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ABSTRACT: Crystals of active pharmaceutical ingredients (API)
are prone to triboelectric charging due to their dielectric nature.
This characteristic, coupled with their typically low density and
often large aspect ratio, poses significant challenges in the
manufacturing process. The pharmaceutical industry frequently
encounters issues during the secondary processing of APIs, such as
particle adhesion to walls, clump formation, unreliable flow, and
the need for careful handling to mitigate the risk of fire and
explosions. These challenges are further intensified by the limited
availability of powder quantities for testing, particularly in the early
stages of drug development. Therefore, it is highly desirable to
develop predictive tools that can assess the triboelectric propensity of APIs. In this study, Density Functional Theory calculations are
employed to predict the effective work function of different facets of aspirin and paracetamol crystals, both in a vacuum and in the
presence of water molecules on their surfaces. The calculations reveal significant variations in the work function across different
facets and materials. Moreover, the adsorption of water molecules induces a shift in the work function. These findings underscore the
considerable impact of distinct surface terminations and the presence of molecular water on the calculated effective work function of
pharmaceuticals. Consequently, this approach offers a valuable predictive tool for determining the triboelectric propensity of APIs.

■ INTRODUCTION
Triboelectrification is a widespread phenomenon in which
charge transfer occurs between contacting surfaces. This
phenomenon commonly arises from sliding or direct impact.
In industrial powder processing, such as sieving, fluidizing,
conveying, pouring, and grinding, triboelectric charging occurs
frequently, leading to substantial electrostatic charge trans-
fer.1,2 In a number of applications, electrostatically charged
particles have great utility in dry coating,3 gas cleaning,4 and
preventing segregation in some mixtures.5 However, unwanted
charging can cause severe negative consequences. Particle
adhesion to vessel walls, also known as “sheeting”, can cause
uneven inlet flow or blockages.6−10 Agglomeration and
segregation of charged particles can cause blending problems
and threaten the homogeneity of powder formulations.11

Excessive charge build-up can result in electrostatic discharge,
posing a significant fire and explosion risk.12,13

The concept of triboelectric charging has been known for
thousands of years. The ancient Greeks observed that by
rubbing a material against amber it could attract small
objects.14 Despite this, there is still much that scientists do

not fully understand about this phenomenon. Lively debate
continues over which mechanism dominates this process,
electron transfer or ion transfer.15 The magnitude and polarity
of charging can vary significantly depending on numerous
factors. Mode of contact, i.e. friction, contact or separation,16

environmental conditions such as temperature,17 relative
humidity,18 or external electric field,19 and material properties
such as particle shape and size distribution20,21 and surface
roughness22 all affect charge transfer. Charging tendency varies
between different substances, and they are typically ranked into
a so-called triboelectric series, which is a list of materials
arranged in order of their tendency to become electrically
charged when they come into contact with another material.23

Pharmaceuticals and excipients have significantly different
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charging behaviors in both polarity and magnitude.24

Interestingly, particles in single-component systems also
experience charging when agitated,20,25 and it has been
shown that contacting nominally identical materials with
opposite surface curvature (concave vs convex) will consis-
tently charge positively or negatively depending on curvature.26

Also, “flexoelectricity”, the coupling between polarization and
strain present in all insulators, is shown to have a measurable
effect on triboelectric charge transfer.27

The charging of identical materials and the supposed
dominance of particle−particle contacts in powder flows28

suggest that the cause of triboelectric charging in single-
component systems is most likely due to subtle structural
differences between surfaces at contact points. The questions
which naturally arise are whether the chemistry of the surfaces
is anisotropic, does the uneven coating of surface water
influence charge transfer, or do the variations in surface
electronic structure caused by temperature, mechanical stress,
or contamination play a role. Compelling evidence of the
importance of water films in contact charging has been
presented by Baytekin et al.,29 where observed mosaics in
surface potential were attributed to surface water. Additionally,
Lee et al.30 observed that the differences in surface hydro-
phobicity greatly increase the magnitude of transferred charges.
There is a growing amount of research that suggests electron
transfer is the dominant process in triboelectrification,31 but
for adsorbed species on the surface, such as water, ion transfer
cannot be ruled out. Thus, further supporting evidence is
needed by understanding the dynamics of charge transfer
during contact.
Generally, studying the behavior of powder systems is

complex as interparticle interactions are influenced by
numerous physical and environmental factors, which are
practically difficult to “decouple”.32 Additionally, electrostatic
charging has been described as “unpredictable”,33 since
triboelectric charging is impacted by both physical properties
and environmental conditions. These factors make obtaining
reliable experimental results challenging. Many published
results are difficult to interpret and in some instances appear
contradictory.15 Modeling has shown great utility in studying
triboelectric charging as computational methods offer precise
control of the system in question and can reveal detailed
underlying causes. Significant work has already been done on
the macroscale modeling of triboelectrification in unit
operations. A review of such techniques, applied to fluidized
beds, is given by Fotovat et al.34 A detailed discussion of
current modeling approaches is also given by Chowdhury et
al.35 However, in both these publications the mechanisms for
charging have not been addressed. A priori predictions could
enable the triboelectric charging to be assessed more
effectively.36

Density Functional Theory (DFT) is a computational
quantum mechanical modeling method that is widely used to
study the electronic structure and properties of materials.37,38

In recent years it has also been used to model triboelectric
charging. Nikitina et al.39 applied time-dependent DFT to
produce an ab initio predicted triboelectric series. It has also
been used to study how material deformation and mechanically
induced ionization at a surface might impact charge trans-
fer.40−42 The work of Lin and Shao43 investigated how the
presence of surface water can impact the electronic structure of
a material, leading to a reversal in the polarity of transferred
charges. Shen et al.44 simulated charge transfer directly by

calculating redistribution of atomic charges between contacting
surfaces of quartz and sapphire. Furthermore, a significant
amount of research is being devoted to the study of Tribo-
Electric Nano-Generators (TENGs)45,46 to optimize their
design and predict their performance. This has contributed to
an increase in the use of DFT to study triboelectrification.47−52

There is limited research on applying DFT to study the
triboelectric charging of pharmaceutical materials in the
literature. However, one notable exception is the work done
by Brunsteiner et al.53 In this study, the charging behavior of
several pharmaceutical materials was predicted from first-
principles using DFT by comparing the calculated work
function, ionization potential, and the highest occupied
molecular orbitals (HOMO) to experimentally obtained
charging data.
The work function of a material is an important parameter

that can be used to model triboelectric charging. It can be used
to predict its tendency to gain or lose electrons during contact
and separation.54 Photoemission spectroscopy and Kelvin
probe force microscopy are common techniques for character-
izing the work function of materials and are generally effective
at studying metallic and semiconducting materials.55,56

However, these methods can struggle to accurately characterize
the work function of insulating materials due their intrinsically
high resistivity, which causes charge buildup and low electron
mobility at the surface, making reliable measurement more
difficult.57,58 Consequently, research work on the experimental
or theoretical determination of the work function for
pharmaceutical materials, which are predominantly insulating
molecular crystals, is very limited. In recent years, DFT has
been used widely to study how crystal orientation,59,60 surface
chemistry,61 deformation,41 and surface water51 impact work
function. It gives good predictions for conducting materials. Its
application to insulating crystals shows great promise,62

providing a strong methodological basis for the calculation of
the work function of pharmaceutical materials, referred to as
the “effective” work function (WF).
In this work, DFT is used to predict the effective WF of

several crystal facets of paracetamol and aspirin and explore the
effect of adsorbed water molecules. Electronic structure
calculations are performed using the CASTEP Density
Functional Theory package63 to determine the electrostatic
potential and effective WF and how these quantities change in
the presence of water.

■ THEORETICAL APPROACH
Electronic structure calculations are performed to determine
the electrostatic potential and WF within the framework of
periodic Density Functional Theory (DFT). The Generalized
Gradient Approximation (GGA) Perdew−Burke−Ernzerhof
(PBE) exchange-correlation functional is used.64 On-The-Fly-
Generated (OTFG) ultrasoft pseudopotentials are used in all
cases. Dispersion forces are expected in this system, so the
Tkatchenko−Scheffler (TS) dispersion correction is applied to
account for van der Waals interactions and hydrogen
bonding.65 The kinetic energy cutoff for the plane wave basis
is set at 630 eV to ensure the system is well converged. The
crystal structures of aspirin and paracetamol are obtained from
the Cambridge Structural Database as a starting point for
calculations (Figure 1).66 A geometry optimization calculation
is then performed on these structures to minimize the total
energy of the system with respect to atomic positions. The
structures are optimized using the limited memory Broyden−
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Fletcher−Goldfarb−Shanno (LBFGS) method67 until the
force acting on each atom is less than 0.01 eV Å−1. For
geometry optimization calculations of the bulk unit cell, a
Monkhorst−Pack grid of (2 × 4 × 2) and (2 × 3 × 4) is used
for k-point sampling for aspirin and paracetamol, respectively.
The shape of these crystals is predicted by using the Bravais,

Friedel Donnay, and Harker (BFDH) model. This is a
geometrical approach that relates external shape to interplane
distance but does not take into account atom type, bonding or
partial charges, which all impact crystal growth.68 However,
this technique has been applied successfully to study the facets
of crystalline materials69−71 and has also been previously
paired with DFT calculations to study surface electronic
structure in other studies.72 CCDC Mercury software is used
to generate the BFDH morphologies of aspirin and para-
cetamol shown in Figure 2. Four surfaces are selected from
each morphology which are considered to represent the
primary facets of the crystal and are listed in Table 1.
Surfaces are constructed from these optimized structures

using the Materials Studio−Materials Visualizer. Supercells are
constructed consisting of a thin slab of material separated from
its periodic images by a layer of vacuum (Figure 3). To ensure

that the top and bottom surfaces of the slab are identical, a slab
thickness of N unit cells equivalent length is always used. A
vacuum gap of 30 Å is used to prevent interaction between
periodic slabs so that the vacuum energy can be accurately
determined. DFT calculations require that the number of k-
points in each direction are inversely proportional to the
simulation cell parameters.73 The Monkhorst−Pack grid used
for each surface is given in Table 1.
The work function (WF) is calculated using the equation

E EWF vac F= (1)

where Evac is the vacuum energy, defined as the electrostatic
potential in the vacuum gap when it reaches an asymptotic

Figure 1. Bulk unit cells of aspirin (ACSALA01) (left) and
paracetamol (HXACAN01) (right). Crystallographic Information
Files downloaded from the Cambridge Crystallographic Data Centre
Web site.66

Figure 2. Crystal morphologies of aspirin (left) and paracetamol (right) generated using the BFDH facility in CCDC Mercury.

Table 1. Selected Surfaces of Aspirin and Paracetamol with
Their Associated Monkhorst−Pack Grid

material surface (Miller indices). Monkhorst−Pack grid (a × b × c)

aspirin (002) 2 × 4 × 1
aspirin (011) 2 × 2 × 1
aspirin (110) 2 × 2 × 1
aspirin (100) 2 × 4 × 1
paracetamol (200) 3 × 4 × 1
paracetamol (011) 2 × 3 × 1
paracetamol (110) 2 × 2 × 1
paracetamol (001) 4 × 2 × 1

Figure 3. Labeled periodic cells of paracetamol (top) and aspirin
(bottom) used in calculations. Visualized using the Materials Studio−
Materials Visualizer.
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value. The Fermi energy (EF), the highest energy electron of
the system at 0 K, is calculated at half of the energy gap.74 This
is shown in Figure 4. A convergence study was carried out

testing the dependence of the calculated effective WF on the
kinetic energy cutoff, slab thickness, and layers of constrained
molecules at the surface. These tests were performed on an
aspirin (100) surface (Figure 5), and additional slab-thickness

calculations were performed on an aspirin (011) surface for
comparison (Figure 6). Testing the dependence of cutoff
energy on effective WF, single-point energy calculations were
performed on the aspirin (100) surface at values ranging from
25 to 800 eV using a 3N unit cell thickness slab. It was found
that calculated WF values had converged well by 300 eV. The
impact of the number of constrained surface layers was also
tested and found to be negligible to the predicted effective WF.

Changes in effective WF due to the number of uncon-
strained surface layers were found to be negligible. However,
one layer of surface molecules was left unconstrained for each
surface tested to accommodate structural changes due to the
presence of surface water. Figure 6 shows the variation of
calculated effective WF with slab thickness, in terms of length
and N unit cell thickness, for both surfaces tested. The
relatively large unit cells associated with aspirin and para-
cetamol show that a thin slab of one unit cell equivalent length
has largely converged. However, a slab thickness equivalent to
three unit cells was used for all materials to ensure good
electrostatic potential calculations within the bulk and to
provide surface layers for structural relaxation in the presence
of water.
The surfaces of pharmaceutical molecules are complex and

will typically consist of several types of atoms, chemical bonds,
and interacting molecules. This creates many local minima,
where a water molecule might settle in a geometry
optimization calculation. Furthermore, the work of Li et al.75

highlights the profound impact that adsorption location can
have on the electronic structure of a surface within the context
of triboelectric charging. Thus, the role of the aforementioned
adsorption location should be considered when optimizing a
surface. Due to this, the impact of surface water was also
investigated by placing a single molecule of water on each
selected surface. A coarse grid search and DFT geometry
optimization of the water molecule were performed on each
surface to find the lowest energy configuration. The effective
WF was then calculated for this structure. The grid search was
done using the FORCITE molecular mechanics module of
Materials Studio 2021. The Universal force field76 was selected
to model interactions due to its ready availability and also
proven performance in calculating adsorption energies, being
in good agreement with experimental results in other studies.77

■ RESULTS AND DISCUSSION
The results of the calculated effective WF of several aspirin and
paracetamol surfaces with and without the presence of water
are summarized in Table 2. They change significantly
depending on both the material and surface tested, as also
shown graphically in Figure 7. The highest effective WF
observed is associated with aspirin (100) at 6.9 eV with the
lowest being paracetamol (001) at 3.5 eV. The range of values
observed is itself interesting. A comprehensive review of
experimentally determined WF for a wide range of elemental
materials has been compiled by Kawano.78 The majority of the

Figure 4. Electrostatic potential of a (001) paracetamol slab. Slab
thickness = 23 Å. Vacuum thickness = 30 Å. Fermi energy of the
system (EF), the vacuum energy (Evac), and the effective WF are
labeled in the graph.

Figure 5. Illustration of different levels of constraint and slab
thickness on an aspirin (100) surface: fully constrained (bottom left),
one layer unconstrained (middle left), and two layers unconstrained
(top left). One unit cell thickness (right top), two unit cells thickness
(right middle), and three unit cells thickness (right bottom).

Figure 6. Effect of slab thickness in terms of equivalent unit cell
distances on slab length perpendicular to the surface on calculated
effective WF.
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WFs published in this work are within the range of 2−6 eV.
The effective WFs calculated here are in a similar range.
Pharmaceutical materials are primarily composed of carbon,
hydrogen, oxygen, and nitrogen. However, these calculations
show that despite similarities in elemental composition, the
differences in the calculated effective WF can be significant.
This observation shows the importance of atomic structure,
bonding, and surface termination.
Observing the variation between the surfaces of the same

material, the effective WF of both systems varies by up to 1.4
and 1.3 eV for aspirin and paracetamol, respectively. Other
works comparing the WF shift due to different surface
functionalities are within this range.61,79 There is a noticeable
distribution of the effective WF between facets. This result is in
line with expectations, as anisotropic WFs have been observed
in many crystals.62,78,80 Even metal surfaces, whose surface
terminations are extremely similar, have experimentally verified
variations in their WF due to differences in the atomic packing
at the surface, which is comparatively minor compared to the
differences in surface termination expected for pharmaceutical
materials.81 It is therefore not surprising that the systems
tested in this work also show this effect. Additionally, the
effective WF of aspirin is consistently higher than that of
paracetamol for all surfaces. The extent of charge transfer
between two materials is dependent on the difference in their
WF, and a material with a lower WF is expected to transfer
electrons to materials with higher WF, resulting in a negative

charge for the latter.54 The WF of stainless steel is reported as
4.3 eV82 and is indicated in Figure 7, which is consistent with
the negative polarity and stronger charging propensity of
aspirin as compared with paracetamol. The trend is also in line
with the experimental work by Šupuk et al.,24 who tested the
charging propensity of a large number of pharmaceutical
powders against stainless steel and found that both aspirin and
paracetamol charged negatively against stainless steel, with
aspirin charging more strongly. Other calculated effective WF
values for pharmaceutically relevant materials are reported in
literature; however, this surface anisotropy is typically
neglected.53,83,84

The effect of adsorbed water on the calculated effective WF
of each surface was also investigated. The impact of surface
chemistry and surface contamination on effective WF are of
great interest in other fields.85,86 Humidity is known to
significantly affect the charging process.18 Atomistic studies on
surface water in the context of triboelectric charging will
typically use either a film-based51,87 or molecule-based75,88

approach. A film-based approach models multiple layers on the
surface, which is arguably more analogous to a real surface;
however, it adds significant complexity to the calculation.
Molecule-based approaches are less computationally intensive
and allow for more detailed study of the different
coordinations of water at the surface. In this work, water was
simulated on each surface by optimizing a single water
molecule onto the surface, similarly to Li et al.75 It was found
that in the presence of water an effective WF shift in all
surfaces was produced (Figure 9). Interestingly, the magnitude
of this effective WF shift was found to change depending on
which surface the water molecule was placed. The effective WF
was found to increase in the presence of water for six out of
eight surfaces analyzed, indicating that more energy is required
to remove electrons from such surfaces, so a surface with
adsorbed water is more likely to get charged negatively.
However, for aspirin (110) and paracetamol (011) the effective
WF was found to decrease, therefore making it easier for
electrons to be removed from the surface. The effective WF
shift due to humidity is significant, relevant to the charging of
similar materials, which has also been reported in the
literature.25 This shows that, theoretically, there is an apparent
driving force for charge transfer between water-adsorbed and
dry surfaces, even for idealized surfaces. This result is also
reported by Mukherjee et al.83 who calculated a similar
decrease in effective WF due to surface water on multicrystal-
line cellulose. The role of surface coverage was also examined
by calculating the fractional coverage of a water molecule on
the surface (Figure 8) and comparing it to the magnitude of
the WF shift (Figure 9) to determine if it is correlated with the
amount of water per unit area. No significant correlation was
observed between surface water coverage and effective WF
shift. Periodic cell dimensions used in surface coverage
calculations are provided in Table 3.
Figure 9 shows an increase and decrease in effective WF

depending on the coordination of water molecules on the
specific facet, which is very interesting. In the work by Anagaw
et al.,61 their theoretical calculations suggest that a shift in
effective WF is strongly correlated with the surface dipole due
to surface modification. In this work, a highly polar molecule,
water, is added to the surface. The observation that the
effective WF can both increase and decrease in the presence of
water shows that the bonding location of the water molecule
on the surface is an important consideration.

Table 2. Calculated Effective WF of Selected Surfaces of
Aspirin and Paracetamol, Clean and in the Presence of a
Single Water Molecule, and Change in Effective WF Due to
Water (ΔWF)

effective work
function (eV)

system surface clean H2O ΔWF (eV)

aspirin 002 5.5 5.7 0.2
aspirin 011 5.9 6.3 0.4
aspirin 110 6.4 6.2 −0.2
aspirin 100 6.9 7.0 0.1
paracetamol 200 4.8 4.9 0.1
paracetamol 011 4.5 4.3 −0.2
paracetamol 110 4.6 4.7 0.1
paracetamol 001 3.5 3.9 0.4

Figure 7. Calculated effective WF of selected surfaces of aspirin (002,
011, 110, 100) and paracetamol (200, 011, 110, 001) and showing the
effective WF difference between facets and effective WF shift induced
by the fractional coverage of water onto the surface. The dashed line
represents the effective WF of stainless steel as reported by Wilson,82

and its difference with various facets represents the propensity for
charge transfer.
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The surface termination of paracetamol and aspirin is shown
in Figures 10 and 11 respectively, with their calculated effective
WF values shown. They reveal the different orientations of
molecules at the facet and the population of functional groups
exposed at the terminating layer. Upon visual inspection of the
aspirin surface, there are several electron withdrawing carboxyl
groups, placed prominently at the interface. For comparison,
Heng et al.90 observed that a higher degree of hydrophobicity
was observed on the (100) compared with the (011), which is
attributed to more prominent carboxyl groups. This is
consistent with the surfaces used in this work. Conversely,
for paracetamol surfaces there is a greater population of
electron donating hydroxyl groups at the surface, and electron
withdrawing amide groups are less prominent. In another
work, Heng et al.91 confirmed the surface anisotropy of
paracetamol using X-ray photoelectron spectroscopy, where
(001) surfaces were found to have the highest proportion of
polar hydroxyl groups, which is also consistent with our model.

Anagaw et al.61 studied the impact of adsorbed organic
molecules on semiconductor surfaces and reported a WF shift
due to the electron donating/withdrawing properties of several
organic functional groups and the dipole formation at the
surface. Therefore, it is possible to hypothesize, in the context
of the surfaces of pharmaceutical crystals, that facets with
relatively high populations of electron withdrawing groups
should be expected to have a high WF, whereas facets with
high populations of electron donating groups have a lower WF.
Figure 12 shows the electrostatic potential of the aspirin

(002) slab, highlighting a shift in potential caused by the
addition of water molecules to the surface. The graph is
superimposed onto an image of aspirin (002) as a visual aid to
show the position of the molecular water relative to the slab
with the water molecules labeled A and B. As previously
mentioned, a coarse grid search was performed to determine

Figure 8. Surface coverage of water for each system, taken as the
fractional coverage. The coverage area is based on the circular area of
a water molecule with a diameter of 2.8 Å.

Table 3. Cross-Sectional Dimensions of Each Unit Cell Axis Normal to the Surface (A and B) and Their Intersecting Angle (γ),
with Calculated Values of the Area of Exposed Surface and the Fractional Coverage of Water, Respectivelya

system surface a (Å) b (Å) γ (deg) exposed surface (Å2) fractional coverage

aspirin 002 11.24 6.51 90.00 73.23 0.08
aspirin 011 11.25 13.10 83.55 146.39 0.04
aspirin 110 11.37 13.00 96.43 146.78 0.04
aspirin 100 6.51 11.37 90.00 73.99 0.08
paracetamol 001 12.68 9.04 90.00 114.66 0.05
paracetamol 011 12.68 11.43 75.73 140.55 0.04
paracetamol 110 7.00 14.84 82.66 103.02 0.06
paracetamol 200 9.04 7.00 90.00 63.28 0.10

aDiameter of water is taken as 2.8 Å based on the work of D’Arrigo.89 Illustration of the periodic unit cell is presented above.

Figure 9. Effective WF shifts due to the presence of water on the
surfaces of the selected facet of aspirin (002, 011, 110, 100) and
paracetamol (200, 011, 110, 001).
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the most energetically favorable position of the water
molecules on each surface. During this search, it was observed
that the positions of the water molecules would always
converge toward two well-defined locations, depending on the
initial search position of the water. Position A is more
energetically favorable and taken as the global minimum for
this surface, and B is taken as a local minimum. Due to this,
aspirin (002) is selected to investigate the impact of multiple
water molecules adsorbed onto the surface at different
locations.
Comparing the clean surface, shown in black, to the surfaces

with adsorbed water, shown in blue and red in Figure 12,
shows that the addition of water molecules causes a
perturbation in the electrostatic potential toward the surface.
The perturbation caused by molecule A is consistent between
simulations. The potential energy then quickly adopts bulklike
behavior toward the center of the slab (fractional coordinate =
0.5). Since WF is effectively a measure of binding energy of
electrons on a surface, the electrons of a material with a higher
WF take more energy to remove. For aspirin (002) the
addition of several water molecules appears to make this
surface more energetically favorable for it to accept electrons
(Figure 13).

Our results show that the calculated, effective WF of
pharmaceutical materials varies significantly depending on
surface and material tested. Similar to other works,61,85,86,92 the
molecular termination and level of contamination at the
surface can be expected to cause a shift in the surface WF. The
significance of this relates first to the prediction of charging in
pharmaceutical materials, since reliable experimental measure-
ment of these materials can prove difficult to obtain. The work
shown here provides a basis on which an understanding of
charge transfer between different pharmaceutical crystals can
be built. Second, it provides insight into the poorly understood
phenomenon of the triboelectrification of chemically identical
materials.93 Based on this work and the papers previously
discussed,62,78,92 it is very unlikely that the surface effective WF
profile of any particulate solid is homogeneous, implying that
triboelectric charge transfer can readily occur for the same
material. This has implications for transport and fluidization of
homogeneous particulates. These subtle differences in the
effective WF and surface electronic structure caused by surface
orientation and contamination could provide the driving force
for charge transfer in these systems. Finally, the calculated
impact of water offers an alternative to the popular belief that
the correlation between humidity and triboelectric charging is

Figure 10. Termination of each paracetamol surface simulated.
Calculated effective WF shown above.

Figure 11. Termination of each aspirin surface simulated. Calculated
effective WF shown above.

Figure 12. Comparison of the calculated electrostatic potential of
aspirin (002) surfaces used to derive the effective WF with and
without water molecules. Clean surface (black); single H2O molecule
adsorbed on the surface of the unit cell, labeled A (blue); two H2O
molecules adsorbed on surface of the unit cell, labeled A and B (red).

Figure 13. Calculated change in effective WF caused by the addition
of water molecules to an aspirin (002) surface.
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due to environmental water providing ions for charge transfer.
The shift in effective WF caused by adsorbed surface water
could itself be facilitating the electron transfer mechanism
without necessarily involving ions for the charge transfer.

■ CONCLUSIONS
The results of this study provide insights into the triboelectric
behavior of aspirin and paracetamol crystals by calculating the
effective work function of various crystal facets. Significant
variations in the effective WF are observed among the facets.
Material composition also influences the WF shift. The
presence of water molecules on the surface is found to have
a noticeable impact, causing changes in the effective WF. This
variation may be attributed to the influence of water on the
molecular dipole and/or electrostatic potential of the interface,
underscoring the importance of atomic coordination and
bonding at the surface. Moreover, the calculated effective WF
is found to depend on the number of water molecules present,
expressed as fractional coverage, highlighting the significance
of surface saturation.
This study emphasizes that a substantial distribution of

effective WF can be expected in pharmaceutical systems due to
surface termination, chemical composition, or surface con-
dition. The findings have implications for understanding
charging phenomena in single-component systems and the
role of humidity in the charging of pharmaceutical materials.
Further research is needed to establish connections between
these calculated values and experimental measurements.
Currently, there is limited research on facet-specific charging
of organic crystals, and expanding the investigations in this area
would greatly enhance our understanding of the underlying
mechanisms.
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