
This is a repository copy of Many-objective reinforcement learning for online testing of
DNN-enabled systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/203326/

Version: Accepted Version

Proceedings Paper:
Ul Haq, F., Shin, D. orcid.org/0000-0002-0840-6449 and Briand, L.C. (2023) Many-
objective reinforcement learning for online testing of DNN-enabled systems. In: 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE), 14-20 May
2023, Melbourne, Australia. Institute of Electrical and Electronics Engineers (IEEE) , pp.
1814-1826. ISBN 9781665457026

https://doi.org/10.1109/icse48619.2023.00155

© 2023 The Authors. Except as otherwise noted, this author-accepted version of a paper
published in 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE) is made available via the University of Sheffield Research Publications and
Copyright Policy under the terms of the Creative Commons Attribution 4.0 International
License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any
medium, provided the original work is properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Many-Objective Reinforcement Learning for Online

Testing of DNN-Enabled Systems

Fitash Ul Haq

University of Luxembourg

Luxembourg

fitash.ulhaq@uni.lu

Donghwan Shin∗

University of Sheffield

Sheffield, United Kingdom

d.shin@sheffield.ac.uk

Lionel C. Briand

University of Luxembourg

Luxembourg

University of Ottawa

Ottawa, Canada

lionel.briand@uni.lu

Abstract—Deep Neural Networks (DNNs) have been widely
used to perform real-world tasks in cyber-physical systems such
as Autonomous Driving Systems (ADS). Ensuring the correct
behavior of such DNN-Enabled Systems (DES) is a crucial topic.
Online testing is one of the promising modes for testing such
systems with their application environments (simulated or real)
in a closed loop, taking into account the continuous interaction
between the systems and their environments. However, the
environmental variables (e.g., lighting conditions) that might
change during the systems’ operation in the real world, causing
the DES to violate requirements (safety, functional), are often
kept constant during the execution of an online test scenario due
to the two major challenges: (1) the space of all possible scenarios
to explore would become even larger if they changed and (2) there
are typically many requirements to test simultaneously.

In this paper, we present MORLOT (Many-Objective Rein-
forcement Learning for Online Testing), a novel online testing ap-
proach to address these challenges by combining Reinforcement
Learning (RL) and many-objective search. MORLOT leverages
RL to incrementally generate sequences of environmental changes
while relying on many-objective search to determine the changes
so that they are more likely to achieve any of the uncovered
objectives. We empirically evaluate MORLOT using CARLA,
a high-fidelity simulator widely used for autonomous driving
research, integrated with Transfuser, a DNN-enabled ADS for
end-to-end driving. The evaluation results show that MORLOT
is significantly more effective and efficient than alternatives with a
large effect size. In other words, MORLOT is a good option to test
DES with dynamically changing environments while accounting
for multiple safety requirements.

Index Terms—DNN Testing, Reinforcement learning, Many
objective search, Self-driving cars, Online testing

I. INTRODUCTION

Deep Neural Networks (DNNs) have been widely used

to perform various tasks, such as object classification [1],

speech recognition [2] and object detection [3]. With the recent

advances in Deep Learning (DL), DNNs are increasingly

applied to safety-critical software systems, such as Automated

Driving Systems (ADS) that drive a vehicle with the aim

of preventing safety and functional violations (e.g., colliding

This work has been carried out as part of the COSMOS Project, which
has received funding from the European Union’s Horizon 2020 Research and
Innovation Programme under grant agreement No. 957254. This work was also
supported by NSERC of Canada under the Discovery and CRC programs.
∗Part of this work was done while the author was affiliated with the

University of Luxembourg, Luxembourg.

with other vehicles). Therefore, ensuring the correct behavior

of such DNN-Enabled Systems (DES) has emerged as a

fundamental problem of software testing.

Online testing [4] is one of the promising modes of DES

testing that accounts for the closed-loop interaction between

the DES under test and its environment. In online testing,

the DES under test is embedded into the application envi-

ronment (e.g., a simulated driving environment for ADS) and

is monitored to detect the violations of safety and functional

requirements during the closed-loop interaction. Such interac-

tion helps account for the accumulation of (possibly small)

errors over time, eventually leading to requirements violations

that often cannot be detected by offline testing [5]. As a

result, online testing has been actively applied in many testing

approaches recently [6, 7, 8, 9, 10].

However, existing online testing approaches for DES exhibit

at least one of two critical limitations. First, they do not

account for the fact that there are often many safety and

functional requirements, possibly independent of each other,

that must be considered together in practice. Though one

could simply repeat an existing test approach for individual

requirements, it is inefficient due to its inability to dynamically

distribute the test budget (e.g., time) over many requirements

according to the feasibility of requirements violations. For

example, if one of the requirements cannot be violated, the

pre-assigned budget for this requirement would simply be

wasted. Furthermore, dividing the limited test budget across

many requirements may result in too small a budget for

testing individual requirements thoroughly. Second, they do

not vary dynamic environmental elements, such as neighboring

vehicles and weather conditions, during test case (i.e., test

scenario) execution. For example, certain weather conditions

(e.g., sunny) remain the same throughout a test scenario,

whereas in reality they may change over time, which can

trigger requirements violations. This is mainly because the

number of possible test scenarios increases exponentially when

considering individual dynamic elements’ changes (i.e., time

series). However, not accounting for such dynamic environ-

ments could significantly limit test effectiveness by limiting

the scope of the test scenarios being considered.

Contributions. To overcome the above limitations, we

present MORLOT (Many-Objective Reinforcement Learning

for Online Testing), a novel online testing approach for DES.

MORLOT leverages two distinct approaches: (1) Reinforce-

ment Learning (RL) [11] to generate the sequences of changes

to the dynamic elements of the environment with the aim

of causing requirements violations, and (2) many-objective

search [12, 13] to efficiently satisfy as many independent

requirements as possible within a limited testing budget.

The combination of both approaches works as follows: (1)

RL incrementally generates the sequence of changes for the

dynamic elements of the environment, and (2) those changes

are determined by many-objective search such that they are

more likely to achieve any of the uncovered objective (i.e.,

the requirement not yet violated). In other words, changes

in the dynamic elements tend to be driven by the objectives

closest to being satisfied. For example, if there are three

objectives o1, o2, and o3 where o2 is closest to being satisfied,

MORLOT incrementally appends those changes that help in

achieving o2 to the sequence. Furthermore, by keeping a record

of uncovered objectives as the state-of-the-art many-objective

search for test suite generation does, MORLOT focuses on the

uncovered ones over the search process.

Though MORLOT can be applied to any DES interacting

with an environment including dynamically changeable ele-

ments, it is evaluated on DNN-enabled Autonomous Diving

Systems (DADS). Specifically, we use Transfuser [14], the

highest ranked DADS, at the time of our evaluation, among

publicly available ones in the CARLA Autonomous Driving

Leaderboard [15] and CARLA [16], a high-fidelity simulator

that has been widely used for training and validating DADS.

Our evaluation results, involving more than 600 computing

hours, show that MORLOT is significantly more effective and

efficient at finding safety and functional violations than state-

of-the-art, many-objective search-based testing approaches tai-

lored for test suite generation [12, 13] and random search.

Our contributions can be summarized as follows:

- MORLOT, a novel approach that efficiently generates com-

plex test scenarios, including sequential changes to the

dynamic elements of the environment of the DES under test,

by leveraging both RL and many-objective search;

- An empirical evaluation of MORLOT in terms of test effec-

tiveness and efficiency and comparison with alternatives;

- A publicly available replication package, including the im-

plementation of MORLOT and instructions to set up our

case study.

Significance. For DES that continuously interact with their

operational environments and have many safety and func-

tional requirements to be tested, performing online testing

efficiently to identify as many requirements violations as

possible, without arbitrarily limiting the space of test scenar-

ios, is essential. However, taking into account the sequential

changes of dynamic elements of an environment over time is

extremely challenging since it renders the test scenario space

exponentially larger as test scenario time increases. MORLOT

addresses the problem by leveraging and carefully combining

RL and many-objective search, thus providing an important

and novel contribution towards scalable online testing of real-

world DES in practice.

Paper Structure. The rest of the paper is structured as

follows. Section II provides a brief background on RL and

many-objective search. Section III formalizes the problem of

DES online testing with a dynamically changing environment.

Section IV discusses and contrasts related work. Section V

describes our proposed approach, starting from a generic RL-

based test generation approach and then MORLOT, a many-

objective reinforcement learning approach for online testing.

Section VI evaluates the test effectiveness and efficiency of

MORLOT using an open-source DNN-based ADS with a high-

fidelity driving simulator. Section VII concludes the paper.

Section VIII provides details on the replication package.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement Learning (RL) is about learning how to

perform a sequence of actions to achieve a goal by iterating

trials and errors to learn the best action for a given state [11].

In particular, RL involves the interaction between an RL

agent (i.e., the learner) and its surrounding environment, which

is formalized by a Markov Decision Process (MDP). At each

time step j, the RL agent observes the environment’s state sj
and takes an action aj based on its own policy π (i.e., the

mapping between states and actions). At the next time step

j + 1, the agent first gets a reward wj+1 indicating how well

taking aj in sj helped in achieving the goal, updates π based

on wj+1, and then continues to interact with its environment.

From the interactions (trials and errors), the agent is expected

to learn the unknown optimal policy π∗ that can select the

best action maximizing the expected sum of future rewards in

any state.

An important assumption underlying MDP is that states sat-

isfy the Markov property: states captures information about all

aspects of the past agent–environment interactions that make a

difference for the future [11]. In other words, wj+1 and sj+1

depend only on sj and aj , and are independent from the previ-

ous states sj−1, sj−2, . . . , s1 and actions aj−1, aj−2, . . . , a1.

This assumption allows the RL agent to take an action by

considering only the current state, as opposed to all past states

(and actions).

In general, there are two types of RL methods: (1) tabu-

lar-based and (2) approximation-based. Tabular-based meth-

ods [17, 18] use tables or arrays to store the expected sum

of future rewards for each state. Though they are applicable

only if state and action spaces are small enough to be

represented in tables or arrays, they can often find exactly

the optimal policy [11]. Discretization can be used to control

the size of state and action spaces, especially when states

and actions are continuous. It is essential to apply the right

degree of discretization since coarse-grained discretization

may make it impossible for the agent to distinguish between

states that require different actions, resulting in significant

loss of information. When the state space is enormous and

cannot be easily discretized without significant information

loss, approximation-based methods [19] can be used where

the expected sum of future rewards for a newly discovered

state can be approximated based on known states (often with

the help of state abstraction when they are too complex to

directly compare). While they can address complex problems

in very large state spaces, they can only provide approximate

solutions.

One of the most commonly used tabular-based reinforce-

ment learning algorithms is Q-learning due to its simplicity

and guaranteed convergence to an optimal policy [17]. It stores

and iteratively updates the expected sum of future rewards

for each state-action pair in a table (a.k.a., Q-table) while

going through trials and errors. A properly updated Q-table

can therefore tell what is the best action to choose in a given

state. A more detailed explanation, including how to update

a Q-table to ensure the convergence, can be found in Sutton

and Barto [11].

B. Many-Objective Search

Many-objective search [20, 21] refers to solving multiple

objectives simultaneously, typically more than four, using

meta-heuristic search algorithms, such as MOEA/D [22] and

NSGA-III [23]. With the help of fitness functions that quantify

the goodness of candidate solutions in terms of individual ob-

jectives, the algorithms can deliver a set of solutions satisfying

as many objectives as possible.

In software testing, many-objective search has been applied

to solve testing problems with many test requirements. The

idea is to recast such testing problems into optimization

problems by carefully defining fitness functions for all ob-

jectives. However, since the number of objectives (i.e., test

requirements) is often much more than four (e.g., covering all

branches in a program), researchers have developed tailored

algorithms for testing. MOSA [12] is a well-known algorithm

dedicated to test suite generation with many objectives. It uses

an evolutionary algorithm to achieve each objective individ-

ually by effectively searching for uncovered objectives and

keeping an archive for the best test cases achieving objectives.

By defining fitness functions to measure the likelihood of

covering individual branches in a program, MOSA can ef-

fectively and efficiently generate a test suite covering as many

branches as possible [12]. FITEST [13] is another state-of-the-

art algorithm that extends MOSA to decrease the population

size as the number of uncovered objectives decreases to

improve efficiency, in contrast to MOSA that maintains the

same population size during the entire search.

III. PROBLEM DESCRIPTION

In this section, we provide a precise problem description

regarding the automated online testing of DNN-enabled sys-

tems (DES) by dynamically changing their environment during

simulation. As a working example, we use a DNN-enabled

autonomous driving system (DADS) to illustrate our main

points, but the description can be generalized to any DES.

In online testing, a DADS under test is embedded into and

interacts with its driving environment. However, because of the

risks and costs it entails, online testing is usually performed

with a simulator rather than on-road vehicle testing. Using a

simulator enables the control of the driving environment, such

as weather conditions, lighting conditions, and the behavior

of other actors (e.g., vehicles on the road and pedestrians).

During simulation, the DADS continuously interacts with

the environment by observing the environment via the ego

vehicle’s sensors (e.g., camera and LIDAR) and driving the

ego vehicle through commands (e.g., steering, throttle, and

braking). Due to the closed-loop interaction between the

DADS and its environment, simulation is an effective in-

strument to check if any requirements violation can occur

under realistic conditions. Notice that such violations can be

triggered by dynamically changing the driving environment

during simulation; for example, certain changes to the speed

of the vehicle in front, which can often occur in practice due

to impaired driving or sudden stops, can cause a collision. The

goal of DADS online testing, based on dynamically changing

the environment, is to find a minimal set of test cases, each

of them changing the environment in a different way, to cause

the DADS to violate as many requirements as possible.

Specifically, let d be the DADS under test on board the

ego vehicle and E = (X,K) be the environment where

X = {x1, x2, . . . } is a set of dynamic elements of the

simulation (e.g., actors other than the ego vehicle, and the

environment conditions) and K is a set of static elements (e.g.,

roads, buildings, and trees). Each dynamic element x ∈ X can

be further decomposed into a sequence x = ⟨x1, x2, . . . , xJ⟩
where J is the duration of the simulation and xj is the value

of x at time j ∈ {1, 2, . . . , J} (e.g., the position, speed,

and acceleration of the vehicle in front at time j). Based

on that, we can define Xj = {xj | x ∈ X} as capturing

the set of values of all the dynamic elements in X at time

j and Ej = (Xj ,K) as indicating the set of values of all

environmental elements (both dynamic and static) in E at time

j. Let a test case t = ⟨X1, . . . , XJ⟩ be a sequence of values

of the dynamic elements for J time steps. By running d in E
with t, using a simulator, at each time step j ∈ {1, 2, . . . , J},

d observes the snapshot of Ej = (Xj ,K) using the sensors

(e.g., camera and LIDAR) and generates driving commands

Cj (e.g., throttle, steering, and braking) for the ego vehicle.

Note that what d observes from the same E varies depending

on the ego vehicle’s dynamics (e.g., position, speed, and

acceleration) computed by C; for example, d observes the

relative distance between the ego vehicle and the vehicle in

front, which naturally varies depending on the position of

the ego vehicle. For the next time step j + 1, the simulator

computes Ej+1 = (Xj+1,K) according to t and generates

what d observes from Ej+1 by taking into account Cj .

Given a set of requirements (safety, functional) R, the

degree of a violation for a requirement r ∈ R produced by

d in E for t at any time step j ∈ {1, . . . , J}, denoted by

v(r, d, E, t, j), can be measured by monitoring the simulation

of d in E for t. For example, the distance between the ego

vehicle and the vehicle in front can be used to measure how

close they are from colliding. If v(r, d, E, t, j) is greater than

a certain threshold ϵr (i.e., the distance is closer than the

minimum safe distance) at any j, we say that d violates r at j.

Let vmax (r, d, E, t) be the maximum degree of violation for

r produced by d in E for t during simulation. Given an initial

environment E1 = (X1,K), the problem of DADS online

testing for dynamically changing environments is to find a

minimal set of test cases TS that satisfies vmax (r, d, E, t) > ϵr
for as many r ∈ R as possible when executing all t ∈ TS .

Test data generation for online testing of a DADS, with a dy-

namically changing environment, presents several challenges.

First, the input space for dynamically changing the behavior of

the environment is enormous because there are many possible

combinations of environmental changes for each timestamp.

Second, there are usually many independent requirements to

be considered simultaneously. For example, keeping a safe

distance from the vehicle in front is independent from the ego

vehicle abiding by the traffic lights. If the requirements are not

considered simultaneously, no practical test budget may be suf-

ficient to thoroughly test each requirement, as a limited budget

must be divided across all individual requirements. Third, in

addition to the second challenge, depending upon the accuracy

of the DADS under test, it may be infeasible to violate some

requirements. This implies that the pre-assigned budgets for

those requirements are inevitably wasted if a testing approach

cannot simultaneously consider all requirements. Last but not

least, a DADS is often developed by a third party, and as

a result its internal information (e.g., about DNN models)

is often not fully accessible. Therefore, online DADS testing

must often be carried out in a black-box manner.

To address the challenges mentioned above, we propose

a novel approach that combines two distinct approaches:

(1) RL to dynamically change the environment based on the

simulation state (including the state of the DES under test

and the state of the environment) at each timestamp with

the aim of causing requirements violations, and (2) many-

objective search to effectively and efficiently achieve many

independent objectives (i.e., violating requirements in our

context). Furthermore, our approach is DNN-agnostic; it does

not need any internal information about the DNN.

IV. RELATED WORK

This section discusses DES (DNN-Enabled Systems) testing

in terms of two approaches closely related to ours: search-

based testing and RL-based testing.

A. Search-Based Testing

Search-based testing has been widely adapted to test DES,

particularly DADS, by formulating a test data generation prob-

lem as an optimization problem where an objective is to cause

the DADS under test to misbehave and applying metaheuristic

search algorithms to solve the optimization problem automat-

ically. For example, Gambi et al. [6] presented ASFAULT, a

tool for generating test scenarios in the form of road networks

using a genetic algorithm to cause the DADS under test to go

out of lane. Klischat and Althoff [24] tested motion-planning

modules in DADS by generating critical test scenarios based

on a minimization of the search space, defined as a set of

scenario parameter intervals, of the vehicle under test. Riccio

and Tonella [8] presented DEEPJANUS, an approach that uses

NSGA-II to generate a pair of close scenarios, where the

DADS under test misbehaves for one scenario but not for

the other, in an attempt to find a frontier behavior at which

the system under test starts to misbehave. For a configurable,

parameterized ADS, Calò et al. [25] aimed to find avoidable

collisions, that is collisions that would not have occurred with

differently-configured ADS; using NSGA-II, they first search

for a collision scenario and then search for a new configuration

of the ADS which avoids the collision. Considering the high

computational cost of simulations involved in search-based

approaches, improving the efficiency of search-based testing

has also been studied in the context of DES/DADS testing.

Abdessalem et al. [26] presented NSGAII-DT that combines

NSGA-II (a multi-objective search algorithm) and Decision

Tree (a classification model) to generate critical test cases

while refining and focusing on the regions of a test scenario

space that are likely to contain cost critical test scenarios.

Ul Haq et al. [7] presented SAMOTA, an efficient online

testing approach extending many-objective search algorithms

tailored for test suite generation to utilize surrogate models

that can mimic driving simulation (e.g., whether a requirement

violation occurred or not) and are much less expensive to

run. Li et al. [27] presented AVFUZZER, a single-objective

approach to find safety violations in autonomous vehicles by

changing driving manoeuvres of other vehicles on the road in

a coarse-grained manner (e.g., lane changes).

Though search-based testing approaches have shown to

work very well for testing DADS when the environment

remains static throughout the tested scenario, they are not

likely to work efficiently in the case of dynamically changing

environments. One of the reasons is they must get the fitness

score for a test scenario after the simulation is completed

(when we can ascertain whether a requirement violation oc-

curred) and cannot, therefore, change the environment during

a simulation run. Another challenge is that the search space

becomes enormous because of the many possible combinations

of environment parameters at each timestamp.

B. RL-Based Testing

RL has also recently been used for DES/DADS testing. In

RL-based testing, a DES/DADS testing problem is formulated

as a sequential decision-making problem where the goal is to

generate a compact test scenario (in the form of a sequence

of environmental changes) that causes the system under test

to violate a given requirement. For example, Koren et al. [9]

presented an approach that extends Adaptive Stress Testing

(AST) [28] by using reinforcement learning for updating the

environment of a vehicle to cause a collision. Corso et al. [29]

further extended AST to include domain relevant information

in the search process. This modification helps in finding a more

diverse set of test scenarios in the context of DADS testing.

Sharif and Marijan [30] presented a two-step approach that not

only generates test scenarios using Deep RL but also utilizes

the test scenarios to improve the robustness of the DADS under

test by retraining it. Very recently, Lu et al. [10] presented

DEEPCOLLISION, an approach that learns the configurations

of the environment, using Deep Q-learning, that can cause the

crash of the ego vehicle.

Despite encouraging achievements when using RL for

DES/DADS testing, especially when the objective is to dynam-

ically change the environment, there is no work that focuses on

testing many independent requirements simultaneously, thus

raising the problems discussed in Section III.

V. REINFORCEMENT LEARNING-BASED TEST

GENERATION

This section presents MORLOT (Many-Objective Rein-

forcement Learning for Online Testing), our novel approach to

address the problem explained in Section III. In the following

subsections, we first describe how Reinforcement Learning

(RL) can be tailored for the generation of a single test case

(i.e., a test scenario in the context of DES online testing), and

then present MORLOT by extending it.

A. Test Case Generation using RL

RL has widely been used to learn the sequence for complet-

ing a sequential decision-making task [11, 31]. RL has also

been applied to automated software testing [32, 33, 34]. For

the latter, RL is particularly suitable for systems whose usage

entails sequential steps, for example ordering something from

the web [32] such as: (1) going to the website, (2) putting

something in the cart, (3) checkout and payment. Similarly, in

the case of testing a DADS, we require sequential changes in

the environment; for example, sequential steps for one scenario

can be: (1) change the weather to Rainy (to decrease the

friction between tyres and the road), (2) increase the fog level

(to reduce visibility), (3) increase the speed of the vehicle-

in-front (to increase the distance from the ego-vehicle, which

then speeds up as no obstacle is visible), (4) abruptly slow

the vehicle-in-front to trigger a collision (violation of safety

requirement).

To generate a test case (i.e., a test sequence) for a sin-

gle requirement (safety, functional), RL is driven by an

objective that must be satisfied while interacting with the

environment. The objective is to find any test case t that

satisfies vmax (r, d, E, t) > ϵr, where vmax (r, d, E, t) is the

maximum degree of violation for a requirement r observed

over the simulation of the DADS under test d in its driving

environment E, while executing t and assuming ϵr is the

threshold specifying the maximum acceptable violation for r.

The goal of RL-based testing is to find a sequence of changes

in the environment that results in satisfying the objective; these

changes are stored in t in the form of state-action pairs, where

a state captures a snapshot of E and the ego vehicle and

an action indicates the change to be applied to E given the

state. Storing states in t is essential as it provides necessary

information for explaining the changes in the environment

that resulted in a requirement violation. A single test case is

therefore composed of a sequence of state-action pairs leading

to requirement violations.

As described in Section II, RL methods can be categorised

into two types: (1) tabular-based and (2) approximation-based.

Considering the simplicity and fast convergence of tabular-

based methods, we use Q-learning [17], one of the most widely

used algorithms in this category, as our basis in the rest of the

paper. Nevertheless, one can easily opt for other tabular-based

RL methods, such as SARSA [18], by just changing the way

of updating the Q-table.

To use Q-learning for testing, it is essential to define

states, actions, and rewards for an RL agent as described in

Section II-A. In the context of DADS testing, states can be

defined to capture important details of the simulation (e.g.,

locations/speeds of actors, weather conditions), actions are

the environment changes (e.g., change in the dynamics of

actors and weather conditions) and rewards should indicate

the degree of requirements violations. The higher the degree

of violation, the higher the reward, so that the RL agent can

generate a sequence of state-action pairs that maximizes the

sum of rewards.

Algorithm 1 presents a generic RL-based testing algorithm

that takes as inputs an objective o, an environment E and a

Q-table q (possibly initialized based on prior knowledge), and

returns a test case t achieving o and a Q-table q that was

updated during the generation of t. If the algorithm cannot

find a t that satisfies o, it returns a null value for t along with

the updated Q-table q resulting from the search, which can be

reused later if needed.

Algorithm 1: RL-based Test Generation (single objective)

Input : Objective o,
Environment E,
Q-table q

Output: Test Case t
1 while not(budget finished) do
2 Test Case t← ∅
3 E ← reset(E)
4 while not(stopping condition) do
5 State s← observe(E)
6 Action a← chooseAction(q, s)
7 Reward w ← perform(E, a)
8 t← append(t, (s, a))
9 q ← updateQtable(q, s, a, w)

10 if satisfy(t, o) then
11 return t, q

12 return null , q

The algorithm begins with the loop for finding t that satisfies

o. Until the budget (e.g., total number of hours or simulator

runs) runs out, the algorithm repeats the following steps: (1)

initialize t and resetting E to its initial state (lines 2–3) and

(2) run the tabular-based RL algorithm to generate t (i.e., a

sequence of environmental changes in the form of state-action

pairs) with the aim of satisfying o (lines 4–11; see below).

The algorithm ends by returning t if o is satisfied; otherwise,

a null value is returned for t.

To generate t so that it satisfies o (lines 4–11), the algorithm

repeats the following steps until the stopping condition (e.g.,

satisfying o or no more possible actions) is met: (i) observe the

state s from E (line 5), (ii) choose an action a either randomly

(with a small probability ϵ to increase the exploration of the

state space and to avoid being stuck in local optima) or using

q and s (line 6), (iii) perform a to update E and receive a

reward w for o (line 7), (iv) append a new state-action pair

(s, a) at the end of t (line 8), (v) update q using s, a and w
(line 9), and (vi) return t and q if the objective o is satisfied

(i.e., a violation is found) (line 11).

B. Test Suite Generation using many-objective RL

Algorithm 1 works well with one objective (violating one

requirement) while the nature of our problem, as described in

Section III, involves multiple independent objectives. There-

fore, we need to extend the algorithm above to efficiently take

into account many objectives.

As discussed in Section IV-A, there is existing work

on covering many independent objectives in the context of

DES/DADS testing [26, 13, 7]. Though they test both static

and dynamic elements of the environment, they do not change

the dynamic elements during the execution (simulation) of a

test case. Existing approaches can be used for the problem of

DADS testing with dynamically changing environments if they

extend the search space to take into account the environment’s

dynamic elements over a certain time horizon; however, this

would be highly inefficient due to the resulting much larger

search spaces (see Section VI for details).

To efficiently solve the problem of DES online testing

considering dynamically changing environments, with many

independent objectives, we propose a novel approach: Many-

Objective Reinforcement Learning for Online Testing (MOR-

LOT). It combines two distinct techniques: (1) tabular-based

Reinforcement Learning (RL) to dynamically interact with

the environment for finding the environmental changes that

cause the violation of given requirements and (2) many-

objective search for test suite generation [12, 13, 7] to achieve

many independent objectives (i.e., violating the requirements)

individually within a limited time budget.

Similar to existing work, MORLOT uses the notion of

archive to keep the minimal set of test cases satisfying the

objectives. To take into account many independent objectives

simultaneously, we extend Algorithm 1 to have multiple Q-

tables, each of them addressing one objective. Intuitively, each

Q-table captures the best action to select for one corresponding

objective in a given state. However, the challenge is that, in

the same states, different actions can be chosen for different

objectives (by different Q-tables). To choose a single action

to perform, we select the Q-table based on the objective that

achieved the maximum fitness value (i.e., reward in RL) in the

previous iteration. This is because that objective is the closest

to being satisfied.

MORLOT takes a set of objectives O, an environment E and

a set of Q-tables Q (possibly initialized based on prior knowl-

edge); MORLOT returns a test suite containing a test case

for each satisfied objective. As stated earlier, we define each

objective as a violation of a certain requirement. Specifically,

given a set of requirements R = ⟨r1, r2, . . . rn⟩ for the DADS

d, we define a set of objectives O = ⟨o1, o2, . . . on⟩ where

oi is to cause d to violate ri for i = 1, 2, . . . , n. MORLOT

returns a test suite TS = ⟨t1, t2, . . . , tm⟩ where tl is a test

case satisfying any one of the objectives oi ∈ O and m ≤ n.

Algorithm 2 shows the pseudocode of MORLOT. It takes

O, E and Q as inputs and returns a test suite containing test

cases satisfying at least one objective and multiple Q-tables,

one for each objective.

Algorithm 2: MORLOT

Input : Set of Objectives O
Environment E
Set of Q-tables Q

Output: Archive (Test Suite) A
Set of Q-tables Q

1 Set of Uncovered Objectives U ← O
2 Archive A← ∅
3 while not(budget finished) do
4 Set of Rewards W ← ∅
5 Test Case t← ∅
6 E ← reset(E)
7 while not(stopping condition) do
8 State s← observe(E)
9 Action a← chooseActionMultiObjs(s,R,Q,U)

10 W ← performMultiObjs(a,E)
11 Q← updateQtables(Q , s, a,W)
12 t← append(t, (s, a))
13 foreach o ∈ O do
14 if satisfy(t, o) then
15 A← updateArchive(A, t, o)
16 U ← U − {o}

17 return A,Q

The algorithm starts by initializing the set of uncovered

objectives U with O (line 1). It is important to keep a record

of uncovered objectives so that the search process can focus

on them. It then initializes A (line 2). Notice that |Q| = |O|
so that there is a Q-table for each objective. Until the search

budget runs out, the algorithm repeats the following steps: (1)

initialize a set of rewards W and a test case t and resetting E to

its initial state (lines 4–6) and (2) find t that satisfies u ∈ U
using RL (lines 7–16). To achieve the latter, the algorithm

repeats the following steps until the stopping conditions are

met: (i) observe s from E (line 8), (ii) choose an action a
either randomly (with a small probability ϵ to increase the

exploration of the state space and to avoid being stuck in

local optima) or using a Q-table qm ∈ Q and s where qm
is the Q-table of an uncovered objective u ∈ U whose reward

w ∈ W for the previously chosen action is the maximum

(line 9), (iii) perform a to update W received from E (line 10),

(iv) update Q using s, a, and W (line 11), (v) append (s, a) at

the end of t (line 12), and (vi) update A and U , if t satisfies any

oi ∈ O, such that A includes the shortest test case satisfying oi
from A∪{t} and U excludes oi (lines 13–16). The algorithm

ends by returning A (i.e., a minimal set of test cases, each

of them covering at least one objective) and Q (i.e., a set of

filled Q-tables, each of them matching one objective).

Notice that MORLOT updates the Q-tables Q even for

covered objectives, while addressing the uncovered objectives,

as Q can be reused later for a newer version of the DES under

test in a regression testing setting. Since the Q-tables record the

best actions to choose for given states, using them for testing

the newer versions of the DES can boost the performance of

Algorithm 1. This investigation is however left to future work.

VI. EVALUATION

This section reports on the empirical evaluation of MOR-

LOT when testing an open-source DADS. Specifically, we

answer the following research questions:

RQ1: How does MORLOT fare compared to other many-

objective search approaches tailored for test suite gen-

eration in terms of test effectiveness?

RQ2: How does MORLOT fare compared to other many-

objective search approaches tailored for test suite gen-

eration in terms of test efficiency?

To answer RQ1, we compare test suites generated by

different approaches within the same execution time budget

(in computing hours) in terms of their ability to reveal safety

and functional requirements violations. To answer RQ2, we

compare different approaches in terms of the execution time

required to reveal a certain number of requirements violations

and how differences among them evolve over time. These

investigations aim to evaluate the benefits of MORLOT for

DADS online testing, in terms of test effectiveness and effi-

ciency, and therefore the benefits of dynamically changing the

environment based on the simulation state.

A. Evaluation Subjects

We use TransFuser (TF) [14], the highest rank DADS

among publicly available ones in the CARLA Autonomous

Driving Leaderboard Sensors Track [15] at the time of our

evaluation. The Leaderboard evaluates the driving performance

of ADS in terms of 11 different metrics designed to assess

driving safety, such as red light infractions, collision infrac-

tions, and route completion. The driving performance results

of TF reported in the Leaderboard show that it is well-trained

and able to pass a large variety test scenarios. It ought therefore

to be representative of what one can find in the industry.

TF takes an image from the front-facing camera and the

sensor data from LiDAR as input and generates the driv-

ing command (steering, throttle, and braking). Internally, it

uses ResNet34 and ResNet18 [35] to extract features from

the input image and sensor data, respectively. It then uses

transformers [36] to integrate the extracted image and LiDAR

features. The integrated features are processed by a way-point

prediction network that predicts the ego vehicle’s expected

trajectory, which is used for determining the driving command

for next time steps.

We also use CARLA [16], a high-fidelity open-source

simulator developed for autonomous driving research. CARLA

provides hand-crafted static and dynamic elements for driving

simulations. Static elements include different types of roads,

buildings, and traffic signs. Dynamic elements include other

vehicles, pedestrians, weather, and lighting conditions. In

our evaluation, we let the approach under evaluation (i.e.,

MORLOT and its alternatives) control a subset of dynamic

elements to mimic real-world scenarios, such as weather and

lighting conditions and the behavior of pedestrians, which

are dynamically controllable during the simulation. They also

control the throttle and steering of the Vehicle-In-Front (VIF),

which is one of the most influential factors in the driving

performance of the Ego Vehicle (EV). Furthermore, to avoid

trivial violations of safety and functional requirements result-

ing from the behavior of dynamic elements (e.g., a pedestrian

runs into the EV), we manually imposed constraints on such

behaviors. The details of the constraints can be found in the

supporting material (see Section VIII).

Considering the capability of the simulator, we use the

following six safety and functional requirements:

r1: the EV should not go out of lane;

r2: the EV should not collide with other vehicles;

r3: the EV should not collide with pedestrians;

r4: the EV should not collide with static meshes (i.e., traffic

lights, traffic signs etc.);

r5: the EV should reach its destination in defined time budget;

r6: the EV should not violate traffic lights.

Recall that we should specify an initial environment that

determines the static elements and the initial states of the

dynamic elements for simulation. In practice, one can random-

ize the initial environments to test diverse scenarios. In our

evaluation, however, we need the same initial environments

for different approaches (and their repeated runs) to compare

them fairly in terms of test effectiveness and efficiency. Since

the road type defined in the initial environment is one of the

critical factors that has the greatest influence on the driving

performance of a DADS, we consider three different initial

environments having three different road types: Straight, Left-

Turn, and Right-Turn. We select Straight, Left-Turn, and Right-

Turn roads from Town05, one of the default maps provided

in CARLA, as all the other maps were used for training

Transfuser [14]. For the other environmental elements, we use

the basic configuration (i.e., sunny weather, the VIF is 10

meters away from the EV, pedestrians are 20 meters away

from the EV on a footpath, zero precipitation deposit on

roads) provided in CARLA [16]. The details of the initial

environment setup can be found in the supporting material

(see Section VIII).

Due to the execution time of individual simulations in

CARLA (i.e., 5 minutes on average), the total computing time

for all the three different initial environments is more than

600 hours (25 days). To address this issue, we conduct our

evaluation on two platforms, P1 and P2. Platform P1 is a

desktop with Intel i9-9900K CPU, RTX 2080 Ti (11 GB)

GPU, and 32 GB memory, running Ubuntu 18.04. Platform P2

is a g4dn.xlarge node configured as Deep Learning AMI

(version 61.1) in Amazon Elastic Cloud (https://aws.amazon.

com/ec2/) with four virtual cores, NVIDIA T4 GPU (16GB),

and 16 GB memory, running Ubuntu 18.04. Specifically, we

use P1 for the Straight environment and five instances of P2

for the remaining. By doing this, we can compare the results

of different approaches (i.e., MORLOT and its alternatives)

for the same initial environment.

B. RQ1: Test Effectiveness

1) Setup: To answer RQ1, we generate test suites using

MORLOT and other many-objective search approaches tai-

lored for test suite generation using the same execution time

budget. We compare the approaches in terms of Test Suite

Effectiveness (TSE). Specifically, the TSE of a test suite TS is

defined as the proportion of requirements TS violated over

the total number of requirements (i.e., six as explained in

Section VI-A).

To use MORLOT, we need to define states, actions, and

rewards specific to our case study as we rely on a tabular-

based RL method as mentioned in Section V-A.

In the context of DADS online testing, a state should contain

all the information that may affect the requirements violations

of the DADS, such as weather conditions and the dynamics of

the Ego Vehicle (EV), Vehicle-In-Front (VIF), and pedestrian

in terms of positions, speeds, and accelerations. To reduce the

state space, we consider only one VIF and one pedestrian since

they are sufficient to generate critical test scenarios. Further,

we rely on the spatial grid [37] and divide the road into 10x10

grids when representing the positions of the EV and VIF. For

speed and acceleration, we use values reported by CARLA,

rounded to one decimal point. Specifically, we define a state

s as a 6-tuple s = (EV ,VIF , P, h, f, g) where each of its

elements is defined as follows:

- EV = (xEV , yEV , vEV
x , vEV

y , aEV
x , aEV

y) is the state of the

EV where xEV and yEV are the x and y components of the

absolute position of the EV on the road, vEV
x and vEV

y are

the x and y components of the absolute speed of the EV, and

aEV
x and aEV

y are the x and y components of the absolute

acceleration of the EV.

- VIF = (xVIF , yVIF , vVIF
x , vVIF

y , aVIF
x , aVIF

y) is the state

of the VIF where xVIF and yVIF are the x and y compo-

nents of the position of the VIF relative to the EV, vVIF
x

and vVIF
y are the x and y components of the speed of the

VIF relative to the EV, and aVIF
x and aVIF

y are the x and

y components of the acceleration of the VIF relative to the

EV.

- P = (xP , yP , vPx , v
P
y) is the state of the pedestrian where

xP and yP are the x and y components of the direction of the

pedestrian and vPx and vPy are the x and y components of the

speed of the pedestrian. We do not consider the acceleration

of the pedestrian since it is not computed in CARLA.

- h is the weather state and can have a value ranging between

0 (clear weather) and 100 (thunderstorm) in steps of 2.5.

- f is the fog state and can have a value ranging between 0

(no fog) and 100 (heavy fog) in steps of 2.5.

- g is the lighting state (controlled by changing the location

of the light source) and can have a value ranging between

-30 (night) and 120 (evening) in steps of 2.5.

For actions, we keep the size of unit changes of the

dynamic elements small, based on preliminary experiments, to

avoid unrealistic changes within each time step; for example,

the VIF’s throttle can increase/decrease by only 0.1 at each

simulation time step. As a result, for each time step, one of

the following actions can be taken:

- increasing/decreasing throttle by 0.1 (throttle range: 0–1),

- increasing/decreasing steering 0.01 (steering range: -1–1),

- increasing/decreasing light intensity by moving the source

of light by 2.5 degrees,

- increasing/decreasing weather intensity by 2.5,

- increasing/decreasing fog intensity by 2.5,

- increasing/decreasing pedestrian speed by 0.05 m/s (speed

range 0.3–1.5),

- changing pedestrian direction (x,y-axis) by 0.1 (direction

change range: -1–1), and

- do nothing.

For rewards, we define one reward function for each re-

quirement ri for i = 1, . . . , 6, discussed in Section VI-A.

Since we aim to cause the DADS to violate the requirements,

we need higher reward values for more critical situations.

For i = 1, . . . , 5, the criticality of a situation depends on

the distance between the EV and the object (i.e., the VIF,

pedestrian, static meshes, center of the lane, and destination

for r1, r2, r3, r4, and r5, respectively); the shorter the distance,

the more critical. To capture this, we define the reward function

reward1,...,5 for r1, . . . , r5 as follows:

reward1,...,5 =

{

1/dEV ,obj , if dEV ,obj > 0

1000000, else

where dEV ,obj refers to the distance between the EV and the

object and 1,000,000 is the maximum reward for any violation,

a large number which is not achievable without violations.

The distance is normalized between 0 and 1 so that every

requirement contributes equally to the reward function. For r6,

reward6 is defined as binary due to the limitation of CARLA:

it returns 1 if r6 is violated (i.e., at least one traffic rule is

violated); otherwise 0.

Besides the definition of states, actions, and rewards for

MORLOT, there are a few RL parameters to be tuned [11],

such as the probability ϵ of choosing a random action, the

learning rate α, and the discount factor γ. For ϵ, to make

MORLOT more exploratory at first but gradually more ex-

ploitative, we dynamically decrease it from 1.0 to 0.1 during

the search, following a suggested approach [38]. Specifically,

we decrease it from 1 to 0.1 in the first 20% of the search

budget and keep it at 0.1 for the rest. For α and γ, based on

preliminary experiments, we set the values to 0.01 and 0.9,

respectively.

For comparison with MORLOT, we use two well-known ap-

proaches for many-objective test suite generation: MOSA [12]

and FITEST [13]. The six reward functions defined above

for MORLOT are used as fitness functions for MOSA and

FITEST. Recall that, as described in Section III, our test case

(test scenario) is a sequence of values of the dynamic elements

for J time steps, where the length of a simulation J can

vary depending on the behavior of dynamic elements. Since

MOSA and FITEST search for test cases that satisfy many

test objectives without sequentially determining environmental

changes, the length of a test case (i.e., the length of a sequence

of values of the dynamic elements) should be fixed before

running the search. Therefore, we set the length of a test case

as the maximum possible length of a simulation determined

by the minimum car speed and the maximum road length; if a

simulation ends before its maximum possible length, then the

remaining sequence in a test case is ignored. To be consistent

with previous studies [7, 13], we set the population size equal

to the number of objectives (i.e., requirements). We follow the

original studies [13, 12] for mutation and crossover rates.

We also use Random Search (RS) with an archive as a base-

line. RS generates random changes to the dynamic elements

as a test case. The possible changes are the same as those of

MORLOT, MOSA, and FITEST. Furthermore, RS maintains

an archive for all the test cases that lead to requirements

violations. RS will provide insights on how complex the search

problem is and will help us quantify the relative effectiveness

of advanced approaches: MORLOT, MOSA, and FITEST.

One might consider using MORL [39] or SAMOTA [7]

as additional baselines. However, the former is a general

multi-objective reinforcement learning approach that solves

multiple competing objectives while MORLOT solves many

independent objectives. Further, SAMOTA aims to reduce

testing costs by using surrogate models that can predict the

outputs of high-fidelity simulators, instead of running them,

and thus assess at a much lower cost the degree of safety

violations for each candidate test case during the search. Since

a test case in our context is a sequence of actions with a length

up to 2500, it is unrealistic to expect accurate surrogate models

that take such a long sequence as input, and therefore, we

could not reasonably compare MORLOT with SAMOTA.

Note that we do not additionally consider other RL-based

testing approaches for comparison since they do not account

for cases where many requirements must be validated at the

same time. As explained in Section III, simply repeating a

single-objective approach multiple times, by dividing the test

budget per requirement, cannot scale in our context, given that

test executions are expensive due to high-fidelity simulations.

To account for randomness in all the approaches, we re-

peat the experiment 10 times with the same time budget

of four hours. We found that fitness reaches a plateau after

four hours based on our preliminary evaluations. We apply

Mann–Whitney U tests [40] to evaluate the statistical signifi-

cance of differences in TSE values among the approaches. We

also measure Vargha and Delaney’s ÂAB [41] to calculate the

effect size of the differences; ÂAB (= 1−ÂBA) indicates that

A is better than B with a small, medium, and large effect size

when its value exceeds 0.56, 0.64, and 0.71, respectively.

R
S

M
O
SA

FI
TE

ST
M
O
R
LO

T

0.0

0.2

0.4

0.6

TS
E

Straight

R
S

M
O
SA

FI
TE

ST
M
O
R
LO

T

0.0

0.1

0.2

0.3

0.4

0.5

TS
E

Left-Turn

R
S

M
O
SA

FI
TE

ST

M
O
R
LO

T

0.0

0.1

0.2

0.3

0.4

0.5

TS
E

Right-Turn

Fig. 1. Distribution of TSE values for different testing approaches

TABLE I
STATISTICAL COMPARISON RESULTS FOR DIFFERENT APPROACHES

Comparison Straight Left-Turn Right-Turn

A B p-val ÂAB p-val ÂAB p-val ÂAB

FITEST RS 0.605 0.43 0.261 0.42 0.269 0.37
MOSA RS 0.261 0.35 0.120 0.38 0.009 0.19
MORLOT RS 0.001 0.91 0.000 0.99 0.001 0.94
MOSA FITEST 0.753 0.46 0.394 0.45 0.161 0.34
MORLOT FITEST 0.003 0.88 0.000 1.00 0.001 0.95
MORLOT MOSA 0.001 0.93 0.000 1.00 0.000 0.99

2) Results: Figure 1 shows the distribution of TSE values

achieved by RS, MOSA, FITEST, and MORLOT over 10 runs

for each of the three initial environments (i.e., Straight, Left-

Turn, and Right-Turn). The orange bar and green triangle in

the center of each box represent the median and average, re-

spectively. In addition, Table I shows the statistical comparison

results between different approaches. The columns A and B
indicate the two approaches being compared. The columns p-

value and ÂAB indicate the statistical significance and effect

size, respectively, when comparing A and B in terms of TSE.

For all three initial environments, it is clear that MORLOT

outperforms RS, MOSA, and FITEST. Given a significance

level of α = 0.01, the differences between MOTLOT and

the others are significant (p-value < 0.01) in all cases.

Furthermore, ÂAB is always greater than 0.71 when A =
MORLOT, meaning that MORLOT has a large effect size

when compared to the others in terms of TSE. This result

implies that, by combining RL and many-objective search,

MORLOT can detect significantly more violations for a given

set of safety and functional requirements than random search

and state-of-the-art many-objective search approaches for test

suite generation. This is mainly because MORLOT can incre-

mentally generate a sequence of changes by observing the state

and reward after each change, whereas the other approaches

must generate an entire sequence at once whose fitness score

is calculated only after the simulation is completed.

It is also interesting to see that MOSA and FITEST do not

outperform RS in all cases. Given α = 0.01, the differences

between MOSA and RS and between FITEST and RS are

insignificant, except for the difference between MOSA and

RS in the Right-Turn environment. This means that, in the

Straight and Left-Turn environments, the advanced many-

objective approaches are not significantly better than simple

random search with an archive. One possible explanation can

be that the search space considering dynamically changing

environmental elements is enormously large, making advanced

search approaches less effective within the given time budget

(i.e., four hours). Although they might perform better than

random search if given much more time, this is unrealistic in

practical conditions.

To better understand which testing approaches detect vi-

olations of which requirements, Table II shows the number

of runs (among 10 repeats) that detect a violation for each

requirement. For example, a value of 1 in the first row and

Straight-RS column indicates that RS detects the violation of

r1 only once among the 10 repeats in the Straight environment.

Requirement r4 is never violated, meaning that the EV does

not collide with static meshes (e.g., traffic signs) in any of the

cases. This is mainly because the static meshes are far enough

from the road, making it difficult to make the EV collide with

them. As for the remaining requirements, we can see that only

MORLOT can detect the violations of r2 and r6. A detailed

analysis of the violations reveals that both r2 and r6 are highly

relevant to the dynamics of the VIF; for example, MORLOT

generated a VIF trajectory such that the VIF abruptly stops

and slowly goes out of the camera frame, which causes the

EV to collide. This implies that only MORLOT can effectively

change the dynamics of the VIF to cause the violations of r2
and r6 while the other approaches cannot. Note that there are

no requirements that are not violated by MORLOT but are by

another approach, further highlighting the test effectiveness of

MORLOT.

In Table II, it is worth noticing that there are requirements

for which MORLOT does not detect violations in all runs.

Though this could be partially improved by making MORLOT

more exploratory (by increasing the ϵ value), it may affect

the balance between exploration and exploitation. Therefore,

to better detect unknown violations in practice, it is recom-

mended to run MORLOT multiple times if time permits.

The answer to RQ1 is that MORLOT is significantly

more effective, in terms of Test Suite Effectiveness

(TSE), and with a large effect size, than random search

and alternative many-objective search approaches tai-

lored for test suite generation.

C. RQ2: Test Efficiency

1) Setup: To answer RQ2, we basically use the same setup

as in RQ1 but additionally measure the achieved TSE values

at 20-minute intervals over a 4-hour run. To account for

randomness, again, we repeat the experiment 10 times and

report on how the average TSE values for 10 runs vary over

time from 20 minutes to 240 minutes in steps of 20 minutes.

2) Results: Figure 2 shows the relationship between the

execution time and the average TSE values for 10 runs of RS,

MOSA, FITEST, and MORLOT for each of the three initial

environments.

Overall, we can clearly see that MORLOT is always at

the top in all environments, meaning that MORLOT always

achieves the highest TSE values, at any time, when compared

to the other approaches over the same period of time. Further-

more, the gaps between MORLOT and the others keep increas-

ing over time, up to a certain point, implying that MORLOT

is not only significantly more efficient at detecting unknown

violations but also that the effect size becomes larger as we

run the testing approaches longer. An tentative explanation for

this observation is that MORLOT keeps learning over time as

it observes further states and rewards during the generation

of test scenarios. Furthermore, as described in Section VI-B1,

dynamically decreasing the epsilon value in MORLOT makes

it gradually more exploitative and more effective.

Comparing RS, MOSA, and FITEST, we can see that

MOSA and FITEST do not significantly outperform RS at any

time, meaning that advanced search-based approaches are not

more efficient than simple random search with an archive in

this context. As already discussed in RQ1, this can be mainly

because of the enormous search space that makes advanced

search approaches less effective within a practical time budget.

The answer to RQ2 is that MORLOT is significantly

more efficient than random search and alternative

many-objective search approaches. Indeed, it achieves,

for any given time budget, a significantly higher av-

erage TSE, and this difference keeps increasing over

time.

D. Threats to Validity

Using one DADS and one simulator is a potential threat

to the external validity of our results. To mitigate the issue,

we selected the highest rank DADS (i.e., Transfuser), at the

time of our evaluation, among publicly available ones in the

CARLA Automation Driving Leaderboard [15], and a high-

fidelity driving simulator (i.e., CARLA) that can be coupled

with the selected DADS; they are representative of state-of-

the-art DADS and advanced driving simulators, respectively,

in terms of performance and fidelity [16, 14]. Note that we did

not consider more DADS from the Leaderboard since (1) most

of them are not good enough to drive the ego vehicle safely

(e.g., yielding many violations of the given requirements even

by random search) and (2) our evaluation already took more

than 600 computing hours. Nevertheless, further studies will

be needed to increase the generalizability of our results.

The degree of the discretization of the actions and states

could be a potential factor that affects our results. However, the

same set of possible actions (changes) is used for RS, MOSA,

FITEST, and MORLOT. Furthermore, since only MORLOT

TABLE II
NUMBER OF VIOLATIONS DETECTED BY DIFFERENT APPROACHES

Straight Left-Turn Right-Turn

Rq RS MOSA FITEST MORLOT RS MOSA FITEST MORLOT RS MOSA FITEST MORLOT

r1 1 2 3 5 8 8 9 10 0 0 0 0

r2 0 0 0 10 0 0 0 10 0 0 0 2

r3 7 4 5 10 3 0 0 8 6 2 5 9

r4 0 0 0 0 0 0 0 0 0 0 0 0

r5 8 5 6 5 6 0 0 1 3 0 1 6

r6 0 0 0 1 0 0 0 0 0 0 0 7

0 40 80 120 160 200 240
Execution Time (min)

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

TS
E

Straight

0 40 80 120 160 200 240
Execution Time (min)

0.0

0.1

0.2

0.3

0.4

0.5
Av

er
ag

e
TS

E

Left-Turn

0 40 80 120 160 200 240
Execution Time (min)

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

TS
E

Right-Turn

RS MOSA FITEST MORLOT

Fig. 2. Average TSE values over 20 minutes interval

considers states, using a sub-optimal discretization of these

states would only decrease the effectiveness and efficiency of

MORLOT, and therefore this aspect has no impact on our

conclusions.

Possible actions and states for MORLOT (and other alterna-

tive approaches) could affect the realism of the generated test

scenarios. In general, we ensure that scenarios are realistic in

the sense that they are physically possible. This does not imply

they are likely. Indeed, for such DNN-enabled autonomous

systems, it is important to test them in a conservative way.

For example, if the vehicle in front is coming out of the lane

and returning, we consider this behavior to be realistic and

representative of an incapacitated driver. To achieve realism,

we keep the magnitude of changes small enough to be physi-

cally possible, as explained in Section VI-B1.

VII. CONCLUSION

In this paper, we present MORLOT, a novel approach that

combines Reinforcement Learning (RL) and many-objective

search to effectively and efficiently generate a test suite for

DNN-Enabled Systems (DES) by dynamically changing the

application environment. We specifically address the issue of

scalability when many requirements must be validated. We

empirically evaluate MORLOT using a state-of-the-art DNN-

enabled Automated Driving System (DADS) integrated with

a high-fidelity driving simulator. The evaluation results show

that MORLOT is significantly more effective and efficient,

with a large effect size, than random search and many-

objective search approaches tailored for test suite generation.

As part of future work, we plan to investigate if we can

reuse MORLOT’s Q-tables trained on a former version of the

DES under test to improve test effectiveness and efficiency for

later versions. We also plan to extend MORLOT to leverage

different RL methods, including Deep Q-learning with varying

epsilon values, and compare the results in the context of DADS

online testing.

VIII. DATA AVAILABILITY

The replication package of our experiments, including the

implementation of MORLOT and alternative approaches, the

instructions to set up and configure the DADS and simulator,

the detailed descriptions of the initial environments used in

the experiments, and videos of requirement violations found

by MORLOT, are publicly available on FigShare [42].

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”

Advances in neural information processing systems,

vol. 25, 2012.

[2] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-

dependent pre-trained deep neural networks for large-

vocabulary speech recognition,” IEEE Transactions on

audio, speech, and language processing, vol. 20, no. 1,

pp. 30–42, 2011.

[3] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural

networks for object detection,” Advances in neural in-

formation processing systems, vol. 26, 2013.

[4] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine

learning testing: Survey, landscapes and horizons,” IEEE

Transactions on Software Engineering, vol. 48, no. 1, pp.

1–36, 2022.

[5] F. U. Haq, D. Shin, S. Nejati, and L. C. Briand,

“Can offline testing of deep neural networks replace

their online testing?” CoRR, vol. abs/2101.11118, 2021.

[Online]. Available: https://arxiv.org/abs/2101.11118

[6] A. Gambi, M. Mueller, and G. Fraser, “Automatically

testing self-driving cars with search-based procedural

content generation,” in Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing

and Analysis, ser. ISSTA 2019. New York, NY,

USA: Association for Computing Machinery, 2019,

p. 318–328. [Online]. Available: https://doi.org/10.1145/

3293882.3330566

[7] F. Ul Haq, D. Shin, and L. Briand, “Efficient online

testing for dnn-enabled systems using surrogate-assisted

and many-objective optimization,” in Proceedings of the

44th International Conference on Software Engineering

(ICSE’22). ACM, 2022.

[8] V. Riccio and P. Tonella, “Model-based exploration of

the frontier of behaviours for deep learning system

testing,” in Proceedings of the 28th ACM Joint Meeting

on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering,

ser. ESEC/FSE 2020. New York, NY, USA: Association

for Computing Machinery, 2020, p. 876–888. [Online].

Available: https://doi.org/10.1145/3368089.3409730

[9] M. Koren, S. Alsaif, R. Lee, and M. J. Kochenderfer,

“Adaptive stress testing for autonomous vehicles,” in

2018 IEEE Intelligent Vehicles Symposium (IV). IEEE,

2018, pp. 1–7.

[10] C. Lu, Y. Shi, H. Zhang, M. Zhang, T. Wang, T. Yue,

and S. Ali, “Learning configurations of operating en-

vironment of autonomous vehicles to maximize their

collisions,” IEEE Transactions on Software Engineering,

2022.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning:

An introduction. MIT press, 2018.

[12] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformu-

lating branch coverage as a many-objective optimization

problem,” in 2015 IEEE 8th International Conference

on Software Testing, Verification and Validation (ICST),

2015, pp. 1–10.

[13] R. B. Abdessalem, A. Panichella, S. Nejati, L. C.

Briand, and T. Stifter, “Testing autonomous cars for

feature interaction failures using many-objective search,”

in Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering, ser.

ASE 2018. New York, NY, USA: Association for

Computing Machinery, 2018, p. 143–154. [Online].

Available: https://doi.org/10.1145/3238147.3238192

[14] A. Prakash, K. Chitta, and A. Geiger, “Multi-modal fu-

sion transformer for end-to-end autonomous driving,” in

Conference on Computer Vision and Pattern Recognition

(CVPR), 2021.

[15] C. team, “CARLA Autonomous Driving Leaderboard,”

2022. [Online]. Available: https://leaderboard.carla.org/

leaderboard/

[16] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and

V. Koltun, “CARLA: An open urban driving simulator,”

in Proceedings of the 1st Annual Conference on

Robot Learning, ser. Proceedings of Machine Learning

Research, S. Levine, V. Vanhoucke, and K. Goldberg,

Eds., vol. 78. PMLR, 13–15 Nov 2017, pp. 1–

16. [Online]. Available: https://proceedings.mlr.press/

v78/dosovitskiy17a.html

[17] C. J. Watkins and P. Dayan, “Q-learning,” Machine

learning, vol. 8, no. 3, pp. 279–292, 1992.

[18] G. A. Rummery and M. Niranjan, On-line Q-learning

using connectionist systems. Citeseer, 1994, vol. 37.

[19] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and

A. A. Bharath, “Deep reinforcement learning: A brief

survey,” IEEE Signal Processing Magazine, vol. 34,

no. 6, pp. 26–38, 2017.

[20] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolu-

tionary many-objective optimization: A short review,”

in 2008 IEEE Congress on Evolutionary Computation

(IEEE World Congress on Computational Intelligence),

2008, pp. 2419–2426.

[21] S. Chand and M. Wagner, “Evolutionary many-objective

optimization: A quick-start guide,” Surveys in Operations

Research and Management Science, vol. 20, no. 2, pp.

35–42, 2015.

[22] Q. Zhang and H. Li, “Moea/d: A multiobjective evolu-

tionary algorithm based on decomposition,” IEEE Trans-

actions on Evolutionary Computation, vol. 11, no. 6, pp.

712–731, 2007.

[23] K. Deb and H. Jain, “An evolutionary many-objective

optimization algorithm using reference-point-based non-

dominated sorting approach, part i: solving problems

with box constraints,” IEEE transactions on evolutionary

computation, vol. 18, no. 4, pp. 577–601, 2013.

[24] M. Klischat and M. Althoff, “Generating critical test

scenarios for automated vehicles with evolutionary al-

gorithms,” in 2019 IEEE Intelligent Vehicles Symposium

(IV), 2019, pp. 2352–2358.

[25] A. Calò, P. Arcaini, S. Ali, F. Hauer, and F. Ishikawa,

“Generating avoidable collision scenarios for testing au-

tonomous driving systems,” in 2020 IEEE 13th Interna-

tional Conference on Software Testing, Validation and

Verification (ICST), 2020, pp. 375–386.

[26] R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter,

“Testing vision-based control systems using learnable

evolutionary algorithms,” in 2018 IEEE/ACM 40th In-

ternational Conference on Software Engineering (ICSE).

IEEE, 2018, pp. 1016–1026.

[27] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari,

Z. Kalbarczyk, and R. Iyer, “Av-fuzzer: Finding safety

violations in autonomous driving systems,” in 2020 IEEE

31st International Symposium on Software Reliability

Engineering (ISSRE). IEEE, 2020, pp. 25–36.

[28] R. Lee, M. J. Kochenderfer, O. J. Mengshoel, G. P. Brat,

and M. P. Owen, “Adaptive stress testing of airborne

collision avoidance systems,” in 2015 IEEE/AIAA 34th

Digital Avionics Systems Conference (DASC). IEEE,

2015, pp. 6C2–1.

[29] A. Corso, P. Du, K. Driggs-Campbell, and M. J. Kochen-

derfer, “Adaptive stress testing with reward augmentation

for autonomous vehicle validatio,” in 2019 IEEE Intelli-

gent Transportation Systems Conference (ITSC). IEEE,

2019, pp. 163–168.

[30] A. Sharif and D. Marijan, “Adversarial deep reinforce-

ment learning for trustworthy autonomous driving poli-

cies,” arXiv preprint arXiv:2112.11937, 2021.

[31] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,

M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran,

T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis,

“A general reinforcement learning algorithm that masters

chess, shogi, and go through self-play,” Science, vol.

362, no. 6419, pp. 1140–1144, 2018. [Online]. Available:

https://www.science.org/doi/abs/10.1126/science.aar6404

[32] Y. Zheng, Y. Liu, X. Xie, Y. Liu, L. Ma, J. Hao, and

Y. Liu, “Automatic web testing using curiosity-driven

reinforcement learning,” in 2021 IEEE/ACM 43rd In-

ternational Conference on Software Engineering (ICSE).

IEEE, 2021, pp. 423–435.

[33] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu,

R. Shen, Y. Chen, and C. Fan, “Wuji: Automatic online

combat game testing using evolutionary deep reinforce-

ment learning,” in 2019 34th IEEE/ACM International

Conference on Automated Software Engineering (ASE).

IEEE, 2019, pp. 772–784.

[34] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li,

“Reinforcement learning based curiosity-driven testing of

android applications,” in Proceedings of the 29th ACM

SIGSOFT International Symposium on Software Testing

and Analysis, 2020, pp. 153–164.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” in Proceedings of the

IEEE conference on computer vision and pattern recog-

nition, 2016, pp. 770–778.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,

L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,

“Attention is all you need,” Advances in neural informa-

tion processing systems, vol. 30, 2017.

[37] E. Leurent, “A survey of state-action representations for

autonomous driving,” 2018.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-

ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.

Fidjeland, G. Ostrovski et al., “Human-level control

through deep reinforcement learning,” nature, vol. 518,

no. 7540, pp. 529–533, 2015.

[39] R. Yang, X. Sun, and K. Narasimhan, “A generalized

algorithm for multi-objective reinforcement learning and

policy adaptation,” Advances in Neural Information Pro-

cessing Systems, vol. 32, 2019.

[40] H. B. Mann and D. R. Whitney, “On a test of whether one

of two random variables is stochastically larger than the

other,” The annals of mathematical statistics, pp. 50–60,

1947.

[41] A. Vargha and H. D. Delaney, “A critique and

improvement of the cl common language effect size

statistics of mcgraw and wong,” Journal of Educational

and Behavioral Statistics, vol. 25, no. 2, pp. 101–

132, 2000. [Online]. Available: https://doi.org/10.3102/

10769986025002101

[42] F. U. Haq, D. Shin, and L. Briand, “Replication Package

for Many-Objective Reinforcement Learning for Online

Testing of DNN-Enabled Systems ,” 12 2022. [Online].

Available: https://doi.org/10.6084/m9.figshare.20526867

	Introduction
	Background
	Reinforcement Learning
	Many-Objective Search

	Problem Description
	Related Work
	Search-Based Testing
	RL-Based Testing

	Reinforcement Learning-Based Test Generation
	Test Case Generation using RL
	Test Suite Generation using many-objective RL

	Evaluation
	Evaluation Subjects
	RQ1: Test Effectiveness
	Setup
	Results

	RQ2: Test Efficiency
	Setup
	Results

	Threats to Validity

	Conclusion
	Data Availability

