not change the value so we can take n= 0. We then use (C60) to reparameterize the objective
function in terms of β1 instead ofα0 (again the value of n in (C60)makes no difference and we take n= 0). The
parameters that remain are hence β0, β1, R and θ. We then reparameterize using v= β0 +β1 and λ= 2β1, so
that both the constraint and objective function are written in terms of v, λ, R and θ. We then use the constraint
to write R in terms of the other parameters, reducing the objective function to an unconstrained optimization
over v, λ and θ.

At this stage v and λ range over all reals, which can readily be restricted to [0,2π]. In fact, we can restrict
both to [0,π] by noting that lemma 30 shows that it suffices to take sin(v) = sin(β0 +β1)⩾ 0 hence v ∈ [0,π].
We then consider the transformation (λ 7→ 2π−λ,v 7→ π− v). We find

α̂0(2π−λ,π− v,θ) =−α̂0(λ,v,θ)

ϵ̃(2π−λ,π− v,θ) = ϵ̃(λ,v,θ)

R̂(2π−λ,π− v,θ) = R̂(λ,v,θ) ,

from which it follows that we can restrict both λ and v to the range [0,π]. Finally, the original range of θ is
[0,π/4− cos−1(1/(R

√
2)], withR ∈ [

√
2(2ω− 1),1], hence the largest θ that needs to be considered for a given
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ω is π/4− cos−1(1/(4ω− 2)). Since we are using the functions with extended domain, it does not matter that
we allow the range of θ to potentially be incompatible with the value of R̂. This gives the optimization claimed
in (C55).

C.5.4. Upper bounding the derivatives
For brevity in this section we often use θ̄ = π/4+ θ. We upper-bound the derivatives for the functions
α̂0, ϵ̃, R̂. We first upper bound the derivatives for α as

∣

∣

∣∂λα̂0

∣

∣

∣=
∣

∣

∣

2cot
(

θ̄
)

csc2(λ)

cot2
(

θ̄
)

cot2(λ)+ 1

∣

∣

∣ (C61)

∣

∣

∣∂vα̂0

∣

∣

∣=
∣

∣

∣

cot
(

θ̄
)

csc2(v)

cot2
(

θ̄
)

cot2(v)+ 1

∣

∣

∣ (C62)

∣

∣

∣∂θ̄α̂0

∣

∣

∣=
∣

∣

∣

2csc2
(

θ̄
)

cot(λ)

cot2
(

θ̄
)

cot2(λ)+ 1
− csc2

(

θ̄
)

cot(v)
(

cot2
(

θ̄
)

cot2(v)+ 1
)

∣

∣

∣. (C63)

Observe that for x ∈ R

acsc2(x)

a2 cot2(x)+ 1
⩽max{a, 1

a
}. (C64)

Noting that cot(θ̄)⩽ 1 for θ ∈ [0, π4 ]. This gives us

|∂λα̂0|⩽ 2tan(θ̄) =: αλ (C65)

|∂vα̂0|⩽ tan(θ̄) =: αv. (C66)

The identity x
1+a2x2 ⩽

1
2|a| can be used to get the following upper bound

∣

∣

∣∂θ̄α̂0

∣

∣

∣⩽
∣

∣

∣

2csc2
(

θ̄
)

cot(λ)

cot2
(

θ̄
)

cot2(λ)+ 1

∣

∣

∣+
∣

∣

∣

csc2
(

θ̄
)

cot(v)
(

cot2
(

θ̄
)

cot2(v)+ 1
)

∣

∣

∣

⩽ 2
csc2(θ̄) tan(θ̄)

2
+

csc2(θ̄) tan(θ̄)

2

=
3

2sin(2θ̄)
:= αθ̄.

Define z(λ,v,θ) to be the denominator in (C53), i.e.

z(λ,v,θ) : = cos(v−λ)
[

sin(α̂0) sin(v)cos
(π

4
+θ
)

+cos(α̂0)cos(v) sin
(π

4
+θ
)]

− sin(v−λ)√
2

√

1−cos(2v) sin(2θ). (C67)

We now compute the derivatives of z. For the derivative with respect to λ, we write ∂λz= b1 + b2∂λα̂0, where

b1 = sin(v−λ)
(

sin(α̂0) sin(v)cos(θ̄)+ cos(α̂0)cos(v) sin(θ̄)
)

+
cos(v−λ)

√

1− cos(2v) sin(2θ)√
2

b2 = cos(v−λ)
(

cos(α̂0) sin(v)cos(θ̄)− sin(α̂0)cos(v) sin(θ̄)
)

.

We can then bound these by b1 ⩽ cos(θ̄)+ sin(θ̄)+ 1/
√
2⩽

√
2+ 1/

√
2 and b2 ⩽ cos(θ̄)+ sin(θ̄)⩽

√
2, so

that

|∂λz|⩽
√
2(3/2+αλ) =: zλ. (C68)

Note that ∂v[cos(v−λ) sin(v)] = cos(λ− 2v) and ∂v[cos(v−λ)cos(v)] = sin(λ− 2v). We can hence
write the v derivative as

∂vz= a1 + a2 + a3∂vα̂0, where (C69)
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a1 = cos(λ− 2v) sin(α̂0)cos(θ̄)+ sin(λ− 2v)cos(α̂0) sin(θ̄)⩽ cos(θ̄)+ sin(θ̄)⩽
√
2

a2 =−cos(v−λ)
√

1− sin(2θ)cos(2v)√
2

− sin(2θ) sin(2v) sin(v−λ)√
2
√

1− sin(2θ)cos(2v)
⩽ |cos(v−λ)|+ | sin(v−λ)|⩽

√
2

a3 = cos(v−λ)
(

cos(θ̄) sin(v)cos(α̂0)− sin(θ̄)cos(v) sin(α̂0)
)

⩽ cos(θ̄)+ sin(θ̄)⩽
√
2,

and where we obtained the bound on a2 using | sin(2v) sin(2θ)√
1−sin(2θ) cos(2v))

|⩽
√
2. Hence, we can bound

|∂vz|⩽
√
2(2+αv) =: zv. (C70)

Finally we compute the θ̄ derivative

∂θ̄z= c1 + c2 + c3∂θ̄α̂0 (C71)

where

c1 = cos(v−λ)
(

cos(α̂0)cos(v)cos(θ̄)− sin(α̂0) sin(v) sin(θ̄)
)

⩽ cos(θ̄)+ sin(θ̄)⩽
√
2

c2 =
cos(2θ)cos(2v) sin(v−λ)√

2
√

1− sin(2θ)cos(2v)
⩽

cos(2θ)√
2
√

1− sin(2θ)
=

√

1+ sin(2θ)

2
⩽ 1

c3 = cos(v−λ)
(

cos(α̂0) sin(v)cos(θ̄)− sin(α̂0)cos(v) sin(θ̄)
)

⩽ cos(θ̄)+ sin(θ̄)⩽
√
2.

We hence obtain

|∂θ̄z|⩽
√
2+ 1+

√
2αθ̄ =: zθ. (C72)

We now compute the derivatives of ϵ̃:

∂λϵ̃=−∂λα̂0(cos(θ) sin(α̂0 +λ− 2v)+ sin(θ) sin(α̂0 −λ+ 2v))+ sin(θ) sin(α̂0 −λ+ 2v)

− cos(θ) sin(α̂0 +λ− 2v)

∂vϵ̃=−∂vα̂0(cos(θ) sin(α̂0 +λ− 2v)+ sin(θ)sin(α̂0 −λ+ 2v))− 2sin(θ) sin(α̂0 −λ+ 2v)

+ 2cos(θ) sin(α̂0 +λ− 2v)

∂θ ϵ̃=−∂θα̂0(cos(θ) sin(α̂0 +λ− 2v)+ sin(θ) sin(α̂0 −λ+ 2v))+ cos(θ)cos(α̂0 −λ+ 2v)

− sin(θ)cos(α̂0 +λ− 2v).

Using the same techniques as above, we find the following bounds

|∂λϵ̃|⩽ αλ(cos(θ)+ sin(θ))+ cos(θ)+ sin(θ)⩽
√
2(αλ + 1) =: ϵλ

|∂vϵ̃|⩽ αv(cos(θ)+ sin(θ))+ 2cos(θ)+ 2sin(θ)⩽
√
2(αv + 2) =: ϵv

|∂θ ϵ̃|⩽ αθ(cos(θ)+ sin(θ))+ cos(θ)+ sin(θ)⩽
√
2(αθ + 1) =: ϵθ.

C.5.5. Lower bounding the function
Consider a partition P ofD ′

ω . Let Ci,j,k be a cuboid (with i label corresponding to λ, j label for v and k label

for θ). Let∆z= zλ(λi+1 −λi)+ zv(v
(i)
j+1 − v(i)j )+ zθ(θ

(i,j)
k+1 − θ

(i,j)
k ), then in Ci,j,k

Ri,j,k
min :=

√
2(2ω− 1)

z(λi,v
(i)
j ,θ

(i,j)
k )+∆z

⩽ R̂(λ,v,θ) =

√
2(2ω− 1)

z(λi,v
(i)
j ,θ

(i,j)
k )

⩽

√
2(2ω− 1)

z(λi,v
(i)
j ,θ

(i,j)
k )−∆z

=: Ri,j,k
max. (C73)

Also let∆ϵ := ϵλ(λi+1 −λi)+ ϵv(v
(i)
j+1 − v(i)j )+ ϵθ(θ

(i,j)
k+1 − θ

(i,j)
k ), then in Ci,j,k we have

ϵ̃(λ,v,θ)⩽ ϵi,j ,kmax := ϵ̃(λi,vj,θk)+∆ϵ. (C74)

For each cuboid we define a continuous function gi,j,k : Ci,j,k → R such that gi,j,k(x)⩽ P̂(x) for all x ∈ Ci,j,k.
Then we lower bound GAB|X=0,Y=0,E by using the following.
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Lemma 33. Let

gi,j,k := Ĥbin

(

1

2
+

Ri,j,k
maxϵ

i,j,k
max

2

)

+ K̂(Ri,j,k
min,θ

(i,j)
k ). (C75)

Then P̂(x)⩾ gi,j,k for all x ∈ Ci,j,k.

Proof. By definition, we have Ri,j,k
maxϵ

i,j,k
max ⩾ R̂(λ,v,θ)ϵ̃(λ,v,θ) for all x ∈ Ci,j,k. Using the monotonicity of the

function Ĥbin(
1
2 +

x
2 ), we obtain Ĥbin(

1
2 +

Ri,j,k
max ϵ

i,j,k
max

2 )⩽ Ĥbin(
1
2 +

R̂(λ,v,θ)ϵ̃(λ,v,θ)
2 ). Similarly, the monotonicity of

K̂(R,θ)with respect toR and θ (see lemmas 24 and 25) implies K̂(R(λ,v,θ),θ)⩾ K̂(Rmin,θ
(i,j)
k ) for all x ∈ Ci,j,k.

These imply the claim.

Combining all the results in this section, we have the following

Corollary 6. Let ω ∈ ( 34 ,
1
2 +

1
2
√
2
] be fixed. Let

D ′
ω = {(λ,v,θ) ∈ R

3 : λ ∈ [0,π],v ∈ [0,π],θ ∈ [0, π4 − cos−1
(

1
2(2ω−1)

)

]} and P =
⋃

i,j,k Ci,j,k be a partition of
any cuboid C ⊇ D ′(ω) as specified above. Then

GAB|X=0,Y=0,E(ω)⩾min
i,j,k

gi,j,k (C76)

where gi,j,k are defined in (C75).

Proof. This is a direct consequence of lemmas 29 and 33.

C.6. H(AB|XYE)
In this case we again use lemma 17 to obtain

H(AB|XYE) =H(AB|XY)+
∑

abxy

pABXY(a,b,x,y)H(τ
abxy
E )−

∑

xy

pXY(x,y)H

(

∑

ab

pAB|xy(a,b)τ
abxy
E

)

=H(AB|XY)−H(E) ,

where we again use that H(τ abxyE ) = 0, and note that
∑

ab pAB|xy(a,b)τ
abxy
E = ρE for all x,y. Note that

H(AB|XY) =
∑

xy

pXY(x,y)H(AB|X= x,Y= y)

= 1+
∑

xy

pXY(x,y)Hbin(2ϵxy) ,

and so we have

H(AB|XYE) = 1+
∑

xy

pXY(x,y)Hbin(2ϵxy)−H({λ0,λ1,λ2,λ3}) . (C77)

Again the δ dependence is all in the last term, so, like in the case of H(AB|X= 0,Y= 0,E) we can take δ = δ∗

and remove δ from the optimization.

C.7. H(AB|E)

We first trace out XY to give τABE =
∑

ab pAB|a〉〈a| ⊗ |b〉〈b| ⊗∑xy pXY|ab(x,y)τ
abxy
E . For this state, lemma 17

gives

H(AB|E) =H(AB)+
∑

ab

pAB(a,b)H





∑

xy

pXY|ab(x,y)τ
abxy
E



−H





∑

abxy

pAB(a,b)pXY|ab(x,y)τ
abxy
E





=H(AB)+
∑

ab

pAB(a,b)H





∑

xy

pXY|ab(x,y)τ
abxy
E



−H(E)

=H(AB)+
∑

ab

pAB(a,b)H





∑

xy

1

pAB(a,b)
pXY(x,y)pAB|xy(a,b)τ

abxy
E



−H(E) .
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In this case we cannot remove the middle term, and the middle term is not independent of δ. The
optimization in this case is hence significantly more complicated. Note that

H(AB) = 1+Hbin

(

2

(

pXY(0,0)ϵ00 + pXY(0,1)ϵ01 + pXY(1,0)ϵ10 + pXY(1,1)

(

1

2
− ϵ11

)))

.

Appendix D. Monotonicity

In this section we prove the monotonicity of the functions GA|XYE(ω), GAB|00E(ω) and GAB|XYE(ω). There is a
common part to the proofs, which we first establish.

Lemma 34. Let λ0(R,θ),λ1(R,θ),λ2(R,θ) and λ3(R,θ) be the eigenvalues of a Bell-diagonal states ρA ′B ′ as

in (C11)–(C14) in the case where δ = R2

4 cos(2θ). Then

∂

∂R
(Hbin(λ0 +λ1)−H({λ0,λ1,λ2,λ3}))> 0. (D1)

Proof.

∂

∂R

(

Hbin(λ0 +λ1)
)

=− log(λ0 +λ1)
∂

∂R
(λ0 +λ1)− log(λ2 +λ3)

∂

∂R
(λ2 +λ3). (D2)

The equality above follows from the fact that 1−λ1 −λ0 = λ2 +λ3 and thus Hbin(λ0 +λ1) =−(λ0 +
λ1) log(λ1 +λ0)− (λ2 +λ3) log(λ2 +λ3). We also have that

∂

∂R
H({λ0,λ1,λ2,λ3}) =−

∑

i

logλi
∂λi
∂R

. (D3)

Adding the derivatives, we have

∂

∂R

(

Hbin(λ0 +λ1)−H({λ0,λ1,λ2,λ3})
)

= log

(

λ0
λ0 +λ1

)

∂λ0
∂R

+ log

(

λ1
λ0 +λ1

)

∂λ1
∂R

+ log

(

λ2
λ3 +λ2

)

∂λ2
∂R

+ log

(

λ3
λ2 +λ3

)

∂λ3
∂R

= log2

( λ0
λ0 +λ1

) ∂

∂R
(λ0 +λ2)+ log2

( λ1
λ0 +λ1

) ∂

∂R
(λ1 +λ3)

= log

(

λ0
λ1

)

∂

∂R
(λ0 +λ2) = log

(

λ0
λ1

)

cos(θ)− sin(θ)

2

⩾ 0. (D4)

Where the second equality follows from the fact that for Bell-diagonal states parameterized by δ = R2

4 cos(2θ),
the eigenvalues obey

λ0
λ0 +λ1

=
λ2

λ2 +λ3
and

λ1
λ0 +λ1

=
λ3

λ2 +λ3

and the inequality comes from the parameterization.

Lemma 35. For ω ∈ ( 34 ,
1
2 (1+

1√
2
)) and any distribution pXY, the function GA|XYE(ω,pXY) is increasing in ω.

Proof. Let us fix the score ω. From the analysis in appendix C.2 we know that the optimum value of δ is
R2

4 cos(2θ). Throughout this proof we take δ = R2

4 cos(2θ) and consider ρA ′B ′ to depend on two paramet-
ers R and θ. Let (N ∗,ρ∗)≡ ρ(R∗,θ∗) be the channel and state that that solves the optimization problem for
GA|XYE(ω,pXY), i.e. such that GA|XYE(ω,pXY) =H(A|XYE)(N∗⊗IE)(ρA ′B ′E(R

∗,θ∗)). It suffices to show that there
exists a curve σ : [−1,0] 7→ S(HA ′ ⊗HB ′ ⊗HE), such that

(a) σ(0) = ρ∗

(b) g(t) :=H(A|XYE)(N∗⊗IE)(σ(t)) is differentiable for all t ∈ [−1,0].

(c) dg(t)
dt

∣

∣

∣

t=0
> 0

(d) ∀t : d
dtS((N ∗ ⊗IE)(σ(t)))> 0.
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Then, if (a)–(d) hold, using the fact that g(t) is continuous and has a positive derivative at t= 0, there exists
t0 < 0 such that for t ∈ (t0,0), g(t)< g(0). Since the S((N ∗ ⊗IE)(σ(t))) is continuous function, wemust have
that for any t ∈ (t0,0)

H(A|XYE)(N∗⊗IE)(ρ∗
A ′B ′E

) >H(A|XYE)(N∗⊗IE)(σ(t)) (D5)

⩾ GA|XYE (S((N ∗ ⊗IE)(σ(t)),pXY) . (D6)

Since S((N ∗ ⊗IE)(σ(t))< ω this establishes the claim.
It remains to show that there exists a function σ(t) such that (a)–(d) hold. Recall from appendix C.2 that

we can write

H(A|XYE) = 1+ pX(0)Hbin(g(θ,α0))+ pX(1)Hbin(g(θ,α1))−H({λ0,λ1,λ2,λ3}) (D7)

where g(θ,α) := 1
2

(

1+R
√

1+ sin(2θ)cos(4α)
)

. We then set

σ(t) = ρ(R∗ +κt,θ∗) (D8)

for some positive numberκ such thatR∗ −κ > 3/4. Thus,σ(0) = ρ∗ and differentiability of g(t) can be shown
using the form (D7). We compute the t derivative:

dg(t)

dt

∣

∣

∣

∣

t=0

= κ
∂

∂R

(

H(A|XYE)(N∗⊗IE)(ρA ′B ′E(R,θ))

)

∣

∣

∣

∣

R=R∗,θ=θ∗

. (D9)

Note that

∂

∂R
Hbin(g(θ,α)) =H′

bin(g(θ,α))

√

1+ sin(2θ)cos(4α)

2

⩾H′
bin

(1

2
+

R

2
(cos(θ)+ sin(θ))

)cos(θ)+ sin(θ)

2

=H′
bin(λ0 +λ1)

∂

∂R
(λ0 +λ1)

=
∂

∂R
Hbin(λ0 +λ1) ,

where we have used that H ′
bin(p) is decreasing in p for p> 1/2, so we take α= 0 to obtain a bound. It follows

that

dg(t)

dt

∣

∣

∣

∣

t=0

= κ
∂

∂R

(

Hbin(λ0 +λ1)−H({λ0,λ1,λ2,λ3})
)

> 0 ,

where the inequality is lemma 34.
Finally, the function

S((N ∗ ⊗IE)(σ(t)) =
1

2

∑

i,j

ϵij

increases linearly with t (the score is linear in R).

Lemma 36. For ω ∈ ( 34 ,
1
2 (1+

1√
2
)), the function GAB|X=0,Y=0,E(ω) is increasing in ω.

Proof. The proof follows the same lines as the previous lemma but with the entropy changed. From
appendix C.5 we have

H(AB|X= 0,Y= 0,E) = 1+Hbin(2ϵ00)−H({λ0,λ1,λ2,λ3}).

We have

∂

∂R
Hbin(2ϵ00) =H ′

bin(2ϵ00)
cos(θ)cos(2(α0 −β0))+ sin(θ)cos(2(α0 +β0))

2

⩾H ′
bin

(

1

2
+

R

2
(cos(θ)+ sin(θ))

)

cos(θ)+ sin(θ)

2
(D10)

and the remainder of the argument matches the previous proof.
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Lemma 37. For ω ∈ ( 34 ,
1
2 (1+

1√
2
)) and any distribution pXY, the function GAB|XYE(ω,pXY) is increasing in ω.

Proof. The proof for this again follows those above, except in this case (see appendix C.6)

H(AB|XYE) = 1+
∑

xy

pXY(x,y)Hbin(2ϵxy)−H({λ0,λ1,λ2,λ3}) .

The bound that holds for ϵ00 in (D10) holds for all ϵxy, and hence the rest of the argument goes through as
before.

Appendix E. Entropy accumulation theorem

In this section we state the Entropy Accumulation Theorem (EAT). The theorem is phrased in terms of a set
of channels {Mi}i called EAT channels, whereMi : S(Ri−1)→S(CiDiUiRi).

Definition 4 (EATChannels). Let {Ri}ni=0 be arbitrary quantum systems and {Ci}ni=1, {Di}ni=1, and {Ui}ni=1

be finite dimensional classical systems. Suppose thatUi is a deterministic function ofCi,Di and that {Mi}ni=1,
Mi : S(Ri−1)→S(CiDiUiRi) are a set of quantum channels. These channels form a set of EAT channels if
for all ρR0E ∈ S(R0E) the state ρCDURnE = (Mn ◦ . . .M1)(ρR0E) after applying the channels satisfies I(Ci−1

1 :
Di|Di−1

1 E) = 0, where I is the mutual information, and Ci−1
1 is shorthand for C1C2 . . .Ci−1.

In the context of DI algorithms, the quantum register R0 can be taken to represent the initial state of the
devices, which may be entangled with the register E. This state updates to R1,R2, . . . as the protocol proceeds.
At step i the devices (together with the random number generatorsRA andRB) perform a mapMi to give
the output classical random variables and the random choices generated by the random number generators.
The mutual information condition encodes the property that the random number generators are
independent of E and the previously generated data. The register Ui records the score in the Bell game for
that round. Along with the classical inputs, the channelMi also outputs the updated state of the devices
represented by the register Ri which may be stored by the device and acted on by the next channel13. Each
EAT channel, therefore, for the DI protocols is a set of maps of the form

Mi(ρ) =
∑

c,d

|c〉〈c| ⊗ |d〉〈d| ⊗ |u(c,d)〉〈u(c,d)| ⊗Mc,d
i (ρ) , (E1)

where u(c,d) records the score in the Bell game, and eachMc,d
i is a subnormalized quantum channel from

S(Ri−1) to S(Ri). The joint distribution of the classical variables Ci and Di is

pCiDi(c,d) := tr(Mc,d
i (ρ)) . (E2)

Definition 5 (Frequency distribution function). LetU= U1U2 . . .Un be a string of variables. The associated
frequency distribution is

FreqU(u) :=
|{i ∈ {1, . . . ,n} : Ui = u}|

n
. (E3)

Definition 6. Given a set of channelsG whose outputs have a register U, the set of achievable score distribu-
tions is

QG := {pU :M(ρ)U =
∑

u

pU(u)|u〉〈u| for someM∈G}. (E4)

We also use

Qγ
G
:= {pU : pU(⊥) = (1− γ) and pU(u) = γp̃U(u) with p̃U ∈ QG}. (E5)

Definition 7 (Rate function). Let G be a set of EAT channels. A rate function rate :QG → R is any function
that satisfies

rate(q)⩽ inf
(M,ρRE)∈ΓG(q)

H(C|DE)(M⊗IE)(ρRE) , (E6)

13 In practice, the devices may be sent new states in each round, but there is no loss in generality in assuming that the devices pre-share
all the entangled quantum resources they need for the protocol.
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where

ΓG(q) := {(M,ρRE) : (M⊗IE)(ρRE)U =
∑

u

q(u)|u〉〈u| for someM∈G} (E7)

is the set of states and channels that can achieve distribution q.

Definition 8 (Min-tradeoff function). A function f :QG → R is a min-tradeoff function if f is an affine rate
function. Since min-tradeoff functions are affine, we can naturally extend their domain to all probability dis-
tributions on U, denoted P .

The entropy accumulation theorem then can be stated as follows (this is theorem 2 of [6], which is a
generalization of the results of [16]).

Theorem 3. Let f be a min-tradeoff function for a set of EAT channelsG= {Mi}i and ρCDUE be the output after
applying these channels to initial state ρRE. In addition let ϵh ∈ (0,1), α ∈ (1,2) and r ∈ R and Ω be an event on
U that implies f(FreqU)⩾ r. We have

Hϵh
min(C|DE)ρCDE|Ω >nr−

α

α− 1
log





1

pΩ(1−
√

1− ϵ2h)





+ n inf
p∈QG

(

∆( f,p)− (α− 1)V( f,p)− (α− 1)2Kα( f)
)

, (E8)

where∆( f,p) = rate(p)− f(p), and

V(f,p) =
ln2

2

(

log(1+ 2dC)+
√

2+Varp(f)

)2

Kα(f) =
1

6(2−α)3 ln2
2(α−1)(log(dC)+Max(f)−MinQG

(f)) ln3
(

2log(dC)+Max(f)−MinQG
(f) + e2

)

,

and we have also used

Max(f) =max
p∈P

f(p)

MinQG
(f) = inf

p∈QG

f(p)

Varp(f) =
∑

u

p(u)(f(δu)−E(f(δu)))
2
,

and δu is the deterministic distribution with outcome u.

To use this theorem we have to assign the variables Ci and Di to the parameters in the protocol.

E.1. Protocol with recycled input randomness (protocol 3)
For this protocol we want to extract randomness from the inputs and outputs. We hence set Ci = AiBiXiYi

and take Di to be trivial. When running a protocol, we do not generally know the set of EAT channels being
used (these are set by the adversary), but instead only know that they have the no-signalling form, i.e. we
have

M(ρA′B′) =
∑

abxy

|a〉〈a| ⊗ |b〉〈b| ⊗ |x〉〈x| ⊗ |y〉〈y| ⊗ |u(a,b,x,y)〉〈u(a,b,x,y)| ⊗Mabxy(ρA′B′) ,

whereMabxy(ρA ′B ′) = pXY(x,y)(Ex,a ⊗F y,b)(ρA ′B ′) and {Ex,a}a and {F y,b}b are instruments on A′ and B′

respectively (cf (E1)). Henceforth, the setG will refer to all channels of this type.
In the CHSH protocol without spot-checking the rate function should be a lower bound on

H(ABXY|E) = 2+H(AB|XYE) and we can form our rate function via rate({1− s, s}) = 2+ FAB|XYE(s) or
rate({1− s, s}) = 2+ FA|XYE(s), the former being preferred as it is larger. A min-tradeoff function can then
be obtained by taking the tangent at some point. Since FAB|XYE(s) is linear for 3/4⩽ s⩽ ω∗

AB|XYE ≈ 0.847, for
experimentally relevant scores we can form the min-tradeoff function using the extension of this line to the
domain [0,1], i.e. we can take f({1− s, s}) = 2+G ′

AB|XYE(ω
∗)(s− 3/4) in theorem 3 when applying to

protocol 3, and in this case dC = dAdBdXdY = 16 and we get a bound on Hϵh
min(ABXY|E). The theorem holds

for all α ∈ (1,2) and we can optimize over α to increase the bound.
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E.2. Spot-checking CHSH protocol (protocol 1)
To use the EAT in the spot-checking CHSH protocol (protocol 1) we set Ci = AiBi and Di = XiYi in
theorem 3. The channels again have the no-signalling form mentioned above, and we can use either FAB|00E
or FA|00E as the basis of our rate function. Since the two-sided version is larger, it is better to work with
FAB|00E(s), and the related min-tradeoff function based on taking its tangent at some point. Modification is
required to account for the spot-checking structure. If we let gt({1− s, s}) be the tangent of FAB|00E(s) taken
at t then we can form the spot-checking min-tradeoff functions

ft(δu) =

{

1
γ gt(δu)+ (1− 1

γ )gt(δ1) u ∈ {0,1}
gt(δ1) u=⊥

.

where t can be chosen (see e.g. [16, section 5] for the argument behind this). Using this construction the
following theorem can be derived (this is an adaptation of Theorem 3 in [6]).

Theorem 4 (Entropy Accumulation Theorem for spot-checking CHSH protocol). Let ρABXYUE be a CQ
state obtained using the spot-checking CHSH protocol (protocol 1). Let Ω be the event
|{i : Ui = 0}|⩽ nγ(1−ωexp + δ) with pΩ being the probability of this event in ρABXYUE, and let ρABXYUE|Ω be
the state conditioned on Ω. Let ϵh ∈ (0,1) and α ∈ (1,2). Then for any r such that ft(FreqU)⩾ r for all events in
Ω we have

Hϵh
min(AB|XYE)ρABXYE|Ω >nr−

α

α− 1
log





1

pΩ(1−
√

1− ϵ2h)



 (E9)

+ n inf
p∈Qγ

G

(∆( ft,p)− (α− 1)V( ft,p)− (α− 1)2Kα( ft)) , (E9)

where
∆( ft,p) := FAB|XYE(p(1)/γ)− ft(p) (E10)

V( ft,p) =
ln2

2

(

log(9)+
√

Varp( ft)+ 2

)2

(E11)

Kα( ft) =
1

6 log(2−α)3 ln2
2
(α−1)(2+Max( ft)−MinQγ

G

( ft)) ln3(2
2+Max( ft)−MinQγ

G

( ft) + e2). (E12)

To use this theorem we can take r= (FAB|00E(t)+ (ωexp − δ− t)F ′
AB|00E(t)) (cf the discussion in [6]), and

since the theorem holds for any t and α these can be optimized over.

E.3. Protocol with biased local random numbers (protocol 2)
To derive the randomness rates, we use theorem 3 with Ci = AiBi and Di = XiYi, as in the previous
subsection. What remains is to derive the min-tradeoff function and error terms. In this section, we compute
these quantities and derive the expression for the completeness error in terms of the biasing parameters ζA, ζB
and statistical error δ.

E.3.1. Deriving the min-tradeoff function
We seek a min-tradeoff function suitable for using with protocol 2. To construct it we write the EAT channel
in a slightly different way that is explicit in the input distribution pXY :

MpXY(ρ) =
∑

abxy

pXY(x,y)|a〉〈a|A ⊗ |b〉〈b|B ⊗ |x〉〈x|X ⊗ |y〉〈y|Y ⊗ |(x,y,w)〉〈(x,y,w)|U ⊗Mx,y
a,b(ρ) , (E13)

whereMx,y
a,b are subnormalized channels. We can also consider the analogous channel where the U register

only stores w (we use M̃ to indicate this case). Next consider the entropy H(AB|X= 0,Y= 0E), this entropy
is calculated for the normalization of the state

(|0〉〈0|X ⊗ |0〉〈0|Y ⊗1ABUE)(MpXY ⊗IE)(ρRE)(|0〉〈0|X ⊗ |0〉〈0|Y ⊗1ABUE) .

For fixed {Mx,y
a,b}, this is independent of pXY (it is defined provided pXY(0,0) 6= 0).
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We next note that for q as the distribution on the score (U) register

(MpXY ⊗IE)(ρRE)U =
∑

abxyw

pXYtr(Mx,y
a,b(ρR))|(x,y,w)〉〈(x,y,w)|=

∑

xyw

q((x,y,w))|(x,y,w)〉〈(x,y,w)|

(M1/4 ⊗IE)(ρRE)U =
∑

abxyw

1

4
tr(Mx,y

a,b(ρR))|(x,y,w)〉〈(x,y,w)|=
∑

xyw

q((x,y,w))

4pXY
|(x,y,w)〉〈(x,y,w)| ,

and hence

(M̃1/4 ⊗IE)(ρRE)U =
∑

xyw

q((x,y,w))

4pXY
|w〉〈w| .

It follows that
{

H(AB|X= 0,Y= 0,E)(M̃1/4⊗IE)(ρRE)
: (M̃1/4 ⊗IE)(ρRE)U = (1− s)|0〉〈0|+ s|1〉〈1|, s=

∑

xy

q((x,y,1))

4pXY

}

=

{

H(AB|X= 0,Y= 0,E)(MpXY⊗IE)
(ρRE) : (MpXY ⊗IE)(ρRE)U =

∑

xyw

q((x,y,w))|(x,y,w)〉〈(x,y,w)|
}

.

LetGζA,ζB be the set of channels for which X and Y are independent, X is 1 with probability ζA and Y is 1
with probability ζB.

Lemma 38. The function FAB|00E as defined in the main text can be used to define a rate function forGζA,ζB by
taking rateζA,ζB(q) = FAB|00E(ω(q)) for q ∈ QGζA,ζB

where

ω(q) =
1

4

∑

xy

1

pX(x)pY(y)
q((x,y,1)) . (E14)

Proof. We have

FAB|00E(ω(q))

:= inf
(M̃,ρRE)

{

H(AB|X= 0,Y= 0,E)(M̃1/4⊗IE)(ρRE)
: (M̃1/4 ⊗IE)(ρRE)U = (1−ω(q))|0⟩⟨0|+ω(q)|1⟩⟨1|

}

= inf
(M,ρRE)

{

H(AB|X= 0,Y= 0,E)(MpXpY⊗IE)(ρRE) : (MpXpY ⊗IE)(ρRE)U=
∑

xyw

q((x,y,w))|(x,y,w)⟩⟨(x,y,w)|

}

⩽ inf
(M,ρRE)







H(AB|XYE)(MpXpY⊗IE)(ρRE) : (MpXpY ⊗IE)(ρRE)U =
∑

xyw

q((x,y,w))|(x,y,w)⟩⟨(x,y,w)|







,

and hence FAB|00E(ω(q)) is a rate function for q ∈ QGζA,ζB
.

We can hence form min-tradeoff functions suitable for using with protocol 2 by taking affine lower
bounds to FAB|00E. Taking the tangent to FAB|00E at t we have min-tradeoff function

ft(q) := FAB|00E(t)+ F′AB|00E(t)





1

4

∑

x,y

1

pX(x)pY(y)
q((x,y,1))− t



 ,

or, in other words, considering deterministic distributions on U= (x,y,w)

ft(δ(x,y,w)) =

{

F′AB|00E(t)

4pX(x)pY(y)
+ FAB|00E(t)− tF′AB|00E(t) if w= 1

FAB|00E(t)− tF′AB|00E(t) if w= 0
.

We have

Max(ft) =
F′AB|00E(t)

4ζAζB
+ FAB|00E(t)− tF′AB|00E(t)

MinQG
ζA,ζB

(ft) = FAB|00E(t)− F′AB|00E(t)

(

t− 1

2

(

1− 1√
2

))

.

We now find a bound on Varq( ft) using the Bhatia–Davis bound [33].
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Lemma 39 (Bhatia–Davis bound). Let X be a real-valued random variable withmax(X) =M,min(X) =m
and E(X) = µ, then

VarX ⩽ (M−µ)(µ−m) . (E15)

In our case,M=Max( ft),m= FAB|00E(t)− tF ′
AB|00E(t) and

µ= Eq( ft) = FAB|00E(t)+ F ′
AB|00E(t)(ω(q)− t), where ω(q) is defined in (E14). Thus,

Varq(ft)⩽ (F′AB|00E(t))
2ω(q)

(

1

4ζAζB
−ω(q)

)

⩽







(F′AB|00E(t))
2
(

1
4ζAζB − 1

)

if ζAζB < 1/8
(

F′AB|00E(t)

8ζAζB

)2

if ζAζB ⩾ 1/8

where we have optimized over ω(q) ∈ [0,1] for the second inequality.

E.3.2. Completeness error
We can form a bound on the completeness error using Hoeffding’s inequality [34].

Lemma 40 (Hoeffding’s inequality). Let Xi be n i.i.d. random variables with a⩽ Xi ⩽ b, a,b ∈ R. If
S=

∑

iXi and µ= E(S). Then for t> 0

P(S−µ⩾ t)⩽ e
− 2t2

n(b−a)2 . (E16)

Theorem 5. Suppose protocol 2 is run using honest devices that behave in an i.i.d. fashion and that have an
expected CHSH score ωexp. The probability that the protocol aborts is no greater than

e−32n(δζAζB)2 . (E17)

Proof. Recall the abort condition in the protocol, which states that ω < ωexp − δ where

ω =
1

4

∑

x,y

|{i : Ui = (x,y,1)}|
npX(x)pY(y)

.

We can write this as
∑

i Ji, where

Ji(x,y,w) =

{

0 if w= 0

1/(4npX(x)pY(y)) if w= 1
. (E18)

This construction gives E
[
∑

i Ji
]

= nE[Ji] =
∑

xy
1

4pX(x)pY(y)
P(U= (x,y,1)). In an honest implementation of

the protocol, the distribution on the register U takes the form

P(U= (x,y,w)) =

{

pX(x)pY(y)(1−ωxy) if w= 0

pX(x)pY(y)ωxy if w= 1
(E19)

where
∑

xyωxy = 4ωexp, and henceE
[
∑

i Ji
]

= ωexp. The abort condition can be expressed asωexp −
∑

i Ji > δ.
We have

P

(

ωexp −
∑

i

Ji > δ

)

= P

(

∑

i

(−Ji)− (−ωexp)> δ

)

⩽ e−32n(δζAζB)2 ,

where we have used Hoeffding’s inequality for the random variable−Ji with a=−1/(4nζAζB) and b= 0.
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E.4. Error parameters
Both theorems 3 and 4 are stated in terms of the probability that the protocol does not abort, pΩ, which is
unknown to the users of the protocol. However, if we replace pΩ by ϵEAT, then if pΩ ⩾ ϵEAT we have a correct
bound on the entropy. On the other hand, if pΩ < ϵEAT then the protocol aborts with probability greater than
1− ϵEAT. In other words, prior to running the protocol the probability that it will both not abort and that the
entropy is not valid is at most ϵEAT. The soundness error of the protocol is ϵS =max(ϵEAT,2ϵh + ϵEXT), where
ϵEXT is the extractor error (essentially the probability that the extraction fails). A summary of the aspects of
extraction relevant to the present discussion and in the same notation as used here can be found in [6,
supplementary information I C].

E.5. Application toH(AB|E) andH(A|E)
Note that the EAT as stated in theorem 3 cannot be directly used in conjunction with H(AB|E) and H(A|E).
The basic reason is that the event Ω should be an event on U, which in turn should be a deterministic
function of C and D. To use H(AB|E) and H(A|E) we need D to be empty and C to be AB. This means the
register U cannot depend on the inputs, XY, but without a score that depends on the inputs we cannot certify
non-classicality let alone randomness.

Since we do not have strong use cases for H(AB|E) and H(A|E) (cf section 2), we do not consider possible
extensions of the EAT in this work.

An alternative, which loses tightness, is to use an idea from [35, appendix B.3]. Applying to the present
case this would mean taking D to be empty and C to be either ABV or AV, where Vi records whether the
CHSH game was won on the ith round, with Ui = Vi. Then, proceeding with the former, because
H(ABV|E)⩾H(AB|E) we can base our min-tradeoff function on H(AB|E), and we can use a chain rule to
recover a bound on the smooth min entropy of AB given E from that of ABV given E. The bounds used in
this approach are tightest when V has low entropy, so we expect better performance with spot-checking
protocols.

Appendix F. Discussion of composability

Throughout this work we consider a composable security definition. These involve a distinguisher who tries
to guess whether the real protocol or a hypothetical ideal protocol is being run. This distinguisher is allowed
access to all the systems an eavesdropper has access to and is also assumed to learn whether or not the
protocol was successful. The idea is that no matter what strategy the distinguisher uses, before the protocol is
run the probability is at most 1/2+ ϵS that they can correctly guess whether the real protocol or the ideal is
being run.

The main purpose of this appendix is to make a few remarks on composability for protocols that recycle
the input randomness. In general, input randomness (the strings X and Y) is not directly reusable without
processing [2]. For instance, the devices could be set up such that the protocol aborts unless X1 = 0 and so if
the protocol passes it is known that X1 = 0. If X directly forms part of the output, then with probability 1/2
one bit of the final output is known, which contradicts the security statement which implies that the a priori
probability (i.e. the probability before the protocol is run) of being able to distinguish the protocol from an
ideal one that either aborts or gives out perfect randomness is at most the soundness error. Hence, in order to
recycle the input randomness, it also has to undergo extraction to remove possible information that may
have leaked about it.

Because we are working with device-independent protocols, the ongoing security of any randomness
generated can be compromised if the devices used for one instance of the protocol are subsequently
reused [27]. Hence, our discussion of security assumes devices are not reused (possible modifications to
protocols that aim to allow restricted reuse are also discussed in [27]).
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