

This is a repository copy of *Multiple evolutionary pathways lead to vancomycin resistance in Clostridioides difficile*.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/203433/</u>

Version: Supplemental Material

Preprint:

Buddle, J.E. orcid.org/0000-0002-7259-0527, Wright, R.C.T. orcid.org/0000-0002-8095-8256, Turner, C.E. orcid.org/0000-0002-4458-9748 et al. (3 more authors) (Submitted: 2023) Multiple evolutionary pathways lead to vancomycin resistance in Clostridioides difficile. [Preprint - bioRxiv] (Submitted)

https://doi.org/10.1101/2023.09.15.557922

© 2023 The Author(s). This preprint is made available under the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supplementary Figure 1. Growth of evolved endpoint clones. Growth over time in rich media (TY broth) was measured at 600 nm in a 96 well microplate spectrometer. Growth of each endpoint clone (coloured lines) was compared to its matched control (black lines). Shown are the mean and standard deviation of repeats, assayed at minimum in biological and technical triplicate. For each strain, area under the curve was determined using the GrowthCurver R package and these were compared using Student's t-tests with Welch's correction, with the P value shown on each graph. All pairwise differences are significant.

Supplementary Figure 2. Sporulation of evolved endpoint clones. Sporulation efficiencies of each endpoint clone (coloured lines) were compared to the parental R20291Δ*PaLoc* (black lines). Stationary phase cultures were incubated anaerobically for 5 days with samples taken daily to enumerate total colony forming units (CFUs, dotted lines) and spores (solid lines), following incubation at 65°C for 30 min to kill vegetative cells. Shown are the mean and standard deviations of biological duplicates assayed in triplicate. For each strain,

spore CFU area under the curve was determined using Graphpad Prism and these were compared using Dunnett's T3 multiple comparisons test with the adjusted P value shown on each graph. * = significant difference, N.S. = not significant.

Supplementary Figure 3. Cell morphology of evolved endpoint clones. Phase contrast light microscopy of mid-log cultures of each wild type (**a**) and hypermutating (**b**) endpoint clone, with R20291Δ*PaLoc* for comparison. Shown is a representative field of view for each strain. **c**

Images were analysed using MicrobeJ to determine lengths of at least 185 individual cells for each strain. Shown is an all point violin plot with the median indicated by a solid horizontal line. Statistical significance of evolved isolates against the R20291 Δ PaLoc control was calculated using a one-way ANOVA with Dunnett's T3 multiple comparisons test, ** = P<0.0001, N.S. = not significant.

Supplementary Figure 4. Genomic location of gene variants over time. Accumulation of variants in the hyper-mutating *C. difficile* lineages. Each circle plot represents the 4.2 Mb genome of a single evolving population after 10 (inner ring), 20 (middle ring) and 30 passages (outer ring), with the locations of non-synonymous within gene variants indicated with black circles and the penetrance of each mutation in the population indicated by the size of the circle. The line graphs show the frequency of all variants (intergenic, synonymous, non-synonymous and nonsense) in each population. The vancomycin MIC for

each population is also indicated by the shaded region. Mutations also identified in the respective end point clone (Fig. 1c) are highlighted by the coloured lines. A full list of all variants shown here is included in Supplementary Data 3.

Supplementary Figure 5. Fixation of mutations during evolution. Shown are the individual variants which fix (>95% penetrance) in all 10 parallel populations during vancomycin resistance evolution after 10 (**a**), 20 (**b**) and 30 passages (**c**). The frequency of each variant within their respective population is shown and the genes affected at each timepoint are shown in the table on the right. The genes in the *CD3437-9* cluster are highlighted in yellow and *vanT* (*CD1526*) in green. The range of vancomycin MICs observed across all populations (lowest, light grey; highest, dark grey) is indicated by the shaded areas.

KEGG pathway identifier

Supplementary Figure 6. KEGG pathway analysis of genes identified in evolved

populations. Mutations occurring within genes (except those in the transiently hypermutating Bc1 P20) were coloured according to their barcoded replicate line, and pathways were visualised in KEGG (Kyoto Encyclopedia of Genes and Genomes) colour mapper¹. Two-component systems and ABC transporters were the best-represented functional classes.

Supplementary Table 1: Strains used in this st	udy
--	-----

Strain	Characteristics	Source
General Strains – C. difficile		
R20291	C. difficile ribotype 027 strain isolated during an	2
	outbreak at Stoke Mandeville hospital, UK in 2006.	
R20291∆ <i>PaLoc</i>	R20291 with the entire pathogenicity locus (tcdD,	This study
	<i>tcdB, tcdE, tcdA, dxtA),</i> except the first codon of <i>dxtA</i> ,	
	deleted.	
R20291∆PaLoc∆mutSL	R20291∆ <i>PaLoc</i> with the entire <i>mutSL</i> locus (<i>mutS,</i>	This study
	<i>mutL</i>), except the first codon of <i>mutS</i> and the last 2	
	codons of <i>mutL</i> , deleted.	
General Strains – E. coli		
CA434	<i>E. coli</i> conjugative donor. HB101 carrying R702.	3
NEB5a	fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80Δ (lacZ)M15	New England Biolabs
	gyrA96 recA1 relA1 endA1 thi-1 hsdR17.	
Barcoded Strains		
R20291∆ <i>PaLoc pyrE::</i> barcode 1	R20291∆ <i>PaLoc</i> with a 218 bp insertion between	This study
	CD0188 (pyrE) and CD0189, including 9 bp Barcode 1	
	(AAGTCCTCG)	
R20291 <i>\PaLoc pyrE::</i> barcode 2	R20291∆ <i>PaLoc</i> with a 218 bp insertion between	This study
	CD0188 (pyrE) and CD0189, including 9 bp Barcode 2	
	(TCTTGACCG)	
R20291∆ <i>PaLoc pyrE::</i> barcode 3	R20291∆ <i>PaLoc</i> with a 218 bp insertion between	This study
	CD0188 (pyrE) and CD0189, including 9 bp Barcode 3	
	(AACAACACC)	
R20291∆ <i>PaLoc pyrE::</i> barcode 4	R20291∆ <i>PaLoc</i> with a 218 bp insertion between	This study
	CD0188 (pyrE) and CD0189, including 9 bp Barcode 4	
	(AACAGGTGG)	
R20291∆ <i>PaLoc pyrE::</i> barcode 5	R20291∆ <i>PaLoc</i> with a 218 bp insertion between	This study
	CD0188 (pyrE) and CD0189, including 9 bp Barcode 5	
	(ACCGATTAG)	
R20291∆PaLoc∆mutSL	R20291∆ <i>PaLoc∆mutSL</i> with a 218 bp insertion	This study
<i>pyrE::</i> barcode 7	between CD0188 (pyrE) and CD0189, including 9 bp	
	Barcode 7 (CCTCCAACT)	
R20291∆PaLoc∆mutSL	R20291∆ <i>PaLoc∆mutSL</i> with a 218 bp insertion	This study
<i>pyrE::</i> barcode 8	between CD0188 (pyrE) and CD0189, including 9 bp	
	Barcode 8 (CGAGGACAT)	
$R20291\Delta PaLoc\Delta mutSL$	R20291 Δ <i>PaLoc</i> Δ <i>mutSL</i> with a 218 bp insertion	This study
<i>pyrE::</i> barcode 9	between CD0188 (pyrE) and CD0189, including 9 bp	
	Barcode 9 (CTGGTTCTA)	
$R20291\Delta PaLoc\Delta mutSL$	R20291 Δ <i>PaLoc</i> Δ <i>mutSL</i> with a 218 bp insertion	This study
<i>pyrE::</i> barcode 10	between CD0188 (pyrE) and CD0189, including 9 bp	
	Barcode 10 (GGATGTTGG)	

R20291∆PaLoc∆mutSL	R20291∆ <i>PaLoc∆mutSL</i> with a 218 bp insertion	This study
<i>pyrE::</i> barcode 11	between CD0188 (pyrE) and CD0189, including 9 bp	
	Barcode 11 (GTCACCAGT)	
Evolved Strains		
Bc1	R20291 <i>DPaLoc pyrE::</i> barcode 1 isolated after 60 days	This study
	of vancomycin selection pressure.	
Bc2	R20291 <i>\PaLoc pyrE:</i> :barcode 2 isolated after 60 days	This study
	of vancomycin selection pressure.	
Bc3	R20291 <i>PaLoc pyrE:</i> :barcode 3 isolated after 60 days	This study
	of vancomycin selection pressure.	
Bc4	R20291Δ <i>PaLoc pyrE:</i> :barcode 4 isolated after 60 days	This study
	of vancomycin selection pressure.	
Bc5	R20291 <i>\PaLoc pyrE::</i> barcode 5 isolated after 60 days	This study
	of vancomycin selection pressure.	
Bc7	R20291∆ <i>PaLoc∆mutSL pyrE::</i> barcode 7 isolated after	This study
	60 days of vancomycin selection pressure.	
Bc8	R20291∆ <i>PaLoc∆mutSL pyrE::</i> barcode 8 isolated after	This study
	60 days of vancomycin selection pressure.	
Bc9	R20291∆ <i>PaLoc∆mutSL pyrE::</i> barcode 9 isolated after	This study
	60 days of vancomycin selection pressure.	
Bc10	R20291∆ <i>PaLoc∆mutSL pyrE::</i> barcode 10 isolated after	This study
	60 days of vancomycin selection pressure.	
Bc11	R20291∆ <i>PaLoc∆mutSL pyrE::</i> barcode 11 isolated after	This study
	60 days of vancomycin selection pressure.	
Recapitulated strains		
R20291∆ <i>PaLoc dacS</i> c.548T>C	R20291∆ <i>PaLoc</i> with <i>dacS</i> 548T>C point mutation	This study
	identified in Evolved R20291∆ <i>PaLoc∆mutSL</i>	
	pyrE::barcodes 8 and 9	
R20291∆ <i>PaLoc dacS</i> c.714G>T	R20291Δ <i>PaLoc</i> with <i>dacS</i> 714G>T point mutation	This study
	identified in Evolved R20291∆ <i>PaLoc pyrE</i> ::barcode 1	

Supplementary Table 2: Primers used in this study

Oligonucleotide	Sequence	Use			
Primers for Cloning					
RF920	cgtagaaatacggtgttttttgttaccctaTGGAAT	Amplification of homology arm			
	TTAGATATAAAAACCAATTC	upstream of PaLoc with RF921			
RF921	atttattttggtgtgGACAACATTGGAATTAA	Amplification of homology arm			
	ATCAG	upstream of PaLoc with RF920			
RF922	aattccaatgttgtcCACACCAAAATAAATGC	Amplification of homology arm			
	C	downstream of PaLoc with RF923			
RF923	gggattttggtcatgagattatcaaaaaggCCCAA	Amplification of homology arm			
	CTATGGAAAAACC	downstream of PaLoc with RF922			
RF2066	AatacggtgttttttgttaccctagagctcCCACTT	Amplification of homology arm			
	ATAATTTCTAATGAAACTGTG	upstream of <i>mutSL</i> with RF2067			
RF2067	ccaaatattttacatCATTATCAAACCTCCTTC	Amplification of homology arm			
	ттттс	upstream of mutSL with RF2066			
RF2068	GGAGGTTTGATAATGATGTAAAATATTTGG	Amplification of homology arm			
	ATATTTAAAATATATGGAAAG	downstream of mutSL with RF2069			
RF2069	TTGGTCATGAGATTATCAAAAAGGGGATCC	Amplification of homology arm			
	GCCCTTTAACTTGCACTC	downstream of <i>mutSL</i> with RF2068			
Primers for Barco	oding				
RF1810	GAAAAAGGCTTCTCTCATGAGAAG	To linearise pJAK081 to add barcode fragments			
RF1811	GGTACCATAAAAATAAGAAGCCTGC	To linearise pJAK081 to add barcode fragments			
RF1902	ACC GAAAAAGGCTTCTCTCATGAGAAG	Inverse PCR of pJAK201 to introduce barcode 3			
RF1903	GTTGTT	Inverse PCR of pJAK201 to introduce			
	AAATGGAAGATGGAATAGAAGTAAGC	barcode 3			
RF1904	GTGG	Inverse PCR of pJAK201 to introduce			
	GAAAAAGGCTTCTCTCATGAGAAG	barcode 4			
RF1905	CTGTT	Inverse PCR of pJAK201 to introduce			
	AAATGGAAGATGGAATAGAAGTAAGC	barcode 4			
RF1906	GATTAG	Inverse PCR of pJAK201 to introduce			
	GAAAAAGGCTTCTCTCATGAGAAG	barcode 5			
RF1907	GGT	Inverse PCR of pJAK201 to introduce			
	AAATGGAAGATGGAATAGAAGTAAGC	barcode 5			
RF1912	СААСТ	Inverse PCR of pJAK201 to introduce			
	GAAAAAGGCTTCTCTCATGAGAAG	barcode 7			
RF1913	GAGG	Inverse PCR of pJAK201 to introduce			
	AAATGGAAGATGGAATAGAAGTAAGC	barcode 7			

RF1914	GACAT GAAAAAGGCTTCTCTCATGAGAAG	Inverse PCR of pJAK201 to introduce barcode 8
RF1915	CTCG AAATGGAAGATGGAATAGAAGTAAGC	Inverse PCR of pJAK201 to introduce barcode 8
RF1916	GTTCTA GAAAAAGGCTTCTCTCATGAGAAG	Inverse PCR of pJAK201 to introduce barcode 9
RF1917	CAG AAATGGAAGATGGAATAGAAGTAAGC	Inverse PCR of pJAK201 to introduce barcode 9
RF1918	TTGG GAAAAAGGCTTCTCTCATGAGAAG	Inverse PCR of pJAK201 to introduce barcode 10
RF1919	CATCC AAATGGAAGATGGAATAGAAGTAAGC	Inverse PCR of pJAK201 to introduce barcode 10
RF1920	CAGT GAAAAAGGCTTCTCTCATGAGAAG	Inverse PCR of pJAK201 to introduce barcode 11
RF1921	GTGAC AAATGGAAGATGGAATAGAAGTAAGC	Inverse PCR of pJAK201 to introduce barcode 11
Primers for qPCR		
RF2504	CATCATTACCAGGTGTAGCAGTG	Amplification of ~200bp <i>rpoA</i> fragment for qPCR
RF2505	GGAGGACAGATTATATCTGCACC	Amplification of ~200bp <i>rpoA</i> fragment for qPCR
RF2506	CAATCACATCATTAGCAATTTATTCCATG	Amplification of ~200bp <i>dacS</i> fragment for qPCR
RF2507	GTTCATCAATATCATCCTTTTCTTTATCC	Amplification of ~200bp <i>dacS</i> fragment for qPCR
RF2508	GGATGGGATAGAAGTTTGTAGAAAAG	Amplification of ~200bp <i>dacR</i> fragment for qPCR
RF2509	CTCTTCTAATCAGTGATTTCACTCTC	Amplification of ~200bp <i>dacR</i> fragment for qPCR
RF2510	CAACATGATTCAGAACAAGATGTTGAG	Amplification of ~200bp <i>dacJ</i> fragment for qPCR
RF2511	GCTTGCTTAACTAAATCTTCAACTGC	Amplification of ~200bp <i>dacJ</i> fragment for qPCR
RF2512	CTGATTTTAGAAAAGTATATAAACACGG C	Amplification of ~200bp <i>rnpA</i> fragment for qPCR
RF2513	CTTGCTATAAATACTATATCATATCCAGG	Amplification of ~200bp <i>rnpA</i> fragment for qPCR

Supplementary Table 3: Plasmids used in this study

Plasmid	Characteristics	Source		
General Plasmids				
pJAK112	pMTL-SC7215 based vector with added BamHI and SacI	4		
	restriction sites for cloning.			
рЈАК143	PaLoc deletion – 1200bp homology arms upstream and	5		
	downstream of the PaLoc for deletion of the entire			
	pathogenicity locus (<i>tcdD, tcdB, tcdE, tcdA, dxtA</i>), except the			
	first codon of <i>dxtA</i> .			
pJEB002	<i>mutSL</i> deletion – 1200 bp homology arms upstream and	This study		
	downstream of mutSL for deletion of the entire mutSL locus			
	(<i>mutS, mutL</i>), except the first codon of <i>mutS</i> and the last 2			
	codons of <i>mutL</i> .			
pMTL-SC7215	Allele exchange vector for <i>codA</i> -based selection.	6		
Plasmids for Barcodina				
nIAK081	pMTL-SC7215 based vector with 1,200 bp homology arms for	This study		
p;; ((001	insertion of DNA sequences between CD0188 (pvrF) and	inio occary		
	CD0189 in the C. difficile R20291 genome.			
pJAK201	pvrE:; barcode 1 – pJAK081 based vector, with a 218 bp	This study		
	insertion containing 9 nt Barcode 1 (AAGTCCTCG)	/		
pJAK202	<i>pyrE::</i> barcode 2 - pJAK081 based vector, with a 218 bp	This study		
•	insertion containing 9 nt Barcode 2 (TCTTGACCG)	,		
рЈАК203	pyrE::barcode 3 - pJAK081 based vector, with a 218 bp	This study		
	insertion containing 9 nt Barcode (AACAACACC)	-		
pJAK204	pyrE::barcode 4 - pJAK081 based vector, with a 218 bp	This study		
	insertion containing 9 nt Barcode 4 (AACAGGTGG)			
pJAK205	<i>pyrE::</i> barcode 5 - pJAK081 based vector, with a 218 bp	This study		
	insertion containing 9 nt Barcode 5 (ACCGATTAG)			
pJAK207	<pre>pyrE::barcode 7 - pJAK081 based vector, with a 218 bp</pre>	This study		
	insertion containing 9 nt Barcode 7 (CCTCCAACT)			
pJAK208	<pre>pyrE::barcode 8 - pJAK081 based vector, with a 218 bp</pre>	This study		
	insertion containing 9 nt Barcode 8 (CGAGGACAT)			
pJAK209	pyrE::barcode 9 pJAK081 based vector, with a 218 bp insertion	This study		
	containing 9 nt Barcode 9 (CTGGTTCTA)			
pJAK210	<pre>pyrE::barcode 10 - pJAK081 based vector, with a 218 bp</pre>	This study		
	insertion containing 9 nt Barcode 10 (GGATGTTGG)			
pJAK211	<i>pyrE::</i> barcode 11 - pJAK081 based vector, with a 218 bp	This study		
	insertion containing 9 nt Barcode e 11 (GTCACCAGT)			
Plasmids for Recapitulating				
pJEB019	dacSc.548T>C - pJAK112 based vector containing 1,926 bp	This study		
	homology arms centred on a <i>dacS</i> 548T>C point mutation.			
pJEB026	aacsc.714G>T - pJAK112 based vector containing 1,926 bp	This study		
	homology arms centred on a <i>dacS</i> 714G>T point mutation.			
qRT-PCR Plasmids				

Supplementary Table 4. DNA Accession numbers

References

- Kanehisa, M. *et al.* Data, information, knowledge and principle: back to metabolism in KEGG. *Nucleic Acids Res* 42, D199-205 (2014).
 https://doi.org:10.1093/nar/gkt1076
- Stabler, R. A. *et al.* Comparative genome and phenotypic analysis of *Clostridium difficile* 027 strains provides insight into the evolution of a hypervirulent bacterium.
 Genome Biol 10, R102 (2009). <u>https://doi.org:10.1186/gb-2009-10-9-r102</u>
- Purdy, D. *et al.* Conjugative transfer of clostridial shuttle vectors from *Escherichia coli* to *Clostridium difficile* through circumvention of the restriction barrier. *Mol Microbiol* 46, 439-452 (2002). <u>https://doi.org:10.1046/j.1365-2958.2002.03134.x</u>
- Fuchs, M. *et al.* An RNA-centric global view of *Clostridioides difficile* reveals broad activity of Hfq in a clinically important gram-positive bacterium. *Proc Natl Acad Sci U S A* 118 (2021). <u>https://doi.org:10.1073/pnas.2103579118</u>
- Ormsby, M. J. *et al.* An intact S-layer is advantageous to *Clostridioides difficile* within the host. *PLoS Pathog* 19, e1011015 (2023).
 https://doi.org:10.1371/journal.ppat.1011015
- Cartman, S. T., Kelly, M. L., Heeg, D., Heap, J. T. & Minton, N. P. Precise manipulation of the *Clostridium difficile* chromosome reveals a lack of association between the *tcdC* genotype and toxin production. *Appl Environ Microbiol* **78**, 4683-4690 (2012).
 https://doi.org:10.1128/AEM.00249-12