
1. Introduction
The response of the Earth's globally averaged temperature to radiative forcing agents is the most fundamental 
quantity in climate-change prediction. Many of the uncertainties in current best-estimates are due uncertainties in 
feedbacks, within the climate system, which either enhance or reduce the temperature changes due to the direct 
effect of a radiative forcing. Feedbacks due to changes in clouds are particularly uncertain because the instru-
mental record of cloud observations is short, and current theoretical understanding of the mechanisms remains 
ambiguous.

Recently, a paradigm of “cloud-controlling factors” has been shown to be useful for reducing the uncertainty in 
cloud feedbacks (Ceppi & Nowack, 2021). This approach is based on the long-standing observation that a rela-
tively small number of environmental factors exert a substantial level of control over cloud properties (Klein & 
Hartmann, 1992). Amongst these properties surface temperature and lower-tropospheric stability are known to 
be particularly useful for understanding the variability of clouds across a broad range of time- and spatial-scales. 
Ceppi and Nowack (2021) showed that the sensitivities of cloud properties to changes in these factors can be used 
to estimate future changes in cloud-radiative effects (CREs), under the assumption that the sensitivities them-
selves are stable in time (i.e., that they are not strongly altered by radiative forcing; an assumption i.e., supported 
by available evidence from numerical modeling). Hence, it appears that present-day natural variability in clouds 
and cloud-controlling factors, can be used to obtain observationally-based estimates of future changes in clouds 
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Plain Language Summary As the Earth's climate warms, feedbacks from changes in clouds are 
crucial for determining the rate of warming. In some climate models, positive cloud feedbacks are known to 
contribute to projected temperature increases which fall outside the range that is considered plausible given 
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Hemisphere, can be used to predict cloud feedbacks, globally, across a wide range of configurations of the 
model. These regions, particularly the North-west Pacific, are “natural laboratories” in which the same 
processes that are responsible for global, cloud-feedbacks onto global-warming rates, occur annually as part of 
the local seasonal cycle. Studying clouds in these regions and model biases in predictions of these clouds will 
allow us to directly improve estimates of global climate change.
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as a result of a forcing. This in turn can be used to assess the plausibility of the climate sensitivities of individual 
numerical models.

Two time-scales that can be expected to feature prominently in any analysis of variations in clouds and their 
controlling factor are the seasonal cycle and inter-annual variability (Klein & Hartmann, 1992). The former may 
be very pronounced at mid- or high-latitudes, where both temperature and stability change by many degrees 
between summer and winter. Moreover, because seasonal variations are responses to the annual cycle of incoming 
solar radiation it can be hypothesized that the seasonal cycle in cloud properties may contain information about 
how clouds will respond to other types of forcing (such as atmospheric concentrations of greenhouse gases). This 
has led us, in a previous paper, to consider in detail the seasonal cycles of CREs over the northwestern Pacific, 
where the seasonal cycles of cloud-controlling factors are particularly large (Furtado & Tsushima, 2023). Our 
study revealed biases in the responses of CREs to the seasonal cycles of temperature and stability in an ensemble 
of atmosphere-only climate simulations, and identified the cloud regimes and simulated processes that were most 
responsible for the biases. Viewed from within the cloud-controlling factor paradigm, these biases in responses 
should be analogous to biases in cloud feedbacks to global warming. For example, models with more biased 
present-day seasonal cycles may be those with less plausible cloud-radiative feedbacks (CRFs) and if so, then 
there should be a correlation between seasonal-cycle biases and cloud feedbacks.

Met Office Hadley Centres' HadGEM3 family of global-climate models (Hewitt et al., 2011) have been shown 
to project climate sensitivities which at the high end of multi-model estimates (Andrews et  al.,  2019), when 
compared with other models that participated in the Climate Model Intercomparison Project Phase 6 (CMIP6). 
Moreover, the sensitivities of the HadGEM3 models are known to be outside of range that is considered plau-
sible based on many collaborating pieces of evidence, including estimates based on cloud-controlling factor 
(Sherwood et al., 2020). This is despite the HadGEM3 models consistently being amongst the most successful 
prediction systems, when evaluated for many aspects of model performance for present-day climate (Williams 
et al., 2017). Indeed, because of the Met Office's “seamless” approach to weather and climate services, members 
of same family are routinely shown to be highly capable of providing operational forecasts on all time-scales from 
hours to decades ahead. This seeming conflict between good present-day performance, and a climate sensitivity 
that is not commensurate with current best-estimates, suggests a deep-rooted structural deficiency in the mode-
ling system, and has called into question its use for studying climate changes (Hausfather et al., 2022).

It is also known that the climate sensitivity of the latest generations of the HadGEM family, HadGEM3 Global 
Coupled version 3 (GC3) and later, are greater than those of preceding generations. This was traced in part 
of improvements in the simulation of cloud cover and cloud-hydrometeor phase in post-frontal (cold sector) 
conditions in the wakes of mid-latitude cyclones (Bodas-Salcedo et  al.,  2016), which improved longstanding 
biases in top-of-atmosphere (TOA) radiant fluxes and near-surface temperatures over the Southern Ocean (Hyder 
et al., 2018). A lack of supercooled liquid water in these clouds was a long-standing model bias, prior to GC3, 
which was addressed by a package of changes to the parametrizations of clouds and aerosols (Bodas-Salcedo 
et  al.,  2019). These improvements increased the CRF in the mid-latitudes, since conversion of ice to liquid 
clouds causes a strongly negative shortwave-radiative feedback as the temperature warms because liquid drop-
lets are more reflective of sunlight than ice crystals of the same mass (Tsushima et al., 2006). This so-called 
“mixed-phase feedback” has an overall cooling effect on the atmosphere, so its mitigation was detrimental for 
the global-mean radiative feedback, because a potent negative feedback mechanism was weakened. This was 
despite the present-day climatologies of mid-latitude clouds being improved, especially over the Southern Ocean 
(Furtado et al., 2016), suggesting that either the Southern Ocean was improved via a physically incorrect approach, 
or cloud biases there were compensating for other biases elsewhere, or there is another negative cloud-feedback 
mechanism over the Southern Ocean that is poorly represented Mülmenstädt et al. (2021).

In this study, we use a Perturbed Parameter Ensemble (PPE) of the atmosphere-land component of HadGEM3-GC 
to identify regions where the present-day seasonal cycles of CREs correlate with the CRFs calculated from exper-
iments with a fixed-spatial pattern of sea-surface temperature (SST) perturbations. The ensemble is constructed 
by perturbing parameters in the model's physics schemes, in a way that samples their perceived uncertainties and 
thereby generates a large range of historical climates (Sexton et al., 2019). By comparing the feedbacks from the 
ensemble members with the feedback estimated using observations of the present-day seasonal cycles of CREs 
and cloud-controlling factors, we show that the ensemble systematically underestimates the magnitude of the 
negative low-cloud feedback over the Southern Ocean, and simultaneously underestimates a positive feedback 
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from the subtropical stratocumulus. This will allow us to suggest that, without novel and structural changes to the 
model's physics, aimed at decoupling the physical processes which influence mid-latitude, mixed-phase clouds 
and subtropical, warm clouds, it will be difficult to configure HadGEM3 to have a substantially lower cloud 
feedback and therefore a smaller climate sensitivity.

2. Global Cloud Feedbacks and the Local Seasonal Cycle
Our PPE is 500 configurations of the HadGEM3 Global Atmosphere and Land version 8 (GAL8), obtained 
by perturbing 71 parameters from the model's cloud, radiation, turbulence and land-surface schemes in a way 
that samples prior estimates of parameter uncertainty that were solicited from the developers of the schemes 
(Sexton et al., 2019, 2021). For each configuration, two atm-land only experiments were run: a 5-year integration, 
following the Atmosphere Model Inter-comparison Project (AMIP) protocol, using historical SSTs; and a 5-year 
AMIPFuture experiment with a patterned SST, corresponding to 4K of sea-surface warming globally (Webb 
et al., 2017). Such experiments are known to provide good estimates of cloud feedbacks from coupled-climate 
projections (Ringer et al., 2014). Differencing a CRE between this pair of experiments for each member and divid-
ing by temperature increments provides a canonical way of defining the CRF, at each grid-point, for that radiation 
component, that is, the CRF due to changes in a CRE is defined as Λ = ΔCRE/ΔTS, where TS is the local surface 
temperature, and we use a proceeding Δ to indicate differences in quantities between the AMIP and AMIPFuture 
simulations. Because not all the AMIP simulations give reasonable estimates of historical TOA fluxes, we restrict 
our analysis to ensemble members with global-mean net absolute TOA-flux errors within ±2 Wm −2 of the obser-
vational estimate from the Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled 
1-degree Synoptic (SYN1deg) TOA and surface fluxes and clouds product (Loeb et al., 2018).

We will consider two cloud-controlling factors, the surface temperature (TS) and a measure of lower-tropospheric 
stability called the Estimated Inversion Strength (EIS) which is defined following the recipe given in Wood and 
Bretherton (2006). From previous studies, these two factors are known to be related to natural variability in CREs 
on a range of scales. For a given controlling factor, X, we will be interested in the linear responses of cloud prop-
erties, y (e.g., CREs), to changes in X. We will call these responses the cloud-response functions, Gy(X) = δy/δX, 
where we use a δ to indicate the change in a quantity between two different atmospheric states in the historical 
simulations (a difference between two different months, for example).

The response functions measure the sensitivity of cloud properties to local changes in the controlling factors. 
Furtado and Tsushima (2023) used the average seasonal cycles of clouds and cloud-controlling factors in the 
Oyashio region (139–191°E, 42–54°N), in the north-western Pacific, to quantify the response functions of CREs 
and cloud-area fractions. Two aspects of the seasonal cycle in the Oyashio make it particularly amenable to 
controlling-factor analysis: first, its mid-latitude location results in large-amplitude seasonal cycles of SST and 
EIS; second, the climatological seasonal cycles of SST and EIS are lagged in time relative to each other by 
approximately 3 months. This later property implies that the minimum of SST occurs at a time of year when EIS 
is increasing and the EIS-maximum occurs when the surface is warming. The time-lag between control factors 
provides a convenient way of partitioning the globe into regions which are internally coherent in terms of seasonal 
variations in SST and EIS. Therefore, for this study we generalize our analysis of the Oyashio to use the seasonal 
cycles at all locations where the phase difference between SST and EIS is between 2 and 4 months. Decomposi-
tion of the ensemble-mean seasonal cycle of monthly means into Fourier modes was used to define the phase of 
each control factor. The global map of phase differences in Figure 1a shows that the targeted 2–4-month lags are 
mainly found in the North Pacific, the North Atlantic and along a narrow band around the edge of the Southern 
Ocean. Over land and over the tropical oceans the seasonal cycles are closer to ±6 months out-of-phase, indicat-
ing that in those places surface temperature and stability peak in opposite seasons. We will restrict attention to 
the parts of the phase-lagged region that lie in the Northern Hemisphere, and denote this region by 𝐴𝐴 lag . Clouds 
in this region experience similar variations of controlling factors throughout the year. The mean seasonal cycles 
of SST and EIS in 𝐴𝐴 lag are shown in Figure 1b, for the PPE members (blue shading), the PPE-ensemble mean 
(blue line) and the European Centre for Medium-range Weather Forecasts Reanalysis version 5 (ERA5) (black).

Associated with seasonal cycles in the cloud-controlling factors, we find large seasonal variations in CREs and 
clouds fractions in 𝐴𝐴 lag . Radiative effects are conveniently quantified by radiant-flux anomalies due to the pres-
ence of clouds, normalized by the incoming solar flux at the top of the atmosphere. The seasonal cycle of the 
normalized SW CRE, Rs, is shown in Figure 1c (we use the subscript s for “shortwave”). The observational 
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estimate of the real seasonal cycle obtained from CERES-EBAF is shown by the black line. The observations 
have a double-peak structure, with local minima in both June and December. The PPE members produce a range 
of seasonal cycles, which can resemble the observations more or less closely, depending on the parameter settings 
of each configuration. A first indication that there is a close relationship between global-mean CRFs, and the local 
seasonal cycle in 𝐴𝐴 lag is given by the decorated blue lines in Figure 1c. To obtain these we stratify the seasonal 
cycle according to the feedback in the global-mean of the non-normalized net CRE, rn, which is denoted by 

𝐴𝐴 Λ𝑛𝑛 = Δ𝑟𝑟𝑛𝑛∕Δ𝑇𝑇𝑆𝑆  (using the above notation), where 𝐴𝐴 (⋅) denotes a global mean and we use the subscript n for “net.” 
The lines show the mean seasonal cycles of the members with 𝐴𝐴 Λ𝑛𝑛 in the lowest (dashed line) top-most (dot-dashed 
line) deciles of the PPE. (Note that the numerical values in legend in Figure 1c are the ensemble-mean values 
of 𝐴𝐴 Λ𝑛𝑛 in the two deciles.) We see that the models with weaker (less positive) net CRFs have seasonal cycles that 
are more similar to the satellite retrievals than for those members with stronger (more positive) feedbacks. In 

Figure 1. (a) Phase lag between the seasonal cycles of TS and Estimated Inversion Strength (EIS) for the Perturbed Parameter 
Ensemble (PPE). The black-dotted contour shows a phase lag of 2 months. (b) The average cycles of EIS (solid) and TS 
(dashed) in the region 𝐴𝐴

(

lag

)

 with 2–4 month lags, for PPE (blue) and ERA5 (black). PPE range is shaded blue. (c) Cycle 
on 𝐴𝐴 lag of the normalized SW cloud-radiative effect for CERES-EBAF (black) and PPE. The averages of PPE-members in 
the bottom- and top-deciles of net cloud-radiative feedback are the dashed and dot-dashed lines. (d) The cycle of thick and 
medium-thick low cloud in International Satellite Cloud Climatology Project (black) and PPE.
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particular, we note that weak-feedback models are better able to represent the 
decrease in Rs that occurs from April to June. By contrast, strong-feedback 
configurations have normalized SW CREs that continue to increase through-
out the summer, which is less realistic when compared to CERES-EBAF.

In the Oyashio region, the main driver of SW CRE tendencies in early summer 
(e.g., from May to July) is the amount of optically thick low cloud (Furtado & 
Tsushima, 2023). This is also true for the whole of 𝐴𝐴 lag , as can be seen from 
Figure 1d which shows the seasonal cycle of the fractional area covered by 
clouds that are at low-levels (i.e., have tops at atmospheric pressures greater than 
680 hPa) and have medium or thick optical depths according to the classifica-
tion of the International Satellite Cloud Climatology Project (ISCCP) (Rossow 
& Schiffer, 1999). In the observations, the low-thick cloud fraction, φ, is least 
in winter and increases during spring to attain a maximum in mid-summer. 
The PPE members systematically overestimate winter-time cloud, but span the 
ISCCP observations in summer, when some members overestimate low-cloud 
amount whilst others underestimate it. Hence there is substantial inter-member 
spread in the rates of increase of φ during spring. Stratification of the low-cloud 
cycles into deciles of net CRF shows that this spread is closely related to the 
cloud feedbacks and the summer-time SW CRE: models in the top-most decile 
of 𝐴𝐴 Λ𝑛𝑛 are those for which low-cloud increases most rapidly in spring and are 
associated with the most rapid rates of deepening of Rs.

The seasonal cycle in 𝐴𝐴 lag samples a range of monthly increments in the 
controlling-factors, TS and EIS, and cloud properties, for example, Rs, φ, 
etc. For any month, m0 (May(m0 = 5), for example), there are increments, 
δTS = TS(m0 + 1) − TS(m0 − 1), etc., and corresponding CRE-response func-
tions Gs(TS) = δRs/δTS and Gs(EIS) = δRs/δEIS. Similarly, the global map of 
the ensemble-mean changes in EIS between the AMIP and AMIPFuture simu-
lations in Figure 2a shows that the geographical distribution of the sensitivity, 
ΛEIS = ΔEIS/ΔTS, of EIS to TS also samples a range of values, depending on 
location. To relate inter-model differences in the seasonal cycle of SW CRE 
in 𝐴𝐴 lag to CRFs at other locations, we identify each model configuration and 
grid point with a corresponding month, m0, for which the EIS change, ΛEIS, 
due to AMIPFuture SSTs, is closest to the observed 𝐴𝐴 𝐴𝐴

obs
EIS

(𝑇𝑇𝑆𝑆 ) = 𝛿𝛿EIS∕𝛿𝛿𝑇𝑇𝑆𝑆 
calculated from ERA5 for the interval (m0  −  1, m0  +  1) of the seasonal 
cycle in the phase-lagged region. Hence for any model configuration (PPE 
member), r, and any point, p, on the globe, there is a month of the year m0(r, 
p) when the observed change in EIS with surface temperature in 𝐴𝐴 lag , at that 
time, is most similar to the simulated change in EIS with global-SST warm-
ing for configuration r at p. Our assumption is that cloud responses during the 
seasonal cycle in 𝐴𝐴 lag , at that time of year, are indicative of the cloud changes 
due to global-SST warming at the point in question (which may be remote 
from the phase-lagged region), because low-cloud cloud changes induced by 
global warming may be controlled by changes in EIS and TS. If this assump-
tion holds, it indicates that cloud-property changes during the seasonal cycle 

in Dlag are influenced by the same physical processes which affect cloud changes due to global warming, perhaps 
because the prevalent cloud regimes are the similar in both case. The assumption is, of course, not likely to hold 
for regions such as the deep tropics where the dominant regimes differ substantially from those in Dlag. For such 
regions, an approach linking variability and feedbacks at the same location, such as was introduced by Ceppi and 
Nowack (2021), may be needed. Figure 2b shows a map of the modal corresponding month at each point, glob-
ally. (Recall that each ensemble has it own corresponding month for each grid point, so we define modal month 
to be the month shared by more than 50% of the ensemble members.) At most ocean points the EIS-response to 
SST can be associated with the increase in EIS for May in 𝐴𝐴 lag . Exceptions are the mid-latitude ocean basins, 
particularly in the North Pacific, where the EIS feedback is better represented by EIS changes in July.

Figure 2. (a) The PPE-mean change in Estimated Inversion Strength 
(EIS) per unit local temperature change between the Atmosphere Model 
Inter-comparison Project (AMIP) and AMIPFuture experiments for each 
member. (b) The month of the year for which the rate-of-change in EIS with 
temperature during the seasonal cycle on the phase-lagged region is closest 
to ΔEIS/ΔTS each point. (c) The PPE-mean net cloud-radiative feedback. The 
orange contour shows the boundary between the regions corresponding to May 
and July.
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We are interested in the relationships between the seasonal SW CRE responses to controlling factors, Gs(TS) 
and Gs(EIS), in the corresponding month, and the net CRF, Λn, at each point. The relationships between Λn and 
the Gss will be statistically easier to identify at points where there are substantial changes in SW CRE due to 
global-SST warming. Figure 2c shows that these points are mostly located in the region corresponding to a modal 
month of May. In particular, the PPE simulates a large positive net feedback over the subtropical stratocumulus 
and a large negative feedback and over the Southern Ocean. These are therefore regions where we expect any 
correlations between feedbacks and responses to be largest. To quantify these correlations we use multi-linear, 
least squares regression of cloud feedbacks onto Gs(TS) and Gs(EIS) for the corresponding month (considering 
only May, since this accounts for most locations globally). For each cloud property, α (e.g., a CRE or cloud 
fraction), this approach yields a linear model for the cloud feedback, Λα, in terms of the seasonal responses of 
SW CRE to TS and EIS in the phase-lagged region in the corresponding month, where the regression coefficients 
depend on latitude and longitude. By calculating the response functions from the CERES-EBAF retrievals of 
SW CRE, we can obtain an observationally constrained estimate of the feedback by substituting the observed 
responses into the linear predictor.

The relationships between the responses functions and the net CRF can be seen in Figure 3a which shows the 
correlations between Λs and Gs(TS). The response function is positively correlated with the feedback over the 
Southern Ocean, indicating that weakening the sensitivity of normalized SW CRE to SST in 𝐴𝐴 lag (i.e., making 
the rate of decrease of Rs with temperature less negative in May) is associated with weakening the negative 
cloud-feedback over the Southern Ocean. Or, equivalently, that ensemble members with more realistic (i.e., more 
rapidly decreasing) seasonal changes in SW CRE in the phase-lagged region, have more strongly negative net 
CRFs over the Southern Ocean. The opposite effect is seen over the subtropical stratocumulus regions, where 
strengthening the sensitivity of SW CRE to TS leads to an increase in the strength of a positive cloud-feedback.

Figure 3b shows the differences between the ensemble-mean net CRF and the observational estimate obtained by 
calculating the response functions from CERES-EBAF and substituting these into the linear regression obtained 
from the PPE. We see that the PPE systematically overestimates the feedback over the Southern Ocean and North 
Atlantic, and underestimates the feedback over the subtropical stratocumulus in the North-east Pacific. The over-
estimated mid-latitude feedback occurs because, on average, the PPE predicts a net CRF that is not as strongly 
negative as the observations suggest. Whereas the underestimated subtropical feedback occurs because the posi-
tive net CRF is too weak in this region. These biases in net CRF are associated with the biases in the low-cloud 
amount feedback, Λφ, that are shown in Figure 3c. Low-cloud fraction over the Southern Ocean increases less 
strongly that the observations suggest, and decreases too weakly in the subtropics. Hence, the excessively weak 
negative CRFs in the mid-latitudes are associated with insufficient increases in low-cloud cover, whilst the exces-
sively weak positive CRFs in the subtropics are linked to smaller-than-observed reductions in cloud cover.

The relationships between the cloud-response function, Gs(TS), and the net CRF over the Southern Ocean and 
subtropical stratocumulus are shown in Figure  4a, which compares the area-averaged net CRFs with the Rs 
response to temperature averaged over 𝐴𝐴 lag , for each PPE member (colored points). The vertical black line shows 
the response calculated from CERES-EBAF, and the black dots show the observationally estimated net CRFs for 
each region. We see that almost all the PPE members have responses that are too large compared to the observa-
tions. For the stratocumulus region (orange points), selecting model parameters which reduce the response func-
tion bias will typically result in a stronger positive feedback. Similarly, improving the response function will give 
a model with a more negative net feedback over the Southern Ocean (blue points). The biases in these two regions 
account for almost all of the bias in the global-mean net CRF, 𝐴𝐴 Λ𝑛𝑛 . However, because of the opposite signs of the 
biases in the two regions, they approximately cancel each other out globally (Figure 4b), resulting in a weakly 
reducing global-mean net CRF in response to improving the historical seasonal cycle.

3. Discussion and Implications for Model Developments
An important characteristic of the current generation of the HadGEM3 family of climate models is their high 
climate sensitivities, which are outside the range that some studies suggest is plausible. At least part of model's 
high climate sensitivity is known to arise from CRFs, so proposing methods of controlling these is a pressing 
concern. Our results suggest that improving the representation of the seasonal cycle in northern ocean basins, 
particular then north-western Pacific, can give a physically justified way of reducing the net CRF, and there-
fore also the climate sensitivity. Central to this claim is the residual negative correlation between the globally 
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averaged net CRF, 𝐴𝐴 Λ𝑛𝑛 , and seasonal response of SW CRE, Gs(TS), shown in Figure 4b, which occurs because a 
negative CRF from increasing low-cloud amount in the mid-latitudes dominates over a positive feedback due to 
reductions in subtropical cloud amount. This indicates that the only systematic route to configuring HadGEM3 
to have a lower net CRF, that is explored within the PPE, is to enhance the negative Southern Ocean feedback. 
This is in keeping with the finding of Mülmenstädt et  al.  (2021) that the CMIP6 models underestimate the 
strength of a negative cloud fraction feedback over the Southern Ocean, despite significant improvements to the 
thermodynamic phase of such clouds compared to CMIP5. It is therefore possible that the seasonal cycle mainly 
constrains the cloud-fraction component of the feedback, and is relatively uninformative of the cloud-phase feed-
back proposed by Tsushima et al. (2006), and others. This suggestion is also consistent with the prevalence of 
warm (liquid only) clouds in the 𝐴𝐴 lag region in summer (Kawai et al., 2015). Therefore, future work to identify 
common mechanisms for the seasonal cycle in 𝐴𝐴 lag and Southern Ocean feedbacks may give information on the 
relative importance of different feedbacks.

Figure 3. (a) Correlation coefficient between net cloud-radiative feedback (CRF) and the SW CRE-response to TS. (b) The 
bias in the PPE-mean net CRF, compared to the linear estimator evaluated on the observed values of the SW CRE-response 
functions. (b) The bias in the PPE-mean low-thick cloud amount, compared to the linear estimator. The dots indicate 
correlation significance below 0.01, using a Student's t-test.
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Because a strengthening of the negative feedback over the Southern Ocean is accompanied by an opposing 
tendency for the subtropical feedback to become more positive, the overall sensitivity of the models net CRF to 
improving the cloud-response functions is relative weak. In addition, modifying the model parameters to reduce 
the positive feedback in the subtropics is, first, not consistent with the observational constraint from the historical 
seasonal cycle and, second, results in a compensatory weakening the mid-latitude feedback which dominates over 
the subtropics and leads to more positive feedback globally.

This coupled “subtropical–midlatitude” mode of inter-model variability emerges as the leading-order relationship 
in our analysis of responses to cloud-controlling factors based on the seasonal cycle alone. However, the scatter 
in the points in Figures 4a and 4b indicates that the PPE does explore behaviors that are not systematically related 
to the response functions considered here. These indicate parameter sensitivities which would permit lower feed-
backs to be explored, without necessarily degrading the contemporary seasonal cycle. In this respect, it is inter-
esting to note the biases in the default-model configuration (GAL8, itself), which are shown by the red-squares 
in Figures 4a and 4b. This model has an adequate seasonal cycle (it is not in the worst performing 50% of models 
for the response metric), but it has net CRFs in both regions that are larger than would be expected from the linear 
regression alone. There are therefore parameter changes which reduce the net CRF in GAL8 without substantially 
changing cloud-response functions. The effects of these parameters changes may be related to other aspects of 
present-day, observable model-performance, and in particular to cloud-response functions that are not related to 
the seasonal cycle in 𝐴𝐴 lag . This will be investigated by us in a later publication.

Data Availability Statement
The data supporting the conclusions of this paper can be obtained from https://doi.org/10.5281/zenodo.7789574.

Figure 4. Relationships between the SW CRE-responses to temperatures and net cloud-radiative feedback (CRF) averaged 
over: (a) the subtropical stratocumulus region (orange) and the Southern Ocean (blue); (b) the entire globe. The vertical 
black lines are the observed values of the response functions. The black points are net CRFs linearly estimated from the 
observations. The red squares show the locations of GAL8. The correlation coefficients are −0.38, 0.72, and 0.40 for the 
stratocumulus region, Southern Ocean and globe, respectively.
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