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ABSTRACT

In behavioural contexts like fighting, eating, and playing, acousti-
cally distinctive vocalisations are produced across many mamma-
lian species. Such expressions may be conserved in evolution, 
pointing to the possibility of acoustic regularities in the vocalisa-
tions of phylogenetically related species. Here, we test this hypoth-
esis by comparing the degree of acoustic similarity between human 
and chimpanzee vocalisations produced in 10 similar behavioural 
contexts. We use two complementary analysis methods: Pairwise 
acoustic distance measures and acoustic separability metrics based 
on unsupervised learning algorithms. Cross-context analysis 
revealed that acoustic features of vocalisations produced when 
threatening another individual were distinct from other types of 
vocalisations and highly similar across species. Using a multi-
method approach, these findings demonstrate that human vocali-
sations produced when threatening another person are acoustically 
similar to chimpanzee vocalisations in the same situation as com-
pared to other types of vocalisations, likely reflecting a phylogen-
etically ancient vocal signalling system.
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Vocalisations described as ‘roars’ and ‘grunts’ occur across a wide range of species. 

Around 150 years ago, Darwin (1872) hypothesised that such behaviours are phylogen-

etically continuous across mammalian species. Researchers have shown that many 

animal groups produce vocalisations in contexts that serve certain social and biological 

functions like play, threat and food (Morton 1977). For instance, low-frequency vocalisa-

tions with a wide frequency range and nonlinearities (e.g. the chaotic and noisy phona-

tion in a rough or harsh voice) are produced when threatening another individual in 

many vertebrates (see Briefer 2012 for a review). Acoustic regularities across many taxa 

may reflect evolutionarily conserved vocal systems (Bryant 2021). In testing such pre-

served acoustic structures across animal groups, however, most of what we know comes 

from literature on non-human animals. Is there an evolutionary continuity between 

humans and other animals for nonverbal vocal expressions? In the current study, we test 
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the existence of similarities in acoustic structures between vocalisations of humans 

(Homo sapiens) and one of our closest living relatives, chimpanzees (Pan troglodytes), 

produced in a wide range of behavioural contexts. We compare acoustic similarity 

between human and chimpanzee vocalisations produced in similar behavioural contexts 

to vocalisations produced in different contexts.

To date, only a handful of studies have tested acoustic similarities between humans 

and other animals for vocal expressions, and they mainly examined homologues of 

human laughter in other species (e.g. Davila Ross et al. 2009). This work shows that 

human laughter shares acoustic characteristics with play vocalisations in other great apes. 

A second line of research has demonstrated that human listeners can accurately infer 

affective information from heterospecific vocalisations, suggesting that this ability may 

draw on acoustic regularities that are conserved across related species (e.g. Scheumann et 

al. 2014; Filippi et al. 2017). Human listeners can accurately infer core affect dimensions 

like arousal (physiological alertness) and valence (positive or negative contexts) from 

vocalisations of different species. However, acoustic features of mammalian species 

systematically vary not only in terms of core affect dimensions but also in terms of 

production contexts that do not necessarily differ in terms of core affect dimensions 

(Morton 1977). For example, an individual attacking a conspecific and an individual 

facing off a dangerous predator are both in highly aroused and negative situations, but 

the situations and accompanying vocalisations are profoundly different. Moreover, 

perception studies may not fully capture the similarities in acoustic structures. These 

studies typically focus on the most salient or discriminative acoustic features that allow 

listeners to differentiate between vocalisations, while ignoring other subtle acoustic 

similarities or differences that may exist between vocalisations. Furthermore, human 

perception is influenced by a combination of factors, including the sensitivity of the 

human ear, auditory neurobiology, and cognitive processing. This is particularly true 

when comparing the acoustic structures of vocalisations across different species, where 

differences in these factors can lead to different perceptual abilities and limitations. 

Perception studies may therefore not fully capture the subtle acoustic differences or 

similarities that are beyond the limits of human perception. For instance, in a recent 

study, acoustic similarities between primate vocalisations did not predict human listen-

ers’ perceptual judgements (Debracque et al. 2022). In order to assess evolutionary 

continuity in vocalisations, we thus need to directly compare acoustic structures of 

vocalisations mapping onto specific types of behavioural contexts across humans and 

other species.

One reason for the lack of comparative research between human and other animals’ 

vocalisations is that human vocalisations are often collected based on the emotional state 

of the expresser (e.g. feeling angry, afraid or amused: Laukka et al. 2013), while vocalisa-

tions of other species are categorised based on the behavioural context (e.g. play, food 

and threat) in which they were produced. There is a clear risk of anthropomorphism if we 

try to map the vocalisations of other species onto human emotion categories, but it is 

possible to obtain human vocalisations produced in behavioural contexts similar to other 

species. This would allow us to directly compare the acoustic structure of human 

vocalisations to those produced by other species in parallel situations (e.g. being 

attacked). Here, we employ human and chimpanzee vocalisations produced in a wide 

range of real-life situations.
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In the present study, we test the hypothesis that human and chimpanzee vocalisations 

that are produced in parallel behavioural contexts are acoustically more similar in 

comparison to cross-species vocalisations produced in other contexts. We used two 

different approaches to assess acoustic similarity: 1) pairwise acoustic distance measures 

and 2) acoustic separability metrics based on unsupervised learning. Acoustic distance 

measures are widely used for computations of acoustic similarity and produce an average 

acoustic distance matrix demonstrating the (dis)similarity between cross-species vocali-

sations produced in different contexts. Additionally, we employed unsupervised analyses, 

which perform well in classification of vocal signals across species, and are especially well 

suited to high-dimensional data (Keen et al. 2021).

Method

Materials

Stimuli

We obtained human and chimpanzee vocalisations that were produced in 10 types of 

behavioural contexts: being attacked by another person/chimpanzee, being refused access 

to food, being separated from mother, being tickled, copulation/having sex, discovering a 

large food source, discovering something scary, eating high value/higher preference food, 

eating low-value/lower preference food, threatening an aggressive individual. 

Vocalisations produced in these contexts have been shown to serve specific biological 

and social functions in primates and other mammals (Townsend and Manser 2013).

Spontaneous human nonverbal vocalisations from each behavioural context were 

collected from Youtube.com by three naive research assistants, excluding videos with 

acted performances, like movies. These human nonverbal vocalisations were introduced 

in a previous study (Kamiloǧlu and Sauter 2022). In total, 200 vocalisations (20 for each 
context) were collected, each produced by a unique speaker (average duration (sec): 1.73; 

Sd = 0.82). Inclusion of vocalisations was based exclusively on 1) the eliciting situation 

matching the target behavioural context; 2) the presence of a nonverbal vocalisation that 

was clearly audible; and 3) only one person vocalising. The research assistants also 

considered suddenness, clarity, and certainty (see Anikin and Persson 2017): Sudden 

events offer minimal time for conscious posing or impression management, clear 

(unambiguous) situations minimise the risk of misunderstanding the target context, 

and the assistants selected videos that they were maximally certain reflected the target 

contexts. Chimpanzee vocalisations were taken from a previous study and included 155 

recordings produced by 66 individual chimpanzees (average duration (sec): 1.45, Sd =  

0.50) in the 10 behavioural contexts (Kamiloǧlu et al. 2020). The behavioural contexts 
were determined by author K.E.S., who is an expert on chimpanzee vocal communica-

tion. The behaviour of the caller, the response of individuals in the group or party, and 

the general behavioural context were noted for each vocalisation. Only vocalisations from 

single individuals whose identities were known used in this study. Details of the record-

ing set-ups and dataset compilation procedures for the collection of chimpanzee voca-

lisations can be found in the Supplementary Material, Text 1S. A representative 

vocalisation for each context can be found for humans at https://emotionwaves.github. 

io/BehaviouralContexts/, and chimpanzees at https://emotionwaves.github.io/chimp/.
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Human vocalisations included audio from YouTube which are typically in AAC 

(Advanced Audio Coding) format at bit rates between 128 and 384 kbps (kilobits per 

second) depending on the quality of the video (from 360p to 4k, respectively). 

Chimpanzee vocalisations were digitised at a sampling rate of 44.1 kHz, as mono files 

with 16 bits accuracy before the analysis. We subjected original chimpanzee recordings to 

AAC compression at 128 kbps, mimicking the YouTube audio compression, and com-

pared acoustic features between these and the uncompressed versions. There were no 

significant differences in any features, indicating that the compression likely used in our 

YouTube data did not distort our analysis (see Supplementary Analysis Table S1). The 

number of female and male expressors per context for each species for the raw and final 

datasets (see Acoustic feature extraction and pre-processing section for data exclusion 

rules) is presented in Table 1.

Data analysis

Overview

Our analysis framework included three main steps (see Figure 1 for a detailed illustration 

of the framework), which were set up to allow us to reveal acoustically similar vocalisa-

tions produced by humans and chimpanzees in similar behavioural contexts. First, we 

extracted a large number of acoustic features from the human and chimpanzee vocalisa-

tions. Second, the dataset was subjected to pre-processing before similarity analysis: 

normalisation, exclusion of outliers, and balancing sex of expressers of the two species 

for each behavioural context. Third, we used two different methods for determining 

acoustic similarity of human and chimpanzee vocalisations: pairwise distance measures 

and separability metrics based on unsupervised learning. We considered vocalisations 

acoustically similar for a specific behavioural context across the two species if they were 

closer in terms of acoustic distance and acoustically less separable based on unsupervised 

clustering as compared to vocalisations from other contexts.

Table 1. Number of tokens produced by female and male expressers per context for raw and final 
datasets.

Raw dataset Final dataset

Human Chimp Human Chimp

f m f m f m f m

Being attacked by another person/chimpanzee 9 11 13 8 9 9 10 8
Being refused access to food 6 14 11 4 5 13 8 4
Being separated from mother (produced by juveniles) 10 10 8 2 9 - 7 -
Being tickled 10 10 6 10 18 - 12 -
Discovering a large food source 14 6 - 12 - 10 - 20
Discovering something scary 10 10 6 7 10 8 6 5
Eating high value food 10 10 9 10 9 9 9 8
Eating low value food 10 10 11 11 8 10 9 10
Having sex/copulating 10 10 11 - 20 0 18 -
Threatening an aggressive individual 4 16 5 11 4 14 5 9
Total 93 107 80 75 92 73 84 64

f = female, m = male.
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Acoustic feature extraction and pre-processing

We extracted 88 acoustic features for each audio recording from the extended version of 

the Geneva Minimalistic Acoustic Parameter Set (Eyben et al. 2016). GeMAPs is a 

standardised, open-source approach for assessing acoustic characteristics in emotional 

voice analysis. The acoustic elements encompass frequency, energy/amplitude, spectral 

balance, and temporal domains. Frequency domain features involve fundamental fre-

quency components (associated with perceived pitch) as well as formant frequencies and 

bandwidths. Energy/amplitude characteristics pertain to the air pressure within the 

sound wave, which is perceived as volume. Spectral balance parameters, influenced by 

laryngeal and supralaryngeal movements, relate to the perceived voice quality. Finally, 

temporal domain features represent the duration and rate of voiced and unvoiced speech 

portions. In total, we extracted 88 acoustic attributes from these four domains. For each 

stimulus, the feature vector comprised the average of the entire audio clip.

Given that acoustic features are measured in a variety of units and ranges, we applied a 0–1 

normalisation. Within each species, normalised data were then subjected to five multi- 

dimensional outlier detection algorithms using the Python PyOD library (Zhao et al. 2019): 

Angle-Based Outlier Detection (probabilistic), Fully Connected Auto Encoder (neural net-

works), Isolation Forest (outlier ensembles), k-nearest Neighbours (proximity-based) and 

One-Class Support Vector Machines (linear). Vocalisations flagged by three or more outlier 

detection algorithms were considered outliers (i.e. max. voting principle), resulting in the 

exclusion of 11 vocalisations (nhuman = 195, nchimp = 149; ntotal = 344). We also balanced the 

sex classes between chimpanzees and humans, because there are natural differences in the 

acoustics of vocalisations across sexes in both humans (e.g. Pisanski et al. 2016) and chim-

panzees (e.g. Slocombe and Zuberbühler 2005). Given that the sex of the expressor was not 

balanced for chimpanzee vocalisations (see Table 1 for details), we balanced sex classes (female 

and male) for pairs of species for each context such that the count difference was not more 

Figure 1. The analysis framework followed three main steps: 1) extraction of acoustic features from 
human and chimpanzee vocalisations that were produced in 10 matching behavioural contexts; 
2) pre-processing of the audio data, and 3) testing acoustic differentiability of vocalisations for specific 
contexts between species using two techniques; vocalisations produced in specific contexts were 
identified as acoustically similar between the two species if verified by both methods.
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than 5 per context between human and chimpanzee expressors (see Figure S1 in 

Supplementary Materials). The final dataset included 313 vocalisations (nhuman = 165, n-

chimp = 148). Data exclusion and balancing sex classes allowed us to account for natural 

differences, and to focus on a subset of vocalisations that were representative of the popula-

tion. We conducted the analysis not only on the final dataset but also on the raw dataset in 

order to make sure that data exclusion did not have an influence on the results. The number of 

tokens produced by female and male expressers per context is provided in Table 1. The 

acoustic characteristics of the vocalisations used in this study (duration, intensity, F0 mean, F0 

minimum, F0 maximum, F0 Sd, Spectral Center of Gravity (SC0G) mean, and SCoG Sd; 

extracted using Praat (Boersma and Weenink 2011): are presented in Figure 2 for illustration 

purposes.

Pairwise distance comparisons

We computed average pairwise similarity across different contexts and between the two 

species employing three common distance measures: Euclidean, Cosine and Correlation 

distances. Using multiple distance measures can increase the robustness of results and provide 

confidence in the findings, especially if the same pattern is observed across different measures. 

Also, different distance measures have their own strengths and weaknesses, and using a 

combination of them can provide a more complete understanding of the data. For instance, 

Euclidean distance is simple but may not be appropriate for high-dimensional or outlier data, 

whereas Cosine distance is better suited for high-dimensional data but not for negative values. 

Correlation distance can be useful for different scales or outlier data, but assumes normal 

distribution. If the acoustic distance across the three measures is less between similar contexts 

produced by the two species then all other contexts, vocalisations of these contexts are 

considered as similar. For example, if the acoustic distance between vocalisations produced 

by humans when being separated and vocalisations produced in the same context by 

chimpanzees is less than the acoustic distance between the same human separation vocalisa-

tions and vocalisations produced in each of the other nine contexts by chimpanzees, then 

separation vocalisations are considered acoustically similar between the two species based on 

the acoustic distance measures. This was formalised as: 

Distance Context i:human; j:humanð Þ;Context i:chimp; j:chimpð Þ

� �

<Distance Context i:human; j:humanð Þ;
�

Context i:chimp; k:chimpð Þ

�

where i represents individuals, j is a particular context, and k are all contexts other than j.

Pairwise unsupervised clustering methods

We used two unsupervised clustering algorithms, KMeans++ (Arthur and Vassilvitskii 2006) 

and Spectral Clustering (Ng et al. 2001), to test the acoustic separability of context vocalisa-

tions between the two species. These clustering algorithms reveal to what extent pairs of 

contexts can be clustered based on the acoustic features of vocalisations produced in those 

contexts. The quality of pairwise clusters is determined by three well-accepted measures: 

Adjusted Rand Index (Hubert and Arabie 1985), Homogeneity Scores (Rosenberg and 

Hirschberg 2007), and Mutual Information (Strehl and Ghosh 2002). The Adjusted Rand 

Index measures the similarity between the pairwise clusters obtained from the clustering 

algorithm and the ground truth clusters, if available. The Homogeneity Scores measure how 

pure the pairwise clusters are, i.e. how well they contain only samples from one category. The 
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Figure 2. Acoustic characteristics of human and chimp vocalisations in the final dataset. Larger circles 
signify higher values. Min. = minimum, max. = maximum, SCoG = Spectral centre of gravity, dB = decibel, 
Hz = Hertz, sec = seconds.
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Mutual Information measures how much information about the ground truth clustering is 

provided by the pairwise clusters obtained from the clustering algorithm. By using these three 

measures, we can provide a more comprehensive evaluation of the quality of the pairwise 

clusters obtained from the clustering algorithms. For all three measures, we evaluated the 

following comparison:  

Separability Context k:humanð Þ;Context k:chimpð Þ

� �

< Separability Context k:humanð Þ;Context l:chimpð Þ

� �

where k is a particular context and l are all contexts other than k.

For example, if vocalisations when being tickled are less separate between the two species 

than being tickled vocalisations of humans and the vocalisations produced by chimpanzees in 

other contexts, being tickled vocalisations were considered as acoustically similar.

Results

Pairwise distance comparisons: Euclidean, Cosine, and Correlation distances

The results revealed that vocalisations from two behavioural contexts were more similar to 

each other between the two species than vocalisations from all other contexts: Eating low- 

value food, and Threatening another. The results were highly consistent across the three 

distance measures, Euclidean, Cosine, and Correlation. Acoustic distances between human 

and chimpanzee vocalisations by Euclidean distance measure are illustrated in Figure 3(a). 

Figure 3. Acoustic similarity evaluations. (a) pairwise Euclidean distance. Warmer (red) colours indicate 
smaller distance (i.e. greater similarity), and colder (blue) colours indicate larger distance (i.e. low 
similarity); (b) unsupervised clustering quality assessed by Adjusted Rand Index. Darker colours 
indicate better separability. In both measures, boxes with black borders show similar vocalisations 
produced in similar contexts by the two species.
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Supplementary Materials Figure S2 illustrates Cosine and Correlation distance matrices; 

Figure S3 illustrates within-species distances assessed by the three distance measures in 

order to demonstrate (dis)similarity of acoustic structures between contexts for each species, 

separately.

Unsupervised learning with two clusters

The three cluster quality algorithms showed that both KMeans++ and Spectral Clustering 

unsupervised clustering methods were consistent with each other (see Supplementary 

Materials Table S2). Between-species comparisons revealed that vocalisations produced 

in two contexts were less separable as compared to other contexts across the species: 

Eating high-value food and Threatening another (see Figure 3(b)). These results were 

confirmed by the other quality indices, Homogeneity Index and Mutual Information (see 

Supplementary Materials Figure S4).

Vocalisations produced in one behavioural context were found to be acoustically 

similar using both types of analyses methods: Threatening another individual. A 2D 

representation based on the acoustic features of vocalisations produced in this context is 

shown in Figure 4 together with other contexts, using Principle Component Analysis 

(PCA). The 2D maps illustrate that vocalisations produced while threatening another 

individual are acoustically similar between the two species. We provide eGemaps features 

for human and chimpanzee vocalisations produced in the threat context in 

Supplementary Materials Table S3 for further inspection. The observed inter-specific 

acoustic similarity in threat vocalisations was consistent for the dataset without data 

exclusion, indicating the robustness of the findings. Pairwise Euclidean distance and 

Adjusted Rand Index matrices as well as 2D acoustics maps for the raw dataset are 

provided in Supplementary Materials Figure S5.

Discussion

We found that humans and chimpanzees produce acoustically similar vocalisations when 

they are threatening another individual. These results are robust across two different 

kinds of assessment methods, and offer clear evidence for preserved acoustic regularities 

in this type of nonverbal vocalisations. These results demonstrate acoustic similarity in 

threat vocalisations between humans and our nearest living relatives, providing evidence 

consistent with a shared origin in our last common ancestor.

Our multi-method analysis reveals robust acoustic similarity between human and 

chimpanzee vocalisations produced when threatening another individual. Harsh, low- 

frequency sounds with nonlinearities are used in threat contexts by many non-human 

species, contrasting with higher, more tonal frequencies often associated with affiliative 

contexts (Morton 1977). It has been suggested that threat vocalisations might convey the 

impression of larger body size, and therefore alter the level of perceived threat (Briefer  

2012). Due to their inherently nonlinear nature, threat vocalisations also have the 

advantage that they prevent habituation (Karp et al. 2014). Our results reveal that key 

acoustic regularities of threat vocalisations are conserved across species, which is con-

sistent with the idea that there is phylogenetic continuity in threat vocalisations. Future 

work could additionally examine whether equivalent acoustic patterns for threat 
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Figure 4. (Continued).
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vocalisations exist with bonobos. As chimpanzees and bonobos are equally phylogeneti-

cally distant from humans, such an examination would help to validate the phylogenetic 

continuity argument by ruling out an alternative convergent evolutionary scenario 

between humans and chimpanzees.

It is worth noting that our results do not mean that there is no acoustic similarity 

between human and chimpanzee vocalisations produced in other situations as there are 

several possible explanations for the null results for the other contexts. Firstly, one 

Figure 4. 2D acoustic maps of human and chimpanzee vocalisations produced while threatening 
another individual, constructed using Principal Component analysis (PCA). Blue data points are human 
vocalisations, orange data points are chimpanzee vocalisations. Vocalisations produced in threatening 
another context are acoustically similar between the two species. This similarity is illustrated with two 
other dimension reduction techniques (Spectral Embedding and t-SNE) with 2D acoustic maps (see 
Supplementary Materials Figure S6).
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possibility is that vocalisations produced in some of the behavioural contexts included in 

our study might not be acoustically distinct from other within-species vocalisations. For 

instance, human vocalisations produced while eating high- and low-value foods were 

acoustically not well differentiated from each other (see Supplementary Materials Figures 

S3 and S7). Indeed, a recent study found that listeners often confuse these two contexts 

when asked to identify production context from human vocalisations (Kamiloǧlu and 
Sauter 2022). While listeners could accurately recognise the food context in general, they 

could not differentiate between high versus low value food. It is thus possible that human 

vocalisations show little differentiation based on the degree of food preference. Secondly, 

a closer look at the information communicated via particular contexts might be useful. 

For example, the same listening study found that listeners frequently confused vocalisa-

tions produced in situations where individuals were separated versus refused access to 

food, indicating that these situations may share similarities in the way they are expressed 

through vocalisations. In our results, these two contexts were least separable based on 

unsupervised clustering quality assessment (see Figure 2(b)). It is thus possible that 

vocalisations produced in these situations might have common characteristics like loss 

of opportunity.

Thirdly, in detecting acoustically similar vocalisations between species, we 

applied a strict criterion of positive evidence from two different analyses 

approaches. There were differences between the results of different methods, 

and vocalisations produced in only one particular context satisfied this strict 

criterion. While distance measures do well with low-dimensional data, clustering 

algorithms work well with high-dimensional data, and they often require larger 

datasets (Keen et al. 2021). Given that our dataset is high-dimensional and not 

very big (n = 313), we opted to apply a strict criterion in order to make sure that 

our findings are not due to a specific analysis approach. In future studies, 

replication of our findings with a larger stimulus set would be useful since 

applying unsupervised analyses to a larger-scale empirical dataset might allow 

researchers to better capture acoustic diversity and similarity. Furthermore, 

given that online recordings often differ in audio quality due to variations in 

recording equipment and the presence of background noise, the use of larger 

datasets would help safeguard against the undue influence of any particular ‘noisy’ 

audio extraction on the overall analysis. This approach will allow us to better 

discern the systematic structure of acoustic data from diverse online sources, 

reducing the potential bias or confounding effects of specific, low-quality audio 

extractions.

In conclusion, our study reveals an intriguing acoustic similarity between 

human and chimpanzee threat vocalisations, yet such similarities were not dis-

cerned in the other contexts that we investigated. The reasons behind this could 

be due to our limited sample sizes hindering us from unearthing their distinct 

features. Thus, this study provides preliminary support for the evolutionary con-

tinuity hypothesis in terms of threat vocalisations. Its applicability to a broader 

spectrum of behavioural contexts remains a topic for future exploration. In the 

current study, we demonstrate that the acoustic form of human nonverbal voca-

lisations produced while threatening another individual is shared with 
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chimpanzees, suggesting that threat vocalisations developed based on a phylogen-

etically ancient vocal signalling system.
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