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A B S T R A C T

This paper identifies and analyzes the effects of the rate of economic depreciation of capital stock on a
monopolist’s investment option and capacity decision in a dynamic and uncertain market environment, where
continuous economic depreciation cannot be fully offset. We find that the firm’s capital stock is increasing in
the rate of depreciation for low rates and decreasing for higher rates. Further, when considering the timing of
investment, we show that the effect of uncertainty on investment is level-dependent on the rate of depreciation:
only for sufficiently high rates of depreciation there is a positive relationship between capital investment and
uncertainty, and the impact of uncertainty on the present value of the firm is mitigated. The fact that the
impact of economic depreciation on the firm’s investment problem is level dependent demonstrates that its
consideration by investors and managers is not trivial.

1. Introduction

The inevitable physical and productive deterioration of assets,
i.e. economic depreciation, due to the passage of time or recurrent use,
imposes constraints on firms’ production capabilities that cannot be
overcome in real-life. However, the impact of economic depreciation of
capital stock on a firm’s investment problem is not trivial to managers
and investors when investment is irreversible. This is especially the
case in a framework where cash flows are subject to uncertainty, so
that the firm may find it best to delay investment, and where the firm
can set its production capacity. Indeed, ceteris paribus, in an industry
with a higher depreciation rate, the firm could opt to compensate the
loss in productive capacity by installing a higher capacity. On the other
hand, as a result of a loss in marginal revenue, the firm could also opt
to install a lower capacity. Similarly, it is not clear what is the effect
of depreciation on the timing of investment, and consequently on the
investment–uncertainty relationship, that is, the impact of uncertainty
on the expected present value of the acquired capital stock. This paper
shows that the impact of economic depreciation (henceforth simply
‘‘depreciation’’) on the firm’s decision, considering the timing and
scale of investment, is not typically monotonic and leads to valuable
insight regarding not only the investment strategy of firms but also
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how depreciation can change the uncertainty–investment relationship,
even in the absence of tax considerations. The choice to leave out tax
considerations allows us to abstract from specific accounting and tax
regimes, while highlighting to managers and investors the implications
that depreciation has, on its own, as a driver of investment size and
timing decisions. It allows us to model how investors can optimally
consider the merits of the inevitable loss of productive capabilities of
capital brought by the passage of time and usage.

The empirical literature has often shown that the impact of uncer-
tainty on (capital) investments can be level dependent (e.g., Lensink
and Murinde, 2006, Jeanneret, 2007, Mohn and Misund, 2009, and Hen-
riques and Sadorsky, 2011). This paper corroborates findings in em-
pirical studies (also see e.g., Jeanneret, 2007, Driver et al., 2008,
and Samaniego and Sun, 2019), where firms are characterized by,
e.g., different technologies, or the same industry in different countries,
and where the same uncertainty shocks can lead to either negative
or positive impacts to the amount of capital invested depending on
those characteristics (also see the review by Sarkar, 2019). What the
theoretical literature has not yet shown is how the level of depreciation
can shape this relationship. Although there has been some indication
of this link in empirical studies (e.g., Samaniego and Sun, 2019), we
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cannot find, to the best of our knowledge, an analytical or intuitive
framing of such link in the theoretical literature.

There exist few theoretical studies where depreciation is considered
to play some role in investment timing problems. Arkin and Slastnikov
(2007) and Jou and Lee (2011) find that depreciation accelerates
investment, which is a crucially different finding from the work in this
paper. However, their results are driven by the fiscal benefits that arise
from the tax regime on depreciation. In the duopoly game by Ruffino
and Treussard (2006) with time-to-build and technology adoption,
economic depreciation is considered as a necessary requirement for a
capital-replacement option to be exercised, and so positive depreciation
can trigger further investment. However, the investment–uncertainty
relationship is not considered. Finally, Adkins and Paxson (2017) ex-
plore the role of depreciation on optimal investment, with stochastic
deterioration of the salvage value and operating cost, in a capital
replacement model. However, their use of a price-taking assumption
limits the application of their set-up to the study of problems where
firms can set their capital stock levels, since the direct effect of output
on prices is a part of the firm’s instantaneous profits, a crucial property
in these problems, is lost.

In the spirit of Abel and Eberly (1996), Bertola and Caballero
(1994), and Bar-Ilan and Strange (1999), this paper proposes a sim-
ple, yet effective, framework where we consider a monopolist that
has an American-style perpetual option to undertake a one-off lump-
sum irreversible investment. By acquiring capital stock, the firm can
immediately start up production in a market with a downward slop-
ing demand curve, where the willingness-to-pay of consumers evolves
stochastically over time. Capital stock is assumed to depreciate at a
constant geometric rate.

When considering both the scale and the timing dimension of
investment, our main results can be summarized as follows.

(i) If the firm decides to invest immediately, under not too strict
conditions, we find that the firm overinvests for small depreciation
rates, relative to a zero-depreciation benchmark, and the firm
underinvests for large depreciation rates.
We show that an increase in the depreciation rate may have
two competing effects on the firm’s decisions: on the one hand,
the firm may wish to install a higher level of capital stock to
hedge against future falls in productivity. On the other hand, the
total future aggregate revenue generated by each unit of capital
stock decreases as a direct result of depreciation, which makes
investment relatively more expensive and gives the firm and
incentive to invest less. We find that the first effect, which we call
the buffer effect, is dominant for small depreciation rates, whereas
the second effect, dubbed the relative cost effect, is dominant for
higher rates.

(ii) Depreciation unambiguously increases the threshold for undertak-
ing investment.
This means that if the consumers’ initial willingness-to-pay is not
sufficiently high, then depreciation leads to a later exercise of the
option, in expectation. Consequently, depreciation also increases
the expected size of investment but decreases the present value
of capital investment. The increase in the scale of investment
found due to a later exercise of the option is a common result
in the literature, and in line with, e.g., Manne (1961), Bar-Ilan
and Strange (1999), and Dangl (1999), who show that the scale
of investment is increasing in the consumers’ willingness-to-pay.
We show that our result stands, even when the relative cost effect
dominates the buffer effect.

(iii) The present value of capital investment is positively related to
uncertainty only if depreciation is sufficiently strong.
Uncertainty has a positive effect on both the investment thresh-
old, thereby decreasing the present value of capital investment,
and the investment scale, thereby increasing the present value of
capital investment. When depreciation is strong, we find that the
latter effect dominates whereas the first effect dominates when
the rate of depreciation is low.

(iv) Depreciation is able to mitigate the impact of uncertainty on the
value of the firm when depreciation is sufficiently strong.
In line with the literature, the value of the firm is measured
by the option value, and typically additional uncertainty leads
to an increase in the value of waiting. We find that the rate of
depreciation does not play a neutral role in that relationship. In
fact, this increase in the value of waiting is enhanced for small
levels and, conversely, dampened for sufficiently high levels of
the depreciation rate.

From a Finance point of view there has been attention for the impact
of economic depreciation on the firm’s investment problem. However,
in the Economics literature there has been little attention dedicated
to the role played by depreciation in the absence of tax considera-
tions. Considering the literature on investment under uncertainty in a
dynamic framework, only few studies incorporate the effects of eco-
nomic depreciation on the timing of capital investments. Those studies
that do, in turn, do not simultaneously allow for a decision on the
size of investment. For some, depreciation is present, but not studied
(e.g., Abel, 1983, Bertola and Caballero, 1994, Bloom, 2000, Gry-
glewicz and Hartman-Glaser, 2019, Mauer and Ott, 1995, Cooper,
2006, Chou et al., 2007, and Lyandres et al., 2018). For others, depreci-
ation plays a more prominent role, as discussed above, but the scale of
investment is, as mentioned, fixed (e.g. Arkin and Slastnikov, 2007, Jou
and Lee, 2011, Ruffino and Treussard, 2006, and Adkins and Paxson,
2017). To the best of our knowledge, there are currently no other
studies that analyze both timing and scale of capital investments, simul-
taneously, and subject to positive economic depreciation in a dynamic
and uncertain environment. We uncover some surprising nontrivial
results, which are not yet present in the theoretical literature, in par-
ticular that the impact of depreciation on the uncertainty–investment
relationship is not unambiguous. Beyond the novelty of the approach,
our results allow us to explore the practical relevance of the deterio-
ration in productive capacity to the optimal investment decisions, by
investors and managers, both on when (or whether) and on how much
to invest, as well as how changes to the volatility of the willingness-
to-pay can shape its impact to those same decisions. It should be
mentioned that outside this field, there exist other theoretical studies
that look at the role of depreciation on investment but in very different
set-ups (see, e.g., Schlosser et al., 2021).

The flexibility in investment size is a crucial element in our frame-
work. Conventional dynamic investment set-ups, starting with the sem-
inal work by, e.g., McDonald and Siegel (1986) and Dixit and Pindyck
(1994), typically assume that the scale of the investment is fixed and
exogenously determined. Dangl (1999) and Bar-Ilan and Strange (1999)
were among the first to study capacity choice for single firm set-ups.
More recent contributions studying capacity choice in various dynamic
lumpy investment monopoly settings are Della Seta et al. (2012), Wen
et al. (2017), Azevedo et al. (2021), Sarkar (2019), and Jeon (2021)
(also see Huberts et al., 2015, for a general survey for contributions
prior to 2015). The work in this paper extends on the single firm case
by including and studying economic depreciation.

In the literature, alternative ways of modeling depreciation include
assuming finite life-time of capital or complete capital depreciation
after production, as studied by, e.g., Gryglewicz et al. (2008), Dixit
and Pindyck (1994), and Nakamura (1999, 2002). These ‘‘one-hoss
shay’’ models are well suitable to study cases that indeed have this
characteristic and therefore apply to different scenarios from ours. It
is difficult to assume a one-hoss shay model when capital stock is
continuously depreciating and we thus find that this choice of treat-
ment obscures the identification of the opposing and level-dependent
effects uncovered in this paper, which are present under more general
settings. Nakamura, in a discrete time setting without optimal timing,
also considers the relationship between uncertainty and depreciation
and finds that market uncertainty has a negative impact on invest-
ment. Femminis (2008) and Saltari and Ticchi (2005) challenge his
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findings: Femminis shows that the negative relationship between in-
vestment and uncertainty fully relies on the assumption that capital
fully depreciates after production. He also shows that this is not always
the case when capital depreciates at a constant geometric rate in a
model with risk-aversion. Section 5.1 discusses the implications from
using this alternative formulation. We find that, in relation to the above
mentioned studies, uncertainty increases investment but it should be
noted that in, e.g., Nakamura’s discrete time model where capital fully
depreciates after two periods, investment represents the injection of
new capital stock in each period, whereas in our work uncertainty is
compensated for by delaying investment which in turn increases the
capital stock upon investment. Thus, our findings are more in line with,
e.g., Femminis’.1

This paper is organized as follows. First, the model is introduced
in Section 2. Section 3 studies the firm’s investment strategy and
particularly focuses on the impact of depreciation on scale and timing.
Section 4 extends the analysis by looking at the uncertainty–investment
relationship. We consider two alternative versions of the main model
in Section 5. Concluding remarks are given in Section 6, as well as a
summary of our results and the managerial implications, followed by
suggestions for future research.

2. Model

Consider a monopolist that holds an American style perpetual (real)
option to undertake investment and acquire some capital stock. Capital
stock is denoted by 𝐾(𝑡), where 𝑡 ≥ 0 denotes time, and can be obtained
by a lump-sum irreversible investment. The firm is assumed to be risk-
neutral, rational, financially unconstrained, and value-maximizing. Af-
ter investment, capital stock is assumed to change over time according
to the dynamics

d𝐾(𝑡) = 𝐼(𝑡) − 𝛿 ⋅𝐾(𝑡)d𝑡, (1)

where 𝐼(𝑡) denotes the instantaneous investment at time 𝑡 and where
𝛿 > 0 denotes the depreciation rate. Although we do not allow for zero-
depreciation cases in the problem specification, we will include 𝛿 = 0

in our analysis, to better understand the effects of depreciation.
For our main model, we assume that the instantaneous investment

takes a positive value at most once.2 Let 𝐾̄ denote the initial capital
stock at the time of investment, i.e. for some time 𝑠 ≥ 0, 𝐼(𝑠) = 𝐾̄ > 0

and 𝐼(𝑡 ≠ 𝑠) = 0. It then follows from (1) that the capital stock held by
the firm is given by
𝐾(𝑡) = 𝐾̄𝑒−𝛿(𝑡−𝑠), 𝑡 ≥ 𝑠.

To finance this project, the firm faces unit investment cost 𝜅 > 0.
Thus, 𝜅𝐾̄ represents the total financing costs, which is incurred at the
moment of investment. Since the investment is irreversible, no portion
of these costs can be recovered.

Output 𝑄(𝑡) is determined by the production function

𝑄(𝑡) =
𝑎

𝛾
𝐾𝛾 (𝑡), (2)

where 𝑎 > 0 is the production technology parameter and 𝛾 ∈ (0, 1)

denotes an output elasticity that ensures diminishing returns to cap-
ital.3 This type of production function is in line with, e.g., Bertola
(1988), Bertola and Caballero (1994), Nakamura (2002) and Lyandres

1 However, also Femminis does not take into account that the firm might
have an option to delay investment, which we do. In addition, they do not
study the relationship between uncertainty and (the rate of) depreciation.

2 Section 5.2 considers an extension where the firm can replenish its capital
stock any number of times and it confirms the results we obtain from our main
model.

3 We assume that 𝑎 > 𝛾𝑒−1 to ensure a monotonic relationship between 𝑄

and 𝛾. We want to note that our results will still apply for other values of 𝑎,
however, some of the intuitive properties of the production function are lost
in this simple formulation if 𝑎 is chosen to be too small.

et al. (2018), where labor is assumed to be flexible. Notice that, given
a production function that depends positively on 𝐾(𝑡), positive depre-
ciation represents the deterioration of the capital’s stock productivity.
For this reason, we refer to the latter as ‘economic depreciation’ (simply
‘depreciation’ henceforth).

The market in which the firm operates is characterized by the
following inverse demand function:

𝑝(𝑡) = 𝑥(𝑡)(1 −𝑄(𝑡)), (3)

so that prices clear markets, where 𝑥(𝑡) is an exogenous shock process.
The value of 𝑥 at 𝑡 = 0 is a known parameter but future values are
stochastic, thus representing future (unknown) shifts in the demand
curve. Thus, a natural interpretation for a higher value of 𝑥(𝑡) is that
of a higher willingness-to-pay by consumers represented by an upward
shift of the inverse demand. Note that this specification results in the
firm’s investment being associated with uncertainty and therefore risk.
This type of inverse demand function follows, e.g., Pindyck (1988), He
and Pindyck (1992), Aguerrevere (2003), Wu (2007), and Huisman and
Kort (2015). Process 𝑥(𝑡) follows a geometric Brownian motion with
trend 𝜇 and volatility parameter 𝜎 > 0, i.e.

d𝑥(𝑡) = 𝜇𝑥(𝑡)d𝑡 + 𝜎𝑥(𝑡)d𝑧(𝑡). (4)

The first term on the right-hand side represents the trend of the process.
The second term on the right-hand side contains the Wiener process 𝑧(𝑡)
through which exogenous shocks are brought in. The Wiener process
has a normal distribution with expected value 0, standard deviation√
𝑡, and has the property that (d𝑧)2 = d𝑡. Let us denote the initial value

of the shock process (𝑥(𝑡))𝑡≥0 by 𝑋 = 𝑥(0). We will assume 2𝜇 > 𝜎2

to ensure finite expected hitting times. Discounting is done under a
constant risk-free rate 𝜌, where 𝜌 > 𝜇.

Given the autonomous evolution of 𝐾, the choice of the initial
capital stock is equivalent to the firm choosing its productive capacity,
as given by (2). The firm is assumed to be committed to producing
the amount dictated by their capacity allowance. In the literature on
capacity constrained firms, this so-called capacity clearing assumption
is used on a large scale (e.g. Deneckere et al., 1997, Chod and Rudi,
2005, Anand and Girotra, 2007, Goyal and Netessine, 2007, and Huis-
man and Kort, 2015). For example, Goyal and Netessine (2007) argue
that producing below capacity may be found to be difficult for firms as
a result of fixed costs associated with commitments to suppliers, labor,
and production ramp-up.

The firm’s strategy comprises two decisions: the timing of invest-
ment and the size of the initial capital stock (𝐾̄). We base ourselves
on the work of McDonald and Siegel (1986), Smets (1991), and Dixit
and Pindyck (1994) to find the firm’s optimal investment (stopping)
behavior under uncertainty. To formally write down the firm’s opti-
mization problem, denote the filtered probability space of (𝑥(𝑡))𝑡≥0 by
(𝛺,𝑥,𝐅,P), so that the filtration associated with the process 𝑥(⋅) is
denoted by 𝐅 = (𝑥

𝑡 )𝑡≥0, with natural filtrations 𝑥
𝑡 , collecting the

available information at time 𝑡 ≥ 0. Conditional expectation operator
E𝑋 is taken with respect to measure P, i.e. E{ ⋅ |𝑥

0
}, where 𝑋 = 𝑥(0).

Let 𝜏 be a stopping time and let  consist of all finite 𝑥
𝑡 -stopping

times. Given inverse demand (3), the firm then faces the following
optimization problem, at time 𝑡 = 0, over the initial capital stock 𝐾̄

and timing 𝜏,4

𝑉 (𝑋) = sup
𝜏∈,𝐾̄>0

E𝑋

{
∫

∞

𝜏

𝑥(𝑡)(1 −𝑄(𝑡))𝑄(𝑡)𝑒−𝜌𝑡d𝑡 − 𝑒−𝜌𝜏𝜅𝐾̄

}
, (5)

with 𝑄(𝑡) as defined in (2), i.e.,

𝑄(𝑡) =

{
0 if 𝑡 < 𝜏,
𝑎

𝛾

(
𝐾̄𝑒−𝛿(𝑡−𝜏)

)𝛾
, if 𝑡 ≥ 𝜏.

4 Notice that for all finite stopping times it holds that lim𝑡→∞ 𝐾(𝑡) = 0, which
implies that there are no issues with the transversality.
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In line with the literature, we will write the optimal stopping
moment in terms of 𝑋. This means that we will determine a threshold
𝑋∗ such that, if 𝑥(0) < 𝑋∗ the firm invests when 𝑥(𝑡) hits the investment
threshold 𝑋∗ for the first time.5

It is important to note that, because the firm’s investment is risky,
the firm has an incentive to ‘delay’ investment until the net present
value (NPV) is sufficiently positive (McDonald and Siegel, 1986, Dixit
and Pindyck, 1994). This leads to a so-called wedge between the NPV
threshold and our threshold 𝑋∗, where the NPV threshold is simply the
value of 𝑋 such that the net present value from investment is zero.
Thus, uncertainty creates a value of waiting.

If 𝑥(0) ≥ 𝑋∗, the firm invests immediately and investment takes
place at 𝑡 = 0. It follows that the (stochastic) investment time is given by
hitting time 𝜏∗ = inf{𝑡 ≥ 0 | 𝑥(𝑡) ≥ 𝑋∗}. We will denote the optimal level
of the initial capital stock by 𝐾̄∗(𝑥(0)).6 The set of all values of 𝑋 such
that investment takes place immediately is called the stopping region and
the complementary region is called the continuation region. For typical
scenarios like ours, the stopping region is given by  = {𝑋 ∈ R+ | 𝑋 ≥
𝑋∗} and the continuation region equals  = {𝑋 ∈ R+ | 𝑋 < 𝑋∗}. For
the latter case, the firm will set, upon investment, 𝐾̄∗(𝑋∗), which we
will denote as 𝐾̄𝑜𝑝𝑡.

Proposition 1. Let 𝛾 <
𝛽−1

𝛽
, where 𝛽 is given by

𝛽 =
1

2
−

𝜇

𝜎2
+

√(
1

2
−

𝜇

𝜎2

)2

+
2𝜌

𝜎2
. (6)

Then,  is empty. The firm’s capital stock in the stopping region 𝐾̄∗(𝑋) is
the solution of

𝑋

𝜌 + 𝛾𝛿 − 𝜇

(
1 − 2

𝑎

𝛾
𝐾̄𝛾 𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)
=

𝜅

𝑎
(𝐾̄)1−𝛾 . (7)

Let 𝛾 ≥ 𝛽−1

𝛽
. Then  is non-empty. For 𝑋 ∈ , as in the previous case, the

firm invests immediately and acquires 𝐾̄∗(𝑋), given by the solution of . For
𝑋 ∈  the firm delays investment and waits until the process 𝑥(𝑡) reaches
the investment threshold 𝑋∗ to acquire 𝐾̄𝑜𝑝𝑡, given by

𝑋∗ =

(
𝛾

𝑎

𝛽(𝛾 − 1) + 1

𝛽(2𝛾 − 1) + 1

𝜌 + 2𝛿𝛾 − 𝜇

𝜌 + 𝛿𝛾 − 𝜇

) 1−𝛾
𝛾 𝛽(2𝛾 − 1) + 1

𝛽 − 1

𝜅

𝑎
(𝜌 + 𝛿𝛾 − 𝜇),(8)

𝐾̄𝑜𝑝𝑡 =

(
𝛾

𝑎

𝛽(𝛾 − 1) + 1

𝛽(2𝛾 − 1) + 1

𝜌 + 2𝛿𝛾 − 𝜇

𝜌 + 𝛿𝛾 − 𝜇

) 1
𝛾

, (9)

respectively. As a result, the firm’s value function is given by

𝑉 (𝑋) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
𝑋

𝑋∗

)𝛽 𝜅

𝛽 − 1
𝐾̄𝑜𝑝𝑡 if 𝑋 < 𝑋∗,

𝑋

𝜌 + 𝛾𝛿 − 𝜇

𝑎

𝛾
(𝐾̄∗(𝑋))𝛾

×

(
1 −

𝑎

𝛾
(𝐾̄∗(𝑋))𝛾

𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)
− 𝜅𝐾̄∗(𝑋)

if 𝑋 ≥ 𝑋∗.

(10)

5 The proof for this result in our set-up is based on Dixit and Pindyck
(1994), who show that the state space can be divided into two consecutive
regions for standard real options problems without capacity choice, and whose
results are extended by Huberts et al. (2019) for models where capacity choice
is explicitly modeled. Optimality can be shown using a verification theorem
based on, e.g., Gozzi and Russo (2006).

6 The cost of financing the capital stock, 𝜅𝐾̄, represents both book and mar-
ket value at the time of investment, but whereas the number that represents
the productive capacity of capital will continue to evolve in time according
to (1), its market value will be at most zero immediately after the fact, due to
the assumption of irreversibility of investment.

All proofs can be found in Appendix A. Notice that, as a result of the
assumption that 𝜌 > 𝜇, we have 𝛽 > 1. Additionally, as has been shown
extensively in the literature, 𝛽 has the property that it is decreasing in
𝜎. Also note that the first case of (10) gives the option value.

Proposition 1 shows that only for 𝛾 >
𝛽−1

𝛽
we have a non-empty

continuation region, i.e., there exists a threshold as given by (8) and
it is positive. Bar-Ilan and Strange (1999) also established a relation-
ship between the marginal productivity of capital parameter 𝛾 and the
threshold. As shown by Lyandres et al. (2018), assumptions on 𝛾 are
required. In order for the value of the waiting option to exceed the
value of immediate investment, 𝛾 must be sufficiently large. From the
formulation of our production function, it follows that capital gets more
productive as the output elasticity 𝛾 goes down. This means that for
each unit of output, less capital is required when 𝛾 is smaller, so that
investment in each unit of output becomes relatively cheaper, which
ultimately accelerates investment. Fig. 1(a) illustrates the regions for
different 𝛾.

We would like to note here that we distinguish two ways in which
the optimal capital stock is affected by the rate of depreciation. First,
assuming the firm invests immediately, i.e. 𝑋 is fixed, 𝛿 has an effect
on 𝐾̄∗(𝑋) as can be observed from . We will refer to this as the direct
effect of 𝛿 on capital stock. Second, the proof of Proposition 1 shows
that 𝜕

𝜕𝑋
𝐾∗(𝑋) > 0, i.e. the firm’s optimal capital stock in the stopping

region is increasing in 𝑋. Then, in case the firm delays investment, it
can be noted from (8) that the direct impact of 𝛿 on 𝑋∗, in turn, leads
to a change in 𝐾̄𝑜𝑝𝑡 = 𝐾̄∗(𝑋∗). We will refer to the effect of 𝛿 on the
acquired capital stock through a change in the threshold of investment
as the indirect effect of 𝛿 on capital stock.

3. Investment and depreciation

With our main model in place, we are equipped to, first, address
the question of how economic depreciation affects the firm’s optimal
investment behavior.

Section 3.1 details how depreciation affects the investment thresh-
old, i.e. the boundary between the continuation region and stopping
region, and therefore encapsulates the effects of depreciation on the
optimal timing of investment.

The case where the monopolist remains in the stopping region when
studying the effect of different rates of 𝛿, i.e. in the region where the
timing of investment is unaffected, offers an opportunity to look at
the direct effect of depreciation on the optimal capital stock, which
is analyzed in Section 3.2. Then, Section 3.3 extends the analysis to
the case where the monopolist remains in the continuation region
for different rates of 𝛿, now considering indirect effects due to the
simultaneous adjustments of size and timing of investment.

3.1. Timing of investment and 𝛿

Intuition tells us that, since a higher rate of depreciation leads
to each unit of capital stock generating less output per stretch of
time, total revenue streams are negatively impacted by depreciation.
The firm then has, comparatively to a lower rate of depreciation, an
incentive to delay investment until the state process reaches a higher
level of the consumers’ willingness-to-pay. That way, the firm could
allow for the gains from the higher prices to compensate the losses in
productivity, countering the comparatively lower expected revenue.

One can check directly from Eq. (8) that, since 𝜌+2𝛿𝛾−𝜇

𝜌+𝛿𝛾−𝜇
is an in-

creasing function of 𝛿, the investment threshold 𝑋∗ is increasing in
𝛿. Thus, the former effect dominates for all 𝛿 and this confirms that,
comparatively, depreciation always delays investment in expectation
for all states 𝑋 below the modified threshold.

Fig. 1(b) illustrates the investment threshold 𝑋∗ for different values
of 𝛿 and distinguishes the regions where the firm delays investment
(continuation) and where the firm invests immediately (stopping). As
illustrated, for a given parametrization, there exist initial states, like,
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Fig. 1. Stopping region and continuation region for different parametrizations. 𝜇 = 0.02, 𝜌 = 0.1, 𝜎 = 0.2, 𝑎 = 0.6, and 𝜅 = 0.3.

e.g., 𝑋𝑖, such that they are in the continuation region for any 𝛿. Others,
like 𝑋𝑖𝑖, can fall in either region depending on the range of 𝛿 values
being analyzed.

By first restricting our analysis to the range where initial states
remain in the stopping region, like 𝑋𝑖𝑖 for 𝛿 ∈ [0, 𝛿1), we can pro-
vide a characterization of the firm’s optimal investment scale even
as the threshold increases in 𝛿, because it remains optimal to invest
immediately.7

For our analysis on the continuation region we, equivalently, first
implicitly assume that we restrict our analysis to the range where initial
states remain in the stopping region. For a characterization of the firm’s
optimal strategy when initial states do not belong to the same region,
we refer the reader to Appendix B.

3.2. Investment in the stopping region and 𝛿

Let 𝑋 ∈ , i.e. the firm undertakes immediate investment. The
parameter 𝛿 appears in two terms in , each having a different effect
on capital stock 𝐾̄∗(𝑋). Restructuring equation gives

‘‘𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑠𝑡 𝐸𝑓𝑓𝑒𝑐𝑡’’

𝜅

𝑎
(𝐾̄)1−𝛾

𝜌 + 𝛾𝛿 − 𝜇

𝑋
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

↑ as 𝛿↑ ⇒ 𝐾̄↓

=

‘‘𝐵𝑢𝑓𝑓𝑒𝑟 𝐸𝑓𝑓𝑒𝑐𝑡’’(
1 − 2

𝑎

𝛾
𝐾̄𝛾 𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)
.

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
↑ as 𝛿↑ ⇒ 𝐾̄↑

(11)

Depending on which of the two effects is dominant, 𝐾̄∗(𝑋) is either
pushed downward or upward as 𝛿 increases. To understand why this
happens, for the first effect, notice that when depreciation is stronger,
each unit of capital stock will produce less units of output in the
future, which means that the expected marginal revenue of capital is
negatively affected by depreciation. Although the cost of investment,
i.e., the cost of acquiring capital, is unaffected by a change in 𝛿, it
becomes relatively less rewarding, or more expensive, to invest when
𝛿 is higher. As a result, the optimal quantity goes down. We will call
this the relative cost effect.

The second effect, where depreciation pushes the quantity up, fol-
lows from anticipating the changes in capacity that will restrict output.
This gives the firm the incentive to set an initially higher output and to
therefore acquire a higher level of capital stock upon investment. We
will call this the buffer effect.

7 In other words, the timing decision is the same for 𝑋 > 𝑋∗ and thus plays
no direct role in the choice of 𝐾̄.
Nevertheless, we do not explicitly exclude 𝑋∗ from the analysis in the

stopping region, but simply note that the sensitivity of the investment scale
will differ on this point if taken from the left and from the right of 𝛿.

To illustrate the buffer effect, consider the situation of a firm with
a capital stock that does not depreciate, represented by the solid lines
in Fig. 2, where Panel (a) represents the capital stock and Panel (b)
represents the instantaneous cash flows 𝜋(𝑡) = 𝑋(𝑡)(1 − 𝑄(𝑡))𝑄(𝑡) in ex-
pectation. If the firm now faces a scenario where its capital depreciates,
its capital stock and the corresponding instantaneous cash-inflows will
erode over time as illustrated by the dotted curves, assuming the firm
has the same capital stock at 𝑡 = 0. This gives the firm an incentive
to invest in a higher initial capital stock (and move from the dotted to
the dashed curve) and thus increase the area under E𝑋𝜋(𝑡) (from dotted
to dashed) to recapture some of the lost total cash-inflows, which, in
essence, is the buffer effect.

The degree to which it is optimal to increase the capital stock,
however, will depend on the cost associated with acquiring additional
capital stock. Note that the dashed line in Panel (b) was built from
the optimal level of capital stock, taking the cost of acquisition into
consideration.

The next proposition formally shows that the buffer effect is domi-
nant for small values of 𝛿 whereas the relative cost effect is dominant
for larger values. Fig. 3(a) illustrates the typical shape of 𝐾̄∗(𝑋) as a
function of depreciation parameter 𝛿. Fig. 3(b) illustrates how 𝑉 (𝑋) is
overall affected by the depreciation rate 𝛿.

Proposition 2. Let 𝛿(𝑋) be the (unique) solution to

𝑋(𝜌 − 𝜇)

2(𝜌 + 𝛾𝛿 − 𝜇)2
=

𝜅

𝑎

(
𝛾

4𝑎

(
𝜌 + 2𝛾𝛿 − 𝜇

𝜌 + 𝛾𝛿 − 𝜇

)2
) 1−𝛾

𝛾

. (12)

Let 𝑋 ∈ .
(i) If 𝑋 > (𝜌 − 𝜇)

8𝜅

𝛾

(
𝛾

4𝑎

) 1
𝛾 , then 𝛿(𝑋) > 0 and

◦ for 𝛿 ∈ (0, 𝛿(𝑋)) the capital stock 𝐾̄∗(𝑋) is increasing in 𝛿;
◦ for 𝛿 > 𝛿(𝑋) the capital stock 𝐾̄∗(𝑋) is decreasing in 𝛿.

(ii) If 𝑋 ≤ (𝜌 − 𝜇)
8𝜅

𝛾

(
𝛾

4𝑎

) 1
𝛾 , then 𝛿(𝑋) ≤ 0 and

◦ for all 𝛿 > 0 the capital stock 𝐾̄∗(𝑋) is decreasing in 𝛿.

Appendix B shows that the condition in Case (𝑖𝑖) of Proposition 2
is not typically met, since these values of 𝑋 are often part of the
continuation region.

Case (𝑖) of Proposition 2 shows that, in the stopping region, the
buffer effect dominates for low rates of depreciation, i.e. the capital
stock is increasing in 𝛿. The firm adjusts for the erosion in future
productive capacity by overinvesting, that is acquiring a higher level of
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Fig. 2. Illustration of buffer effect. Investment when 𝛿 = 0 (solid), when 𝛿 = 0.1 but setting capital stock as if 𝛿 = 0 (dotted), and optimal investment for 𝛿 = 0.1 (dashed).
𝜇 = 0.02, 𝜌 = 0.1, 𝛾 = 0.8, 𝑋 = 0.5, and 𝑎 = 0.6.

Fig. 3. The optimal investment size 𝐾̄∗(𝑋) and the resulting value to the firm 𝑉 (𝑋) as a function of depreciation parameter 𝛿.
𝜇 = 0.02, 𝜌 = 0.1, 𝜎 = 0.2, 𝛾 = 0.8, 𝑋 = 0.5, 𝑎 = 0.6, and 𝜅 = 0.3.

capital stock, relative to the zero-depreciation case, and thus minimiz-
ing the loss in total revenue.8 As illustrated by Fig. 3(a), for higher rates
of depreciation, investing in each unit of capital becomes relatively too
expensive, since at these rates any additional capital translates very
poorly into extra production, while remaining just as costly, and the
net effect on the size of investment reverses for some 𝛿 > 𝛿(𝑋), which
we refer to as underinvestment relative to the zero-depreciation case.

Intuitively, economic depreciation creates a need to preemptively
replace productive capacity. However, whereas the costs of acquiring
more capital scale proportionally in the investment size, the benefits
from such investment have diminishing returns on the amount of
capital acquired. Therefore, even if the benefits of acquiring capital
stock may be large, they can still be dominated by the relative costs
of investing at sufficiently high depreciation rates, i.e. when the need
for capital replenishment is greater.

For Case (𝑖𝑖) of Proposition 2, consumers’ willingness-to-pay is too
low for the firm to be able to invest in a large stock and therefore the
buffer effect cannot dominate for any 𝛿. This case arises in scenarios
where, relatively, 𝜅 is high, 𝑎 is small, and/or 𝑋 is low relative to

8 It is worth noting that this result is not driven by the capacity clearing
constraint. In fact, relaxing this assumption will amplify the buffer effect, and
therefore the non-monotonicity observed in this case is preserved.

(𝜌 − 𝜇). In other words, when each unit of capital stock is relatively
too expensive.

The overall effect of 𝛿 on 𝑉 (𝑋) in the stopping region, as illustrated
in Fig. 3(b), is unambiguously negative. Depreciation leads to lower
expected total cash flows which, in turn, translates into a lower value
for the firm.

Lemma 1. Let 𝑋 ∈ . Then 𝜕

𝜕𝛿
𝑉 (𝑋) < 0.

3.3. Investment in the continuation region and 𝛿

Assume that  is nonempty and let 𝑋 ∈ , i.e. the firm always
delays investment. Capital stock 𝐾̄𝑜𝑝𝑡 = 𝐾̄∗(𝑋∗) is affected by 𝛿 in
two ways: indirectly through 𝑋∗ as studied in Section 3.1 and directly
as studied in Section 3.2. The indirect effect is positive: the scale of
investment, as established in the real options literature, increases when
investment is undertaken at a higher level of the state process, which
we find as well. This follows from 𝐾̄∗(𝑋) being an increasing function
of 𝑋 (see proof of Proposition 1). The direct effect can be mixed as
established in Section 3.2. Similar to what we did to investigate the
effect of depreciation on the investment threshold, one can easily verify
that, since 𝜌+2𝛿𝛾−𝜇

𝜌+𝛿𝛾−𝜇
is an increasing function of 𝛿, 𝐾̄𝑜𝑝𝑡 must also be

increasing in 𝛿, which follows directly from Eq. (9). Thus, the overall
effect of 𝛿 on the scale of investment 𝐾̄𝑜𝑝𝑡 is unambiguously positive
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as depreciation gets stronger and the indirect effect always dominates
any negative direct effects.

Consequently, it can be surprising that even though a higher rate
of depreciation brings about a larger scale of investment, this does not
translate into a higher firm value. In fact, the result that is valid for the
stopping region (Lemma 1) can also be observed in the continuation
region, as shown in the following lemma.

Lemma 2. Let 𝑋 ∈ . Then 𝜕

𝜕𝛿
𝑉 (𝑋) < 0.

One must keep in mind that 𝐾̄𝑜𝑝𝑡 represents the size of investment
(at the time of investment) and, although more rapid depreciation leads
to an increase in the ‘size of initial capital stock’, it also leads to an
expected delay in the timing of investment, and the delay dominates
the effect on the firm’s value even when the firm is free to adjust
its capacity (𝛿 hurts the cash flow per capital). So, to capture the
compounded effect of 𝛿 on the size of investment, in line with the lit-
erature (e.g., Sarkar, 2019), we resort to studying the expected present
value of capital investment, expressed as 𝐸𝑃𝑉 𝐼 = E𝑋

{
𝑒−𝜌𝜏

∗
𝜅𝐼(𝜏∗)

}
=(

𝑋

𝑋∗

)𝛽

𝜅𝐾̄𝑜𝑝𝑡. The opposing effects that 𝛿 has on the investment size
become evident in the formulation of 𝐸𝑃𝑉 𝐼 , given by

𝐸𝑃𝑉 𝐼

= 𝜅

(
𝛾

𝑎

𝛽(𝛾 − 1) + 1

𝛽(2𝛾 − 1) + 1

𝜌 + 2𝛿𝛾 − 𝜇

𝜌 + 𝛿𝛾 − 𝜇

) 1−𝛽(1−𝛾)

𝛾

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
↑ as 𝛿↑

(
𝛽 − 1

𝛽(2𝛾 − 1) + 1

𝑎

𝜅

𝑋

𝜌 + 𝛿𝛾 − 𝜇

)𝛽

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
↓ as 𝛿↑

,

(13)

for all 𝑋 ∈ . Notice that 𝛽(1−𝛾) < 1, which follows from the condition
in Proposition 1 that allows for non-empty .

The following lemma shows that the negative effect is always dom-
inant for the present value of capital investment, even when the level
of capital stock upon investment is increasing in 𝛿. Hence, the decrease
in present value of capital investment due to the delay outweighs the
increase in the optimal level of capital stock at the time of investment,
in expectation.

Lemma 3. Let 𝑋 ∈ . Then 𝜕

𝜕𝛿
𝐸𝑃𝑉 𝐼 < 0.

4. The effect of uncertainty on investment

Section 3.3 showed that 𝑋∗ and 𝐾̄𝑜𝑝𝑡 are increasing in 𝛿, but the
present value of capital (the 𝐸𝑃𝑉 𝐼) is decreasing in 𝛿. This section
discusses the effect of uncertainty on the firm’s investment and in par-
ticular it discusses the interplay between depreciation and uncertainty.

In the early real options literature, studies with fixed capacity
(see, e.g., Bernanke, 1983, Bertola, 1988, Pindyck, 1988, and Dixit,
1989) established a direct relationship between the volatility of the
underlying process and the firm’s real option.9 Uncertainty pushes the
associated investment threshold up and leads to a ‘‘late’’ exercise of
the options so that uncertainty is bad for investments. However, since
the increased uncertainty also directly affects the distribution of the
underlying stochastic process and, therefore, the probability of reaching
a higher threshold within a certain amount of time (see, e.g., Lund,
2005, and Sarkar, 2019), an appropriate way to measure the effect of
uncertainty on the investment option is to look at the present value
of the option. The option value not only incorporates expectations
about future cash-flows, it also provides a way of measuring how
the firm values its flexibility. For these models, the relationship is
unambiguous: more uncertainty increases the value of the option. When

9 See, e.g., Gryglewicz et al. (2008) and Sarkar (2019) for a more contem-
porary discussion on the uncertainty–investment relationship in the theoretical
and empirical literature.

Fig. 4. Optimal level of 𝐾̄ as a function of 𝛿 for different values of 𝜎: 𝜎 = 0.1 (solid),
𝜎 = 0.2 (dashed), and 𝜎 = 0.3 (dotted).

including capacity choice, the same relationship can be established
(see, e.g., Bar-Ilan and Strange, 1999, and Huberts et al., 2015).

On the one hand, ceteris paribus, a higher rate of depreciation has
a negative impact on cash-flows, as shown by Lemma 1, and when ca-
pacity choice is allowed, this translates into a larger capital investment
size (i.e., 𝐾̄𝑜𝑝𝑡 goes up), but a lower 𝐸𝑃𝑉 𝐼 (see Lemma 3) due to the
expected further delay in the exercise of the option. On the other hand,
this expected further delay reflects an increase in the option value. Also
the empirical literature has often shown that the impact of uncertainty
on investments can be level dependent (e.g., Lensink and Murinde,
2006, Jeanneret, 2007, Mohn and Misund, 2009, and Henriques and
Sadorsky, 2011). It is, thus, not immediately clear how depreciation
impacts the relationship between uncertainty and investment.

Therefore, similar to the previous section’s structure, let us first
address the effects of uncertainty on the optimal investment timing,
through the effect of 𝜎 on the investment threshold 𝑋∗ in Section 4.1,
before addressing the effect of uncertainty on the scale and present
value of capital investment in Section 4.2.

4.1. Timing of investment and 𝜎

One can check directly from (8) that higher uncertainty increases
the investment threshold. In addition, it follows from Eq. (9) that the
investment size is decreasing in 𝛽 and therefore increasing in 𝜎. This
means that as a higher level of uncertainty pushes the investment
threshold up, the firm acquires a higher capital stock upon investment.
Fig. 4 illustrates these findings. The solid line represents the value
in the stopping region, i.e., when the firm invests immediately. The
dashed and dotted line represent the values if the firm were to delay
investment and undertake investment at 𝑋∗ > 𝑥(0), which applies to
cases where 𝛿 is sufficiently large. Notice that because the investment
threshold goes up when 𝜎 is higher, the rate of depreciation required
to have that 𝑥(0) = 𝑋∗ goes down. Lemma 4 will show that the
increase in the threshold, when 𝜎 goes up, is amplified by depreciation.
In other words, depreciation compounds on the delay associated with
more uncertainty. This may suggest that the value the firm attaches to
flexibility is larger when depreciation is stronger.

As argued above, an adequate way to measure the impact of uncer-
tainty on timing of investment is to look at the option value 𝑉 (in (10)).
Lemma 4 first shows that, for a fixed rate of depreciation, 𝜎 has a
positive impact on the option value, i.e., the firm always attaches more
value to flexibility when there is more uncertainty.

Lemma 4. Let 𝑋 ∈ . Then
(i) 𝜕

𝜕𝜎
𝑉 (𝑋) > 0, and
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Fig. 5. Compound effect of uncertainty and depreciation. 𝜇 = 0.02, 𝜌 = 0.1, 𝛾 = 0.8, 𝑋 = 0.2, 𝑎 = 0.6, and 𝜅 = 0.3.

(ii) 𝜕2

𝜕𝛿𝜕𝜎
𝑋∗ > 0.

To understand the first result, first note that uncertainty does not
have an impact on the expected payoffs after investment (cf. the value
in the stopping region). However, since 𝜎 is positive related to the
threshold, the expected firm value upon investment is increasing in 𝜎.
In addition, the value of waiting, which stems from uncertainty, is also
increasing in 𝜎, as argued above.

To evaluate the role of depreciation further, Fig. 5(a) illustrates the
derivative in (𝑖) for different levels of 𝛿. Note that for small 𝛿 or 𝜎 it
holds that 𝑋∗ < 𝑋 so that for these parameter values 𝑋 falls in the
stopping region. Although 𝜎 always increases 𝑉 , the role 𝛿 plays is
level-dependent: the impact of uncertainty is amplified when the 𝛿 is
low but for high rates the figure shows that depreciation mitigates the
impact of uncertainty on option value. The following proposition looks
at the relationship between depreciation and uncertainty by studying
the sensitivity of the option to uncertainty for changes in 𝛿 and provides
a condition such that mitigation occurs.

Proposition 3. Let 𝑋 ∈ . Then 𝜕2

𝜕𝛿𝜕𝜎
𝑉 (𝑋) < 0 if and only if

ln
(
𝑋∗

)
− ln (𝑋) >

(
𝛽 −

𝜌 − 𝜇

𝜌 + 2𝛾2𝛿 − 𝜇

)−1

. (14)

Since 𝑋∗ on the left-hand side of (14) is increasing in 𝛿 and since the
right-hand side is decreasing in 𝛿, the inequality in (14) does not hold
for sufficiently high values of 𝛿. As a result, one can indeed distinguish
two regions with respect to 𝛿 and 𝜎, as illustrated by Fig. 5(b). To
interpret this condition, notice that (14) does not hold if 𝑋∗ and 𝑋

are sufficiently close. Then, investment is expected to be undertaken
soon, which means that the firm values the option, and therefore
flexibility, more when the demand is more uncertain. When investment
is not expected to be undertaken soon, depreciation mitigates the
(positive) impact of uncertainty on the option value, which is reflected

by 𝜕2

𝜕𝛿𝜕𝜎
𝑉 (𝑋) < 0.

Hence, an increase in the rate of depreciation can mitigate the
impact of uncertainty on 𝑉 but only if depreciation is sufficiently
strong.

4.2. Capital investment

Having understood the impact of uncertainty on optimal investment
timing (through its impact on 𝑉 ) and how the magnitude of that impact
depends on the rate of depreciation, we will now discuss the impact that
uncertainty has on the scale of capital investment (through its impact

Fig. 6. Illustration of derivative 𝜕

𝜕𝜎
𝐸𝑃𝑉 𝐼 for different 𝛿.

on the 𝐸𝑃𝑉 𝐼) and how this impact’s direction and magnitude, both,
depend on the rate of depreciation.

There is no impact of 𝜎 on the 𝐸𝑃𝑉 𝐼 in the stopping region (cf. ). In
the continuation region, however, for similar reasons as why the 𝐸𝑃𝑉 𝐼

could be ambiguous in 𝛿, it is not immediately clear what the impact
is of 𝜎 on the 𝐸𝑃𝑉 𝐼 . This ambivalence becomes evident if we inspect
the impact of 𝜎 in (13), and so we would have

𝐸𝑃𝑉 𝐼

= 𝜅

(
𝛾

𝑎

𝛽(𝛾 − 1) + 1

𝛽(2𝛾 − 1) + 1

𝜌 + 2𝛿𝛾 − 𝜇

𝜌 + 𝛿𝛾 − 𝜇

) 1−𝛽(1−𝛾)

𝛾

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
↑ as 𝛿,𝜎↑

(
𝛽 − 1

𝛽(2𝛾 − 1) + 1

𝑎

𝜅

𝑋

𝜌 + 𝛿𝛾 − 𝜇

)𝛽

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
↓ as 𝛿,𝜎↑

,

(15)

which shows that 𝜎 has mixed effects on the 𝐸𝑃𝑉 𝐼 . Fig. 6 illustrates
which effect dominates and illustrates that this is dependent on the
level of depreciation. The following proposition provides a condition
to determine the impact of uncertainty on the 𝐸𝑃𝑉 𝐼 , which confirms
that the findings in Fig. 6 are, in fact, a general result.

Proposition 4. Let 𝑋 ∈ . Then 𝜕

𝜕𝜎
𝐸𝑃𝑉 𝐼 > 0 if and only if

ln(𝑋∗) − ln(𝑋) >
(𝛽(1 − 𝛾) − 1)2 + 𝛽2𝛾2

𝛽𝛾(𝛽 − 1)(1 + 𝛽(2𝛾 − 1))
. (16)

Since 𝑋∗ is increasing in 𝛿, we have that condition (16) is satisfied
for sufficiently high 𝛿. To understand this, recall that 𝜎 impacts both



International Journal of Production Economics 260 (2023) 108836

9

N.F.D. Huberts and R. Rossi Silveira

Fig. 7. Regions where the present value of capital is increasing resp. decreasing in 𝜎. 𝜇 = 0.02, 𝜌 = 0.1, 𝛾 = 0.9, 𝑎 = 0.6, and 𝜅 = 0.3.

the investment timing and size. Since high values of 𝛿 already (signif-
icantly) delay investment, any further increases in the threshold have
a relatively smaller impact on the 𝐸𝑃𝑉 𝐼 when, at the same time, the
volatility goes up, which allows the increase in size to dominate. When
𝛿 is small, the present value of capital investment is more sensitive to
delays in investment so that the 𝐸𝑃𝑉 𝐼 is negatively impacted.

Note that when 𝑋 is close to zero, the left-hand side of (16) becomes
sufficiently large, so that the condition holds for any 𝛿. The regions
where (16) holds are illustrated in Fig. 7 for various constellations of
𝑋 and 𝜎 and for different rates of depreciation. It confirms again that
the positive effect that 𝜎 has on the 𝐸𝑃𝑉 𝐼 is amplified by additional
depreciation, and that the negative effect that 𝜎 has on the 𝐸𝑃𝑉 𝐼

becomes less dominant in the sense that the area for which the positive
effect dominates expands with 𝛿.

Another observation that can be made from Fig. 6 is that for high
values of 𝛿, 𝜕

𝜕𝜎
𝐸𝑃𝑉 𝐼 is decreasing in 𝛿. This means that the magnitude

of the impact of uncertainty becomes smaller for high values of 𝛿. The
following proposition confirms that this applies for sufficiently high
rates of depreciation. Thus, we find that uncertainty has a diminished
effect on the 𝐸𝑃𝑉 𝐼 when the rate of depreciation is higher.

Proposition 5. Let 𝑋 ∈  and let 𝛿 ≥ 0. There exists a 𝛿◦ ≥ 0 such that
𝜕

𝜕𝛿

𝜕

𝜕𝜎
𝐸𝑃𝑉 𝐼 < 0 if and only if 𝛿 > 𝛿◦.

To understand this result, first note that for high rates of depre-
ciation, investment is taking place at a later point in time than for
low rates. Thus, the magnitude of the impact of any increase in the
threshold is relatively smaller in terms of present value, when 𝛿 is
higher. Moreover, as can be observed in Fig. 4, an increase in 𝛿 has
a relatively small impact on the difference in size of investment when
comparing the cases 𝜎 = 0.3 and 𝜎 = 0.2. This observation indicates
that 𝜕

𝜕𝜎
𝐾̄𝑜𝑝𝑡 is smaller for higher 𝛿. Therefore, an increase in 𝜎, when

simultaneously increasing 𝛿, predominantly impacts timing and not the
size of investment. These two effects together lead to the result that the
impact of 𝜎 diminishes as the rate of depreciation is higher.

5. Robustness

In this section the robustness of our results is tested when consid-
ering two alternative versions of the main model. In Section 5.1 an
alternative way of modeling economic depreciation is considered: capi-
tal is assumed to not depreciate at a constant geometric rate, but instead
is assumed to remain fully productive whilst having a finite life-time.
This section illustrates that this formulation leads to a qualitatively
different investment strategy: some of the intuitive dynamics are lost
when eliminating constant depreciation.

In Section 5.2 the main model is extended using a (𝑠, 𝑆)-inspired
type of (inventory investment) model to offer the firm the possibility

to replenish its capital stock.10 This section shows that our results do
not depend, qualitatively, on the assumption that the firm has a one-off
opportunity to acquire capital.

Finally, Section 5.3 comments on alternative specifications of the
inverse demand function and shows that overinvestment and underin-
vestment can be found for convex or concave functional forms.

5.1. Full depreciation in finite time

In the literature, there exist studies that consider an alternative
approach to depreciation. These papers assume capital stocks to retain
full capabilities until a future, and potentially stochastic, moment in
time when it fully depreciates.11 Although such models would describe
a different scenario than the scenario we are considering, e.g., Dixit
and Pindyck (1994) refer to this one-hoss shay model as a case of
depreciation as well (Chapter 6). More recent contributions have been
made by, e.g., Gryglewicz et al. (2008), Nakamura (2007), Femminis
(2008), and Saltari and Ticchi (2005), as discussed in Section 1. To
emphasize the relevance of the way this paper models depreciation
and to show that the two types of depreciation are not interchange-
able/synonymous this section briefly discusses what happens if capital
retains its productive capabilities, but fully depreciates after a fixed
moment in time.

Denote by 𝜆 > 0 the lifetime of capital. The firm’s optimization
problem can then be written as

𝑉 (𝑋) = sup
𝜏≥0,𝐾̄>0

E𝑋

{
∫

∞

0

𝑝(𝑡)𝑄(𝑡)𝑒−𝜌𝑡d𝑡 − 𝑒−𝜌𝜏𝜅𝐾̄

}
,

with

𝑄(𝑡) =

{
0 if 𝑡 < 𝜏 or 𝑡 > 𝜏 + 𝜆,
𝑎

𝛾

(
𝐾̄
)𝛾

, if 𝑡 ∈ [𝜏, 𝜏 + 𝜆].

One can show that the optimal capital stock in the stopping region
the solution of

𝜅

𝑎
(𝐾̄)1−𝛾

𝜌 − 𝜇

𝑋
=

‘‘𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑠𝑡 𝐸𝑓𝑓𝑒𝑐𝑡’’(
1 − 2

𝑎

𝛾
𝐾̄𝛾

)(
1 − 𝑒−𝜌𝜆

)
.

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
↑ as 𝜆↓ ⇒ 𝐾̄↓

(17)

10 This is inspired by the abundant literature on inventory problems, also
known as lot sizing problems, emerged after the seminal work by Scarf (1960).
This type of models can commonly be found in the Economics literature on
irreversible investments with a stochastic state process, see, e.g., Federico
et al. (2019). The authors also provide an extensive summary of this literature
stream and show optimality for problems very similar to ours.
11 Classic examples that fit this model include light-bulbs and carriages
but in the context of our set-up one can think intuitively of fundamental
elements of a machine that once they begin to break, the whole machine needs
replacing.
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Fig. 8. Optimal capital stock 𝐾̄∗(𝑋) as a function of 𝜆.

With 𝜆 only appearing in the right-hand side of (17), stronger depreci-
ation is only associated with a lower value of 𝐾̄, meaning that we lose
the buffer effect. A lower value for the lifespan of capital, 𝜆, leads to
a smaller period over which revenues are accumulated and, as such,
investment is relatively more expensive. Fig. 8 illustrates this effect.

This characterization also illustrates that the buffer effect originates
from compensating for losses caused by gradual erosion in productivity.
Since this type of depreciation does not impose such losses, the firm
does not compensate by increasing the capital stock when depreciation
is stronger.

The threshold is given by

𝑋∗ =

(
𝛾

𝑎

𝛽(𝛾 − 1) + 1

𝛽(2𝛾 − 1) + 1

) 1−𝛾
𝛾 𝛽(2𝛾 − 1) + 1

𝛽 − 1

𝜅

𝑎

𝜌 − 𝜇

1 − 𝑒−𝜌𝜆
, (18)

which is decreasing in 𝜆, i.e. investment is delayed when the lifetime
is short, that is, when 𝜆 goes down.

It is interesting to note that, in contrast to our main model, the cap-
ital stock upon investment, when starting in the continuation region,
𝐾̄𝑜𝑝𝑡 is not affected by 𝜆,

𝐾̄𝑜𝑝𝑡 =

(
𝛾

𝑎

𝛽(𝛾 − 1) + 1

𝛽(2𝛾 − 1) + 1

) 1
𝛾

.

This means that, in the absence of the buffer effect, we find that
the effect of delaying on the scale of investment is matched by the
relative cost effect, with the firm waiting for higher prices to exactly
compensate for the loss in expected revenue. This then also leads to the
direct result that the expected present value of capital is lower when
the lifetime is shorter. In relation to Section 4.2, we therefore also find
that when a one-hoss shay model is assumed, depreciation only impacts
the uncertainty–investment relationship through timing.

Furthermore, for 𝑋 ∈ , we have that
𝜕

𝜕𝜆
𝑉 (𝑋) = 𝑉 (𝑋)

𝜌

𝑒𝜌𝜆 − 1
(𝛽 − 1) > 0, (19)

i.e. the option value increases when the lifetime is longer. Moreover,

𝜕2

𝜕𝜎𝜕𝜆
𝑉 (𝑋) < 0 if and only if ln(𝑋∗) − ln(𝑋) < 2(𝛽 − 1)−1. (20)

Both (19) and (20) are equivalent results to those found in Lemma 2
and Proposition 3.

5.2. Option to replenish

It could be argued that the effect of depreciation on the scale of
investment is partially driven by the assumption that the firm can
only acquire capital once. Therefore, in this section, we introduce
a simple extension to our model where the firm, in principle, can
replenish its capital stock an infinite number of times and we will
argue that, qualitatively, this assumption has no impact on what was

already established for the main model. We do not aim to fully analyze
the outcomes of this extension, but rather to illustrate that both the
buffer effect and the relative cost effect are still present, and that the
investment behavior in the stopping region is not qualitatively different
from our main model.

Consider the scenario where the monopolist, after undertaking in-
vestment, can replenish its capital stock. We assume that the firm, upon
investment, will choose a 𝐾̄ and a K, with K < 𝐾̄, such that when the
capital stock reaches the level K, the firm acquires additional capital
to reset its capital stock to a level equal to 𝐾̄. Purchasing any 𝐾̃ > 0

units of capital stock is associated with costs 𝜅0𝐾̃+𝜅1. This formulation
introduces a fixed cost, which was not present in our main model. This
term ensures that the optimal replenishment time 𝑇 is strictly positive,
where 𝑇 follows from 𝐾(𝑇 ) = K, i.e., 𝑇 (K, 𝐾̄) =

1

𝛿
ln
(
𝐾̄∕K

)
. When

𝑇 → 0 the model collapses into a continuous investment model, which
contradicts our original assumption that this manner of investment
cannot actually take place in real life.

Note that since depreciation is deterministic, the period between
replenishing is fixed. This could arise from contractual reasons as,
e.g., commitments to the supplier (see, e.g., Dural-Selcuk et al. (2016)
for an overview of the literature on (𝑠, 𝑆)-type policies with stochastic
demand). Thus, the firm places an order every 𝑇 (K, 𝐾̄) periods. There-
fore, the firm’s optimization problem with respect to K and 𝐾̄ could
also be written as the firm choosing 𝐾̄ and 𝑇 , so that K = 𝐾̄𝑒−𝛿𝑇 .
Because the latter formulation allows for an easier comparison between
the results of this model and the main model, we will continue with the
firm choosing 𝐾̄ and 𝑇 . In the stopping region, the firm then considers
the following optimization problem

sup
𝐾̄,𝑇≥0

E𝑋

{
∞∑
𝑖=0

(
∫

(𝑖+1)𝑇

𝑡=𝑖𝑇

𝑋(𝑡)(1 −𝑄𝑖(𝑡))𝑄𝑖(𝑡)𝑒
−𝜌𝑡d𝑡

− 𝑒−𝜌𝑖𝑇
[
𝜅0

(
𝐾̄ − 𝐾̄𝑒−𝛿𝑇

)
+ 𝜅1

])
− 𝜅0𝐾̄𝑒−𝛿𝑇

}
, (21)

where 𝑄𝑖(𝑡) =
𝑎

𝛾
(𝐾𝑖(𝑡))

𝛾 and 𝐾𝑖(𝑡) = 𝐾̄𝑒−𝛿(𝑡−𝑖𝑇 ) are the output and capital
stock, respectively, for the (𝑖 + 1)-th cycle, for all 𝑖 = 0, 1, 2,… , and
𝑖𝑇 ≤ 𝑡 < (𝑖 + 1)𝑇 . Eq. (21) contains of three terms: two terms inside
the integral and one term at the end. The first terms represents the
firm’s discounted instantaneous cash-inflows. The total discounted cost
for each replenishment is captured by the second term for 𝑖 ≥ 1. The
total cost involved with the initial investment is captured by the second
term for 𝑖 = 0, 𝜅0(𝐾̄ − K) + 𝜅1, plus the final term, which can also be
written as 𝜅0K.

The firm’s optimization problem in (21) can be rewritten as

sup
𝐾̄,𝑇≥0

∞∑
𝑖=0

𝑒−(𝜌−𝜇)𝑖𝑇
[

𝑋

𝜌 + 𝛾𝛿 − 𝜇

𝑎

𝛾
𝐾̄𝛾

(
1 − 𝑒−(𝜌+𝛾𝛿−𝜇)𝑇

)

−
𝑋

𝜌 + 2𝛾𝛿 − 𝜇

(
𝑎

𝛾
𝐾̄𝛾

)2 (
1 − 𝑒−(𝜌+2𝛾𝛿−𝜇)𝑇

)]

−

∞∑
𝑖=0

𝑒−𝜌𝑖𝑇
[
𝜅0

(
𝐾̄ − 𝐾̄𝑒−𝛿𝑇

)
+ 𝜅1

]
− 𝜅0𝐾̄𝑒−𝛿𝑇

= sup
𝐾̄,𝑇≥0

𝑋

𝜌 + 𝛾𝛿 − 𝜇

𝑎

𝛾
𝐾̄𝛾 1 − 𝑒−(𝜌+𝛾𝛿−𝜇)𝑇

1 − 𝑒−(𝜌−𝜇)𝑇[
1 −

𝑎

𝛾
𝐾̄𝛾 𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

1 − 𝑒−(𝜌+2𝛾𝛿−𝜇)𝑇

1 − 𝑒−(𝜌+𝛾𝛿−𝜇)𝑇

]

− 𝜅0𝐾̄
1 − 𝑒−(𝜌+𝛿)𝑇

1 − 𝑒−𝜌𝑇
+

𝜅1

1 − 𝑒−𝜌𝑇
.

First order conditions give the optimal capital stock 𝐾̄∗(𝑋) and
period 𝑇 ∗(𝑋).12 The optimal capital stock is given as the solution of

𝜅

𝑎
(𝐾̄)1−𝛾

𝜌 + 𝛾𝛿 − 𝜇

𝑋

1 − 𝑒−(𝜌−𝜇)𝑇
∗(𝑋)

1 − 𝑒−(𝜌+𝛾𝛿−𝜇)𝑇
∗(𝑋)

1 − 𝑒−(𝜌+𝛿)𝑇
∗(𝑋)

1 − 𝑒−𝜌𝑇
∗(𝑋)

12 The Hessian confirms that this is a local maximum. Numerical analysis
shows that the maximum is global.



International Journal of Production Economics 260 (2023) 108836

11

N.F.D. Huberts and R. Rossi Silveira

Fig. 9. Optimal investment strategy for the firm with different 𝜅1. The solid curve represents the investment strategy for the main model (Section 2).
𝜇 = 0.02, 𝜌 = 0.1, 𝜎 = 0.2, 𝛾 = 0.8, 𝑎 = 0.6, and 𝜅0 = 0.3.

=

(
1 − 2

𝑎

𝛾
𝐾̄𝛾 𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

1 − 𝑒−(𝜌+2𝛾𝛿−𝜇)𝑇
∗(𝑋)

1 − 𝑒−(𝜌+𝛾𝛿−𝜇)𝑇
∗(𝑋)

)
.

(22)

Notice that, for sufficiently large 𝑇 , Eq. (22) gives a (nearly) identi-
cal solution to 𝐾̄∗(𝑋) as (11), where the buffer effect and relative cost
effect can also be observed in a model where the firm can top-up its
capital stock. In fact, for 𝛿 → 0, they are identical for any 𝑇 .

Fig. 9 illustrates the optimal strategy of the firm in the stopping
region. Panel (a), equivalent to Fig. 3, illustrates the optimal capital
stock 𝐾̄∗(𝑋). The solid curve represents the optimal capital stock as
found for the main model. The dashed, dotted, and dash–dotted curves
correspond to scenarios where the firm is faced with fixed replenish-
ment cost 𝜅1 = 0.5, 𝜅1 = 1, and 𝜅1 = 1.5, respectively. The panel
illustrates that the curves are qualitatively equivalent and that for 𝜅1
sufficiently large, the acquired capital stock is nearly identical to the
capital stock the firm would set when it was only allowed to invest
once.

Panel (b) and Panel (c) illustrate the optimal replenishment time
and the resulting replenishment threshold K, respectively. For small
values for 𝛿, capital depreciates slowly so that the cycle can be long,
i.e. 𝑇 ∗(𝑋) is large, whilst not letting capital completely depreciate
before replenishment, i.e. K > 0. For higher values of 𝛿 it is optimal
to choose a lower K.

Due to the presence of the fixed cost in this model, investment will
be delayed compared to the main model. Nonetheless, we conclude that
the direct effects of depreciation on the firm’s capital stock, as described
in the main model, are preserved when the investment strategy is
modeled as a (𝑠, 𝑆)-type of policy.

5.3. Alternative inverse demand specifications

One could raise the issue as to whether our results are driven
by the linearity of the inverse demand function. Consider a slight
generalization of our model by assuming the inverse demand to be

𝑝(𝑡) = 𝑥(𝑡)(1 −𝑄𝜂(𝑡)),

where 𝜂 > 0. Notice that for 𝜂 < 1 the inverse demand is convex and
for 𝜂 > 1 the inverse demand is concave. One can verify that for this
specification the result as described by Proposition 2, i.e., the buffer
effect dominates for small rates 𝛿 for sufficiently high 𝑋, still applies
unless 𝜂 is sufficiently close to 0. Our other results, in particular the
findings in Section 4 are also not qualitatively impacted by a change
in 𝜂. Therefore, our results are not contingent on the linearity of the
inverse demand function.

One could, however, identify some functional forms that lock in the
relationship of the two effects we described, such that the relative cost

effect always dominates for all 𝛿; incidentally, this drastic character-
ization of the functional form can be achieved by imposing constant
own-price elasticity on the demand function for the product.

6. Conclusions and managerial implications

The framework introduced is admittedly simple, yet sufficiently
robust to characterize the effects of eroding productivity on the optimal
investment behavior of a monopolist under uncertainty. Without re-
sorting to any tax implications, we reveal competing direct (buffer and
relative cost) and indirect (investment threshold) effects on the optimal
scale and timing of investment. In addition, the impact of uncertainty
is studied in relation to the rate of depreciation. Also here, the role
depreciation plays on the present value of capital investment and the
option value are level-dependent.

We find that, despite different competing incentives, more depreci-
ation unambiguously increases the investment threshold, i.e. depreci-
ation can lead to a later exercise of the option and, upon a delayed
investment, this increases the level of capital stock acquired, while
decreasing the present value of capital. Additionally, we find that,
under not too strict conditions, an increase in depreciation can lead
to overinvestment, when comparing to the standard zero-depreciation
case, but always leads to underinvestment for sufficiently high rates.

Furthermore, we find that depreciation can either have a compound-
ing or a mitigating effect on the impact of uncertainty on the firm’s
option value and the expected present value of capital investment,
again depending on the level of depreciation. A higher rate of depreci-
ation makes the firm invest in a larger capital stock albeit delaying the
moment of investment. More uncertainty has the same direct effect on
timing and scale. When depreciation is strong, the former effect leads
to a net increase in the present value of capital investment, whereas the
latter is dominant for small rates of depreciation, as hinted by empirical
findings in the literature. For the same reason we find that the impact
of uncertainty on the option value, representing the present value of
the firm, is mitigated only when depreciation is strong. An overview of
all our key findings can be found in Table 1.

Our findings illustrate that the treatment of economic depreciation
is not trivial when addressing a monopolist’s investment problem in a
dynamic and uncertain market environment. In fact, alternative mod-
eling choices, as illustrated in Sections 5.1 and 5.3, may actively hide
or dismiss the effects we have identified. We are able to verify that our
findings are robust to set-ups with multiple sequential replenishment
options (Section 5.2) and with non-linear demand specifications.

The results in this paper lead to some important insights for man-
agers and/or investors who have the real option to undertake an
irreversible investment and enter a new market. First, the analysis in
Sections 3 and 4 have shown that the rate of depreciation dictates the
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Table 1
Overview of (key) findings.

Main Results

1. Economic depreciation makes the firm delay investment.

2. The rate of economic depreciation dictates whether the firm overinvests or
underinvests relative to a zero-depreciation benchmark.

3. Firm value is negatively impacted by economic depreciation.

4. If the firm delays investment, the optimal capital stock level upon investment is
increasing in the rate economic depreciation.

5. The present value of capital investment is decreasing in the rate of economic
depreciation.

6. Economic depreciation mitigates the impact of uncertainty on firm value only if
the rate of economic depreciation is sufficiently high.

If the rate of economic depreciation is sufficiently high, then

7a. the present value of capital investment is increasing in uncertainty; and

7b. uncertainty has a diminished effect on the present value of capital investment.

level of investment when investment is undertaken immediately, im-
pacts the investment timing, and plays a crucial role in the investment–
uncertainty relationship (also see Table 1). In fact, efforts to innovate
and extend the productive lifetime of a productive asset could be
modeled into our framework as a lower 𝛿 for the same productive tech-
nology. As such, it becomes evident, that it is the productive capacity
of the capital stock that drives crucial decisions such as how much
and when to invest. Thus, when depreciation cannot be continuously
offset by frictionless investment, it is important that managers take
care to consider what is the level of depreciation rate of the capital
stock they can acquire. Second, when evaluating managers’ investment
plans as measured by the present value of capital investment while
optimizing for firm value, the impact of additional uncertainty of the
output market needs to be considered in relation to how quickly the
productive capacity deteriorates. At low depreciation rates, the impact
of extra uncertainty is amplified in discouraging investment (i.e. lower
𝐸𝑃𝑉 𝐼) whereas high rates of depreciation can mitigates the impact
of uncertainty shocks and actually encourage investment (i.e. higher
𝐸𝑃𝑉 𝐼).

Third, even if the investor finds themselves in the continuation
region, they may wish to be prepared for the eventual triggering con-
dition, and therefore have everything lined up to finance and buy the
capital stock 𝐾̄𝑜𝑝𝑡. To prepare diligently and to provision the necessary
investment at the right time, they should also update their expectation
of how much capital they plan to acquire ahead of time. Should there be
any shocks to that lead to a different risk environment, the findings in
this paper corroborate with the need to adjust that provision upwards
in case there is higher risk, and downwards otherwise, conditional on
the depreciation rate in place.

For future research, with this framework at hand, more complex
cases can be investigated, such as (𝑖) the decision to replace cap-
ital with the same or with superior productivity, (𝑖𝑖) the interplay
of the tax benefits and the productivity losses of depreciation, and
(𝑖𝑖𝑖) optimal investment behavior on Incumbent-Entrant games and/or
other competitive setups. In addition, a potentially interesting avenue
of exploration could be to bridge our work and the literature that
considers risk-adjusted discount rates.
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Appendix A. Proofs

Proof of Proposition 1. In the stopping region, i.e. for 𝑋 ∈ , we get
𝑉 (𝑋) = E𝑋

{
∫

∞

0

𝑒−𝜌𝑡
𝑎

𝛾
(𝐾̄)𝛾𝑒−𝛿𝛾𝑡𝑥(𝑡)

(
1 −

𝑎

𝛾
(𝐾̄)𝛾𝑒−𝛿𝛾𝑡

)
d𝑡 − 𝜅𝐾̄

}

= E𝑋

{
∫

∞

0

𝑎

𝛾
(𝐾̄)𝛾𝑒−𝑡(𝜌+𝛿𝛾)𝑥(𝑡)d𝑡

− ∫
∞

0

(
𝑎

𝛾
(𝐾̄)𝛾

)2

𝑥(𝑡)𝑒−𝑡(𝜌+2𝛿𝛾)d𝑡 − 𝜅𝐾̄

}

=
𝑎

𝛾
(𝐾̄)𝛾

(
𝑋

𝜌 + 𝛾𝛿 − 𝜇
−

𝑎

𝛾
(𝐾̄)𝛾

𝑋

𝜌 + 2𝛾𝛿 − 𝜇

)
− 𝜅𝐾̄. (23)

The optimal capital stock at investment follows from the first order
condition where marginal revenue (left-hand side) is equal to marginal
cost (right-hand side):

𝑋

𝜌 + 𝛾𝛿 − 𝜇

(
1 − 2

𝑎

𝛾
𝐾̄𝛾 𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)
=

𝜅

𝑎
(𝐾̄)1−𝛾 . (24)

The second order condition shows that this is indeed a maximum:

𝜕2

𝜕𝐾̄2
𝑉 (𝑋) = −

𝑋

𝜌 + 𝛾𝛿 − 𝜇
𝑎(𝐾̄)𝛾−2

[
(1 − 𝛾)

(
1 − 2

𝑎

𝛾
𝐾̄𝛾 𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)

+ 𝑎𝐾̄𝛾 𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

]
< 0.

Notice that it follows directly from (24) that (24) only gives solutions
where 𝐾̄ ≥ 0 so that we always have interior solutions. In addition, we
find that 𝜕

𝜕𝑋
𝐾̄∗(𝑋) is always positive by applying the implicit function

theorem, which gives

𝜕𝐾̄∗(𝑋)

𝜕𝑋

[
𝜅

𝑎
(1 − 𝛾)(𝐾̄∗(𝑋))𝛾 +

𝑋

𝜌 + 𝛿𝛾 − 𝜇
2𝑎

𝜌 + 𝛿𝛾 − 𝜇

𝜌 + 2𝛿𝛾 − 𝜇

]

= 𝛾
1 − 2

𝜌+𝛿𝛾−𝜇

𝜌+2𝛿𝛾−𝜇

𝑎

𝛾
(𝐾̄∗(𝑋))𝛾

𝜌 + 𝛿𝛾 − 𝜇
> 0.

Following Dixit and Pindyck (1994), the value before investment
(i.e. in the continuation region) is 𝑉 = 𝜙 where 𝜙 is the solution of
𝜙 = 𝜌𝜙, where the infinitesimal generator is equal to  = 𝜇𝑋

𝜕

𝜕𝑋
+

1

2
𝜎2𝑋2 𝜕2

𝜕𝑋2 . In other words,

1

2
𝜎2𝑋2𝜙′′(𝑋) + 𝜇𝑋𝜙′(𝑋) − 𝜌𝜙(𝑋) = 0.

They show that the unique solution to this equation is 𝜙(𝑋) = 𝐴𝑋𝛽

where 𝛽 is the positive root of

1

2
𝜎2𝛽(𝛽 − 1) + 𝜇𝛽 − 𝜌 = 0.

The value of 𝐴 ∈ R as well as the investment threshold 𝑋∗ follow as a
solution of the so called value matching and smooth pasting conditions:

𝐴𝑋𝛽 =
𝑋

𝜌 + 𝛾𝛿 − 𝜇

𝑎

𝛾
(𝐾̄)𝛾

(
1 −

𝑎

𝛾
(𝐾̄)𝛾

𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)
− 𝜅𝐾̄, and (25)

𝐴𝛽𝑋𝛽−1 =
1

𝜌 + 𝛾𝛿 − 𝜇

𝑎

𝛾
(𝐾̄)𝛾

(
1 −

𝑎

𝛾
(𝐾̄)𝛾

𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)
, (26)

respectively. To find 𝐴, 𝐾̄𝑜𝑝𝑡, and 𝑋∗, (24), (25), and (26) are solved
simultaneously,

𝑋(𝛽 − 1)

(
1 −

𝑎

𝛾
(𝐾̄)𝛾

𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)
= 𝛽𝜅(𝜌 + 𝛿𝛾 − 𝜇)

𝛾

𝑎
(𝐾̄)1−𝛾

= 𝑋𝛾𝛽

(
1 − 2

𝑎

𝛾
(𝐾̄)𝛾

𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)
.

The first equality follows from the smooth pasting and value matching
conditions and the second equality follows from plugging in the first
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order condition. Rewriting leads to

𝑎

𝛾
(𝐾̄)𝛾 =

𝛽(𝛾 − 1) + 1

𝛽(2𝛾 − 1) + 1

𝜌 + 2𝛿𝛾 − 𝜇

𝜌 + 𝛿𝛾 − 𝜇

which leads to (9). The solution to (25) and (26) gives 𝑋∗ and 𝐴. □

Proof of Proposition 2. First notice that, since 𝐾̄ =
(
𝛾

𝑎
𝑄(0)

) 1
𝛾 and

𝜕

𝜕𝛿
𝐾̄ =

1

𝑎

(
𝛾

𝑎
𝑄(0)

) 1−𝛾
𝛾 𝜕

𝜕𝛿
𝑄(0), the signs of 𝜕

𝜕𝛿
𝐾̄ and 𝜕

𝜕𝛿
𝑄(0) are the same.

Plugging 𝐾̄ =
(
𝛾

𝑎
𝑄(0)

) 1
𝛾 into gives

𝑋

𝜌 + 𝛾𝛿 − 𝜇

(
1 − 2𝑄(0)

𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)
=

𝜅

𝑎

( 𝛾
𝑎
𝑄(0)

) 1−𝛾
𝛾

. (27)

Define 𝜉 =
𝜌+𝛾𝛿−𝜇

𝜌+2𝛾𝛿−𝜇
. Applying the implicit function theorem to (27) leads

to

𝜕𝑄(0)

𝜕𝛿

[
𝜅

𝑎

1 − 𝛾

𝑎

( 𝛾
𝑎
𝑄(0)

) 1−2𝛾
𝛾

+
2𝑋

𝜌 + 2𝛿𝛾 − 𝜇

]

= −𝛾
𝑋

(𝜌 + 𝛿𝛾 − 𝜇)2
(1 −𝑄(0)(2𝜉)2). (28)

Therefore 𝜕𝑄(0)

𝜕𝛿
> 0 ⇔ 𝑄(0) >

1

4𝜉2
. As the left-hand side of (27) is

decreasing in 𝑄(0) and the right-hand side is increasing in 𝑄(0) it is
sufficient to evaluate both sides at 𝑄(0) =

1

4𝜉2
to establish a condition

for 𝜕𝐾̄∗(𝑋)

𝜕𝛿
> 0, i.e. plugging 𝑄(0) =

1

4𝜉2
into

𝑋

𝜌 + 𝛾𝛿 − 𝜇

(
1 − 2𝑄(0)

𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)
>

𝜅

𝑎

( 𝛾
𝑎
𝑄(0)

) 1−𝛾
𝛾 (29)

gives a sufficient condition.
Next is to show that 𝛿(𝑋) exists and is unique. Notice that the

left-hand side of (27) is a function of 𝛿 but the right-hand side is
not. Therefore, studying the left-hand side of (27) when 𝛿 changes is
sufficient. As such,

𝜕

𝜕𝛿

𝑋

𝜌 + 𝛾𝛿 − 𝜇

(
1 − 2𝑄(0)

𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)
=

𝑋

(𝜌 + 𝛾𝛿 − 𝜇)2
(4𝜉2𝑄(0) − 1),

which equals 0 for 𝑄(0) =
1

4𝜉2
. As 1

𝜉2
is increasing in 𝛿 we have that

there is a unique value of 𝛿, 𝛿, such that (29) holds if and only if
𝛿 < 𝛿(𝑋).

For 𝛿 = 0 with 𝑄(0) =
1

4𝜉2
, (29) becomes

𝑋

𝜌 − 𝜇
>

2𝑟

𝑎

( 𝛾

4𝑎

) 1−𝛾
𝛾

,

which gives a unique value of 𝑋 such that 𝑋

𝜌−𝜇
=

2𝜅

𝑎

(
𝛾

4𝑎

) 1−𝛾
𝛾 .

Finally, notice that (𝜌− 𝜇)
2𝜅

𝑎

(
𝛾

4𝑎

) 1−𝛾
𝛾

> 0, so that (𝜌− 𝜇)
2𝜅

𝑎

(
𝛾

4𝑎

) 1−𝛾
𝛾

is part of the state space. □

Proof of Lemma 1. Notice that 𝜕

𝜕𝐾̄
𝑉 (𝑋) = 0 as 𝐾̄(𝑋) is chosen to

maximize 𝑉 (𝑋). Then,

d

d𝛿
𝑉 (𝑋) =

𝜕

𝜕𝛿
𝑉 (𝑋) +

𝜕

𝜕𝐾̄
𝑉 (𝑋)

𝜕𝐾̄

𝜕𝛿

= −
𝛾𝑋

(𝜌 + 𝛾𝛿 − 𝜇)2

(
1 − 2

𝑎

𝛾
𝐾̄𝛾 (𝑋)

(
𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)2
)

+ 0

< −
𝛾𝑋

(𝜌 + 𝛾𝛿 − 𝜇)2

(
1 − 2

𝑎

𝛾
𝐾̄𝛾 (𝑋)

𝜌 + 𝛾𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

)
< 0.

For the last inequality, we make use of the fact that the left-hand side
of is positive. □

Proof of Lemma 2. Taking the derivative directly gives

𝜕

𝜕𝛿
𝑉 (𝑋) =

𝜕

𝜕𝛿

(
𝑋

𝑋∗

)𝛽 𝜅𝐾̄𝑜𝑝𝑡

𝛽 − 1

=
(
𝑋

𝑋∗

)𝛽 𝜅𝐾̄𝑜𝑝𝑡

𝛽 − 1

(
−

𝛽

𝑋∗

𝜕𝑋∗

𝜕𝛿
+

1

𝐾̄𝑜𝑝𝑡

𝜕𝐾̄𝑜𝑝𝑡

𝜕𝛿

)

= −
(
𝑋

𝑋∗

)𝛽 𝜅𝐾̄𝑜𝑝𝑡

𝛽 − 1

(
𝛽 −

𝜌 − 𝜇

𝜌 + 2𝛾2𝛿 − 𝜇

)
𝜕𝑋∗

𝜕𝛿

1

𝑋∗
< 0,

so that the statement follows directly. □

Proof of Lemma 3. One can show that the sign of the derivative of (13)
with respect to 𝛿 is equal to the sign of

(𝜌 − 𝜇)(1 − 𝛽 − 𝛽(1 − 𝛾)) − 2𝛽𝛾𝛿 < 0,

which is negative since 1 − 𝛽 < 0 and all other terms are negative. □

Proof of Lemma 4. Taking the derivatives gives

𝜕

𝜕𝜎
𝑉 (𝑋) =

𝜕

𝜕𝜎

(
𝑋

𝑋∗

)𝛽 𝜅𝐾̄𝑜𝑝𝑡

𝛽 − 1

=
(
𝑋

𝑋∗

)𝛽 𝜅𝐾̄𝑜𝑝𝑡

𝛽 − 1

(
ln

(
𝑋

𝑋∗

)
−

𝛽

𝑋∗

𝜕𝑋∗

𝜕𝛽
+

1

𝐾̄𝑜𝑝𝑡

𝜕𝐾̄𝑜𝑝𝑡

𝜕𝛽
−

1

𝛽 − 1

)
𝜕𝛽

𝜕𝜎

=
(
𝑋

𝑋∗

)𝛽 𝜅𝐾̄𝑜𝑝𝑡

𝛽 − 1
ln

(
𝑋

𝑋∗

) 𝜕𝛽

𝜕𝜎
> 0,

so that (𝑖) follows directly.
For (𝑖𝑖), one can directly check that

𝜕2

𝜕𝛿𝜕𝜎
𝑋∗ = −

(
𝛾

𝑎

(𝜌 + 2𝛾𝛿 − 𝜇)(1 − 𝛽(1 − 𝛾))

(𝜌 + 𝛾𝛿 − 𝜇)(1 + 𝛽(1 − 2𝛾))

) 1−𝛾
𝛾

×
𝜅

𝑎

𝜌 + 2𝛾2𝛿 − 𝜇

𝜌 + 2𝛾𝛿 − 𝜇

𝛽(1 − 𝛾)2 + 𝛾(1 − 𝛽(1 − 𝛾))

(𝛽 − 1)2(1 − 𝛽(1 − 𝛾))

𝜕𝛽

𝜕𝜎
> 0.

because 𝜕𝛽

𝜕𝜎
< 0. □

Proof of Proposition 3. One can check the following for any function
ℎ ∶ R

2 → R: if ℎ(𝑥, 𝑦) can be written as ℎ(𝑥, 𝑦) = 𝑓 (𝑥)𝑔(𝑦) (𝑙(𝑦))𝑘(𝑥) with
functions 𝑓, 𝑔, 𝑘, 𝑙 ∶ R → R, then

𝜕2

𝜕𝑥𝜕𝑦
ℎ(𝑥, 𝑦) =

1

ℎ(𝑥, 𝑦)

𝜕

𝜕𝑦
ℎ(𝑥, 𝑦)

𝜕

𝜕𝑥
ℎ(𝑥, 𝑦) + ℎ(𝑥, 𝑦)

1

𝑙(𝑦)

𝜕𝑙(𝑦)

𝜕𝑦

𝜕𝑘(𝑥)

𝜕𝑥
.

This can be used to obtain

𝜕2

𝜕𝜎𝜕𝛿

(
𝑋

𝑋∗

)𝛽 𝐾𝑜𝑝𝑡

𝛽 − 1
=
(
𝑋

𝑋∗

)−𝛽 𝛽 − 1

𝐾𝑜𝑝𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
>0

𝜕

𝜕𝛿

(
𝑋

𝑋∗

)𝛽 𝐾𝑜𝑝𝑡

𝛽 − 1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

<0

𝜕

𝜕𝜎

(
𝑋

𝑋∗

)𝛽 𝐾𝑜𝑝𝑡

𝛽 − 1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0

−
(
𝑋

𝑋∗

)𝛽 𝐾𝑜𝑝𝑡

𝑋∗(𝛽 − 1)

𝜕𝑋∗

𝜕𝛿

𝜕𝛽

𝜕𝜎
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

<0

=
(
𝑋

𝑋∗

)𝛽 𝐾̄𝑜𝑝𝑡

𝛽 − 1

𝜕𝑋∗

𝜕𝛿

1

𝑋∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

𝜕𝛽

𝜕𝜎
⏟⏟⏟

<0

×

{(
𝜌 − 𝜇

𝜌 + 2𝛾2𝛿 − 𝜇
− 𝛽

)(
ln

(
𝑋

𝑋∗

))
− 1

}
.

Rewriting the last term gives (14). □

Proof of Proposition 4. Taking the derivative of 𝐸𝑃𝑉 𝐼 with respect
to 𝜎 gives

𝜕

𝜕𝜎

(
𝑋

𝑋∗

)𝛽

𝜅𝐾̄𝑜𝑝𝑡 =
(
𝑋

𝑋∗

)𝛽

𝜅𝐾̄𝑜𝑝𝑡

(
𝜕𝐾̄𝑜𝑝𝑡∕𝜕𝛽

𝐾̄𝑜𝑝𝑡
−

𝛽

𝑋∗

𝜕𝑋∗

𝜕𝛽
+ ln

(
𝑋

𝑋∗

)) 𝜕𝛽

𝜕𝜎

=
(
𝑋

𝑋∗

)𝛽

𝜅𝐾̄𝑜𝑝𝑡

(
(𝛽(1 − 𝛾) − 1)2 + 𝛽2𝛾2

𝛽𝛾(𝛽 − 1)(1 + 𝛽(2𝛾 − 1))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0

+ ln
(
𝑋

𝑋∗

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
<0

)
𝜕𝛽

𝜕𝜎

(30)

To show that the first term between brackets is strictly positive, notice
that the denominator is positive because 1+𝛽(2𝛾−1) ≥ 𝛽−1 > 0, which
follows from our condition that 𝛾 ≥ 𝛽−1

𝛽
. Also notice that the second

term is negative since 𝑋 < 𝑋∗ for all 𝑋 ∈ .
For the smallest value of 𝜎 such that 𝑋∗ ≥ 𝑋 it holds that

ln
(

𝑋

𝑋∗

)
= 0 so that indeed 𝜕

𝜕𝜎

(
𝑋

𝑋∗

)𝛽

𝜅𝐾̄𝑜𝑝𝑡 < 0 for sufficiently small
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Fig. 10. Curves corresponding to 𝑋̂ and 𝑋∗. Solid curve separates regions where 𝐾̄∗(𝑋) is increasing and decreasing in 𝛿 for 𝑋 ∈  and dashed line separates stopping region
and continuation region (dotted area).
𝜇 = 0.02, 𝜌 = 0.1, 𝛾 = 0.8, 𝑎 = 0.6, and 𝜅 = 0.3.

𝜎. In addition, for 𝑋 ↘ 0 it holds that ln
(

𝑋

𝑋∗

)
↘ −∞ so that

𝜕

𝜕𝜎

(
𝑋

𝑋∗

)𝛽

𝜅𝐾̄𝑜𝑝𝑡 > 0. □

Lemma 5. Let 𝑋 ∈ . Then 𝜕2

𝜕𝛿𝜕𝜎
𝐸𝑃𝑉 𝐼 > 0 if and only if

ln(𝑋∗) − ln(𝑋) <
(𝛽(1 − 𝛾) − 1)2 + 𝛽2𝛾2

𝛽𝛾(𝛽 − 1)(1 + 𝛽(2𝛾 − 1))
+

(
𝛽 −

𝜌 − 𝜇

𝜌 + 2𝛾2𝛿 − 𝜇

)−1

. (31)

Proof of Lemma 5. Using that 𝜕2

𝜕𝛿𝜕𝜎
𝐸𝑃𝑉 𝐼 =

𝜕

𝜕𝛿

𝜕

𝜕𝜎
𝐸𝑃𝑉 𝐼 , differentiat-

ing equation (30) gives

𝜕2

𝜕𝜎𝜕𝛿

(
𝑋

𝑋∗

)𝛽

𝜅𝐾̄𝑜𝑝𝑡 =
𝜕

𝜕𝛿

{(
𝑋

𝑋∗

)𝛽

𝜅𝐾̄𝑜𝑝𝑡

}

×

(
(𝛽(1 − 𝛾) − 1)2 + 𝛽2𝛾2

𝛽𝛾(𝛽 − 1)(1 + 𝛽(2𝛾 − 1))
+ ln

(
𝑋

𝑋∗

)) 𝜕𝛽

𝜕𝜎

+
(
𝑋

𝑋∗

)𝛽

𝜅𝐾̄𝑜𝑝𝑡

(
−

1

𝑋∗

𝜕

𝜕𝛿
𝑋∗

)
𝜕𝛽

𝜕𝜎

= −
(
𝑋

𝑋∗

)𝛽 𝜅𝐾̄𝑜𝑝𝑡

𝑋∗

𝜕𝑋∗

𝜕𝛿

𝜕𝛽

𝜕𝜎
×

{ (
𝛽 −

𝜌 − 𝜇

𝜌 + 2𝛾2𝛿 − 𝜇
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0

)

×

(
(𝛽(1 − 𝛾) − 1)2 + 𝛽2𝛾2

𝛽𝛾(𝛽 − 1)(1 + 𝛽(2𝛾 − 1))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0

+ ln
(
𝑋

𝑋∗

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
<0

)
+ 1

}

Rewriting the terms between brackets gives (31). □

Proof of Proposition 5. First note that the right-hand side of (31) is
decreasing in 𝛿 and the left-hand side of (31) is increasing in 𝛿. Since
the left-hand side is not bounded, i.e. ln(𝑋∗) → ∞ as 𝛿 → ∞, and since
the right-hand side is always finite, the left-hand side exceeds the right-
hand side for sufficiently high rates. It then also follows that 𝛿◦ > 0 if
condition (31) is met for 𝛿 = 0, i.e., when 𝑋∗ is closest to 𝑋. Otherwise,
𝛿◦ = 0. □

Appendix B. Optimal investment across regions

We now bring the analyses on the stopping and continuation regions
together, allowing for cases where the monopolist may switch between

these regions for a change in 𝛿, and identify the overall effect of
depreciation on the firm’s investment behavior. In order to establish
how the size of capital investment is affected by the depreciation rate
for all 𝑋, let us denote the inverse of the 𝛿(𝑋) in Proposition 2 by 𝑋̂(𝛿),
i.e.

𝑋̂(𝛿) =
2(𝜌 + 𝛾𝛿 − 𝜇)2

𝜌 − 𝜇

𝜅

𝑎

(
𝛾

4𝑎

(
𝜌 + 2𝛾𝛿 − 𝜇

𝜌 + 𝛾𝛿 − 𝜇

)2
) 1−𝛾

𝛾

. (32)

Notice that 𝑋̂(𝛿) is increasing in 𝛿 and, following Proposition 2, it
divides the stopping region into a region with net positive and a region
with net negative direct effects of an increase in the value of 𝛿 on
𝐾̄∗(𝑋), i.e. for 𝑋 < 𝑋̂(𝛿) and 𝑋 ≥ 𝑋̂(𝛿), respectively.

Section 3.1 established that 𝑋∗ is increasing in 𝛿, and that 𝑋∗

divides the space into a region where the firm delays investment
(continuation) with the indirect effect of an increase in the value of
𝛿 on 𝐾̄𝑜𝑝𝑡 dominating positively over all others (for 𝑋 < 𝑋∗), and a
region where the firm invests immediately (stopping) with the indirect
effect of 𝛿 on capital stock not playing any part (for 𝑋 ≥ 𝑋∗).

In summary, we can compare both boundaries to distinguish cases
where 𝑋̂ < 𝑋∗ and where 𝑋̂ > 𝑋∗, which leads to the following two
cases.

Case 1:

– For 𝑋 ∈ (0, 𝑋∗) the firm delays investment until the state
process hits 𝑋∗ for the first time. The scale of investment
𝐾̄𝑜𝑝𝑡 = 𝐾̄∗(𝑋∗) is increasing in 𝛿, while the present value of
capital is decreasing in 𝛿.

– For 𝑋 ∈ [𝑋∗, 𝑋̂) the firm undertakes investment immedi-
ately and 𝐾̄∗(𝑋) is decreasing in 𝛿.

– For 𝑋 ∈ (𝑋̂,∞) the firm undertakes investment immediately
and 𝐾̄∗(𝑋) is increasing in 𝛿.

Case 2:

– For 𝑋 ∈ (0, 𝑋∗) the firm delays investment until the state
process hits 𝑋∗ for the first time. The scale of investment
𝐾̄𝑜𝑝𝑡 = 𝐾̄∗(𝑋∗) is increasing in 𝛿, while the present value of
capital is decreasing in 𝛿;

– For 𝑋 ∈ [𝑋∗,∞) the firm undertakes investment immedi-
ately and 𝐾̄∗(𝑋) is increasing in 𝛿.



International Journal of Production Economics 260 (2023) 108836

15

N.F.D. Huberts and R. Rossi Silveira

Since 𝑋∗ is increasing in 𝜎 and since 𝑋̂(𝛿) is not affected by 𝜎,
the condition for the stopping region to consist only of points where
𝐾̄∗(𝑋) is positively affected by depreciation is that 𝜎 be sufficiently
large. For lower levels on uncertainty, capital is negatively impacted
by depreciation for 𝑋 ∈ [𝑋∗, 𝑋̂(𝛿)) and positively otherwise.

Proposition 6. Let 𝜎̃ be the (unique) solution to
(

𝛽(𝛾 − 1) + 1

𝛽(2𝛾 − 1) + 1

)1−𝛾 (
𝛽(2𝛾 − 1) + 1

𝛽 − 1

)𝛾

=
(8)𝛾

4
. (33)

(i) If 𝜎 < 𝜎̃, then Case 1 applies, for all 𝛿.
(ii) If 𝜎 ≥ 𝜎̃, then Case 1 applies if and only if 𝛿 is larger than some 𝛿,
which is the solution of

8𝛾

4

(
𝜌 + 𝛾𝛿 − 𝜇

𝜌 − 𝜇

)𝛾 (
𝜌 + 2𝛾𝛿 − 𝜇

𝜌 + 𝛾𝛿 − 𝜇

)1−𝛾

=

(
𝛽(𝛾 − 1) + 1

𝛽(2𝛾 − 1) + 1

)1−𝛾 (
𝛽(2𝛾 − 1) + 1

𝛽 − 1

)𝛾

.

(34)

Moreover, Case 2 applies if and only if 𝛿 is smaller than some 𝛿, which
is the solution of (34).

The proposition is illustrated by Fig. 10 where 𝜎̃ = 0.22. Notice
that (33) only depends on 𝜎, 𝜇, 𝜌, and 𝛾.

The proposition shows that, for depreciation to have an unambigu-
ously positive effect on (the level of) capital stock for all 𝑋, market
uncertainty needs to be sufficiently high, which comes a result of the
expansion of the continuation region.

Proof of Proposition 6. A large part of the proof follows from the
main text.

Rewriting 𝑋̂(𝛿) = 𝑋∗ gives (34). Since the left-hand side of (34) is
(strictly) increasing in 𝛿 and the right-hand side does not depend on 𝛿,
the intersection is unique. This can be used to show that 𝜕

𝜕𝛿
𝑋̂ >

𝜕

𝜕𝛿
𝑋∗

for all 𝛿. Substituting the left-hand side of (34) into 𝑋̂(𝛿) gives

𝑋̃ =
( 𝛾
𝑎

) 1−𝛾
𝛾 𝜅

𝑎

(
𝛽(𝛾 − 1) + 1

𝛽(2𝛾 − 1) + 1

)2
1−𝛾
𝛾

(
𝛽(2𝛾 − 1) + 1

𝛽 − 1

)2

(𝜌 − 𝜇)
4

1
𝛾

8
.

We now need to check conditions such that 𝑋̃ > (𝜌 − 𝜇)
2𝜅

𝑎

(
𝛾

4𝑎

) 1−𝛾
𝛾

where (𝜌 − 𝜇)
2𝜅

𝑎

(
𝛾

4𝑎

) 1−𝛾
𝛾 follows from Proposition 2. Rewriting 𝑋̃ =

(𝜌−𝜇)
2𝜅

𝑎

(
𝛾

4𝑎

) 1−𝛾
𝛾 gives (33). Uniqueness of 𝜎̃ follows from the fact that

𝑋̃ is monotone in 𝜎 and that (𝜌 − 𝜇)
2𝜅

𝑎

(
𝛾

4𝑎

) 1−𝛾
𝛾 does not depend on

𝜎. □
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