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ABSTRACT

This paper presents a 7-day Travel Demand Model (TDM) for UK
rural areas to aid the Electric Vehicle (EV) transition in these
regions. Utilising data from both the UK Census Survey and UK
National Travel Survey (NTS), private passenger vehicle travel
patterns for a rural village in the Peak District National Park (UK),
were modelled. This model is adaptable to any rural community
within the UK, requiring only publicly available information on
households and vehicles for that community. Using a novel
approach through the development of lifestyle scenarios to
understand the required household activities, the TDM incorporates
five different trip purposes as the building blocks for a vehicle’s
activity. Over a period of one week, 13,520 miles were driven by 84
vehicles across 49 households, that shows an EV fleet serving this
community would consume 3562 kWh energy per week.
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1. Introduction

The increased use of Electric Vehicles (EVs) has been recognised as a positive contributor

to a wide range of transport policy goals (Hill et al. 2019; Hirst 2020), including the

improvement of air quality through the reduction of greenhouse gas emissions. Most

recently, the UKGovernments ten point plan details the ending of sales of new convention-

ally fuelled cars (petrol and diesel) by 2030 (GOV.UK 2020a). This and previous examples

including the Air Quality Plan for Nitrogen Dioxide (NO2) (DEFRA & DfT 2017) and the

‘Road to Zero’ Strategy (DfT 2018) illustrate the pressure the UKGovernment is putting on

the passenger vehicle industry to reduce its carbon footprint through the transition to EVs.

As stated in the ‘Road to Zero’ strategy, this transition is expected “to be industry and

consumer led” (DfT 2018). This approach gives raise to concern, as it will only work for

locations where there is a strong business case (Cooper 2018). It is also unlikely that

market forces alone will lead to the installation of EV charge points in rural areas,
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where the customer base is significantly smaller than urban areas, and the cost of grid

connections can be very high (House of Commons 2018). Morton et al. (2018) studied

the variation of early adopters of EV technology through EV registrations across the

UK and found the emergence of lead and laggard markets. For example, much of

central and northern Wales, areas of the North of England, and the Humber region to

the mid-east of the UK were shown to have low-levels of EV registrations, whereas

central London had relatively high-levels of EV registrations. Population density was

found to be one of the influencing characteristics for this geographical variance in EV

adoption, as well as availability of charge point infrastructure, which is already unevenly

distributed geographically in favour of urbanised areas (DfT 2020a).

Large socio-techno transitions have previously resulted in rural communities being

left behind due to similar barriers the current EV transition is already exposing. Past

examples include the internet and mobile connectivity (Williams et al. 2016). At some

point in the future, all be required to transition from the current mainstream Internal

Combustion Engine (ICE) regime to EVs due to legislation, as seen above. Hybrid

vehicles will have an important role in this transition, particularly for rural areas

where the major barrier to EV uptake is range anxiety. However, as hybrids are also

set for an eventual phase out from 2035 (GOV.UK 2020a), the focus of this paper will

solely be on future scenarios with 100% EV adoption. The large scale concern for the

UK is this neglect will only lead to increased disparity between rural and urban areas,

exacerbating such issues as social inequality, economics, and development (Kester

et al. 2020; Nutley 2005).

This paper is structured as follows: The underlying research approach will be dis-

cussed in Section 2. Section 3 will present the model development/methodology and

the chosen case study location. This will be followed by the results in Section 4 and

the comparative EV energy required in Section 5. Section 6 concludes the paper.

2. Research approach

A crucial factor in the EV transition is understanding EV recharging, which is dependent

on temporal and spatial patterns of vehicle use (Weiss et al. 2017). Due to currently low

adoption levels, there is minimal, real world, empirical data on EV use and by extension

their impact on the grid. There are two main approaches for studying this, public trial

methods, which are expensive and time consuming; and simulations (Pareschi et al.

2020). Focusing on simulation, this consists firstly of a travel demand model (TDM),

most commonly based on recorded car usage patterns. This is then coupled with scenario

modelling for the EV charging behaviour (Pareschi et al. 2020). Therefore, this paper

focuses on the development of a suitable TDM specifically targeting smaller, often

remote, rural communities which may be the more difficult scenarios to prepare for

the EV transition. This is followed by a demonstration of the TDM to predict rural

EV energy consumptions.

2.1. Travel demand modelling

Travel demand survey studies originated in the 1950s in the USA (Apronti and Ksaibati

2018), from which transportation forecasts were traditionally developed following the
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sequential four-step model (McNally 2007) process which is still used today. Apronti and

Ksaibati (2018) developed a four-step TDM for estimating traffic volume for low-volume

roads in Wyoming. A key modification was the exclusion of all other travel modes except

private passenger cars during the mode choice step. This same modification will be incor-

porated in the TDM presented in this paper to retain focus on the private passenger

vehicle users only. However, Apronti and Ksaibati (2018) only considered three trip cat-

egories: Home-Base Work (HBW), Home-Base Other (HBO), and Non-Home Base

(NHB) trips. This may be sufficient for an investigation into traffic volumes, for

energy usage calculations for EVs more detail is required, for instance trip distances.

Additionally, Apronti and Ksaibati’s (2018) model requires low-level detailed geocoded

input data for households and vehicles in the area of study, which makes it more difficult

to generalise the results for different areas. Although the four step model is still used

today, as shown by Apronti and Ksaibati (2018), it is now considered an oversimplified

representation of daily travel patterns, and an overly statistical/ad-hoc approach to mod-

elling (i.e. not behaviourally oriented) (Goulias 2021). These days multiple approaches to

Travel Demand Modelling (see Table 1) have ensued (Daina, Sivakumar, and Polack

2017). Five approaches have been identified by Daina, Sivakumar, and Polack (2017):

(1) Vehicle Ownership and Annual Mileage Models (VOAMM): A high-level model

with low temporal resolutions (i.e. when yearly time scales are of interest) (Brown-

stone, Bunch, and Golob 1994). Individual vehicles can be modelled allowing for

easy aggregation, however large datasets required. Brownstone, Bunch, and Golob

(1994) built an annual vehicle demand forecasting system for new and used

vehicle demand by type of vehicle (Fuel Type).

(2) Summary Travel Statistic Models (STSM): This approach is based on information

regarding conventional ICE vehicles (i.e. not electric) which has been extracted from

national, regional, or metropolitan travel surveys. Travel pattern summary statistics

obtained from travel surveys are used in combination with charging scenarios to gen-

erate charging profiles. Again this approach models individual vehicles but has not

been known to consistently create representable car usage profiles (Daina, Sivakumar,

and Polack 2017). Wang et al. (2011) used Summary Statistics from the US National

Household Travel Survey to determine suitable home-arrival times of vehicles at the

end of the last trip of the day for a modelled Plug-in Hybrid EV population for Illinois.

(3) Direct Use of Observed Activity Travel Schedules (DUOATS): Uses patterns of usage

for ICE vehicles to simulate that of EVs. Can be achieved using travel diaries,

surveys, or GPS data. This approach consistently creates representable car usage

profiles. Axsen and Kurani (2010) conducted their own survey to elicit driving pat-

terns and potential recharging opportunities.

(4) Activity Based Models (ABM): Similar to the STSM modelling approach and build-

ing on the traditional ‘four step model’, these models are based entirely on simu-

lation. Individual cars are modelled as ‘agents’ providing a high-level of detail and

representation of patterns (Delhoum et al. 2020).

(5) Markov Chain Models (MCM): A Markov Chain is a stochastic model which

describes a sequence of events based on the probability of each event occurring at

each time interval. This modelling approach has potential to provide great detail

but can lack behavioural realism and requires large computational resources.

TRANSPORTATION PLANNING AND TECHNOLOGY 3



Soares et al. (2011) determined the movement of EVs across a one year period using

a discrete-state, discrete-time Markov chain at 30 min intervals.

Whilst EV transport research has mainly focused on modelling EV adoption and

annual usages, a much finer time resolution (typically an hour or fraction of an hour)

is required for analysis into power systems, energy, and environmental implications

(Daina, Sivakumar, and Polack 2017). Given this TDM is aimed at facilitating the tran-

sition to EVs and assessing their impact on rural grid infrastructures, a 30-minute time

resolution was chosen. This high temporal resolution allows for cross-analysis with elec-

tricity tariffs, in particular business meters, that are monitored at a temporal resolution of

30 min (British Business Energy 2021). Given the need for a high temporal and spatial

resolution model, as well as time and financial constraints for data collection, the

VOAMM, STSM and DUOATS modelling approaches was discounted. Whilst both

the ABM and MCM approaches provide adequate levels of detail and temporal resol-

utions for the TDM, the ABM approach has a lower computational complexity than

the MCM approach, and hence was selected.

2.2. Activity based modelling

The ABM approach was identified as being capable of producing a high temporal resol-

ution at a suitable level of detail (i.e. car movements every 30 min to align with electricity

tariff monitoring) for time of day analysis of travel demand (Daina, Sivakumar, and

Polack 2017). At the heart of the development of activity based models there is the rep-

resentation of the individual process as disaggregate (Daina, Sivakumar, and Polack

2017). They are micro-simulators (or microscopic models), whereby the behaviour for

each individual is simulated to mimic that of each inhabitant within the studied area

(Ridder et al. 2013; Weiss et al. 2017), allowing flexible aggregation.

Mattioli, Anable, and Goodwin (2019) used the 2016 UK National Travel Survey

(NTS) to classify cars based on their patterns of use over a week. This required manip-

ulating the NTS to create a ‘vehicle travel diary’ dataset, to which sequence and cluster

analysis of individual vehicle use were applied. Mattioli, Anable, and Goodwin (2019)

extracted six types of ‘car day’, with less than half exhibiting the stereotypical, and

largely assumed, travel pattern determined by 9 am to 5 pm working hours, as well as

showing that travel habits differ significantly by day of the week. These extracted car

days could be used to inform the travel demand if they were associated with group

defining characteristics (i.e. working hours, number of children, etc.). Thus, this paper

proposes the use of scenarios attributed to a range of generic lifestyle scenarios, and

their corresponding travel patterns in rural areas. Another example of a data led TDM

was developed by Kang and Recker (2009) who analysed trip diaries and evaluated the

effects of changing vehicle types to various PHEV’s while maintaining the vehicle trip

activity recorded in the 2000–2001 California State-wide Household Travel Survey.

From this, they were able to construct 1-day trip/activity chains for over 15,823 vehicles

across 11,385 households.

One major challenge in TDM development is adapting methodologies that have been

predominantly designed for urban and suburban areas, where roads witness higher traffic
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volumes compared to the countryside (Apronti and Ksaibati 2018). Highlighting that

urban based research for EV viability cannot be directly translated to rural areas, and

instead requires rural specific investigation. This paper attempts to address this gap

through incorporating rural specific data as the input to the TDM.

2.3. Spatial microsimulation

Multi-agent simulation refers to microscopic simulation models which model the beha-

viours of individual agents (e.g. a vehicle) (Raney et al. 2003), as opposed to previous

methods which aggregated behaviour together. This enables researchers to overcome

the limitations imposed by the lack of available geocoded micro-data in relation to

travel research (Lovelace, Ballas, and Watson 2014). The initial step for spatial microsi-

mulation approaches are population generations (Raney et al. 2003), which aim to disag-

gregate demographic data to obtain individual households and their members. Typically,

this step is achieved through census data. For example, a passenger transport CO2 emis-

sion model for urban Guangzhou was developed using the 2010 sixth population census

of Guangzhou (Ma et al. 2018). Cullinan, Hynes, and O’Donoghue (2011) used the Simu-

lation Model of the Irish Local Economy (SMILE) to produce a synthetic population for

investigating visitor numbers to outdoor recreation sites in Ireland; and Ma et al. (2014)

used the 2000 population census data at a sub-district level to create a synthetic sub-dis-

trict population for understanding transport CO2 from urban travel in Beijing. This

paper employs spatial microsimulation methodology through the use of census survey

data, but in combination with lifestyle scenarios to represent UK household compo-

sitions. Together this enables the development of the necessary synthetic rural population

and its agents of simulation for a TDM.

2.4. Rural focused research

As of May 2021 the UK Government had only just begun considering a Rural Transport

Strategy, two years after publishing its Urban Strategy, again highlighting rural areas

being ‘left-behind’ (Rural Net Zero 2021). Rural areas are often heavily reliant on cars

for transport and undertake larger distance travels for services (shops, schools, health

care etc.), because of this they generate more than twice the CO2 emissions per person

than the most urban areas (Rural Net Zero 2021). This also results in the most

common concern regarding EVs – driving range. However, rural households hold a

potential solution, due to lower population densities, most rural homes have the

ability for home charger installations, but it is also imperative that private, community

and public investment into rural EV charging infrastructure is considered (Rural Net

Zero 2021). McKinney, Ballantyne, and Stone (2023) focused on all charging taking

place at residents homes via 7 kW Pod Point home charge points and looked towards

the impact of various charging behaviours and household electricity tariff distributions.

In all cases, charging scenarios successfully recharged all vehicles simulated, allowing

them and their owners to conduct their pre-existing travel patterns with ease.

Multiple concerns for the transition from ICE vehicles to EVs have been studied, most

prominently, the impact on the electrical grid (Ridder et al. 2013), from both a generation

and demand perspective. However, these studies predominantly focus on urbanised areas

TRANSPORTATION PLANNING AND TECHNOLOGY 5



(Galus et al. 2011; Munkhammar et al. 2015), where EV charging is expected to increase

peak demand, system losses and voltage violations (Crozier, Morstyn, and McCulloch

2021). Similar affects are predicted in rural areas too, for example in rural Vermont,

USA, where EVs would be viable for rural mobility but it was found special consideration

for power supply and vehicle-charging infrastructure would be needed (Aultman-Hall

et al. 2012).

There are few examples of rural focused TDMs for developed countries (Zhong and

Hanson 2009) with the predominant focus being on rural travel for developing

nations. However, travel patterns for developing nations are dominated by trips required

to access basic needs and services (Oyeleye, Toyobo, and Adetunji 2013) which is not

translatable to rural scenarios for developed countries. In developed countries, trip pur-

poses and travel patterns are similar in both rural and urban environments, but the

journey distances and durations are typically extended (GOV.UK 2020b). Furthermore,

many existing TDMs are large scale (Xiong and Lei 2013) that incorporate multiple trans-

port modes (i.e. walking, driving, public transport etc.) (Hasnine and Habib 2021). In this

paper however, the model is limited to solely private passenger vehicles as it is the main

mode for transportation in rural areas.

Whilst large-scale TDMs, such as state-wide models found in the US (Xiong and Lei

2013), that encompass both urban and rural areas; their high-level focus is reflected in

their applications. For example, they have been used for inter-state ‘corridor-level’ transpor-

tation planning, freight analysis, congestion management, tolling scenarios, and high speed

rail (HSR) development (Xiong and Lei 2013); but neglecting to address needs of local rural

consumers and how this will translate to EVs. In the UK, Jahanshahi and Jin (2016) used

NTS data to investigate travel behaviour’s relationship with the local built environment

typologies, however, their work remained focused on “urban design measures”.

2.5. Research contribution

This paper develops a suitable TDM which reflects the nuances of the travel activity seen

in UK rural areas and by extension aid research into the EV transition for these areas. It

aims to contribute to academic discourse through:

. The development of a high tempo-spatial TDM applicable to UK rural areas

. Use of household lifestyle and travel scenarios to generate an Activity Based TDM

. Investigate energy requirements of EVs in rural areas

3. Travel demand model

3.1. Case study location

In order to acquire real life vehicle and household statistics to input into the TDM a case

study location was identified. A rural village of Bradbourne, on the edge of the Peak Dis-

trict National Park in the UK (Figure 1) was chosen. The village was selected due to its

small population size, and by extension a lower computational requirement. Addition-

ally, Bradbourne has readily available public data (including, population and dwelling

statistics); key inputs for the model.
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3.2. Household and car distribution

The model requires an understanding of the household and vehicle distribution across

the location simulated (i.e. number of vehicles per household). The number of house-

holds (including occupancy levels) and car ownership data for Bradbourne was obtained

from the 2011 UK Census Survey (Table QS406EW (Nomis 2013a) and QS416EW

(Nomis 2013b), respectively). To approximate the number of cars per household, these

datasets were combined on the premise that ‘the larger the household, the higher the

number of cars will be available’. Each house was given an ID number ranging from 1

to 49, which resulted in 49 household compositions (Table 1).

3.3. Lifestyle scenarios

Based upon the composition of each household (Table 1), coupled with consideration of

how those factors reflect potential occupant(s) ages, and their employment or education

status, numerous lifestyle scenarios were developed (Table 2).

To differentiate between households that would likely have children in education or

not, and if the child themselves is capable of driving, households with children have

been divided into three categories based on occupants age(s): ‘<5 yrs’, ‘5–18 yrs’, and

‘17–18 yrs’. A random number generator was used to determine which individual house-

hold would be assigned each lifestyle scenario within its category (Table 3).

3.4. Model inputs

From these lifestyle scenarios, a combination of trip purposes that each household might

reasonably undertake in order to fulfil its lifestyle requirements (i.e. full time work –

commuting trip purpose), was determined. This has the added benefit of indirectly

Figure 1. Bradbourne, England, UK. Source: (Left) Bing (2021), (Right) City Population (2021).
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Table 1. Households of Bradbourne composition.

Household occupancy House ID No. of cars Household occupancy House ID No. of cars

One Person 1 0 Three Person 30 2
2 0 31 2
3 0 32 2
4 0 33 2
5 1 34 2
6 1 35 2
7 1 36 2
8 1 37 2
9 1 38 2
10 1 39 2
11 1 40 3
12 1 41 3
13 1 42 3
14 1 Four Person 43 3
15 1 44 3

Two Person 16 1 45 3
17 1 Five Person 46 3
18 1 47 3
19 1 Six Person 48 3
20 1 Seven Person 49 4
21 1
22 2
23 2
24 2
25 2
26 2
27 2
28 2
29 2

Table 2. Lifestyle scenarios.

Household composition Description
Lifestyle
scenario

One Person & No Car One Adult – N/A to this study 1
One Person & One Car One Adult – Retired Individual 2

One Adult – Working Full Time 3
Two Person & One Car Two Adults – Retired 4

Two Adults – One Works Full Time, One Does Not 5
Two Adults – Both Work Full Time (Car Share) 6
One Adult, One Children (<5 yrs) – One Works Full Time 7
Two Adults – One Works Part Time, One Doesn’t 8

Two Person &Two Car Two Adults – Both Work Full Time 9
Two Adults – One Works Full Time, One Works Part Time 10
Two Adults – One Works Full Time, One ‘Other’ 11
Two Adults – Both Retired 12

Three Person &Two Car Two Adults & One Children (<5 yrs) – One Works Full Time, One ‘Other’ 13
Two Adults & One Children (5–18 yrs) – One Works Full Time, One School + Other 14
Two Adults & One Children (5–18 yrs) – One Works Full Time, One School + Part
Time Work

15

Two Adults & One Children (5–18 yrs) – Two Work Full Time 16
Three Person & Three
Car

Two Adults & One Children (17–18 yrs) – Two Work Full Time, One School 17
Three Adults – Three Work Full Time 18
Three Adults – Two Work Full Time, One Car sits idle 19

Four Person & Three Car Two Adults & Two Children (5–18 yrs) – Two Work Full Time, One School 20
Two Adults & Two Children (5–18 yrs) – Two Work Full Time, One Car sits idle 21

Five Person & Three Car Two Adults & Three Children (5–18 yrs) –OneWorks Full Time, One ‘Other’, One School 22
Three Adults & Two Children (5–18 yrs) – Two Work Full Time, One Works Part Time 23

Six Person & Three Car Three Adults & Three Children (5–18 yrs) – Three Work Full Time 24
Four Adults & Two Children (5–18 yrs) – Two Work Full Time, Two Don’t 25

Seven Person & Four Car Three Adults & Four Children (5–18 yrs) – TwoWork Full Time, One Doesn’t, One School 26
Four Adults & Three Children (5–18 yrs & <5 yrs) – Two Work Full Time, One Doesn’t 27
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incorporating household drivers serving other household members, such as school drop-

offs and car sharing to work. As the model is built from the perspective of the vehicles

themselves as the agents of simulation (Raney et al. 2003), the complexities of household

member task allocation and interactions are reduced.

The trip purposes were derived from the UK 2019 NTS (DfT 2020b; GOV.UK 2020b)

dataset where only rural participant households were extracted (Table 4a). The NTS

records 14 various trip purposes and their durations/distances (Table 4a). For simplicity,

the number of trip purpose categories used for this model was reduced from 14 to 5 cat-

egories through either combination or discarded. The resulting categories and their

associated duration and distances are shown in Table 4b.

The temporal resolution of the model output was set to 30 min, to align with electricity

meter readings, and a blanket duration of 30 min for all trip purposes was applied, as

opposed to the averaged values presented in Table 4b. Since, no trip purpose presented

in Table 4b averaged over 30 min duration, this blanket approach allowed for easier com-

putation as each trip generated occupies a single 30 min slot in the final output.

To produce a 7-day travel profile, four key factors are required:

(1) The time the activity occurs

(2) The day the activity occurs

(3) The duration of the activity

(4) The number of times this activity occurs (across the 7 day period)

The NTS dataset has been used to derive probabilities for the trip start times for

the various trip purposes occurring throughout the day, and the probability of

Table 3. Household compositions.

House ID
Lifestyle
scenario

No. of
occupants

No. of
vehicles House ID

Lifestyle
scenario

No. of
occupants

No. of
vehicles

House 1 1 1 0 House 26 12 2 2
House 2 1 1 0 House 27 10 2 2
House 3 1 1 0 House 28 10 2 2
House 4 1 1 0 House 29 9 2 2
House 5 2 1 1 House 30 13 3 2
House 6 3 1 1 House 31 16 3 2
House 7 3 1 1 House 32 13 3 2
House 8 2 1 1 House 33 14 3 2
House 9 3 1 1 House 34 13 3 2
House 10 2 1 1 House 35 14 3 2
House 11 3 1 1 House 36 13 3 2
House 12 2 1 1 House 37 16 3 2
House 13 3 1 1 House 38 13 3 2
House 14 3 1 1 House 39 15 3 2
House 15 3 1 1 House 40 18 3 3
House 16 4 2 1 House 41 19 3 3
House 17 6 2 1 House 42 17 3 3
House 18 5 2 1 House 43 20 4 3
House 19 7 2 1 House 44 21 4 3
House 20 8 2 1 House 45 21 4 3
House 21 4 2 1 House 46 22 5 3
House 22 11 2 2 House 47 23 5 3
House 23 9 2 2 House 48 24 6 3
House 24 11 2 2 House 49 26 7 4
House 25 9 2 2
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which days each type of trip is most likely to occur on across the week (key factors 1

and 2). However, due to the large pre-processing requirements, the duration and

number of trip occurrences (key factors 3 and 4), reasonable assumptions have

been made. The individual trip purposes and their input details will now be

described in detail.

3.4.1. Commuting

The model considers full time and part time employment. Full time occurs five days a

week, Monday to Friday with a duration of 8 h; part-time has two options; (1) works

five days a week, 4 h per day, or (2) works three days a week (randomly selected) for

8 h. A random number generator was used to determine which part time work option

and for which days of the week. The model’s determination of trip start time for commut-

ing to work is based on the probability distribution shown in Figure 2.

3.4.2. Education

Education trips are modelled in a similar way to Commuting; the occurrence is

restricted to Monday to Friday and only for households with an occupant of school

age. An important consideration for Education trips is if the vehicle being used

remains at school for the duration of the school day or is only used for ‘drop-offs/

pick-ups’, hence the 17–18 yr old child category previously mentioned. The trip

Table 4. (a) NTS trip categories, (b) Derived trip purposes for TDM.

National travel survey categories

Trip purpose Trip duration Trip distance

(a)
Commuting 27 11.8
Business 38 20.7

Education 17 5.6
Escort Education 14 4.6

Shopping 19 7.4
Other Escort 19 8.2

Personal Business 20 8.6
Visiting friends at private home 29 15.1
Visiting friends elsewhere 20 8.3
Entertainment / Public Activity 23 9.8
Sport: participate 22 10.0
Holiday: base 97 59.7

Day Trip 28 13.2
Other including just walk 39 17.3

(b)
Derived categories for TDM

Trip purpose Trip duration Trip distance

Commuting 27 11.8
Discarded

Education 17 5.6
Discarded

Shopping 19 7.4
Discarded

Other 23 10.4
Discarded

Day Trip 28 13.2
Discarded

10 T. R. MCKINNEY ET AL.



start time for education trips is determined by the probability distribution shown in

Figure 3, and the School day is assumed to end at 15:30, thus any return or ‘pick-

up’ trips will occur at this time.

3.4.3. Day trip

Day Trips have a set duration of 4 h, which can be initiated at any start time as per the

probability distribution (Figure 4).

With regards to the occurrence of Day trips, this depends on the employment status of

the household. For retired households, 2 day trips are assigned per week, one on a

weekday, one on the weekend. For employed households, only one trip per week is

undertaken on either a Saturday or Sunday. The determination of which day/s that a

day trip is scheduled is controlled by the probability distribution for days of the week,

shown in Figure 5.

Figure 2. Trip start time probability distribution for ‘Commuting’.

Figure 3. Trip start time probability distribution for ‘Education’.
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3.4.4. Shopping

The process of trip generation for ‘Shopping’ for each household depends on multiple

variables. Firstly, according to the NTS, only 88% of Bradbourne’s 49 households

conduct shopping trips across the week. Therefore, a random number generator deter-

mined which households would conduct shopping trips across the simulated period. Sec-

ondly, the number of shopping trips across the 7-day period was required. The NTS

dataset provided information regarding how often participants travel to the shops with

25% of the households shopping ‘3 or more times a week’, it was decided to model

50% of households shopping three times, and 50% shopping four times per week. 68%

of households will shop ‘Once or twice a week’, and so it was chosen that 50% of house-

holds will conduct one shopping trip, and the other 50% will shop twice. The remaining

7% of participants, which equates to just over 3 households in Bradbourne, shop less than

once per week. This was incorporated with one household, randomly selected, to conduct

just a single shopping trip during the simulation period.

The start timeprobability distribution for shopping trips is shown in Figure 6. The duration

of a shopping tripwas set to 2 h and the determination ofwhich day of theweek it would occur

for an individual household was controlled by the probability distribution (Figure 7).

Figure 4. Trip start time probability distribution for ‘Day Trip’.

Figure 5. Day of week probability distribution for ‘Day Trip’. (a) Weekday and (b) Weekend.
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3.4.5. Other

The final category, ‘Other’, has an activity duration of 2 h, with a start time controlled by

the probability distribution shown in Figure 8.

The NTS dataset, provided the probability distribution used to choose days of the

week for ‘Other’ trips to occur (Figure 9). Unlike the previous trip purposes, multiple

‘Other’ trips can be scheduled for the same day.

The number of times this activity occurs during a simulated week was determined by

the number of vehicles available to the household (Table 1). The resulting number of

‘Other’ trips for each household composition can be seen in Table 5.

3.5. Model methodology

The model presented utilises a logic flowchart, set by rules and decisions for generating

and scheduling the various trips (as detailed in Section 3.4), required by each household.

The overall model process is presented in Figure 10. Additional parameters such as trip

hierarchy and trip chaining will also be described.

Figure 6. Trip start time probability distribution for ‘Shopping’.

Figure 7. Probability distribution for ‘Shopping’ by day of the week.
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3.5.1. Trip priority

To overcome a common scheduling error occurring within the model, where two trips

could be scheduled to coincide, a priority for the trip purposes was devised (Figure 11).

Figure 8. Trip start time probability distribution for ‘Other’.

Figure 9. Probability distribution for ‘Other’ activities by day of the week.

Table 5. Number of ‘Other’ trips for households based on their composition.

Household composition No. of other trips

1 Person/1 Car 2
2 Person/1 Car 3
2 Person/2 Cars 4
3 Person/2 Cars 4
3 Person/3 Cars 6
4 Person/3 Cars 6
5 Person/3 Cars 6
6 Person/3 Cars 6
7 Person/4 Cars 8
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This hierarchy, or priority system was devised to determine which activity takes pre-

cedent during the scheduling and generating stage of the model. It is based upon reason-

able assumptions and the idea of ‘pre-planned’ activities compared to more spontaneous

activities. Work, School, and Day Trips have been viewed as trip purposes whose

Figure 10. TDM flowchart.

Figure 11. Trip purpose priority.
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scheduling would be known by individuals prior to the start of the week (the simulation

period). Whereas Shopping and Other trips are regarded as flexible or more random in

occurrence, and thus adjustable in their start times. Should another trip purpose lower on

the priority scale be scheduled to coincide, or during a time when the car is unavailable

due to a higher priority activity, the lower priority activities start time would be recalcu-

lated until a viable solution is found.

3.5.2. Trip chaining

Trip chaining has implications for trip mileage and duration, as the vehicle is no

longer used to or from ‘home’, but rather directly from one activity to another.

Should the trip generation process schedule 0.5 h or less between two activities,

these two trips will be chained together (Islam and Habib 2012). Since the mileage

and durations presented in Table 4b in Section 3.4 are derived values for every trip

recorded (not just trips oriented around ‘home’) for that purpose the values in

Table 4b have been used.

3.5.3. Multiple vehicles

For households with multiple vehicles, attempts were made to reasonably distribute the

trips between the vehicles available. Given the aim of this model to investigate EVs, the

mileage attributed to individual vehicles becomes paramount in determining the amount

of energy that vehicle uses. The constraints devised for trip distribution to individual

vehicles were based on the different trip purposes.

(1) Commuting – Each employed occupant of a household conduct their commuting

trips in separate vehicles (unless car-sharing). Starting with employed individual

1’s commuting trips assigned to Car 1, then employed individual 2’s commuting

trips assigned to Car 2 and so forth.

(2) Education – Education trips are assigned to the next available vehicle not being used

for commuting. If all cars are used for commuting, the last car to be assigned to an

employed individual is assigned the Education trips.

(3) Day Trip – Car 1 conducts all ‘day trip’ trips scheduled.

(4) Shopping – Car 2 conducts all shopping trips regardless of number of vehicles

required for commuting or education trips.

(5) Other – The total number of ‘Other’ trips for the household (Table 5), are split

equally between the total number of vehicles available to that household.

4. Results and discussion

In total, 1288 trips were modelled, averaging just under 29 trips per household per week;

and a total of 13,520miles were simulated over aweek, across Bradbourne’s 84 vehicles. An

example of the model’s output for 7 days vehicle usage for House 11 is shown in Table 6.

House 11 is a ‘One person & One car’ household with one adult working full time.

Thus the vehicle at this household was assigned ‘Commuting’ journeys Monday to

Friday; one ‘Day Trip’ occurring over the weekend; four ‘Shopping’ trips through the

week; and two ‘Other’ trips during the seven day simulation period.
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Table 6. Simulation results for House 11.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Location Miles Location Miles Location Miles Location Miles Location Miles Location Miles Location Miles

Time 00:00 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
00:30 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
01:00 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
01:30 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
02:00 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
02:30 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
03:00 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
03:30 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
04:00 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
04:30 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
05:00 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
05:30 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
06:00 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
06:30 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
07:00 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
07:30 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0 Home 0
08:00 Travel 0 Travel 0 Travel 0 Travel 0 Travel 0 Home 0 Travel 0
08:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Home 0 Other 10.4
09:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Travel 0 Other 10.4
09:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Other 10.4
10:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Other 10.4
10:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Travel 10.4
11:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Home 20.8
11:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Home 20.8
12:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Home 20.8
12:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Home 20.8
13:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Home 20.8
13:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Travel 13.2 Home 20.8
14:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Shopping 20.6 Home 20.8
14:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Shopping 20.6 Home 20.8
15:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Shopping 20.6 Travel 20.8
15:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Shopping 20.6 Shopping 28.2
16:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Travel 20.6 Shopping 28.2
16:30 Travel 11.8 Travel 11.8 Travel 11.8 Travel 11.8 Travel 11.8 Home 28 Shopping 28.2
17:00 Home 23.6 Home 23.6 Home 23.6 Other 22.2 Home 23.6 Home 28 Shopping 28.2

(Continued )
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Table 6. Continued.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Location Miles Location Miles Location Miles Location Miles Location Miles Location Miles Location Miles

17:30 Home 23.6 Home 23.6 Home 23.6 Other 22.2 Home 23.6 Home 28 Travel 28.2
18:00 Home 23.6 Home 23.6 Home 23.6 Other 22.2 Travel 23.6 Home 28 Home 35.6
18:30 Home 23.6 Home 23.6 Home 23.6 Other 22.2 Shopping 31 Home 28 Home 35.6
19:00 Home 23.6 Home 23.6 Home 23.6 Travel 22.2 Shopping 31 Home 28 Home 35.6
19:30 Home 23.6 Travel 23.6 Home 23.6 Home 32.6 Shopping 31 Home 28 Home 35.6
20:00 Home 23.6 Shopping 31 Home 23.6 Home 32.6 Shopping 31 Home 28 Home 35.6
20:30 Home 23.6 Shopping 31 Home 23.6 Home 32.6 Travel 31 Home 28 Home 35.6
21:00 Home 23.6 Shopping 31 Home 23.6 Home 32.6 Home 38.4 Home 28 Home 35.6
21:30 Home 23.6 Shopping 31 Home 23.6 Home 32.6 Home 38.4 Home 28 Home 35.6
22:00 Home 23.6 Travel 31 Home 23.6 Home 32.6 Home 38.4 Home 28 Home 35.6
22:30 Home 23.6 Home 38.4 Home 23.6 Home 32.6 Home 38.4 Home 28 Home 35.6
23:00 Home 23.6 Home 38.4 Home 23.6 Home 32.6 Home 38.4 Home 28 Home 35.6
23:30 Home 23.6 Home 38.4 Home 23.6 Home 32.6 Home 38.4 Home 28 Home 35.6
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The probability distributions presented in Section 3.4 resulted in large variations of travel

patterns predicted for each vehicle.Vehicles ranged fromconducting 2 trips perweek to over

10, and a range of weekly miles driven from 41.6 miles to 324.8 miles. The vehicles over the

seven day period that drove the minimum and maximum number of miles are shown in

Figures 12 and 13 respectively. House 45 – Car 3, travelled the least miles, driving a total

of 41.6 miles over the simulated week, as it was assigned to only complete two ‘Other’

trips on the Thursday and Sunday. In contrast, House 17 has two adults both working full

timeandone car.The vehicle is car sharedbybothmembers of thehousehold for commuting

and completes a number of ‘Other’ trips and one ‘Day Trip’ over the weekend.

The average vehicle travelled just under 161 miles per week, scaling up to a year, on the

basis of 52 weeks, combines to a total of 8369 miles per vehicle. Table 7 below shows the

yearly mileage by person from the 2019 NTS dataset for comparison with the model pre-

sented in this paper.

As per Table 7, individuals within rural areas travel on average 8596 to 9756 miles per

year. Comparing to the 8369 miles as forecasted by our model, this represents only a 2.7%

Figure 12. Vehicle with minimum cumulative mileage driven over the week (House 45 – Car 3).

Figure 13. Vehicle with maximum cumulative mileage driven over the week (House 17 – Car 1).
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difference to the lower end value. This could be explained by the discrepancy between

what the two values being compared are defined as. The NTS values presented in

Table 7 are ‘Miles per person per year’, whereas the mileages forecasted by the model

developed in this paper relate to the miles per vehicle per year. Due to the nature of

the NTS, whereby individuals complete their travel diaries from their own point of

view (POV), this can lead to higher mileages due to situations whereby two individuals

are in the same vehicle conducting the same journey. For example, if an adult was taking

their child to school, from the perspective of this papers model, a single car is used, and

the mileage associated with that journey is recorded. However, for the NTS recording this

would constitute two person trips, essentially doubling the mileage.

5. Implications for EV energy consumption

The TDM presented does not include a car type parameter, unlike some other

models (Mocanu 2018). However, as the main focus of this model is to inform

the equivalent energy EVs will require to conduct predicted travel patterns, incor-

porating car types (specifically ICE vehicles) was deemed outside the scope of the

models’ requirements. With the output of the TDM providing the miles driven

by each car during a week, the energy consumed per mile by an EV can be calcu-

lated. For simplicity a 100% homogeneous EV population was chosen, all 84

vehicles would be assumed to be a 40 kWh Nissan Leaf. A constant consumption

rate for each Nissan Leaf was taken, 26.5 kWh/100miles (Electric Vehicle Database

2018). Figure 14 shows the total energy consumed by all 84 EVs over the 7-day

simulation period.

Table 7.Miles per person per year from the 2019 NTS dataset categorised by rural-urban classification
(NTS9907) (GOV.UK, 2020b).

Rural-urban classification 2019 NTS

Urban Conurbation 5037
Urban City and Town 6772
Rural Town and Fringe 8596
Rural Village, Hamlet, and Isolated Dwelling 9756
All Areas 6515

Figure 14. Total energy consumed over the 7-day simulation period (cumulative).
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Over the course of the week, a total of 3562 kWh were consumed by the synthetic 84

Nissan Leaf population of Bradbourne. To put this into perspective, the average electri-

city consumption for a UK household is 3100 kWh/year (BEIS 2021). The energy profiles

for the lowest and highest mileage vehicles, House 45 – Car 3 and House 17 – Car 1, are

presented (Figure 15), alongside the average EVs energy profile.

With an understanding of the energy consumption for a fleet of 100% electric vehicles

in Bradbourne over the course of a week; attention can now be focused on the recharging

patterns to ensure this energy is replaced. A full in-depth analysis of charging require-

ments was deemed outside the scope of this paper; however this work was done in

McKinney, Ballantyne, and Stone (2023).

6. Conclusion

This paper has presented the development of a 7 – day TDM built upon rural specific

data which adopts a new approach incorporating lifestyle scenarios. The rural Peak Dis-

trict village of Bradbourne, UK, was used as a real-world application of this model. Using

the UK Census for statistical data relating to the village itself, the private passenger

vehicle travelling habits of a community of 49 households and 84 vehicles was simulated

for a week. With a high temporal resolution of 30 min for all activities of each vehicle, a

detailed picture of Bradbourne’s car usage has been achieved. The level of detail provided

by this TDM enables its usability for determining energy requirements for EVs in rural

areas. Using a synthetic EV population, these 84 vehicles were shown to consume more

energy in one week than an average UK household consumes within a year. Building

upon this work, EV charging scenarios can be incorporated to determine the impact

EVs will have on local rural grid infrastructure.
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