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Abstract

Automatic proficiency assessment can be a useful tool in lan-

guage learning, for self-evaluation of language skills and to en-

able educators to tailor instruction effectively. Often assessment

methods use categorisation approaches. In this paper an exem-

plar based approach is chosen, and comparisons between ut-

terances are made using different speech encodings. Such an

approach has the advantage to avoid formal categorisation of

errors by experts. Aside from a standard spectral representation

pretrained model embeddings are investigated for the usefulness

for this task. Experiments are conducted using speechocean762

database, which provides 3 levels of proficiency. Data was clus-

tered and performance of different representations is assessed in

terms of cluster purity as well as categorisation correctness. Co-

sine distance with Whisper representations yielded better clus-

tering performance.

Index Terms: self-supervised representation, proficiency as-

sessment, language learning

1. Introduction

Achieving proficiency in a language involves developing skills

in various linguistic domains, such as vocabulary, grammar, lis-

tening comprehension, reading comprehension, writing profi-

ciency, and spoken language. Language learning requires the

assessment of proficiency. Since recruiting and training new hu-

man experts is expensive and yields only a small performance

enhancement, automatic graders can provide greater consis-

tency and speed at a lower cost [1]. The input sequence data

from a student is utilised in automated assessment of L2 spoken

language proficiency. This allows for the prediction of level

with regard to the student’s overall proficiency as well as par-

ticular parts of their ability [2].

Automatic Speech Recognition (ASR) uses training on

speech data and incorporates phonetic dictionaries to accu-

rately recognize and transcribe phonemes, phonetics, pitch, in-

tonation, duration, and pronunciation for assessment purposes.

However, achieving good performance with ASR requires a

substantial amount of transcribed audio data [3]. An ASR sys-

tem employs the language model to overcome faulty acoustics

to produce the correct letter sequence. Another model for lan-

guage assessment is a mispronunciation detection and diagnosis

(MDD) model. Language model restrictions will overlook mis-

pronunciations. Strong acoustic modelling is needed to distin-

guish native products with canonical phonetic pronunciations

from non-native pronunciations [4],[5]. Goodness of Pronun-

ciation (GOP) is another popular pronunciation measure. Witt

et al. [6] used Gaussian mixture model-hidden Markov model

* Equal contribution.

(GMM-HMM) based native acoustic model to define GOP and

compute a score from the formulated GOP. Following that, the

majority of the works improved either by proposing variants

to the GOP-based formulation or by improving the quality of

the native acoustic models [7]. In [8], advanced second lan-

guage speakers are automatically oral proficiency tested. Stu-

dents read, repeat, and record using a spoken dialogue system.

Human ratings of their speech proficiency are compared to au-

tomatic indicators. Unlike other research, posterior scores do

not correlate with human reading exercise assessments. All

previous approaches either extracted sets of hand-crafted fea-

tures related to specific aspects of proficiency, such as fluency,

pronunciation, and prosody, or concatenated multiple features

targeting multiple aspects, which were then fed into graders to

predict analytic scores targeting those specific aspects.

Self-supervised learning (SSL) has recently shown promis-

ing results in speech processing applications [9, 10, 11, 12, 13,

14]. SSL can learn rich speech representations without tran-

scription labels by training on massive unlabeled audio data.

This method is better at handling different speech patterns and

conditions because it captures many acoustic and linguistic fea-

tures. Some previous research has explored the use of SSL in

the domain of proficiency assessment. In [15], the feasibil-

ity of using Wav2vec 2.0 representations to assess L2 spoken

English proficiency holistically and analytically with limited

data is investigated. The study demonstrates that the Wav2vec

2.0 approach surpasses the BERT baseline system [16] in clas-

sifying Common European Framework of Reference (CEFR)

levels [17]. Additionally, it shows significant improvements

when utilising Wav2vec 2.0 for regression tasks targeting holis-

tic scores in the B1 section of TLT-school, outperforming the

BERT baseline trained on ASR and manual transcriptions. An-

other related work [18] extends a novel proficiency assessment

approach using a Wav2vec 2.0 based grader on a large L2

learner dataset. The proposed approach showed good perfor-

mance on parts with short spontaneous answers but faced chal-

lenges in assessing higher levels of language proficiency, as de-

fined by the proficiency scales of the CEFR for languages [19].

In the CEFR, each speaker is graded on a scale from 1 to 6.

This paper aims to explore novel approaches for assessing

spoken language proficiency using advanced speech represen-

tations. In Section 2, we introduce different speech represen-

tations, including Mel frequency cepstral coefficient, Wav2vec

2.0, and Whisper. Section 3 is dedicated to distance measure-

ment. Moving on, Section 4 describes the data used, covering

proficiency calculation, sample selection, and the features ex-

traction. The experimental setup is detailed in Section 5, which

includes the encoders employed, the clustering, and the eval-

uation metrics used. The results and findings are presented in

Section 6, and the conclusions are provided in Section 7.
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2. Speech Representation

In this section, we discuss three different speech representa-

tions employed in our study: Mel frequency cepstral coefficient,

Wav2vec 2.0, and Whisper. Each representation offers unique

advantages and contributes to the accurate assessment of profi-

ciency in language learning.

2.1. Mel frequency cepstral coefficient

The Mel frequency cepstral coefficient (MFCC) has proven to

be a valuable speech representation technique for feature ex-

traction in various speech processing tasks [20],[21]. It turns a

raw audio waveform into a visual representation of the power or

magnitude of various frequencies over time. It employs the Mel

scale to approximate the response of the human auditory system

to frequencies. The process involves applying the Short-Time

Fourier Transform, converting frequencies to the Mel scale, di-

viding it into triangular filters, computing energy within each

filter, and optionally applying a logarithmic transformation[22].

2.2. Wav2vec 2.0

Wav2vec 2.0 is an self-supervised speech representation model

that uses a convolutional neural network (CNN) to learn pow-

erful representations from large amounts of unlabeled speech

data. Wav2Vec 2.0 has three main components: a convolutional

feature encoder for extracting meaningful representations from

raw audio, a transformer-based context encoder for capturing

dependencies and temporal context, and quantisation and loss

functions for discretising audio features. These components en-

able powerful feature extraction from raw waveforms for vari-

ous speech and audio processing tasks [10].

2.3. Whisper

Whisper is a pre-trained ASR system proposed in [23]. The sys-

tem was trained on 680k hours of weakly supervised datasets

using multilingual and multitask learning, such as language

identification, voice activity detection, speech recognition and

translation. With a sequence-to-sequence transformer model

predicting the next-token, for example, classification targets,

Whisper was trained on multiple tasks simultaneously. The re-

sults on speech recognition showed that the system was not only

robust on various target datasets because of the diversity of au-

dio quality of training datasets but also comparable to human

performance on transcribing.

3. Distance Measurement

Two different similarity measurements are used in this work

based on two types of utterance representation. An utterance is

either represented by features extracted at a fixed rate, or in the

form of an overall embedding. Similarity between vector rep-

resentations often uses the cosine distance whereas a common

solution to compute distances between speech sounds is the use

of Dynamic Time Warping (DTW), an example is Mel cepstral

distortion as used for example in voice conversion assessment.

3.1. Cosine distance

High dimensional vector representations are commonly com-

pared by ignoring any length variation as this may often be the

results of randomness. Therefore, the cosine distance, as given

by

cd(A, B) = 1−
A · B

∥A∥2 · ∥B∥2
(1)

Figure (1) Different levels of proficiency and the incidence of

words in each level. p1, p2 and p3 denote low, medium and high

proficiency respectively.

is used, where A and B are vectors, A· B is a dot product of A

and B, and ∥A∥2 is 2-norm of A.

3.2. DTW or Mel cepstral distortion

DTW allows the alignment of two sequences of different length,

and via that alignment, to compute a distance between such se-

quences. The path of alignment yielding the smallest overall

distance between the sequences, represented by feature vectors,

is found. The total distance represents the match. Several differ-

ent types of distance functions between features can be used, in-

cluding Euclidean and cosine distance, or in the case of vectors

representing distributions, Kullback Leibler Divergence. The

special case of Mel cepstral distortion makes use of MFCCs

[24], and is defined as

MCD[dB] =
10

log10

√

√

√

√2

k
∑

i=1

(mc
i −mt

i)
2 (2)

where, i represents mel cepstral coefficients index, mc
i and mt

i

denote ith dimensional coefficient of the converted and target

coefficients, respectively. Note that the total MCD score is

length normalised to enable comparability between samples.

4. Data

In this study, the speechocean762 corpus was used, which is a

free, open-source corpus of 5,000 English utterances collected

from 250 Mandarin speakers [25]. The training set contains

2,500 utterances, 15,849 words, and 47,390 phones, while the

test set contains 2,500 utterances, 15,967 words, and 47,688

phones. It assigns an utterance-level attribute score ranging

from 0 to 10 to each speech for accuracy, fluency, complete-

ness, prosody, and overall score. Additionally, it assigns three

word-level attribute scores, including accuracy, stress, and over-

all score, ranging from 0 to 10 for each word. Furthermore,

it provides an accuracy ranking ranging from 0 to 2 for each

phoneme. Each score has been annotated by five human evalu-

ation experts.

4.1. Proficiency calculation

The proficiency of each speaker was determined by calculat-

ing their average word accuracy across all their utterances after
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combining the training and test sets. To assess proficiency in L2

learning, the study categorised the speakers into three groups:

low proficiency (p1), medium proficiency (p2), and high pro-

ficiency (p3). Table 1 presents the proficiency ranges, speaker

counts, and word counts for p1,p2 and p3.

Table (1) Proficiency range, Number of speakers, Number of

utterance and number of words in p1 and p2

Proficiency range #Speakers #Utterance #Words

p1 3.9 - 7.5 52 880 7440

p2 7.6 - 8.5 69 1960 8042

p3 8.5 - 9.5 51 680 6139

4.2. Sample selection

We chose a sample of speakers aged 10 and up to ensure the

quality of the speech data and to overcome potential issues with

children’s speech. Therefore, we extracted a diverse mix of

male and female participants, totaling 176 speakers. From the

adult utterances set, we selected 20 random words that had the

highest occurrence rates. Figure 1 displays the different levels

of proficiency and the incidence of each of the 20 words in the

word list within each proficiency level.

Additionally, we ensured that there were at least ten sam-

ples of each word in each of the categories p1, p2, and p3. These

selected words from the word list. Consequently, a total of 600

samples were obtained, which were further divided into two cat-

egories: reference and cluster. Specifically, for the reference,

there were 120 samples available for each of the 20 words, with

2 samples representing each of the three proficiency levels. For

the cluster, we utilised the same set of 20 words, with 8 samples

allocated for each word and representing the three proficiency

levels. Therefore, in total, we obtained 480 samples for the

cluster.

4.3. Proficiency features

For clustering purposes each sample is represented by a set of

features representing the relationship with the proficiency lev-

els. Given a set of N reference samples the average utterance

distance between the sample and a set of reference patterns is

computed. Three feature values, one for each proficiency level

p, are computed for every i-th sample of every word w, namely:

f
pi,w =

1

N

N
∑

j=1

distance(Spi,w,R
pi,w

j ) (3)

Sp,w and Rp,w are vectors or matrices representing utterances.

N is the number of references of a word in each proficiency

level and the distance(·, ·) is a distance function, as men-

tioned above. Thus, one sample of a word w is represented

by (fp1,w, fp2,w, fp3,w). A slightly more complex extension

to this approach might be the use of GMM-HMM-based like-

lihood scores. However, a nearest neighbour approach is used

instead to better capture the specific nature of some error pat-

terns.

5. Experimental setup

In this section, we provide an overview of the experimental

setup employed in our study for speech representation and clus-

tering. We utilised three different encoders: MFCC, Wav2vec

2.0 [11], and Whisper [23], to extract features from the speech

Figure (2) An overview of the experimental setup employed in

this study.

data. We use the code for MCD calculation provided in the

ESPnet toolkit [26]. Additionally, we employed the K-means

clustering algorithm to group the samples based on their feature

distances. The evaluation of the clustering was performed us-

ing cluster purity and accuracy metrics. Figure 2 illustrates the

methodology employed in this project.

5.1. Encoders

For speech representation, MFCC, Wav2vec 2.0 and Whisper

were used. First, 39 features of MFCC were extracted. Maxi-

mum 100 frames among them were use to calculate the MCD

after removing similar frames in sequence. Second, Wav2vec

2.0 was the model whose output is 1024 dimensions, pre-trained

on Libri-Light [27], CommonVoice [28], Switchboard [29] and

Fisher [30], and fine-tuned on 960 hours of LibriSpeech [31].

The utterance-level representation was obtained by averaging

over frame-level outputs. Lastly, the output, 1024 dimensions,

of Whisper medium system was used. The frame-level outputs

were averaged to generate the utterance-level representation.

5.2. Clustering

K-means clustering implemented in [32] starts measuring the

distance between centroids and data. The initial centroids can

be selected either randomly or manually. According to the re-

sults of the preliminary experiment, random initial centroids of

10 were chosen for MCD and fixed ones for cosine distance.

The fixed centroids were the samples whose features are close

to each proficiency level, for example, (0,1,1), (1,0,1), (1,1,0).

The number of clusters was set to 3, and maximum iterations

were limited to 300.

5.3. Evaluation

Cluster purity and accuracy were used as evaluation metrics of

the clustering. Purity is the ratio between the sum of the ma-

jority in each cluster and the number of all samples. While

the cluster purity is useful to determine the number of clusters,

the accuracy for clustering can be measured by the correctness

rate with respect to labels assigned to the clusters if the optimal

number of clusters is known.
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Figure (3) Samples with features. p1, p2 and p3 denote low, medium and high proficiency, respectively.

6. Results

6.1. Sample distribution in feature spaces

Samples with features average distances to references in each

proficiency level are plotted in Figure 3a, 3b and 3e. While an

outlier is observed at the right top corner in Figure 3a, the sam-

ples are relatively well distributed, for example, in Figure 3b.

On the other hand, the samples are skewed in Figure 3d whose

features are the average cosine distance of utterance-level rep-

resentations. In Figure 3e, the p1 and p2 samples are spread to

different directions.

6.2. Purity scores and accuracy

Purity scores and accuracy values of the clusters built by the

K-means algorithm in different representation spaces are pre-

sented in Table 2. For the MFCC representation, random initial

centroids were utilised, while pre-defined centroids were em-

ployed for cosine distance clustering. The cluster purity and

accuracy of Wav2vec 2.0 with DTW were higher than Whis-

per. However, the results were opposite with cosine distance

as the distribution of samples in the space of Wav2vec 2.0 with

cosine distance has been heavily skewed. The samples with fea-

tures using cosine distance of Whisper representation clustered

better than the others although the utterance representation was

averaged over frames.

Table (2) Purity score and accuracy of clusters built using K-

means in different representation spaces.

Distance Repr. Init. centroids Purity Accuracy

DTW

MFCC

Random

0.427 0.425

Wav2vec2 0.422 0.422

Whisper 0.383 0.383

Cosine
Wav2vec2

Fixed
0.343 0.343

Whisper 0.429 0.429

7. Conclusions

In conclusion, this study concentrated on automatic proficiency

assessment in language learning via an exemplar-based ap-

proach and various speech representations. The goal was to

avoid the need for expert categorisation of errors and to investi-

gate alternative methods for assessing language skills.

For conducting experiments and evaluating the perfor-

mance of various representations, the speechocean762 database,

which provides three levels of proficiency, was used. In

this study, three speech representations were used: MFCC,

Wav2vec 2.0, and Whisper. As an evaluation metric, cluster

purity was used to indicate the consistency of samples within

each cluster. The accuracy of clustered data was also measured

by comparing it to the assigned labels if the optimal number

of clusters was known. Wav2vec 2.0 with DTW outperformed

Whisper in terms of cluster purity and accuracy. However, for

cosine distance clustering, Wav2vec 2.0 showed skewed sam-

ple distribution, resulting in suboptimal results. Notably, de-

spite averaging utterance representations over frames, cosine

distance with Whisper representation yielded better clustering

performance than MFCC with DTW by 0.002 and 0.004 of pu-

rity and accuracy, respectively. The present work has certain

constraints that should be addressed in future research.

Due to the limitation of the amount of data, the focus of

this study was primarily on the word level, whereas language

proficiency could be better measured at the sentence level. Fur-

thermore, the examination of a limited word list might not pro-

vide a comprehensive understanding of proficiency. Therefore,

expanding the word list and including words with problematic

phonemes for Chinese learners would enhance the analysis. Ad-

ditionally, incorporating more advanced distance measurements

could facilitate more thorough analysis in future studies. Fur-

ther research can build upon these findings to develop more ro-

bust and effective models for automatic proficiency assessment.
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