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Abstract
Background Surgical mortality indicators should be risk-adjusted when evaluating the performance of organisations. This 
study evaluated the performance of risk-adjustment models that used English hospital administrative data for 30-day mortal-
ity after neurosurgery.
Methods This retrospective cohort study used Hospital Episode Statistics (HES) data from 1 April 2013 to 31 March 2018. 
Organisational-level 30-day mortality was calculated for selected subspecialties (neuro-oncology, neurovascular and trauma 
neurosurgery) and the overall cohort. Risk adjustment models were developed using multivariable logistic regression and 
incorporated various patient variables: age, sex, admission method, social deprivation, comorbidity and frailty indices. 
Performance was assessed in terms of discrimination and calibration.
Results The cohort included 49,044 patients. Overall, 30-day mortality rate was 4.9%, with unadjusted organisational rates 
ranging from 3.2 to 9.3%. The variables in the best performing models varied for the subspecialties; for trauma neurosurgery, 
a model that included deprivation and frailty had the best calibration, while for neuro-oncology a model with these variables 
plus comorbidity performed best. For neurovascular surgery, a simple model of age, sex and admission method performed 
best. Levels of discrimination varied for the subspecialties (range: 0.583 for trauma and 0.740 for neurovascular). The 
models were generally well calibrated. Application of the models to the organisation figures produced an average (median) 
absolute change in mortality of 0.33% (interquartile range (IQR) 0.15–0.72) for the overall cohort model. Median changes 
for the subspecialty models were 0.29% (neuro-oncology, IQR 0.15–0.42), 0.40% (neurovascular, IQR 0.24–0.78) and 0.49% 
(trauma neurosurgery, IQR 0.23–1.68).
Conclusions Reasonable risk-adjustment models for 30-day mortality after neurosurgery procedures were possible using 
variables from HES, although the models for trauma neurosurgery performed less well. Including a measure of frailty often 
improved model performance.
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IMD  Index of Multiple Deprivation
NHS  National Health Service
NNAP  National Neurosurgical Audit Programme
OPCS  Office of Population Censuses and Surveys
QI  Quality improvement
RCS  Royal College of Surgeons of England
ROC  Receiver operating characteristic (ROC) curve
SAH  Subarachnoid haemorrhage
SBNS  Society of British Neurological Surgeons
SCARF  Secondary Care Administrative Records Frailty
TARN  Trauma Audit and Research Network
TBI  Traumatic brain injury

Introduction

Quality improvement (QI) programmes that investigate 
organisation-level outcomes should use risk-adjusted indica-
tors to ensure the benchmarking of organisations is fair [4]. 
Risk-adjustment aims to remove the effect of differences in 
the distribution of patient characteristics across organisations 
in the outcome indicator values, without which assessments of 
performance might be inaccurate due to confounding. Effec-
tive risk adjustment models are therefore required to allow 
clinicians to have confidence in using the indicators for quality 
assurance and informing QI activities.

Various risk adjustment models have been used for neurosurgi-
cal outcome indicators [16, 20, 23, 31]. Ideally, these models are 
developed using patient variables from clinical datasets and incor-
porate attributes specific to the neurological condition. These may 
include the type of neurosurgical operation or indication for a pro-
cedure, and these clinical factors have been shown to be important 
components of risk-adjustment in neurosurgery [16, 23]. In other 
situations, the indicators are derived using administrative hospital 
datasets and the variables available are typically more generic, 
such as age, sex and a measure of comorbidity [20, 31]. Admin-
istrative hospital datasets (like the English Hospital Episode 
Statistics) have been used to produce effective risk adjustment 
models for short-term outcomes like 30-day post-operative mor-
tality for various surgical procedures [5]. There is recent evidence 
supporting the use of administrative data to investigate compara-
tive mortality rates in neurosurgery [35], but the performance of 
these type of risk adjustment models has not been evaluated for 
neurosurgical procedures. Such models are required for produc-
ing risk-adjusted organisation-level outcome indicators within the 
National Neurosurgical Audit Programme (NNAP) of the Society 
of British Neurological Surgeons (SBNS) [33].

The aim of this research was to assess the performance of 
risk-adjustment models for 30-day mortality after neurosurgical 
procedures when developed using hospital administrative data. 
The study examined the performance of models for an overall 
cohort of neurosurgical patients and for specific subspecialties: 
neuro-oncology, neurovascular and trauma neurosurgery.

Methods

Data source and cohort definition

The study used an extract of Hospital Episode Statis-
tics (HES) data that covered neurosurgery activity in 
National Health Service (NHS) hospitals in England 
during the 5 years from 1 April 2013 to 31 March 2018. 
HES is the hospital administrative data for NHS funded 
hospital activity in England and contains data on patient 
demographics, diagnoses, procedures and administrative 
information. Records describe the care delivered under 
the care of a consultant and can capture data on up to 20 
procedures (date of operation and type of procedure) and 
24 medical conditions. Procedures are coded using the 
UK Office of Population Censuses and Surveys (OPCS, 
version 4) classification; medical conditions are coded 
using the International Classification of Diseases, ver-
sion 10 (ICD-10).

The study cohort included adult patients (≥18 years) 
who were admitted to a neurosurgery unit, either elec-
tively or as an emergency/transfer and who underwent a 
neurosurgical procedure in one of three main subspecial-
ties (neuro-oncology, neurovascular and trauma neuro-
surgery). After identification of records containing the 
relevant procedures, the primary diagnosis was used to 
exclude any patients that did not have pathology relevant 
to the subspecialty. (The various types of procedure, 
OPCS codes and ICD-10 codes are shown in Table S1, 
supplementary material). The primary outcome meas-
ure was all-cause 30-day post-operative mortality. The 
date of death was obtained from the Civil Registration of 
Mortality data and linked to the HES records [25].

Variable definition

The study used variables available from the HES data-
base, with values derived from the index admission. 
These included: patient demographics (age, sex and socio-
economic deprivation), method of admission (elective or 
emergency) and details of the neurosurgical conditions and 
comorbidities.

Area-level socioeconomic deprivation was measured 
using the Index for Multiple Deprivation (IMD), with the 
analysis grouping areas into quintiles based on the ranks 
of their overall IMD values. Frailty was measured using 
the secondary care administrative records frailty (SCARF) 
index [15]. The SCARF index is based on the ‘accumula-
tion of deficits’ model of frailty. ICD-10 diagnosis codes 
are used to define 32 deficits that cover functional impair-
ment, geriatric syndromes, problems with nutrition, cogni-
tion and mood and medical comorbidities. The index uses 
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four categories (‘fit’, mild, moderate and severe frailty), 
with severe frailty defined as the presence of six or more 
deficits.

Comorbidity burden was measured in two ways, using 
(i) the Royal College of Surgeons of England (RCS) 
Charlson Comorbidity Index (CCI) and (ii) the Elixhauser 
Score (ES) (van Walraven modification) [2, 34]. The CCI 
was included in the models as a simple count of comor-
bidities (0, 1, 2, 3+). The ES was included as a categorical 
variable, with the weighted scores of the ES divided into 
six patient groups of reasonable size (−11 to −1, 0, 1 to 4, 
5 to 8, 9 to 12, 13+). The CCI and ES were implemented 
with a one-year ‘look-back’ period, which increases the 
ability of the measures to capture chronic conditions and 
allows them to distinguish comorbidity from acute illness 
for several diagnoses in the index admission (for exam-
ple, myocardial infarction is only flagged from previous 
admissions and not the index admission). (See Tables S2 
and S3 in supplementary material).

Risk‑adjustment models and statistical analysis

The study was performed as a complete case analysis. Any 
records that had missing data in the explanatory variables 
were excluded. Descriptive statistics were used to summa-
rise the characteristics of patients undergoing the various 
procedures. The relationship between postoperative mortal-
ity and patient characteristics was initially explored using 
bivariate analyses (Wilcoxon rank-sum tests for medians 
and Χ2 tests for proportions). Then, multivariable logistic 
regression models were used to investigate the relationships 
between postoperative mortality and all potential variables. 
To account for potential clustering effects within NHS trusts, 
robust standard errors were estimated using the Huber-White 
sandwich method.

The process of model development proceeded in a series 
of stages. First, the performance of a basic model (which 
included the variables age (years), sex (male / female), sub-
speciality and method of admission (elective/emergency) 
was evaluated using the data for the whole cohort. The rela-
tionship of age with 30-day mortality was assessed to see 
whether it was linear or non-linear using a range of transfor-
mations including fitting fractional polynomials [29]. Age 
was ultimately included as a continuous variable without any 
transformation (i.e. it had a linear relationship with 30-day 
post-operative mortality). Extreme values of age were win-
sorized to avoid them having excessive influence; that is, 
age was restricted to lie between 45 and 90. The final step 
was to test for interactions between the model variables as it 
was hypothesised that risk factors might interact to increase 
the risk of death above the combined individual effect of 
each variable.

Second, the impact on performance of adding other vari-
ables to the basic model was evaluated. The variables were 
added in the following sequence: indices of socioeconomic 
deprivation, frailty and comorbidity using either CCI or ES 
(i.e. Basic + IMD + SCARF + CCI, then Basic + IMD + 
SCARF + ES).

Third, the process was repeated for the three neurosur-
gical subspecialties (with the omission of the subspecialty 
variable from the basic model). The performance of the 
final models for each subspecialty was compared to the 
performance of the risk-adjustment model produced for 
the overall cohort to assess whether a single model was 
sufficiently versatile to work across neurosurgery. The per-
formance of each subspecialty model was also evaluated 
on a key procedure to check its performance was retained 
for individual subgroups (resection of intracerebral tumour, 
clipping of aneurysm and evacuation of acute subdural 
haematoma).

The BIC (Bayesian information criterion) was used to 
assess the quality of each model, and the relative degree 
of improvement produced by adding each variable. The 
BIC is a method of evaluating the performance of regres-
sion models with different sets of variables. The BIC 
decreases in value for models that fit the data better but 
it includes a penalty that increases the BIC value as more 
variables are added to a model, to prevent overfitting. It 
therefore allows the performance of different models to 
be compared, with the best performance corresponding to 
the minimum BIC value. The predictive performance of 
each logistic regression model was evaluating by meas-
uring its discrimination and calibration. Discrimination 
measures the ability of the model to distinguish between 
those who did and did not die within 30 days of surgery 
and is reported using the c-statistic (or area under the 
receiver operating characteristic (ROC) curve). C-statistic 
values typically fall between 0.5 (indicating the model is 
no better at predicting the outcome than a random guess) 
and 1.0 (perfect discrimination). Calibration measures the 
agreement between the observed mortality and expected 
mortality predicted by the model and is a measure of 
goodness of fit. This was evaluated graphically with cali-
bration plots with patients grouped into 10 categories of 
increasing risk. Calibration was also evaluated using the 
Brier score which takes on a value between 0 and 1. It 
measures the accuracy of model predictions and lower 
scores indicate better calibration.

Finally, the distribution of predicted risk across the 24 
NHS neurosurgical units in England was evaluated using 
the models that showed the best calibration. The differ-
ences in unadjusted and adjusted mortality rates for each 
unit were explored for the overall cohort and in each of the 
subspecialties.
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Data analysis was performed using Stata, version 17 
(StataCorp LP, College Station, TX).

Results

From 1 April 2013 to 31 March 2018, 50,748 patients 
underwent a neurosurgical procedure within the selected 
subspecialties. Of these, 1704 (3.4%) had missing data 
and were excluded. The final study cohort included 
49,044 patients. The characteristics of patients in the 
overall cohort and the three subspecialties are shown in 
Table 1. In the overall cohort, the proportions of male 
and females were equal, but trauma patients were pre-
dominantly male (72.6%) and neurovascular patients were 
predominantly female (male=35.9%). The proportion of 
patients scored as ‘fit’ on the frailty index was 31.1% 
overall. However, it varied in the subspecialty groups 
being low among trauma patients (15.1%) but high among 
neuro-oncology patients (40.4%). The basic pattern of 

30-day postoperative mortality across the cohort is sum-
marised in Table 2. The overall mortality rate was 4.9% 
and fell between 0.4 and 11.9% in the subspecialty groups 
stratified by admission method and sex.

Table 1  Characteristics 
of patients who had a 
neurosurgical procedure 
between April 2013 and March 
2018 in English NHS hospitals 
for the overall cohort and the 
three subspecialties

Overall cohort Neurovascular surgery
No. of patients 49,044 No. of patients 14,695
Average age, (median, IQR) 58 (46–69) Average age, (median, IQR) 56 (47–66)
Male, n (%) 24,703 50.4 Male, n (%) 5270 35.9
Emergency admission, n (%) 25,199 51.4 Emergency admission, n (%) 8666 59.0
Comorbidities, n (%) Comorbidities, n (%)
         0 25,424 51.8           0 5929 40.3
         1 13,604 27.7           1 5113 34.8
         2 6780 13.8           2 2576 17.5
         3+ 3236 6.6           3+ 1077 7.3
Frailty, n (%) Frailty, n (%)
         Fit 15,250 31.1           Fit 3921 26.7
         Mild 16,504 33.7           Mild 5322 36.2
         Moderate 11,975 24.4           Moderate 4039 27.5
         Severe 5315 10.8           Severe 1413 9.6

Neuro-oncology surgery Trauma neurosurgery
No. of patients 24,354 No. of patients 9995
Average age, (median, IQR) 58 (46–67) Average age, (median, IQR) 66 (45–79)
Male, n (%) 12,175 50.0 Male, n (%) 7259 72.6
Emergency admission, n (%) 6539 26.9 Emergency admission, n (%) 9995 100
Comorbidities, n (%) Comorbidities, n (%)
         0 13,884 57.0           0 5590 55.9
         1 6290 25.8           1 2207 22.1
         2 2932 12.0           2 1278 12.8
         3+ 1248 5.1           3+ 920 9.2
Frailty, n (%) Frailty, n (%)
         Fit 9829 40.4           Fit 1513 15.1
         Mild 8310 34.1           Mild 2883 28.8
         Moderate 4820 19.8           Moderate 3108 31.1
        Severe 1395 5.7          Severe 2491 24.9

Table 2  30-day postoperative mortality rates  (%) for neurosurgical 
procedures (April 2013 – March 2018) for the overall cohort and sub-
specialties, stratified by method of admission and patient sex

All Neurosur-
gery

Neuro-oncology 
surgery

Neurovascular 
surgery

Trauma neu-
rosurgery

Overall mortality 
rate

4.9 2.8 4.0 11.3

Elective admis-
sions

1.6 1.9 0.6 −

 Male 1.9 2.3 0.4 −
 Female 1.3 1.5 0.8 −
Emergency 

admissions
8.0 5.2 6.4 11.3

 Male 8.3 5.2 5.3 11.0
 Female 7.6 5.1 7.0 11.9
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Regarding the development of the models, age was fit-
ted as linear relationship with mortality in the overall basic 
model. None of the variable interactions explored had a 
significant impact on model performance so these were 
excluded from the final models. The adjusted odds ratios 
for each variable in the four models summarising the rela-
tionship between patient characteristics and mortality are 
shown in Table S4 (supplementary material).

The BIC values typically demonstrated improvement in the 
quality of the models with each iteration, but there were sev-
eral exceptions. The addition of deprivation categories resulted 
in a negligible improvement to the overall model and it did not 
improve the quality of the trauma and neuro-oncology sub-
specialty models. The addition of a comorbidity index did not 
significantly improve the quality in the neuro-oncology model. 
The addition of variables to the basic (model 1) neurovascular 
model did not lead to any improvement. Overall, the pattern of 
changes in the BIC generally conformed to improvements in 
model calibration.

Predictive performance in terms of discrimination improved 
with the addition of variables to the overall cohort model 
(Table 3). The same pattern was observed in the subspecialty 
models, where model 5 had the highest discrimination. Discrimi-
nation was moderate for the neuro-oncology and neurovascular 
models at 0.735 and 0.740, respectively. It was poor in the trauma 
model at 0.583. The subspecialty models showed better discrimi-
nation than the overall model applied to the subspecialty groups. 
However, absolute increases in discriminatory ability were small, 

particularly in the overall cohort with an increase of just 0.007. 
In some instances, the models showed poor discrimination, but 
were still adequately calibrated. The c-statistic depends on the 
range of predictions and can be low if the range is small and not 
close to zero. For example, model 3 for trauma neurosurgery 
had a c-statistic of only 0.552 yet still had reasonable calibration.

Figure 1 shows that the overall cohort model was well cali-
brated, with model 5 showing the closest agreement between 
observed and predicted mortality rates across the ten risk groups. 
Figure 2 shows that the subspecialty models were better cali-
brated than the overall model applied to the subspecialty groups, 
with good agreement between observed and predicted mortality. 
The changes in calibration with the addition of variables was dif-
ferent across the study groups (Figure S1 shows the progressive 
change for models 1–5). It tended to improve with the addition 
of variables to the overall cohort model, it made only a slight 
difference to the neuro-oncology model, and it worsened the 
neurovascular model where model 1 was best. The additional 
of frailty to the trauma model improved calibration but not the 
addition of comorbidity. The subspecialty models retained their 
performance when tested in a key procedure within each group, 
with similar c-statistics (Table S6) and good calibration (Figure 
S2). The Brier scores for the overall cohort models (1 -5) were 
0.045. The scores in the subspecialty models were 0.099 – 0.100 
for trauma neurosurgery, 0.026 – 0.027 for neuro-oncology sur-
gery and 0.038 for neurovascular surgery. 

The distribution of predicted risk varied across neu-
rosurgical units and the extent of variation differed 

Table 3  Discriminatory ability of risk-adjustment models that predict 30-day mortality for neurosurgical procedures

C-statistics are derived from the area under the ROC curve and the 95% CI is shown in parentheses
* Model with the highest c-statistic for each group
a Admission type does not apply — all procedures were emergency admissions

Procedure group Model 1: basic 
– (age, sex, admis-
sion type)

Model 2: basic + 
deprivation

Model 3: basic 
+ deprivation + 
frailty

Model 4: basic 
+ deprivation + 
frailty + comorbid-
ity (CCI)

Model 5: basic 
+ deprivation + 
frailty + comor-
bidity (ES)

Difference 
between the low-
est and highest 
value

Overall cohort 
model

0.729 (0.720–0.738) 0.728 (0.719–0.737) 0.733 (0.724–0.742) 0.733 (0.724–0.742) 0.735(0.726–
0.745) *

0.007

Overall cohort model applied to subspecialties
Neuro-oncology 

surgery
0.687 (0.668–0.707) 0.678 (0.658–0.698) 0.702(0.682–0.722) 

*
0.692 (0.672–0.713) 0.696 (0.677–0.716) 0.024

Neurovascular 
surgery

0.726 (0.709–0.743) 0.731(0.715–0.748) 
*

0.712 (0.695–0.729) 0.718 (0.701–0.735) 0.718 (0.701–0.735) 0.019

Trauma neurosur-
gery a

0.477 (0.460–0.493) 0.483 (0.466–0.501) 0.516 (0.498–0.534) 0.522 (0.504–0.540) 0.544 (0.525–0.562) 
*

0.067

Subspecialty models
Neuro-oncology 

surgery
0.694 (0.675–0.713) 0.695 (0.676–0.714) 0.728 (0.709–0.747) 0.734 (0.716–0.752) 0.735 (0.716–0.753) 

*
0.041

Neurovascular 
surgery

0.729 (0.712–0.745) 0.733 (0.716–0.750) 0.734 (0.718–0.750) 0.739 (0.723–0.755) 0.740(0.724–0.756) 
*

0.011

Trauma neurosur-
gery a

0.528 (0.511–0.546) 0.539 (0.522–0.557) 0.552 (0.534–0.570) 0.558 (0.541–0.575) 0.583 (0.565–0.600) 
*

0.055
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by procedure type (Fig.  3). Variation was most pro-
nounced in neurovascular surgery and more limited in 
trauma. The range of organisational mortality rates for 
the overall cohort was 3.2 to 9.3%. Application of the 
models to the organisation figures produced an aver-
age (median) absolute change of 0.33% (interquartile 
range (IQR) 0.15–0.72) for the overall cohort model. 
Median changes for the subspecialty models were 0.29% 
(neuro-oncology, IQR 0.15–0.42), 0.40% (neurovascular, 
IQR 0.24–0.78) and 0.49% (trauma neurosurgery, IQR 
0.23–1.68). Figure 4 shows the unadjusted and adjusted 
30-day mortality rates for each of the 24 neurosurgi-
cal units; risk-adjustment tended to pull mortality rates 
towards the average, particularly at the higher and lower 
mortality rates.

Discussion

Interpreting model performance

The objective of this study was to assess the performance of 
risk adjustment models based on routinely collected national 
data that predict 30-day post-operative mortality, identify-
ing which variables were important for risk-adjustment, and 
determining if a single model was sufficiently versatile to 
work across neurosurgery or if subspecialty models per-
formed better.

Model 5 performed best in the overall cohort; it had 
moderate discrimination and was well calibrated. A 
model which works well across a broad range of pro-
cedures is an important tool for quality improvement; 
neurosurgical quality improvement programmes often 
pool procedures for analysis to evaluate quality across 
the breadth of neurosurgical practice [3, 27, 33]. The 
overall model performed less well when applied to the 
subspecialties than the models developed directly in the 
subspecialty groups. The subspecialty models were well 
calibrated, with good agreement between observed and 
predicted mortality. The discriminative ability of the 
models varied, with c-statistics that were poor (trauma) 
or moderate (neuro-oncology and neurovascular). How-
ever, a well calibrated model may have a poor c-statistic 
when the predicted risks are not close to either 0 or 1 (as 
with the trauma model) and a perfectly calibrated model 
may only be able to achieve a c-statistic well below 1 [9]. 
While discrimination is an important measure of model 
performance, calibration is often considered more impor-
tant in the context of risk-adjustment [1, 22]. The overall 
and subspecialty models reduced between-organisation 
variation in mortality rates.

Interestingly, for neurovascular surgery the simplest 
model showed the best performance. The addition of dep-
rivation, frailty and comorbidity indices impaired calibra-
tion; the more complex models were worse at predicting the 
number of deaths than the model that simply used age, sex 

Fig. 1  Calibration plot for the 
overall cohort model. Model 5 
(basic + deprivation + frailty 
+ comorbidity (ES)) was most 
well calibrated of the model 
iterations. E:O – calibration 
intercept, CITL – calibration in-
the-large, AUC – area under the 
receiver operating characteristic 
curve (c-statistic)
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Fig. 2  Calibration plots comparing the performance of the overall 
cohort model applied to subspecialties (left column) and the sub-
specialty models (right column). Model 5 was most well calibrated 
for neuro-oncology surgery, model 1 for neurovascular surgery and 

model 3 for trauma neurosurgery. The subspecialty models were bet-
ter calibrated than the overall model across the subspecailties. E:O 
– calibration intercept, CITL – calibration in-the-large, AUC – area 
under the receiver operating characteristic curve (c-statistic)
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and admission type. There may be several reasons for this. 
The risk factors for early mortality in neurovascular surgery 
are mainly related to disease severity or characteristics (for 
example, severity of subarachnoid haemorrhage (SAH) or 
size and location of aneurysm) [14]. There is also good evi-
dence that age has a significant impact on poor outcomes in 
aneurysmal SAH [10]. Some causes of early mortality — 
which include poor grade SAH, or serious peri-operative 
events such as stroke or aneurysm re-rupture – may not be 
much affected by patients’ general health status. As such, 
age and the method of admission were strong predictors of 
post-operative mortality, while the effects of comorbidity 
and frailty are less important [18].

The neurovascular surgery model was well calibrated and 
had moderate discrimination despite the absence of markers 
of disease severity or clinical features of vascular lesions. 
It performed similarly well to a prediction model for SAH 
developed using observational data from several countries, 
which included age, premorbid hypertension and several 
clinical components including a severity score and imag-
ing findings [14]. The corollary is that routinely collected 
data could be used for monitoring of provider performance 
in neurovascular surgery, particularly in the absence of 
national registry data. An optimal model may incorporate 
data from both HES and pathology-specific predictors.

Traumatic brain injury (TBI) is a heterogeneous disease 
process and outcomes are multifactorial [8]. The relative 
underperformance of the models in trauma is likely to arise 
from the lack of several important prognostic markers for 

TBI such as Glasgow Coma Scale and pupil reactivity, which 
are not recorded in HES [24]. Data from the Trauma Audit 
and Research Network (TARN) has been used to evaluate 
organisational-level outcomes and these studies have used 
a risk-adjustment model that includes important TBI risk 
factors [6, 21].

Across the models, there was little difference in perfor-
mance between models 4 and 5. The models using ES had 
equal or higher discrimination than CCI, but the choice of 
comorbidity index made little difference to model calibra-
tion. Some evidence suggests that the ES may be a superior 
predictor to the CCI, but in our study the observed differ-
ences in performance were small [13, 32]. In fact, the addi-
tion of a measure of comorbidity had far less impact than the 
frailty index, particularly to the overall cohort and trauma 
models, suggesting that frailty was a more important factor 
to risk adjustment.

The importance of frailty in neurosurgery

Frailty is a state of poor physiological reserve and increased 
vulnerability to stressors [12]. It is increasingly recognised 
as an important consideration in neurosurgical decision 
making and measuring outcomes [10]. A recent systematic 
review reported that there are only a small number of studies 
about the effect of frailty on neurosurgical outcomes but it 
showed that frailty is a significant and independent risk fac-
tor for neurosurgical outcomes [26]. More recently, two large 
retrospective cohort studies demonstrated that increasing 

Fig. 3  Box plots showing the 
distribution of predicted risk 
in each of the neurosurgical 
procedure groups across the 24 
neurosurgical units in England. 
The risk predictions were gener-
ated using the best performing 
overall model and subspecialty 
models. Note: The middle line 
represents the median, the box 
represents the 25th and 75th 
centiles and the capped bars 
represent the lower and upper 
adjacent values
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frailty was associated with worse outcomes following brain 
tumour resections and cranial neurosurgery in general [17, 
30]. Data from the CENTRE-TBI study also showed that 
greater frailty was significantly associated with worse out-
comes after TBI [11].

The inclusion of the SCARF index often improved model 
performance and its use for risk-adjustment in neurosurgery is a 
novel aspect of this study. There is a degree of overlap between 
the frailty and comorbidity indices because the SCARF index 
measures several medical conditions that are in the comorbidity 
indices; it may be that those comorbidities which introduced risk 
of a worse outcome were already accounted for by the frailty 

index. Alternatively, a systematic review suggested that predic-
tion models which measured physical status were superior to 
comorbidity indices in predicting morbidity in patients undergo-
ing elective intracranial tumour resection [28].

Risk‑adjustment for performance monitoring

The distributions of patients’ predicted risk were similar across 
the 24 neurosurgical units in England and between the differ-
ent study groups. This could arise because neurosurgical units 
generally operate on similar patients. Or it could be because 

Fig. 4  Caterpillar plots of 
unadjusted and risk-adjusted 
mortality rates for the 24 neuro-
surgical unit in England. Rates 
were adjusted using the best 
performing overall model and 
subspecialty models
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the models capture only a limited number of characteristics 
(omitting variables such as tumour type or location) [31].

The effect of risk-adjustment on mortality rates was to 
pull rates towards the national average. The extent of adjust-
ment underlines the need for comparative outcomes to be 
risk-adjusted, and, in the context of performance monitoring, 
suggests that adequate risk adjustment may reduce the risk 
of false alerts for comparatively high mortality rates.

The methodological approach adopted in this study 
can be readily transferred to other healthcare systems. 
Many administrative datasets and registries use ICD-10 
or equivalent coding systems for recording conditions, 
and datasets will generally include most of the variables 
used in the models. The comorbidity indices evaluated 
here have been used widely in registry and administrative 
data research [20]. Similarly, the SCARF frailty index, or 
suitable alternative frailty indices, can be derived using 
ICD-10 diagnosis codes from registry or administrative 
data for risk-adjusted performance measures [19, 36].

Limitations

The study was a complete case analysis with 3.4% of 
records excluded. This could have introduced selection 
bias because the nature of the missing data is unknown, 
but the proportion of records excluded was small and these 
records were not concentrated in any neurosurgical units. 
Administrative data are subject to errors in the accuracy 
and completeness of the clinical coding of diagnoses and 
procedures. The quality of HES data has improved over 
time but comorbidity may be under-recorded in hospital 
administrative data [7, 32]. Furthermore, the look-back 
method used to distinguish comorbidity from acute illness 
could introduce an unknown level of bias for those patients 
who did not have a previous admission in the look-back 
period. Missing and inaccurate data may cause risk-adjust-
ment models to under-perform and so not adjust outcome 
measures sufficiently for the fair comparison of provid-
ers. While administrative datasets are widely used for per-
formance monitoring, this remains a significant concern 
about the reliability of quality assurance programmes that 
rely on these data.

Conclusions

This study produced risk-adjustment models for 30-day mor-
tality after neuro-oncology and neurovascular procedures using 
HES data that had moderate discrimination and were well cali-
brated. The inclusion of a frailty index often improved model 
performance; frailty may have an important influence on early 
mortality following neurosurgical procedures. The distribution 

of predicted risk and extent of adjustment varied across the 24 
neurosurgical units in England, which supports the necessity 
for quality indicators to be risk-adjusted. Further work should 
explore how the models could be refined for specific neurosur-
gical subspecialties, including where possible proxy measures 
for disease severity or procedure-related risk factors.
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Comments  

The authors have performed an analysis of HES data from 24 NHS 
Neurosurgical units in England to derive predictions of 30-day 
mortality following common neurosurgical procedure areas in three 
main subspecialties (neuro-oncology, neurovascular and trauma 
neurosurgery). They have used the HES data and risk-adjustment 
to develop models to best predict mortality across the system. They 
note the derivation of one model (Model 5) which best predicted 
mortality across the entire cohort and more specialty- specific model 
for neurovascular patients, for example. The study produced risk-
adjustment models for 30-day mortality after neuro-oncology and 
neurovascular procedures using HES data that had good discrimination 
and were well calibrated.

The development of these models is welcomed and will be an 
important mechanism to monitor outcomes across a system such as 
the NHS. For this reason, the work is valuable. However, as noted by 
the authors the accuracy of deriving such models is limited by the 
quality of data entry, especially considering that there is likely under-
reporting of the comorbidities in the HES data. Thus, the validity of 
the conclusions is related to the quality of the data, a common problem 
with all registry studies (garbage in, garbage out).

This data will be valuable for those neurosurgeons working in the 
NHS system. The value should be refined as data collection improves 
and is honed with more relevant and disease specific collection. 
Such has been the experience in America with the efforts of the 
American Association of Neurological Surgeons (AANS) with the 
original establishment of the Quality Outcomes Database (QOD) 
which in review has been particularly valuable for defining outcomes 
with spine disease, with wide and varied practice participation and 
specialist-defined metrics for evaluation of meaningful outcomes 
that are risk-adjusted.

William T. Couldwell,
Utah, USA
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