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SUMMARY
Changes in an animal’s behavior and internal state are accompanied by widespread changes in activity
across its brain. However, how neurons across the brain encode behavior and how this is impacted by state
is poorly understood. We recorded brain-wide activity and the diverse motor programs of freely moving
C. elegans and built probabilistic models that explain how each neuron encodes quantitative behavioral fea-
tures. By determining the identities of the recorded neurons, we created an atlas of how the defined neuron
classes in the C. elegans connectome encode behavior. Many neuron classes have conjunctive representa-
tions ofmultiple behaviors. Moreover, althoughmany neurons encode currentmotor actions, others integrate
recent actions. Changes in behavioral state are accompanied by widespread changes in how neurons
encode behavior, and we identify these flexible nodes in the connectome. Our results provide a global
map of how the cell types across an animal’s brain encode its behavior.
INTRODUCTION

Animals generate diverse behavioral outputs that vary depend-

ing on their environment, context, and internal state. The neural

circuits that control these behaviors are distributed across the

brain. However, it is challenging to record activity across the

brain of a freely moving animal and relate brain-wide activity to

comprehensive behavioral information. For this reason, it has re-

mained unclear how neurons and circuits across entire nervous

systems represent an animal’s varied behavioral repertoire and

how this flexibly changes depending on context or state.

Recent studies suggest that internal states and moment-by-

moment behaviors are associated with widespread changes in

neural activity.1–7 Behavioral states, like quiet versus active

wakefulness, and homeostatic states, like thirst, are associated

with activity changes in many brain regions.1,7,8 In addition,

instantaneous motor actions are associated with altered neural

activity across many brain regions.5,7 However, our understand-

ing of how global dynamics spanningmany brain regions encode

behavior remains limited. In mammals, representations of motor

actions are found in cortex, cerebellum, spinal cord, and more.
4134 Cell 186, 4134–4151, September 14, 2023 ª 2023 The Author(s
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Given the vast number of cell types involved and their broad

spatial distributions, characterizing this entire system is not yet

tractable.

The Caenorhabditis elegans nervous system consists of 302

neurons with known connectivity.9–13 C. elegans generates a

well-defined repertoire of motor programs: locomotion, feeding,

head oscillations, defecation, egg-laying, and postural changes.

C. elegans express different behaviors as they switch behavioral

states.14,15 For example, animals enter sleep-like states during

development and after intense stress,16,17 awake animals exhibit

different foraging states like roaming versus dwelling,18–21

and aversive stimuli induce sustained states of increased

arousal.22,23 In C. elegans, it may be feasible to decipher how

behavior is encoded across an entire nervous system and how

this can flexibly change across behavioral states.

Previous studies identified some C. elegans neurons that reli-

ably encode specific behaviors. The neurons AVA, AIB, and RIM

encode backward motion; AVB, RIB, AIY, and RID encode for-

ward motion; SMD encodes head curvature; and HSN encodes

egg-laying.24–31 In addition, corollary discharge signals fromRIM

and RIA propagate information about motor state to other
). Published by Elsevier Inc.
tivecommons.org/licenses/by-nc/4.0/).
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neurons.32–34 Proprioceptive responses to postural changes

have also been observed in a handful of neurons.35–37 Large-

scale recordings suggest that there are widespread activity

changes related to behavior. Brain-wide recordings in immobi-

lized animals identified population activity patterns associated

with fictive locomotion.25,26 In moving animals, velocity and cur-

vature can be decoded from population activity.3 Although this

suggests thatmany neurons carry behavioral information, we still

lack an understanding of how quantitative behavioral features

are encoded by most C. elegans neurons.

Here, we elucidate how neurons across the C. elegans brain

encode the animal’s behavior. We developed technologies to re-

cord high-fidelity brain-wide activity and the diverse motor pro-

grams of >60 freely moving animals. We then devised a probabi-

listic encoding model that fits most recorded neurons, providing

an interpretable description of how each neuron encodes

behavior. By also determining neural identity in 40 of these data-

sets, we created an atlas of howmostC. elegans neuron classes

encode behavior. This revealed the encoding properties of all re-

corded neurons and showed that �30% of the neurons flexibly

change how they encode behavior in a state-dependent manner.

Our results reveal how activity across the defined cell types of an

animal’s brain encodes its behavior.

RESULTS

Technologies to record brain-wide activity and behavior
Webuilt amicroscopy platform for brain-wide calcium imaging in

freely moving animals and wrote software to automate process-

ing of these recordings. We constructed a transgenic C. elegans

strain that expresses NLS-GCaMP7f and NLS-mNeptune2.5 in

all neurons. Recording nuclear-localized GCaMP makes it

feasible to record brain-wide activity, though this approach mis-

ses local calcium signals in neurites.34 Transgenic animals’

behavior was normal, based on assays for chemotaxis and

learning (Figure S1A). Animals were recorded on a microscope
Figure 1. A probabilistic encoder model reveals how neurons across t

(A) Light path of the microscope. Top: behavioral data are collected in NIR brigh

(B and C) Example images from the two light paths in (A). (B) Images are processe

out the motion. (C) Maximum intensity projection of head fluorescence.

(D) Software pipeline to extract GCaMP signals from the confocal volumes. See

(E) Heatmap of neural traces collected from a pan-neuronal GFP control animal.

(F) Comparison of signal variation in all neurons from GFP and GCaMP recording

(G) Example dataset, with GCaMP data and behavioral features. GCaMP data disp

head to tail. Inset (green) shows a zoomed region to illustrate fast head oscillatio

(H) Three example neurons from one animal that encode velocity over different tim

kernels) moving average (gray) of the animal’s recent velocity, over different timesc

to gray traces.

(I) Example tuning scatterplots for three neurons (different from those in H) show

(J) Example tuning scatterplots for three neurons that combine information about

each neuron, the red and green dots separate from one another only for negativ

(K) Simplified expression of the deterministic component of CePNEM. Here, we r

represents timescale via recursion.

(L) Left andmiddle: fitting procedure. Likelihoodweighting selects a particle with th

posterior distribution (see STARMethods for details). Gray shading indicates mod

two model parameters for illustrative purposes.

(M) Example neural traces and median of all posterior CePNEM fits for that neuro

data (see STAR Methods).

See also Figures S1 and S2 and Video S1.
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with two light paths.38,39 The lower light path is coupled to a spin-

ning disk confocal for volumetric imaging of fluorescence in the

head. The upper light path has a near-infrared (NIR) brightfield

configuration to capture images for behavior quantification

(Video S1). To allow for closed-loop animal tracking, the location

of the worm’s head is identified in real time with a deep neural

network40 and input into a PID controller that moves the micro-

scope stage to keep the animal centered.

We wrote software to automatically extract calcium traces

from these videos (Figure 1D). First, a 3D U-Net41 uses the

time-invariant mNeptune2.5 to locate and segment all neurons

in all time points. We then register images from different time

points to one another and use clustering to link neurons’ identi-

ties over time (see STAR Methods). To test whether this accu-

rately tracks neurons, we recorded a control strain expressing

NLS-GFP at different levels in different neurons (Peat-4::NLS-

GFP), along with pan-neuronal NLS-mNeptune2.5 (Figure S1B).

Mistakes in linking neurons’ identities would be obvious here

since green fluorescent protein (GFP) levels would fluctuate in

a neural trace if time points were sampled from different neurons.

This analysis showed that neural traces were correctly sampled

from individual neurons in 99.7% of the frames. We estimated

motion artifacts by recording a strain with pan-neuronal NLS-

GFP and NLS-mNeptune2.5 (Figures 1E–1G and S1C). Fluores-

cent signals were far more narrowly distributed for GFP

compared with GCaMP7f, suggesting that motion artifacts are

negligible (Figure 1F). Nevertheless, we used the GFP datasets

to control for any such artifacts in all analyses below (see

STAR Methods). Compared with previous imaging systems,38

there was an order of magnitude increase in SNR of the

GCaMP traces from this platform (likely due to 3D U-Net seg-

mentation; see STAR Methods).

We also wrote software that extracts behavioral variables from

the brightfield images: velocity, body posture, feeding (or

pharyngeal pumping), angular velocity, and head curvature

(bending of the head, associated with steering). Animals did
he C. elegans brain represent behavior

tfield. Bottom: spinning disk confocal for imaging head fluorescence.

d by the online tracking system, which sends commands to the stage to cancel

STAR Methods.

Data are shown using same color scale as GCaMP data in (G).

s.

layed on same color scale as (E). Body segment is a vector of body angles from

ns.

escales. Each neuron (blue) is correlated with an exponentially weighted (red

ales. Inset shows half-decay times of exponentials and correlations of neurons

ing how their activity relates to velocity. Dots are individual time points.

head curvature (color) and velocity (x axis). Dots are individual time points. For

e or positive velocity values.

epresent the effect of timescale via an integral, whereas Equation 1 in the text

e best fit to the data and uses it to initialize aMonte Carlo process that infers the

el likelihood. Right: example posterior distribution for a neural trace, shown for

n. Inset cross-validation (cv) scores are pseudo-R2 scores on withheld testing
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not exhibit egg-laying or defecation in these recording condi-

tions. Together, these advances permit us to quantify brain-

wide calcium signals and a diverse list of behavioral variables

from freely moving C. elegans.

A probabilistic neural encoding model reveals how
C. elegans neurons encode behavior
We recorded brain-wide activity and behavior from 14 animals as

they explored sparse food over 16 min (data available at www.

wormwideweb.org). We obtained data from 143 ± 12 head neu-

rons per animal (example in Figure 1G). 94.7% of the recorded

neurons exhibited clear dynamics and could be classified as

active (see STAR Methods). Our goal was to build models of

how each neuron ‘‘encodes’’ or ‘‘represents’’ the animal’s

behavior, in other words, how its activity is quantitatively associ-

ated with behavioral features. Our initial efforts revealed three

features of neural encoding that we describe here. We systemat-

ically identify neurons with these features below (Figure 2).

First, neurons encoded behavior over a wide range of time-

scales. For example, the activity of individual neurons that

encode velocity was precisely correlated with an exponentially

weighted average of the animal’s recent velocity. The decays

of the exponentials, which determine how much a given neu-

ron’s activity weighs past versus present velocity, varied widely

across neurons (range of half-decay: 0.9–31.7 s; GCaMP7f half-

decay is <1 s42,43). Figure 1H illustrates this by showing correla-

tions between individual neurons’ activities and velocity that

have been convolved with exponential filters with varying decay

times (see also Figures S1D and S1E). We also observed a

broad range of timescales for neurons that encode other behav-

iors (see below). This suggests that C. elegans neurons differ in

how much they reflect the animal’s past versus present

behavior.

Second, neurons reflected individual behaviors in a heteroge-

neous fashion. For example, for neurons that encode velocity,

this encoding can be captured by a tuning curve that relates

the neuron’s activity to velocity. Some neurons displayed analog

tuning, but others displayed ‘‘rectification,’’ where the slopes of

their tuning curves during reverse and forward velocity differed

(Figure 1I). Although many neurons were more active during for-

ward or reverse movement, others encoded slow locomotion

regardless of movement direction (Figure 1I, middle). This sug-

gests that neurons that encode velocity can represent overall
Figure 2. Varied representations of behavior across the C. elegans bra

(A) Fraction of neurons per animal that encode the indicated behaviors. If a neuron

standard deviation between animals.

(B) Fraction of neurons per animal that encode 0, 1, 2, or 3 of the behaviors. Erro

(C) ECDF of the median model half-decay time for neurons that encode at least

(D) Performance of linear decoders that predict velocity at times offset from curr

actual decoders and control scrambled decoders. Predicted velocity values wer

time. Decoders trained to make this prediction based on current velocity (black)

deviation across animals.

(E) Distributions of how neurons encode the indicated behaviors. Neurons were c

Example tuning curves are shown above, and prototypical tuning curves for eac

(F) Five example neurons that encode forward locomotion, together with CePNEM

each neuron’s half-decay time.

(G) Three example neurons that encode head curvature in conjunction with mov

(H) Three example neurons that encode feeding information, together with CePN

4138 Cell 186, 4134–4151, September 14, 2023
speed, movement direction, or finely tuned aspects of forward

or reverse movement.

Third, many neurons conjunctively represented multiple motor

programs. For example, most neurons whose activities were

correlated with oscillatory head bending showed different tun-

ings to head curvature during forward versus reverse movement

(Figure 1J). Similarly, many neurons conjunctively represented

the animal’s velocity and feeding rate. This suggests that

many C. elegans neurons encode multiple motor programs in

combination.

Based on these observations, we constructed an encoding

model that uses behavioral features to predict each neuron’s ac-

tivity (Figure 1K; Equation 1). This model provides a quantitative

explanation of how each neuron’s activity is related to behavior.

The relationship between activity and behavior for a given neuron

could be due to that neuron causally influencing behavior or,

alternatively, due to the neuron receiving proprioceptive or cor-

ollary discharge signals. In contrast to decoding analyses,3

which reveal the presence of behavioral information in groups

of neurons, an encoding model can provide precise information

about how each neuron’s dynamics relate to behavior. Each

neuron’s activity was modeled as a weighted average of the an-

imal’s recent behavior with a single decay parameter s, allowing

for different timescale encoding. Neurons can additively weigh

multiple behavioral predictor terms (based on coefficients cv;

cqh; and cp), which can interact with the animal’s movement di-

rection parameterized by cvT . This allows for rectified and non-

rectified tunings to behavior, as well as conjunctive encoding

of multiple behaviors. We compared the goodness of fit of this

full model to partial models with parameters deleted (and to a

linear model) and found that deletion of any parameter signifi-

cantly increased model error (Figures S1F and S1G).

The model parameters are interpretable, describing how each

neuron encodes each behavioral feature. However, because the

model is fit on a finite amount of data, these parameters have a

level of uncertainty that is important to estimate. Therefore, we

determined the posterior distribution of all model parameters

that were consistent with our recorded data, where consistency

was defined as likelihood in the context of a Gaussian process

residual model parameterized by snoise; sSE , and l (see STAR

Methods). This allowed us to quantify our uncertainty in each

model parameter and perform meaningful statistical analyses.

The posterior distribution was determined using a custom
in

encoded >1 behavior, it is represented in multiple categories. Error bars show

r bars show standard deviation between animals.

one behavior. Shading shows standard deviation between animals.

ent neural activity (brown). Performance is the difference in error between the

e averaged over a 10-s sliding window centered Dt seconds from the current

or velocity values at all times (gray) are also shown. Shading shows standard

ategorized based on their tuning curves to each behavior (see STAR Methods).

h category are shown.

-derived tuning curves for each neuron, and themean and standard deviation of

ement direction, together with CePNEM-derived tuning parameters.

EM-derived tuning parameters.

http://www.wormwideweb.org
http://www.wormwideweb.org
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inference algorithm implemented with the probabilistic program-

ming system Gen44 (Figure 1L). We confirmed the validity of this

approach using simulation-based calibration (SBC), a technique

that ensures that approximations from such inference algorithms

are sufficiently accurate (Figure S2A).45

The CePNEM expression

n½t� =
1

s+1
RectðcvT ; v½t�Þ ðcvv½t� + cqhqh½t� + cpp½t�Þ

+
s

s+1
ðn½t � 1� � bÞ+b Equation 1

RectðcvT ; v½t�Þ =
cvT+1ffiffiffiffiffiffiffiffiffiffiffiffi
c2
vT+1

p � 2
cvTffiffiffiffiffiffiffiffiffiffiffiffi
c2
vT+1

p ðv½t� < 0Þ

Observed neural activity � GPðn½t�;KGNðsnoiseÞ + KSEðsSE ; lÞÞ
Parameter Meaning

v½t�, qh½t�, p½t� observed velocity, head curvature, and

pumping rate

n½t� modeled neural activity

RectðcvT ;v½t�Þ locomotion direction rectification term with

different values based on forward versus

reverse movement

cvT locomotion direction rectification parameter

cv, cqh, cp velocity, head curvature, and feeding

parameters

s exponentially weighted moving average

(EWMA) timescale parameter

b baseline activity parameter

n½0� initial condition parameter

snoise white noise parameter

sSE autocorrelative residual parameter

l autocorrelative residual timescale parameter

GP Gaussian process

KGN;KSE Gaussian process kernels
We fit this model (the C. elegans probabilistic neural encoding

model, or CePNEM) on all neurons and found significant encod-

ing of at least one behavioral feature in 83 ± 10 out of 143 neu-

rons per animal (examples in Figures 1M and S2B; see also Fig-

ure S2C and STAR Methods for statistics). To ensure that these

results were not due to motion artifacts, we applied the model to

animals expressing pan-neuronal GFP and found that only 2.1%

of GFP neurons significantly encoded behavior (versus 58.6% in

GCaMPdatasets; Figure S2D).Wewere also concernedwhether

the model could potentially explain neural activity via overfitting

and tested this using two approaches. First, we tested whether

neural activity from one animal could be explained using behav-

ioral features from other animals. However, only 2.7%of neurons

encoded this incorrect behavior (Figure S2D). Second, we per-

formed 5-fold cross-validation (cv) across recorded neurons

and found a high level of performance on withheld testing data

(Figure S2E).
There were active neurons with calcium dynamics not well fit

by CePNEM (see Figure S2F). However, it was ambiguous

whether these neurons encoded behavior in a manner not

captured by CePNEM or whether their activity was related to

other ongoing sensory or internal variables. To distinguish be-

tween these possibilities, we examined the model residuals,

i.e., the neural activity unexplained by CePNEM. We attempted

to decode behavioral features using all neurons’ model residuals

and, as a control, the original neural activity traces. Decoding

from the full neural traces was successful, but decoding from

the residuals was close to chance (Figure S2G). This suggests

that neural variance unexplained by CePNEM is unrelated to

the overt behaviors quantified here. These residuals may be

related to sensory inputs, internal states, or behaviors that we

were unable to detect. Decoding of specific behavioral features

was also most successful from neurons that CePNEM sug-

gested encode those features (Figure S2H). Thus, CePNEM de-

termines the encoding features of neurons in a manner that is

concordant with decoding analyses.

Diverse representations of behavior across the
C. elegans brain
We used the CePNEM results to analyze how the neurons across

each animal’s brain encode its behavior. Among the recorded

neurons, encoding of velocity was most prevalent, followed by

head curvature and feeding (Figure 2A). 58.6% of recorded

neurons encoded at least one behavior (Figure 2B), with

approximately one-third of these conjunctively encodingmultiple

behaviors (Figure 2B). Most neurons primarily encoded current

behavior, but a sizable subsetweighed past behavior (Figure 2C).

Long timescale encoding was especially prominent among for-

ward-active velocity neurons (Figures S2I and S2J). This sug-

gested that current neural activity may contain information about

past velocity. Indeed, we were able to train a linear decoder to

predict past velocity up toat least 20 sprior basedoncurrent neu-

ral activity (Figure 2D; black line shows thiswas not due to current

velocity predicting past velocity). A similar decoder could predict

past head-bending behavior, albeit less robustly (Figure S2K).

However, we were not able to predict future velocity or head

bending from current neural activity (Figures 2D and S2K).

We analyzed how each behavior was represented across

the full set of neurons, first focusing on velocity. Using the

CePNEM fits, we determined the shapes of each neuron’s tuning

curve to velocity (see STAR Methods). There were eight ways

that a neuron could be tuned to velocity (Figure 2E; examples

in Figure 2F). Most neurons (83%) exhibited rectified tunings,

in which the encoding of forward and reverse speed differed. A

smaller set of neurons represented analog velocity and others

encoded slow locomotion. To highlight how CePNEM accurately

captures the dynamics of neurons with different tunings, Fig-

ure 2F shows five neurons with higher activity during forward

movement, but with different dynamics. The CePNEM fits to

each neuron reveal how they encode velocity with different tun-

ings and timescales.

Among the neurons that encoded head curvature, many did so

in a manner that depended on locomotion direction (Figure 2E).

Thus, we categorized these neurons based on both their

head curvature tuning and velocity tuning. Most neurons only
Cell 186, 4134–4151, September 14, 2023 4139
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Figure 3. Global analysis of how neurons encode behavior in the C. elegans nervous system

(A) UMAP embedding of all neurons in 14 animals, where proximity indicates encoding similarity (see STAR Methods). Here, we projected all points from each

neuron’s CePNEM posterior. Figure S3D shows only one dot per neuron.

(B–E) UMAP space where neurons are colored by their behavioral encodings. Long versus short timescale is split at half-decay time of 20 s.

(F) Zoomed portion of UMAP space, where neurons are color-coded by their velocity tuning curves.

(G) Example animal, showing neurons’ tuning to behavior and loadings onto the top five PCs. Neurons are hierarchically clustered by their PC loadings.

(H) Number of PCs needed to explain 75% of the variance in a given neuron, averaged across neurons in 14 animals. Data are means and standard deviation

across animals.

See also Figure S3.
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displayed head curvature-associated activity changes during

forward or reverse movement, with more neurons in the for-

ward-rectified group (Figure 2E; examples in Figure 2G). These

results indicate that the network that controls head steering is

broadly impacted by the animal’s movement direction, which

could relate to the fact that steering behavior must be controlled

differently during forward versus reverse movement (see also

Figure S2L). In addition to these neurons that encode the ani-

mal’s acute head curvature, a smaller group of neurons encoded

angular velocity (Figure S2M).

Neural representations of the animal’s feeding rates were also

diverse (Figure 2E; examples in Figure 2H). Many neurons dis-

played analog tuning to feeding rates, and others encoded

feeding in conjunction with movement direction. Neurons could

be positively or negatively correlated with feeding.

The above analyses suggest a surprising amount of hetero-

geneity in how C. elegans neurons encode behavior. To obtain
4140 Cell 186, 4134–4151, September 14, 2023
a more global view of these representations, we embedded the

neurons into a two-dimensional UMAP subspace where prox-

imity between neurons indicates how similarly they encode

behavior (Figure 3A; see Figures S3A–S3D for related ana-

lyses). This analysis could reveal clusters of cells that encode

behavior the same way or, alternatively, the neurons could

be evenly distributed if the representations were more hetero-

geneous. We found that the neurons were diffusely distributed,

with no evident clustering (Figure 3A). However, neurons’

localization still depended on their encoding (Figures 3B–3E).

For example, encoding of velocity was graded along one

axis, and encoding of feeding was graded along the other.

The continuous distribution of neurons was especially evident

when examining neurons with related tuning curves (Figure 3F).

Other standard clustering approaches also suggested that the

neurons were not clusterable into discrete groups based on

their encoding (Figure S3E). These results suggest that in
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general, the C. elegans neurons represent behavior along a

continuum.

How do these diverse representations of behavior arise?

C. elegans neural activity can be decomposed into different

modes of dynamics shared by the neurons,26 identifiable

through principal component analysis (PCA). In our data, the first

three PCs explained 42% of the variance in neural activity, and

18 PCs were required to explain 75% of the variance (Fig-

ure S3F). Single neurons were almost exclusively described as

complex mixtures of PCs rather than single PCs (Figures 3G

and 3H). The weights of the PCs on different neurons were

diverse, and hierarchical clustering of these data revealed little

structure. However, as expected, the loadings were still predic-

tive of the neuron’s encoding type (Figure 3G). Overall, these re-

sults suggest that there are many ongoing modes of dynamics

shared among neurons, which relate to their distinct representa-

tions of behavior.

An atlas of how the defined neuron classes in the
C. elegans connectome encode behavior
We next sought to map these diverse representations of

behavior onto the defined cell types of the C. elegans connec-

tome. Thus, we collected additional datasets in which we deter-

mined neural identity using NeuroPAL,46 a transgene in which

three fluorescent proteins are expressed under well-defined ge-

netic drivers. This makes it possible to determine neural identity

based on neuron position and multi-spectral fluorescence.

We crossed the pan-neuronal NLS-GCaMP7f transgene to

NeuroPAL (using otIs670, a low-brightness NeuroPAL integrant).

Data were collected as above, except animals were immobilized

by cooling47 after each freely moving recording. We then

collected multi-spectral NeuroPAL fluorescence (Figure S4A)

and registered those images to the freely moving images.

We collected data from 40 NeuroPAL/GCaMP7f animals.

Compared with the above datasets, a similar number of neurons

encoded behavior (52.0%, compared with 58.6%). Behavioral

parameters and other metrics of neural activity were also mostly

similar (Figures S3B and S4B–S4E; though NeuroPAL animals
Figure 4. An atlas of how the different C. elegans neuron classes enco

(A) An atlas of how the indicated neuron classes encode behavior, derived from

d Encoding strength: approximate variance in neural activity explained by each b

d Forwardness, dorsalness, and feedingness: slope of the tuning to each behavi

d Enc. timescale: median half-decay time, indicating how neurons weigh past ve

d Overall act. level: standard deviation of the calcium traces when normalized as

d Enc. variability: how differently the neuron class encoded behavior across reco

Other columns show the fraction of times that each neuron significantly encoded

recorded):

d Fwd, Rev, dorsal, ventral, activated, and inhibited: neurons with that overall tu

d Fwd slope �, Fwd slope +, Rev slope �, and Rev slope +: neurons with that s

d F slope > R slope and F slope < R slope: neurons displaying rectification in the

dDorsal during F, ventral during F, dorsal during R, ventral during R, Act during F, I

during the specified movement direction (forward or reverse).

d More D during F, more V during F, more A during F, and more I during F: neuro

Parenthesis on right indicates the number of CePNEM fits per neuron class (firs

separately).

(B and C) Circuit diagram of neurons that innervate head muscles with overlai

thickness indicates number of synapses between neurons. Left/right neurons s

activity, suggesting an asymmetry in this circuit.

(D) Circuit diagrams of behavioral circuits.

See also Figures S4 and S5 and Table S1.
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reversed more frequently and had a slight ventral bias). Across

recordings, we obtained data from 78 of the 80 neuron classes

in the head. Although most neuron classes are single left/right

pairs, 13 classes consist of 2–3 pairs of neurons in 4- or 6-fold

symmetric arrangements. In these cases, we separately

analyzed each neuron pair. Left/right pairs were pooled for all

neuron classes except four that displayed asymmetric activities

(ASE, SAAD, IL1, IL2; see STAR Methods). We generated

CePNEM fits for all of these neurons to reveal how they encode

behavior (Figures 4A and S4F–S4H; Table S1). The encoding

properties of the neuron classes determined via CePNEM pre-

dicted their activity changes in event-triggered averages aligned

to key behaviors (Figure S4G). For well-studied neurons, our re-

sults provided a clear match to previous work: AVB, RIB, AIY,

and RID encoded forward movement; AVA, RIM, and AIB en-

coded reverse movement; and SMDD and SMDV encoded dor-

sal and ventral head curvature, respectively.24–30

This analysis revealed many features of how the C. elegans

nervous system is organized to control behavior. Among the ve-

locity-encoding neurons, those that encode forward movement

displayed a wide range of tunings to velocity and included

many neurons not previously implicated (AIM, AUA, and others).

The reverse neurons were more uniform in their tunings to veloc-

ity, but several also represented head curvature, suggesting that

theymay control turning during reversals. Neural representations

of velocity also spanned multiple timescales. For example, RIC,

ADA, AVK, AIM, and AIY integrated the animal’s recent velocity

over tens of seconds. We silenced some neurons that encoded

velocity (AIM, RIC, AUA, AVL, RIF) and found that this specifically

altered animals’ velocity (Figure S4I). In addition, we optogeneti-

cally stimulated ASG sensory neurons, which encoded reverse

movement, and found that this triggered reversals (Figure S4I).

Thus, results from the neuron atlas can predict causal effects

on behavior.

These data also revealed neural dynamics in the circuit that

controls head steering. The neuron classes in this network are

often 4-fold symmetric, consisting of separate neuron pairs

that innervate the ventral and dorsal head muscles. These
de behavior

analysis of fit CePNEM models. Columns show the following:

ehavioral variable.

or.

rsus present behavior.

F/Fmean.

rdings.

the indicated behaviors (relative to the total number of times the neuron was

ning to behavior.

lope in their velocity tuning curves during the specified movement direction.

ir velocity tuning curves.

nh during F, Act during R, and Inh during R: neurons with that tuning to behavior

ns with different tunings to behavior during forward versus reverse.

t and second halves of videos, which have different model fits, are counted

d behavioral encodings during forward (B) and reverse (C) movement. Edge

hown separately, because one of these pairs (SAAD) exhibited asymmetric
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opposing dorsal and ventral neurons were functionally antago-

nistic in our analysis (Figures 4A–4C). We found that the neural

control of head steering is different during forward versus

reverse motion (Figures 4B and 4C). Some neurons that encode

head curvature are more active during forward (RMED/V) or

reverse (SAAV) movement. Others have more robust tuning to

head curvature during forward movement (SMDD/V, SMBD/V).

In addition, RMDD was more active during dorsal head bending

during forward motion but preferred ventral head bending during

reverse movement. The forward-rectified tuning of SMD was

previously described and matches our results.25 Our data now

show that this entire network shifts its functional properties de-

pending on movement direction. This suggests that the network

functions differently while animals steer forward toward a target

compared with when they back away from one. We ablated

some neurons that jointly encoded movement direction and

head curvature (SAA, SMB) and found that this altered animal’s

head bending and velocity (Figure S4I).

Most neurons that encoded feeding were in the pharyngeal

nervous system, but several extrapharyngeal neurons also en-

coded feeding, including AIN, ASI, and AVK. Neurons within

the pharyngeal system encoded feeding with both positive (I6,

M3, M4, etc.) and negative (M1, MI) relationships. Optogeneti-

cally silencing neurons that encoded feeding (M4, MC) specif-

ically inhibited feeding behavior (Figure S4I).

Finally, we observed that many neurons (OLL, OLQ, IL1, RIH,

URB, and others) had tunings to different motor programs that

were variable across animals (Figure 4D). To directly examine

this, we computed a variability index that describes how dissim-

ilar each neuron class’s encoding of behavior was across all da-

tasets (Figure 4A; see STAR Methods). Although many neuron

classes had invariant representations of behavior across animals

(AVA, AIM, and many others), others had high variability

(Figures 4A and S5A). NeuroPAL labeling and registration pro-

cedures for the neurons with high variability were determined

with equal confidence to the other neuron classes, suggesting

that identification errors are unlikely to explain these observa-

tions (Figures S5B–S5D). Further supporting this, these neurons

also changed encoding over the course of continuous record-

ings (see below). The ability of models trained on one set of an-

imals to generalize to other animals inversely scaled with the

neuron class’s variability index (Figure S5E). For neurons with

high variability, it is informative to look at the range of possible

encodings reported in Figure 4A rather than just the encoding

strength metric. Overall, these datasets provide a functional

map of how most neuron classes in the C. elegans nervous sys-

tem encode the animal’s behavior.
Different encoding features are localized to distinct
regions of the connectome
We next examined how these representations of behavior relate

to connectivity in the C. elegans connectome. We first examined

whether synaptically connected neurons had similar dynamics.

Indeed, connected neurons—especially those connected

through electrical synapses—were more highly correlated than

neurons that were not synaptically connected (Figure 5A). In

addition, neurons were more strongly correlated (either posi-
tively or negatively) to their synaptic input and output neurons,

compared with random controls (Figure 5B).

This raised the possibility that local communities of neurons in

the connectome may encode related behavioral information.

To examine this, we determined the localization of behavioral in-

formation in the connectome. We examined localization with

respect to whether neurons are connected to one another, and

whether neurons are closer to sensory versus motor layers

(x and y axes of Figures 5C–5G). Velocity information was wide-

spread, whereas head curvature and feeding were located in

more restricted connectomic regions (Figures 5C and 5D). In

general, behavioral information was most prominent at lower

sensorimotor layers, closer to motor output (Figure 5E). Neurons

with long timescale information were located at middle sensori-

motor layers, primarily in interneurons that innervated premotor

andmotor neurons (Figure 5F). The neurons with variable encod-

ing across animals were largely localized in one synaptic com-

munity (Figures 5G and 5H), suggesting that they comprise an in-

terconnected circuit that exhibits variable coupling. Together,

these observations suggest that different features of behavior

encoding are located in different regions of the C. elegans

connectome.

The encoding of behavior is dynamic in many neurons
We noted that the encoding properties of some neurons ap-

peared to change over time in a single recording. Therefore,

we analyzed our data to determine whether neural representa-

tions of behavior dynamically change. We fit two CePNEM

models trained on the first and second halves of the same neural

trace and used the Gen statistical framework to test whether the

model parameters significantly changed between time seg-

ments (see STAR Methods; Figures S6A and S6B). Based on

this test, �31% of neurons that encoded behavior changed

that encoding over the course of our continuous recordings. A

similar fraction (24%) of neurons changed encoding in the

NeuroPAL strain. These identified neurons substantially overlap-

ped with those that variably encode behavior between animals

(Figures 6A and S6C) and were densely interconnected (Fig-

ure 6B; see also Figure S6D). Neurons changed encoding in

different ways: some changed which behaviors they encoded;

others showed gains or losses of encoding; and others showed

subtle changes in tuning (Figure 6C; examples in Figures 6D and

6E). This suggests that some neurons in the C. elegans connec-

tome are variably coupled to behavioral circuits and remap how

they couple to these circuits over time.

We next sought to understand the temporal structure of these

encoding changes. For instance, individual neurons could remap

independently or in a synchronized manner. We developed a

metric to identify when an encoding change took place based

on the difference between the errors of models trained on

different time regions of the same trace (Figures 6F and 6G; con-

trols in Figures S6E and S6F). We observed sharp changes (yel-

low lines) where many neurons simultaneously changed encod-

ing in many datasets (Figures 6F and 6G), although in some

datasets there were gradual shifts (Figures S6G and S6H).

Certain neuron classes were more likely to change encoding at

the same time as one another such that they could be grouped

into clusters (Figure 6H). The neurons that remapped their
Cell 186, 4134–4151, September 14, 2023 4143



CA

B

H

E F G

D

Figure 5. Neural encoding features map onto different regions of the connectome

(A) Cumulative distribution of the correlation coefficients of activities of pairs of neurons connected in different ways. Left/right pairs weremerged for this analysis,

so it only considers relationships between different neuron classes. *p < 0.05 **p < 0.005 ***p < 0.0005, Mann-Whitney U test.

(B) Median correlation coefficients between each neuron and its synaptic inputs (blue) or outputs (orange). Control (gray) shows randomly selected neurons of

equal group size.

(C) Neurons (circles) and connections (gray lines) in the C. elegans connectome, with behavior encoding information. Connectome region (x axis): neurons with

similar wiring are adjacent on this axis, computed as the second eigenvector of the Laplacian of the connectome graph. Sensorimotor layer (y axis): neurons

arranged from sensory to motor (see STAR Methods). Some neurons are labeled to provide rough orientation to the layout.

(D) Same as in (C), but one behavior per plot.

(E–G) Distribution of encoding features in the connectome, arranged as in (C). Marginal distributions (blue) show values of each behavioral feature along each axis.

Gray control lines show how behavioral features are distributed when randomly shuffled. *p < 0.05 **p < 0.005, ***p < 0.0005, one sample Z test for proportion.

(H) The number of synapses connecting the neurons with high variability (see STAR Methods) is shown as a red line. Gray shows the number of synapses

connecting random neuron groups. Inset shows rank of the true value in this shuffle distribution.
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encoding at the same time were more likely to be synaptically

connected, especially via gap junctions (Figure 6I). Moreover,

the number of neurons that changed encoding was positively

correlated with the degree of behavioral change across the hy-

pothesized moment of the change (Figure S6I). Therefore, at

times there is a coordinated remapping where many neurons

change how they represent behavior.

The encoding of behavior is influenced by the behavioral
state of the animal
We next tested whether changes in the animal’s behavioral state

could elicit these synchronous encoding changes. Behavioral

states are persistent changes in behavior that outlast the sensory

stimuli that initiate them.48,49 Previous work has shown that aver-

sive stimuli can induce this type of response inC. elegans.22,23,50

Therefore, we recorded 30 datasets where we delivered a sud-

den, noxious heat stimulus to animals part way through the

recording (19 of these datasets had NeuroPAL labels). For stim-

ulation, we heated the agar around the worm’s head by 10�C for

1 s (Figure 7A; temperature decayed to baseline within 3 s). This

elicited an immediate avoidance (reversal) behavior and reduc-

tion in feeding (Figure 7B). Animals continued to exhibit reduced

feeding and increased reversals for minutes after the stimulus,

revealing a persistent behavioral state change (Figure 7B). How-

ever, behavior reverted to normal within an hour and animal

viability was not adversely impacted by the stimulus

(Figures S7A and S7B).

We measured brain-wide responses during this behavioral

state change (Figures 7C–7G). Several neurons displayed tran-

sient responses to the sensory stimulus, including thermosen-

sory neurons AFD, AWC, FLP, and others (Figures 7D and 7E;

see also Figures S7C and S7D).51,52 Other neurons displayedmi-

nutes-long responses to the stimulus. We also identified some

neurons with persistent changes in activity that lasted for the

rest of the recordings after the stimulus (Figure 7F). Finally, we

found that 35% of the neurons that encoded behavior changed

encoding time-locked to the heat stimulus (compared with

24% in animals without any stimulus; p < 0.05, Mann-Whitney

U test; Figure S7E; examples in Figure 7H). The neurons that
Figure 6. Neural representations of behavior dynamically change over

(A) Analysis of inter- versus intra-dataset encoding variability. Each dot is a neur

(B) For the group of neurons that frequently change encoding, red line shows perc

Gray controls are the same values for random groups of neurons of similar size.

(C) How neurons changed encoding across SWF415 animals. Categories are: ‘‘los

‘‘gain all,’’ ‘‘gain some,’’ ‘‘swap’’ (both gained and lost tuning to behaviors), and

(D) Two example neurons with CePNEM fits, showing a change in neural encodin

dataset displayed a sudden shift in encoding (see F).

(E) Example neurons OLQDL and URYDL, depicted as in (D).

(F) Data from same animal as (D) showing a sharp change in neural encoding of b

(model 1 andmodel 2). We then computed the difference between the errors of the

This was then averaged across encoding changing neurons. A sudden change (y

(G) Data from the same animal as (E) showing a sudden change in neural encodi

(H) Fraction of times that neuron classes changed encoding at the same mome

outlines depict main clusters. **p < 0.005, empirical p value that clustering would

more likely to have unidirectional synapses and/or gap junctions with one another

(I) Neuron pairs with unidirectional synapses or electrical synapses were more li

tributions). *p < 0.05, **p < 0.005, empirical p value.

See also Figure S6.
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changed encoding were stereotyped across animals, especially

the neurons related to feeding, which is the behavior most

robustly altered by the heat stimulus (Figure S7F; see also

Figures S7G and S7H). Thus, inducing a behavioral state change

elicits a reliable shift in the network that remaps the relationship

between neural activity and behavior.

We examined how these activity changes related to the behav-

ioral changes that comprise the aversive behavioral state,

focusing on the robust suppression of feeding. Three neurons

that encoded feeding showed persistent activity changes that

paralleled the state: I2 activity persistently decreased and MI

and M1 activity increased. In addition, four feeding neurons

showed a change in encoding after the heat stimulus. These neu-

rons, MC,M3, M4, and AIN, had correlated activity bouts aligned

with bouts of feeding prior to the heat stimulus (Figures 7I and

7J). After the stimulus, activity bouts still occurred in these neu-

rons, but this was not accompanied by feeding. Notably, at

baseline, MI and M1 activity were highest during pauses in

feeding (Figures 7I and 7J). This suggests that MI and M1 might

inhibit feeding and that the state-dependent increase in MI and

M1 activity might suppress feeding normally elicited by MC/

M3/M4/AIN. Overall, these results show how changes in behav-

ioral state are accompanied by persistent activity changes and

alterations in how neural activity is functionally coupled to

behavior.

DISCUSSION

Animalsmust adapt their behavior to a constantly changing envi-

ronment. How neurons represent these behaviors and how these

representations flexibly change in the context of the whole ner-

vous system was unknown. To address this question, we devel-

oped technologies to acquire high-quality brain-wide activity

and behavioral data. Using the probabilistic encoder model

CePNEM, we constructed a brain-wide map of how each neuron

encodes behavior. By also determining the ground-truth identity

of these neurons, we overlaid this map upon the physical wiring

diagram. Behavioral information is richly expressed across the

brain in many different forms—with distinct tunings, timescales,
time

on class.

ent of synapses onto these neurons that come from neurons within the group.

Inset percentile shows rank of true number.

e all’’ (lost tuning to behavior), ‘‘lose some’’ (lost tuning to one ormore behavior),

‘‘modify’’ (encode the same behavior(s), but differently).

g of behavior. Yellow dashed lines indicate times when neurons across the full

ehavior. We fit CePNEM models to the first and second halves of the recording

twomedianmodel fits and smoothenedwith a 200-time point moving average.

ellow line) indicates a sudden shift in behavior encoding across neurons.

ng, displayed as in (F).

nt, relative to their encoding changes overall. Rows were clustered and white

perform as well during random shuffles. Within each cluster, the neurons were

compared with random shuffles, as indicated. ***p < 0.0005, empirical p value.

kely to change encoding together, compared with random shuffles (gray dis-
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and levels of flexibility—that map onto the defined neuron clas-

ses of the C. elegans connectome.

Previous work showed that animal behaviors are accompa-

nied by widespread changes in activity across the brain, result-

ing in a low-dimensional neural space.53 Here we found that an

extra layer of complexity emerged when we determined each

neuron’s encoding of behavior. Representations were complex

and diverse, and this heterogeneity could be largely explained

by four motifs: varying timescales, non-linear tunings to

behavior, conjunctive representations of multiple motor pro-

grams, and different levels of flexibility. Having many different

forms of behavior representation presentmay confer the nervous

system with computational flexibility. Depending on the context,

the brain may be able to combine different representations to

construct new coordinated behaviors. We did not distinguish

whether a given neuron’s encoding of behavior reflected the

neuron causally driving behavior versus receiving a corollary

discharge or proprioceptive signal related to behavior.32–37

Future work separating these classes of signals across the

C. elegans network should reveal the full set of causal interac-

tions between neurons and behavior.

Although many neurons encoded current behavior, others in-

tegrated recent motor actions with varying timescales. This al-

lows the brain to encode the animal’s locomotion state of the

recent past. Combining representations with different time-

scales could allow the animal’s nervous system to perform

computations that relate past and present behavior. We also

observed that the dynamics of the nervous system can change

over longer time courses. In particular, many neurons flexibly

remapped their relationships to behavior over minutes. These

changes may be triggered by changes in neuromodulation or

other state-dependent shifts in circuit function. This remapping

may then change sensorimotor responses and the generation

of behavior.

Our results here reveal how neurons across theC. elegans ner-

vous system encode the animal’s behavior. Under the environ-

mental conditions explored here, we observed that �30% of

the worm’s nervous system can flexibly remap. Future studies

conducted in a wider range of contexts will reveal whether this

comprises the core flexible neurons in the connectome or, alter-

natively, whether the neurons that remap differ depending on

context or state.
Figure 7. Behavioral state changes cause a widespread remapping of

(A) Illustrative cartoon: a 1,436 nm IR laser transiently increases the temperature

(B) Event-triggered averages of behavior of 32 animals in response to the heat s

(C) Neural data from an animal that received a heat stimulus (red line).

(D–F) Event-triggered averages of neural activity aligned to the heat stimulus for

(F) persistent activity changes. ETAs in (F) are smoothed over 30 s; dashed lines

(G) Responses of different neuron classes to the heat stimulus (n = 19 animals):

d Immediate (<4 s) and sustained (15–30 s) GCaMP responses.

d Persistent activity changes. See STAR Methods.

d Encoding variability pre- versus post-stimulus. See STAR Methods.

(H) Example neurons that showed abrupt changes in their behavior encoding im

(I) Example dataset. Light blue neurons had persistent activity changes. Dark blu

(J) Top three plots: average activity, computed as F�Fmean

Fmean
, before and after the he

Wilcoxon signed-rank test. Bottom four plots: tuning curves to feeding behavior

across 19 animals.

See also Figure S7.
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Limitations of the study
We wish to highlight three limitations of our study. First, our neu-

ral recordings were performed using nuclear-localized GCaMP.

Although this makes brain-wide recordings feasible, the spatial

and temporal resolution of this imaging is more limited than other

approaches. Second, some recorded neurons were not well fit

by CePNEM. Our results suggest that these neurons may carry

sensory, internal, or behavioral information not studied here,

but additional work will be necessary to resolve this. Finally,

we examined animals under a limited set of environmental con-

ditions. Future recordings in different contexts may identify other

types of behavior encoding not yet revealed in our recordings.
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C. elegans: flvEx482[unc-25::inv[unc-103-sl2-GFP], flp-22::cre,

myo-2::mChrimson]

This paper SWF997

C. elegans: kyEx4268 [mod-1::nCre, myo-2::mCherry]; kyEx4499

[odr-2(2b)::inv[TeTx::sl2GFP], myo-3::mCherry]

This paper SWF703

C. elegans: leIs4207 [Plad-2::CED-3 (p15), Punc-42::CED-3 (p17),

Plad-2::GFP, Pmyo-2::mCherry]

This paper UL4207

C. elegans: leIs4230 [Pflp-12s::CED-3 (p15), Pflp-12s::CED-3 (p17),

Pflp-12s::GFP, Pmyo-2::mCherry]

This paper UL4230

C. elegans: flvEx485[gcy-21::Chrimson-t2a-mScarlett, elt-2::nGFP] This paper SWF1000

C. elegans: flvEx502[ceh-28::GtACR2-t2a-GFP, myo-2::mCherry] This paper SWF1026

C. elegans: flvEx499[ceh-19::inv[GtACR2-sl2-GFP], ins-10::nCre,

myo-2::mCherry]

This paper SWF1023

Recombinant DNA

pSF300[tag-168::NLS-GCaMP7F] This paper pSF300

pSF301[tag-168::NLS-mNeptune2.5] This paper pSF301

pSF302[tag-168::NLS-GFP] This paper pSF302

pSF303[tag-168::NLS-tag-RFPt] This paper pSF303

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

NIS-Elements (v4.51.01) Nikon https://www.nikoninstruments.com/products/software

Other

Zyla 4.2 Plus sCMOS camera Andor N/A

Ti-E Inverted Microscope Nikon N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Steven

Flavell (flavell@mit.edu).

Materials availability
All plasmids, strains, and other reagents generated in this study are freely available upon request. The key strains SWF415 and

SWF702 are openly available through the Caenorhabditis Genetics Center (CGC).

Data and code availability
d Data: All brain-wide recordings and accompanying behavioral data are freely available in a browsable and downloadable

format at www.wormwideweb.org. The data files have also been deposited at Zenodo and Github and are publicly available

as of the date of publication. DOIs are listed in the key resources table.

d Code: All original code has been deposited at Github and Zenodo and is publicly available as of the date of publication. DOIs are

listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

C. elegans

C. elegans Bristol strain N2 was used as wild-type. All transgenic and mutant strains used in this study are listed in the key resources

table. One day-old adult hermaphrodite animals were used for experiments, after growth on nematode growth medium (NGM) sup-

plemented with OP50. For crosses, animals were genotyped by PCR. For making transgenic animals, DNA was injected into the go-

nads of young adult hermaphrodites.

METHOD DETAILS

Transgenic animals
Four transgenic strains were used for large-scale recordings in this study, as described in the text. The first (SWF415) contained two

integrated transgenes: (1) flvIs17: tag-168::NLS-GCaMP7f, along with NLS-TagRFP-T expressed under the followed promoters: gcy-

28.d, ceh-36, inx-1, mod-1, tph-1(short), gcy-5, gcy-7; and (2) flvIs18: tag-168::NLS-mNeptune2.5. The second strain we recorded

(SWF702) contained two integrated transgenes: (1) flvIs17: described above; and (2) otIs670: low-brightness NeuroPAL46. Strains

were backcrossed 5 generations after integration events. The third and fourth strains are non-integrated transgenic strains express-

ing NLS-GFP and NLS-mNeptune2.5 in defined neurons, listed in the key resources table (SWF360 and SWF467).

We also generated strains for neural activation and silencing. The promoters used for cell-specific expression were as follows: RIC

(Ptbh-1), AIM (Pnlp-70), AUA (Pflp-8+Pceh-6; intersectional Cre/Lox), AVL (Punc-25+Pflp-22; intersectional Cre/Lox), RIF (Podr-

2b+Pmod-1; intersectional Cre/Lox), SAA (Plad-2+Punc-42; split Caspase), SMB (Pflp-12, 350bp), ASG (Pgcy-21), M4 (Pceh-28),

MC (Pceh-19+Pins-10; intersectional Cre/Lox). The split caspase plasmids have been previously described.54 For Cre/Lox intersec-

tion expression, we used the inverted/floxed plasmid design that has been previously described.18 All promoters, including Cre/Lox

intersectional combinations, were validated via co-expression of fluorophores (whichwere co-expressed via sl2 or t2a in each strain).

Cell ablation lines were confirmed by loss of co-expressed GFP signal in the ablated cells.

Recordings of neural activity and behavior
Microscope

Animals were recorded under a dual light-path microscope that is similar though not identical to one that we have previously

described.20 The light path used to image GCaMP, mNeptune, and the fluorophores in NeuroPAL at single cell resolution is an Andor
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spinning disk confocal systemwith Nikon ECLIPSE Ti microscope. Light supplied from a 150mW488 nm laser, 50 mW560 nm laser,

100 mW 405 nm laser, or 140 mW 637 nm laser passes through a 5000 rpm Yokogawa CSU-X1 spinning disk unit with a Borealis

upgrade (with a dual-camera configuration). A 40x water immersion objective (CFI APO LWD 40X WI 1.15 NA LAMBDA S, Nikon)

with an objective piezo (P-726 PIFOC, Physik Instrumente (PI)) was used to image the volume of the worm’s head (a Newport

NP0140SG objective piezo was used in a subset of the recordings). A custom quad dichroic mirror directed light emitted from the

specimen to two separate sCMOS cameras (Zyla 4.2 PLUS sCMOS, Andor), which had in-line emission filters (525/50 for

GcaMP/GFP, and 610 longpass for mNeptune2.5; NeuroPAL filters described below). Data was collected at 3 3 3 binning in a

322 3 210 region of interest in the center of the field of view, with 80 z planes collected at a spacing of 0.54 um. This resulted in a

volume rate of 1.7 Hz (1.4 Hz for the datasets acquired with the Newport piezo).

The light path used to image behavior was in a reflected brightfield (NIR) configuration. Light supplied by an 850-nm LED (M850L3,

Thorlabs) was collimated and passed through an 850/10 bandpass filter (FBH850-10, Thorlabs). Illumination light was reflected to-

wards the sample by a half mirror andwas focused on the sample through a 10x objective (CFI Plan Fluor 10x, Nikon). The image from

the sample passed through the half mirror and was filtered by another 850-nm bandpass filter of the same model. The image was

captured by a CMOS camera (BFS-U3-28S5M-C, FLIR).

A closed-loop tracking system was implemented in the following fashion. The NIR brightfield images were analyzed at a rate of

40 Hz to determine the location of the worm’s head. To determine this location, the image at each time point is cropped and then

analyzed via a custom-trained network with transfer learning using DeepLabCut40 that identified the location of three key points in

the worm’s head (nose, metacorpus of pharynx, and grinder of pharynx). The tracking target was determined to be halfway between

themetacorpus and grinder (central location of neuronal cell bodies). Given the target location and the error, the PID controller config-

ured in disturbance rejection sends velocity commands to the stage to cancel out the motion at an update rate of 40 Hz. This

permitted stable tracking of the C. elegans head.

Mounting and recording

L4 worms were picked 18-22 hours before the imaging experiment to a new NGM agar plate seeded with OP50 to ensure that we

recorded one day-old adult animals. A concentrated OP50 culture to be used in the mounting buffer for the worm was inoculated

18h before the experiment and cultured in a 37C shaking incubator. After 18h of incubation, 1mL of the OP50 culture was

pelleted, then resuspended in 40uL of M9. This was used as the mounting buffer. Before each recording, we made a thin, flat

agar pad (2.5cm x 1.8cm x 0.8mm) with NGM containing 2% agar. On the 4 corners of the agar pad, we placed a single layer of mi-

crobeads with a diameter of 80um to alleviate the pressure of the coverslip on the worm. Then awormwas picked to themiddle of the

agar pad, and 9.5uL of the mounting buffer was added on top of the animal. Finally, a glass coverslip (#1.5) was added on top of the

worm. This caused the mounting buffer to spread evenly across the slide. We waited for 5 minutes after mounting the animal before

imaging.

Procedure for NeuroPAL imaging

For NeuroPAL recordings, animals were imaged as described above, but they were subsequently immobilized by cooling, after which

multi-spectral information was captured. The slide was mounted back on the confocal with a thermoelectric cooling element

attached to it, set to cool the agar temperature to 4�C.55 A closed-loop temperature controller (TEC200C, Thorlabs) with a micro-

thermistor (SC30F103A, Amphenol) embedded in the agar kept the agar temperature at the 1 �C set point. Once the temperature

reached the set point, we waited 5 minutes for the worm to be fully immobilized before imaging. Details on exactly which multi-spec-

tral images were collected are in the NeuroPAL annotation section below.

Heat stimulation

For experiments involving heat stimulation, animals were recorded using the procedure described above, but were stimulated with a

1436-nm 500-mW laser (BL1436-PAG500, Thorlabs) a single time during the recording. The laser was controlled by a driver

(LDC220C, Thorlabs) and cooled by the built-in TEC and a temperature controller (TED200C, Thorlabs). The light emitted by the laser

fiber was collimated by a collimator (CFC8-C, Thorlabs) and expanded to be about 600 um at the sample plane. The laser light was

fed into the NIR brightfield path via a dichroic with 1180-nm cutoff (DMSP1180R, Thorlabs). We determined the amplitude and ki-

netics of the heat stimulus in calibration experiments where temperature was determined based on the relative intensities of rhoda-

mine 110 (temperature-insensitive) and rhodamine B (temperature-sensitive). This procedure was necessary because the thermistor

size was considerably larger than the 1436-nm illumination spot, so it could not provide a precisemeasurement of temperature within

the spot. Slides exactly matching our worm imaging slides were prepared with dyes added (and without worms). Dyes were sus-

pended in water at 500mg/L and diluted into both agar and mounting buffer at a 1:100 dilution (final concentration of 5mg/L). Rhoda-

mine 110 was imaged using a 510/20 bandpass filter and rhodamine B was imaged with a 610LP filter. We recorded data using the

confocal light path during a calibration procedure where a heating element ramped the temperature of the entire agar pad from room

temp to >50�C. Temperature was simultaneously recorded via a thermistor embedded on the surface of the agar, approximating the

position of the worm. Fluorescence was also recorded at the same time, at the precise position where the worm’s head is imaged.

This yielded a calibration curve that mapped the ratio of Rhodamine B/Rhodamine 110 intensity at the site of the worm’s head onto

precise temperatures. Slides were then stimulatedwith the 1436-nm laser using identical setting to the experiments with animals. The

response profile of the ratio of the fluorescent dyeswas then converted to temperature.We quantitatively characterized the change in

temperature, noting themean temperature over the first second of stimulation (set to be exactly 10.0�C) and its decay (0.39 sec expo-

nential decay rate, such that it returns to baseline within 3 sec).
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Extraction of behavioral parameters from NIR videos
We quantified behavioral parameters of recorded animals by analyzing the NIR brightfield recordings. All of these behaviors are

initially computed at the NIR frame rate of 20Hz, and then transformed into the confocal time frame using camera timestamps, aver-

aging together all of the NIR data corresponding to each confocal frame.

Velocity

First, we read out the (x,y) position of the stage (in mm) as it tracks the worm. To account for any delay between the worm’s motion

and stage tracking, at each time point we added the distance from the center of the image (corresponding to the stage position) to the

position of themetacorpus of pharynx (detected from our neural network used in tracking). This then gave us the position of themeta-

corpus over time. To decrease the noise level (e.g., from neural network and stage jitter), we then applied a Group-Sparse Total-Vari-

ation Denoising algorithm to themetacorpus position. Differentiating themetacorpus position then gives us amovement vector of the

animal.

Because this movement vector was computed from the location of the metacorpus, it contains two components of movement: the

animal’s velocity in its direction of motion, and oscillations of the animal’s head perpendicular to that direction. To filter out these

oscillations, we projected the movement vector onto the animal’s facing direction, i.e. the vector from the grinder of the pharynx

to its metacorpus (computed from the stage-tracking neural network output). The result of this projection is a signed scalar, which

is reported as the animal’s velocity.

Worm spline and body angle

To generate curvature variables, we trained a 2D U-Net to detect the worm from the NIR images. Specifically, this network performs

semantic segmentation to mark the pixels that correspond to the worm. To ensure consistent results if the worm intersects itself (for

instance, during an omega-turn), we use information from worm postures at recent timepoints to compute where a self-intersection

occurred, and mask it out. Next, we compute the medial axis of the segmented and masked image and fit a spline to it. Since the

tracking neural network was more accurate at detecting the exact position of the worm’s nose, we set the first point of the spline

to the point closest to the tracking neural network’s nose position. We next compute a set of points along the worm’s spline with

consistent spacing (8.85 mm along the spline) across time points, with the first point at the first position on the spline. Body angles

are computed as the anglesthat vectors q
!

i;i+1 between adjacent points make with the x-axis; for example, the first body angle would

be the angle that the vector q
!

1;2 between the first and second point makeswith the x-axis, the second body angle would be q
!

2;3, and

so on.

Head curvature

Head curvature is computed as the angle between the points 1, 5, and 8 (ie: the angle between q
!

1;5 and q
!

5;8). These points are 0 mm,

35.4 mm, and 61.9 mm along the worm’s spline, respectively.

Angular velocity

Angular velocity is computed as smoothed
d q
!

1;2

dt , which is computed with a linear Savitzky-Golay filter with a width of 300 time points

(15 seconds) centered on the current time point.

Body curvature

Body curvature is computed as the standard deviation of q
!

i;i+1 for i between 1 and 31 (ie: going up to 265 mm along the worm’s

spline). This value was selected such that this length of the animal would almost never be cropped out of the NIR camera’s field

of view. To ensure that these angles are continuous in i, they may each have 2p added or subtracted as appropriate.

Feeding (pumping rate)

Pumping rate was manually annotated using Datavyu, by counting each pumping stroke while watching videos slowed down the

25% of their real-time speeds. The rate is then filtered via a moving average with a width of 80 time points (4 seconds) to smoothen

the trace into a pumping rate rather than individual pumping strokes.

Extraction of normalized GCaMP traces from confocal images
We developed the Automatic Neuron Tracking System for Unconstrained Nematodes (ANTSUN) software pipeline to extract neural

activity (normalized GCaMP) from the confocal data consisting of a time series of z-stacks of two channels (TagRFP-T or mNep-

tune2.5 for the marker channel and gCaMP7f for the neural activity channel). Each processing step is outlined below.

Pre-processing

The raw images first go through several pre-processing steps before registration and trace extraction. For datasets with a gap in the

middle, all of the following processing is done separately and independently on each half of the dataset.

Shear correction. Shear correction is performed on the marker channel, and the same parameters are also used to transform the

activity channel. Since the images in a z-stack are acquired over time, there exists some translation across the images within the

same z-stack, causing some shearing. To resolve this, we wrote a custom GPU accelerated version of the FFT based subpixel align-

ment algorithm.56 Using the alignment algorithm, each successive image pair is aligned with x/y-axis translations.

Image cropping. We crop the z-stacks to remove the irrelevant non-neuron pixels. For each z-stack in the time series, the shear-

corrected stack is first binarized by thresholding intensity. Using principal component analysis on the binarized worm pixels, the rota-

tion angle about the z-axis is determined. Then the stack is rotated about the z-axis with the determined angle to align the worm’s
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head. Then the 3D bounding box is determined using the list of worm pixels after the rotation. Finally, the rotated z-stack is cropped

using the determined 3D bounding box. Similar to shear correction, this procedure is first done on the marker channel, and the same

parameters are then applied to the activity channel.

Image filtering using total variation minimization. To filter out noise on the marker channel images, we wrote a custom GPU accel-

erated version of the total variation minimization filtering method, commonly known as the ROF model.57 This method excels at

filtering out noise while preserving the sharp edges in the images. Note that the activity channel is kept unfiltered for GCaMP

extraction.

Registering volumes across time points

To match the neurons across the time series, we register the processed z-stacks across time points. However, simply registering all

time points to a single fixed time point is intractable because of the high amount of both global and small-scale deformations. To

resolve this, we compute a similarity metric across all possible time point pairs that reports the similarity of worm postures. We

then use this metric to construct a registration graph where nodes are timepoints and edges are added between timepoints with

high posture similarity. The graph is constrained to be fully connected with an average connectedness of 10. Therefore, it is possible

to fully link each time point to every other time point. Using this graph, we register strategically chosen pairs of z-stacks from different

time points (i.e. the ones with edges). The details of the procedure are outlined below.

Posture similarity determination. For each z-stack, we first find the anterior tip of the animal using a custom trained 2DU-Net, which

outputs the probability map of the anterior tip given a maximum intensity projection of the z-stack. We then fit a spline across the

centerline of the neuron pixels beginning at the determined anterior tip, which is the centroid of the U-Net prediction. Using the spline,

we compare across time points pairs to determine the similarity.

Image registration graph construction. Next, we construct a graph of registration problems, with time points as vertices. For each

time point, an edge is added to the graph between that time point and each of the ten time points with highest similarity to it. The

graph is then checked for being connected.

Image registration. For each registration problem from the graph, we perform a series of registrations that align the volumes, iter-

atively in multiple steps in increasing complexity: Euler (rotation and translation), affine (linear deformation), and B-spline (non-linear

deformation). In particular, the B-spline registration is performed in four scales, decreasing from global (the control points are farther

apart) to local (the control points are placed closer together) registration. The image registrations and transformations are performed

using elastix on OpenMind, a high-performance computing cluster. They are performed on the mNeptune2.5 marker channel.

Channel alignment registration

To align the two cameras used to acquire themarker and the activity channels, we perform Euler (translation and rotation) registration

across the two channels over all time points. Then we average the determined transformation parameters from the different time

points and apply across all time points.

Neuron ROI determination

To segment out the pixels and find the neuron ROIs, we first use a custom trained 3D U-Net. The instance segmentation results from

the U-Net are further refined with the watershed algorithm.

Simultaneous semantic and instance segmentation with 3D U-Net. We trained a 3D U-Net to simultaneously perform semantic and

instance segmentation of the neuronal ROIs in the z-stacks of the unfiltered marker images. To achieve instance segmentation, we

labeled and assigned high weights to the boundary pixels of the neurons, which guides the network to learn to segment out the

boundaries and separate out neighboring neurons. Given a z-stack, the network outputs the probability of each pixel being a neuron.

We threshold and binarize this probability volume to mark pixels that are neurons.

Instance segmentation refinement. To refine the instance segmentation results from the 3D U-Net, we perform instance segmen-

tation using the watershed algorithm. This generates, for each time point, a set of ROIs in the marker image corresponding to distinct

neurons.

Neural trace extraction

ROI Similarity Matrix. To link neurons over time, we first create a symmetricN3N similarity matrix, whereN is the number of total ROIs

detected by our instance segmentation algorithm across all time points. Thus, for each index i˛ 1 : N in this matrix, we can define the

corresponding time point ti and the corresponding ROI ri from that time point. This matrix is sparse, as its ði;jÞth entry is nonzero only if

there was a registration between ti and tj that maps the ROI ri to rj. In the case of such a registration existing, the ði; jÞth entry of the

matrix is set to a heuristic intended to estimate confidence that the ROIs ri and rj are actually the same neuron at different timepoints.

This heuristic includes information about the quality of the registration mapping ri to rj (computed using Normalized Correlation Co-

efficient), the fractional volume of overlap between the registration-mapped ri and rj (i.e. position similarity), the difference in marker

expression between ri and rj (i.e. similarity of mNeptune expression), and the fractional difference in volume between ri and rj (i.e. size

similarity of ROIs). The diagonal of the matrix is additionally set to a nonzero value.

Clustering the Similarity Matrix. Next, we cluster the rows of this similarity matrix using a custom clustering method; each resulting

cluster then corresponds to a neuron. First, we construct a distance matrix between rows of the similarity matrix using L2 Euclidean

distance. Next, we apply minimum linkage hierarchical clustering to this distance matrix, except that after a merge is proposed, the

resulting cluster is checked for ROIs belonging to the same time point. If too many ROIs in the resulting cluster belong to the same

time point, that would signify an incorrect merge, since neurons should not have multiple different ROIs at the same time point. Thus,
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if that happens, the algorithm does not apply that merge, and continues with the next-best merge. This continues until the algorithm’s

next best merge reaches a merge quality threshold, at which point it is terminated, and the clusters are returned. These clusters

define the grouping of ROIs into neurons.

Linking multiple datasets. For datasets that were recorded with a gap in the middle, the above process was performed separately

on each half of the data. Then, the above process was repeated to link the two halves of the data together, except that only two edges

thatmust connect to the other half of the data are added to the registration graph per time point, and the clustering algorithm does not

merge clusters beyond size 2.

Trace extraction. Next, neural traces are extracted from each ROI in each time point belonging to that neuron’s cluster. Specifically,

we obtain the mean of the pixels in the ROI at that time point. This is done in both the marker and activity channels. They are then put

through the following series of processing steps:

d Background-subtraction, using the median background per channel per time point.

d Deletion of neurons with too low of signal in the activity channel (mean activity lower than the background – this was not done in

the SWF360 control dataset due to the presence of GFP-negative neurons in that strain), or too fewROIs corresponding to them

(less than half of the total number of time points).

d Correction to account for laser intensity changing halfway through our recording sessions (done separately on each channel

based on intensity calibration measurements taken at various values of laser power).

d Linear interpolation to any time point that lacked an ROI in the cluster.

d Division of the activity channel traces by the marker channel traces, to filter out various types of motion artifacts. These divided

traces are the neural activity traces.

Bleach correction. We then compute themean neural activity (averaged across all neurons) over the entire time range, and fit a one-

parameter exponential bleaching model to it. The bleaching model was initialized such that it had value equal to the median neural

activity value at the median time point, and it was fit using log-MSE error to the averaged neural activity value. A small number of

datasets with very high bleaching (determined using the exponential decay parameter of the bleaching model) were excluded

from all analysis. Each neural activity trace is then divided by the best-fit bleaching curve; the resulting traces are referred to as

F. In our SWF360 analysis, we refer directly to F; the trace heatmaps shown in this paper are F
Fmean

; we also display z-scored neural

activity in many figure panels, as indicated; and the CePNEM models are fit by z-scoring each neuron separately.

Controls to test whether neurons are correctly linked over time

We ran a control to test whether neuronswere beingmismatched by our registration process.Wedid this by processing data from our

SWF360 strain that expresses GFP at different levels in different neurons (eat-4::NLS-GFP). The recording was made with a gap and

was processed identically to GCaMP datasets with gaps in the middle, thus also serving as a test of inter-gap registration. This

SWF360 recording allows us to detect errors in neuron registration, since GFP-negative neuron could briefly become GFP-positive

or vice versa. We quantified this by setting a threshold of medianðFÞ> 1:5 to call a neuron a GFP neuron. This threshold resulted in

FracGFP = 27% of neurons being quantified as containing GFP, which is about what was expected for the promotors expressed.

Then, for each neuron, we quantified the number of time points such that the neuron’s activity F at that time point differed from

its median by more than 1.5, and exactly one of [the neuron’s activity at that time point] and [its median activity] was larger than

1.5. These time points represent mismatches, since they correspond to GFP-negative neurons that were mismatched to GFP-pos-

itive neurons (if the neuron’s activity increased at the time point) or vice versa (if its activity decreased). We then computed an error

rate of number of mismatched time points
ðnumber of total time pointsÞ$2$FracGFP$ð1�FracGFPÞ as an estimate of themis-registration rate of our pipeline. The 2$FracGFP$ð1 �FracGFPÞ

term corrects for the fact that mis-registration errors that sendGFP-negative to other GFP-negative neurons, or GFP-positive to other

GFP-positive neurons, would otherwise not be detected by this analysis. This error rate came out to 0.3%, so we conclude that ar-

tifacts resulting from mismatched neurons are a negligible component of our data.

Annotation of neural identities using NeuroPAL
NeuroPAL images and annotation procedure

The identities of neurons were determined via NeuroPAL using the following procedure. We obtained a series of images from each

recorded animal, while the animal was immobilized after the freely-moving GCaMP recording (recording and immobilization proced-

ures described above):

(1-3) Spectrally isolated images of mTagBFP2, CyOFP1, and mNeptune2.5. We excited CyOFP1 using the 488nm laser at 32%

intensity under a 585/40 bandpass filter. mNeptune2.5 was recorded next using a 637nm laser at 48% intensity under a 655LP-

TRF filter, in order to not contaminate this recording with TagRFP-T emission. Finally, mTagBFP2 was isolated using a 405nm laser

at 27% intensity under a 447/60 bandpass filter.

(4) An image with TagRFP-T, CyOFP1, andmNeptune2.5 (all of the ‘‘red’’ markers) in one channel, and gCaMP7f in the other chan-

nel. As described below, this image was used for neuron segmentation and registration with both the freely moving recording and

individually isolated marker images. We excited TagRFP-T and mNeptune2.5 via 561nm laser at 15% intensity and CyOFP1 and

gCaMP7f via 488nm laser at 17% intensity. TagRFP-T, mNeptune2.5, and CyOFP1 were imaged with a 570LP.
Cell 186, 4134–4151.e1–e18, September 14, 2023 e6



ll
OPEN ACCESS Article
All isolated imageswere recorded for 60 timepoints. We increased the signal to noise ratio for each of the images by first registering

all timepoints within a recording to one another and then averaging the transformed images. Finally, we created the composite,

3-dimensional RGB image by setting the mTagBFP2 image to blue, CyOFP1 image to green, and mNeptune2.5 image to red as

done by Yemini et al.46 and manually adjusting the intensity of each channel to optimally match their manual.

The neuron segmentation U-Net was run on the ‘‘all red’’ image and we then determined the identities of U-Net identified neurons

using the NeuroPAL instructions. The landmarks in the NeuroPAL atlas were identified first and the identities of the remaining neurons

were subsequently determined by comparing the individual channel intensities, overall coloring, and relative positioning of the cells.

In some cases, neuronal identities could not be determined with certainty due a number of factors including: unexpectedly dim

expression of one or more fluorophores, unexpected expression of a fluorophore in cells not stated to express a given marker,

and extra cells in a region expressing similar intensities when no other cells are expected. Rarely, multiple cells were labeled as po-

tential candidates for a given neuron and the most likely candidate (based on position, coloring, and marker intensity) was used for

analysis. If a cell was not bright enough to be distinguished from its neighbors or was undetected by the neuron segmentation U-Net,

we left it unlabeled.

Finally, the neural identity labels from the RGB image were mapped back to the GCaMP traces from the freely-moving animal by

first registering each fluorophore-isolated image to the image containing all of the red markers. The ‘‘all red’’ image was then regis-

tered back to the freely moving recording, permitting mapping of neuronal labels back to GCaMP traces.

Determination of left/right asymmetry

To determine which neuron classes had left/right asymmetry, we computed the mean correlation between the left and right neurons

in each neuron class over all datasets where both the left and right neurons in that neuron class were detected. We included our heat-

stimulus datasets in this analysis, but for those datasets the correlation was only computed using the pre-stim data; for our baseline

datasets, the entire time series was used. For a neuron to be marked as having left/right asymmetry, we required that (i) we recorded

at least five animals where both the left and right neurons of the pair were detected, (ii) the left and right neurons had a mean corre-

lation averaged across animals of <0.2, and (iii) the neuron had a mean signal value (averaged across animals) of at least 0.25. The

signal value threshold was intended to exclude inactive neurons with low correlation values due to noise. This analysis resulted in the

neurons ASE, IL1, IL2, and SAAD showing left/right asymmetry.

C. elegans Probabilistic Neural Encoding Model (CePNEM)
CePNEM Residual Model

TheCePNEMmodel uses aGaussian process residual model adding together a white-noise kernel and a squared exponential kernel.

The white-noise kernel is intended to capture measurement noise in our neural data, which is expected to be independent between

time points, while the squared exponential kernel is intended to capture variance in neural activity unrelated to behavior, which may

have a slower timescale. The squared-exponential residual term is critically important, as otherwise the model will be forced to try to

explain all autocorrelation in neural activity with behavioral information, resulting in severe overfitting.

Thewhite-noise kernelKGN has standard deviation snoise and thus its covariancematrix is s2noiseid where id is the Identity matrix. The

squared-exponential kernel KSE has standard deviation sSE and length scale l, giving a covariance matrix defined by Mij =

s2SEe
� ði� jÞ2

2 l2 . The full residual model is then the Gaussian process model with kernel KGN +KSE, which is then added to the timeseries

of the rest of the model fit to generate the likelihood of a given neural activity trace under CePNEM.

CePNEM Prior Distributions

cvT ; cv; cqh; cp;b;nð0Þ � N ð0;1Þ
lnðsÞ � N ðlnð10Þ;1Þ
lnðlÞ � N ðlnð20Þ;1Þ
lnðsSEÞ � N ðlnð0:5Þ;1Þ
lnðsnoiseÞ � N ðlnð0:125Þ;0:5Þ
HereNðm;sÞ is the normal distribution with mean m and standard deviation s. Since the neural traces being fit are all z-scored, the

priors on the behavioral parameters are also standardized. The prior on the moving average term s was based on preliminary data

from fitting previous, conventional versions of our model. The priors on the residual terms were intended to be wide enough to
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accommodate both neurons that are well-explained by behaviors (in which case, the model would assign them a low residual value),

and neurons that contain little to no information about behaviors (in which case, the model would assign them a high residual value).

Fitting procedure

Overview of fitting approach. Let N be a neural trace from an animal, B be the behaviors of that animal, and X be themodel parameters

that we are trying to fit. Then the goal our model fitting procedure is to estimate the probability distribution of model parameters given

our observations, namely PðXjN;BÞ. Ourmodel defines the likelihood PðNjX;BÞ – that is, the likelihood of observing a set of neural data

given a set of model parameters and behavioral data. Our prior distributions define PðXjBÞ; in this case, our prior distributions on

model parameters are independent of the animal’s behaviors, so PðXjBÞ = PðXÞ. Therefore, by Bayes’ rule:

PðXjN;BÞ =
PðNjX;BÞPðXÞ

PðNjBÞ
Unfortunately, PðNjBÞ is difficult to compute. Crucially, however, it does not depend on the model parameters X. This means that

by comparing the value ofPðNjX;BÞPðXÞ for different values ofX, we canmakemeaningful insights into the distribution ofPðXjN;BÞ. In
particular, we can define aMarkov chain that defines a sequence ofXt, whereXt+1 is a stochastic ‘‘proposal function’’ of Xt. The idea is

that the proposal function can be biased to walk toward regions in parameter space with higher likelihood. Indeed, there are a family

of algorithms, such as Metropolis-Hastings58 and Hamiltonian Monte Carlo59 that define such proposal functions. In particular, the

proposal functions defined by these algorithms have the property that, in the limit of generating an infinitely long Markov chain, sam-

pling from the chain is equivalent to sampling from the true posterior distribution PðXjN;BÞ.
Model fitting procedure. Of course, in practice, we do not have computational resources for an infinitely long chain, so it is neces-

sary to ensure that the chain can replicate the posterior distribution in a manageable amount of time. This in turn requires custom

inference algorithms, moving beyond the generic MCMC and variational inference algorithms provided with probabilistic program-

ming platforms such as Stan and Pyro. Accordingly, we used the Gen probabilistic programming platform,44 and its inference meta-

programming functionality,60 to express a suitable custom inference algorithm.

We fit our models using the Gen probabilistic programming platform, using a mixture of Metropolis-Hastings (MH) and Hamiltonian

Monte Carlo (HMC) steps with adaptive proposals, embedded within a resample-move sequential Monte Carlo (SMC) scheme55 with

one particle. The HMC step uses gradient information and tries to move the chain towards regions of higher likelihood. The other MH

steps are intended to help the chain get out of local optima by using information about the structure of themodel, so theMarkov chain

can better explore the full parameter space. Specifically, one iteration of our fitting algorithm involves the following steps (here N is

once again the normal distribution, and S is drawn uniformly at random from the set ½ � 1; 1�), and i is the current iteration of the

algorithm:

d MH proposal: lnðlÞ/NðlnðlÞ;dlðiÞÞ
d MH proposal: lnðsSEÞ/NðlnðsSEÞ;dsSE ðiÞÞ
d MH proposal: lnðsnoiseÞ/N

�
lnðsnoiseÞ;12 dsnoise ðiÞ

�
d HMC proposal on parameters cvT ; cv; cqh; cp;b; nð0Þ; lnðsÞ with ε = dHMCðiÞ
d MH proposal: cvT/NðcvTS;1Þ
d MH proposal (note that the instances of S are drawn independently):
o cvT/NðcvTS;1Þ
o cv/NðcvS;1Þ
o b/Nðb;10� 4Þ
After each iteration of the algorithm, the proposal distribution parameters d for each proposal are updated as follows: If the respec-

tive proposal was accepted, its d parameter is multiplied by 1.1; otherwise, it is divided by 1.1. (They are all initialized to 1.) This adap-

tive, heuristic choice of proposal distribution aims to encourage proposals that are accepted roughly half the time. Although repeated

iteration of these adaptive proposals does not guarantee convergence via the usual MCMC convergence theory, these adaptive pro-

posals remain valid target-preserving MCMC rejuvenation kernels for use within resample-move SMC. To construct the posterior

samples used in our analysis, we run this fitting procedure for 11,000 iterations, and discard the first 1,000 (including the initialization

point). The remaining 10,001 points are treated as approximate samples from the posterior distribution and are referred to as particles

elsewhere in the paper. Our control experiments, including simulation-based calibration (detailed below), suggest that this approach

results in good quality approximations.

Model initialization. Despite our efforts to use MH proposal steps to prevent the model fitting procedure from falling into local op-

tima, we found that the algorithm still occasionally got stuck, preventing it from finding a good approximation to the true posterior. To

remedy this, we added a likelihood weighting initialization step consisting of sampling 100,000 points from the prior distribution of

model parameters and selecting the point with the highest likelihood under our model, given the neural and behavioral data to be

fit. This point is then used to initialize the resample-move SMC scheme described above.

Simulation-based calibration

To ensure that our fitting process gave a calibrated description of the true model posterior, we performed simulation-based calibra-

tion.41 In this procedure, we generated 4,000 sample traces from the model distribution PðX;NjBÞ using the prior distribution for X.
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500 traces were generated using each of eight total values of B: two 800-time-point subsegments from each of four animals (two

SWF415, and two SWF702 animals). We then ran our model fitting procedure on each sample (three of the 4,000 traces timed out

and were discarded). After fitting, we then compared the sampled posterior distribution from our inference algorithm to the

ground-truth parameter values using a rank test with 128 bins. If our inference processwas giving unbiased estimates of the posterior

distribution, then across all of our traces, the distribution of these ranks should be the uniform distribution. Gen automated the im-

plementation of this simulation-based calibration procedure.

We used a c2 test to differentiate the observed ranks from the uniform distribution, and found that 9 of the 10 model parameters

passed the test at p=0.05. The final parameter, the EWMA decay constant s, seemed to have a minor bias towards larger values,

meaning that our fitting algorithm is prone to occasionally overestimate this parameter. However, we quantified an upper bound

on the degree of this overestimation by computing the maximum deviation of the CDF of the observed rank distribution for s,

compared with the predicted CDF from the uniform distribution, and found a value of 3.5%. This means that the fits of at most

3.5% of encoding neurons will be affected by this minor bias, which is less than an average of 4 per animal. Thus, we do not believe

this minor bias will substantially affect the results described in this paper.

Controls

GFPControl. Wewanted to ensure that wewould not spuriously detect motion artifacts as encodings of behavior. To do this, we used

our pan-neuronal GFP control line SWF467, which by definition should not have any neurons that encode behavior. We fit our GFP

datasets with CePNEMand applied the same encoding analysis to this strain and found that only 2.1%of neurons showed behavioral

encoding, compared with 58.6% in the SWF415 strain, suggesting that themajority (>95%) of our detected encodings are not motion

artifacts. We also used the GFP recordings to determine which neurons displayed low or no neural dynamics in a given recording. We

defined a neuron with low or no dynamics to be one whose signal variation, defined as stdðFÞ
meanðFÞ where F is un-normalized ratiometric

fluorescence, was less than the 99th percentile of the signal variations of GFP neurons. For this analysis only (and not any other an-

alyses in this paper), we fit a per-neuron bleaching model to each GCaMP neuron when computing its signal variation and used this

corrected F, in order to ensure that apparently-active neurons were not due to GCaMP neurons having worse-quality bleach correc-

tion than the GFP controls.

Based on this analysis, 5.3% of the neurons were inactive across our recordings. The fraction of inactive neurons here appears to

be lower than in some prior brain-wide recordings.3,26 This may be related to experimental conditions (immobilized versus freely-

moving; off-food versus on-food) or differences in the SNR of the recordings, which determines the minimal neural signal that can

be resolved from motion and data extraction artifacts.

Scrambled Control. We furthermore wanted to ensure that the model would not overfit to spurious correlations between neural

activity and behavior. To accomplish this, we fit 11 SWF415 animals with CePNEM, but replaced the behaviors v, qh, and p with

spurious behaviors from other recorded animals, which should result in few neurons showing behavioral encoding. The spurious be-

haviors were generated as follows: we first assign pairs of datasets tominimize the behavioral correlation across the datasets within a

given pair. To do this, we compute correlation across all possible behavior and dataset combinations. After that, we determine the

pairing such that it minimizes the maximum absolute cross-correlation value across all pairings. To penalize high correlation values,

we raised the correlations to the power of 4.

When we analyzed the CePNEMmodel results, we found that only 2.7% of neurons detected as having behavioral encoding, sug-

gesting that the vast majority (>95%) of our detected encodings are not due to overfitting.

Median model fits

For display purposes, or analyses where it was necessary to represent a neuron with a single model, we computed themedianmodel

by computing ni½t� for each set of parameters iin the neuron’s posterior distribution, and then defining nmed½t� = medianiðni½t�Þ. This is
what is meant by ‘‘median CePNEM fit’’ unless otherwise noted.

Validation metrics and analyses
Cross-validation (cv) score

The cross-validation pseudo-R2 metric, named ‘cross-validation score’ or simply ‘cv score’ in the text, is defined by

cv = meani

�
1 � MSEðMiðtiÞ;NðtiÞÞ

MSEðmi;NðtiÞÞ
�

Here MSEðx; yÞ is the mean squared error between data vectors x and y, MiðtiÞ is the evaluation of the median CePNEM model fit

over the ith training data split evaluated on the corresponding testing data ti, mi is the mean neuron activity over the ith training data

split, andNðtiÞ is the observed neuron activity vector on the testing data ti. Thismetric is an approximation of the variance of the neural

activity explainable by the model on the testing data.

Since CePNEM contains a Gaussian process residual model, it can only be trained over continuous data. Additionally, the pres-

ence of this Gaussian process residual model could cause the mathematical properties of the model to change slightly based on the

length of training data. Thus, we structured our five-fold training/testing splits such that each training data split consisted of 8minutes

of continuous data, exactly as the model was fit in the rest of the paper. These training splits were uniformly tiled along the 16-minute

recordings. The testing splits were then constructed such that they were equal length (20% of full dataset), each time point in the
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recordingwas included in exactly one of the testing splits, and each testing split was near (but not overlapping with) its corresponding

training split.

We only computed the cross-validation score in situations where it would be reasonable to expect our model to cross-validate. In

particular, since there is no expectation of our behavior-based model to cross-validate for neurons that don’t encode behavior, we

ran it only on neurons that encoded behavior in both of the original 8-minute CePNEM fits in the dataset. Additionally, we excluded

train/test splits where the training data did not contain feeding information while the testing data did, since in such splits there would

be no way for any model to be able to constrain a feeding parameter in the training data (feeding was episodic in these datasets,

giving rise to the necessity of imposing this constraint).

Bayesian Generalization Index (BGI)

We also computed a separate metric, which we call the Bayesian generalization index, to assess performance of the full CePNEM

model, including the residual model, to generalize to withheld testing data. To compute it, each dataset was split in half temporally,

and for each neuron, CePNEM models were fit on each half of the data (the training data). Each of those training models was then

evaluated on the other half of the data (the testing data) as follows.

First, 500 training samples were drawn from the CePNEM posterior distribution from the training model. Each sample (a 10-vector

of all CePNEM parameters) was then evaluated on the testing data using CePNEM likelihood to compute a training array of test-time

scores.

Similarly, 500 control samples were drawn from the set of all CePNEM posteriors from all neurons in our 14 SWF415 baseline data-

sets. This was done instead of sampling from themodel prior to ensure that high BGI valueswere specifically learned from the training

data, rather than being generally learned properties that apply across neurons. Each of the 10 model parameters was drawn inde-

pendently. Each of these control samples was then evaluated with CePNEM on the testing data to compute a control array of test-

time scores.

The Bayesian generalization index for the given CePNEM training fit was then computed as

BGI = 2 � Probðtrain > controlÞ � 1

Here train and control are randomly sampled from the respective distributions of test-time scores. In this manner, if the BGI is very

close to 1, it means that it is extremely unlikely for a randomly-sampled model set of model parameters to be able to match the per-

formance of any of the training model parameters on the testing data. On the other hand, a BGI of 0 means that the trainingmodel did

not outperform the control model, either because CePNEM failed to constrain the training posterior distributions, or because a sub-

stantial portion of them failed to generalize to the testing data. Negative BGI values indicate overfitting, where the model performs

worse on the testing data than simply randomly sampled model parameters.

We computed this index over all neurons in all SWF415 datasets. Note that unlike the cross-validation score, we included non-en-

coding neurons in this analysis because we would expect them to generalize to the testing data through their CePNEM residual pa-

rameters, which are included in the BGI computation (though we note that they did perform worse on average than the encoding

neurons). We observed that 91% of neurons had positive BGI values, and 48% of neurons had BGI values above 0.9, indicating a

high level of model generalization. The results were very similar between SWF415 and NeuroPAL strains.

Comparison with simpler models

MSE model fits. For some analyses (in particular model degradation analyses where fitting many different models with probabilistic

inference would be extremely computationally expensive), we found it useful to fit our model in a more conventional manner, simply

trying to minimize the mean-squared error (MSE) between the model fit and neural activity rather than using Gen to compute the pos-

terior. For these fits, we deleted the residual component of our model and instead simply fit n½t� by trying to minimize the MSE be-

tween it and the observed neural activity, set nð0Þ = 0, and ignored the first 50 time points after each recording began for the MSE

calculation (so for datasets with a gap in themiddle, wewould ignore the first 50 time points, as well as time points 801:850). We used

L-BFGS for local optimization and MLSL-LDS for global optimization, and performed these fits using the NLopt Julia package.

Model degradation analysis. We tested how each component in the model affects the performance by quantifying the increase in

error, compared to the full model, when removing the following component individually: each predictor (velocity, head curvature,

feeding), the velocity non-linearity, removing the EWMA, and all non-linear features (resulting in a fully linear model). The models

were fitted using our MSE fitting technique with L2 regularization. Out of the 14 pan-neuronal GCaMP baseline datasets, 5 were

excluded from this analysis due to low variance in the pumping rate. 3 datasets were used to optimize the regularization parameter,

and the remaining 6 datasets were used to compute the increase in error. Models were fit with 5-fold cross-validation set, splitting

each dataset into 5 equal length time segments. The error was computed as themean test time error of the cross-validation splits. For

each degradedmodel type, neurons encoding the removed feature were selected for analysis. For example, degradedmodel without

velocity was tested on the neurons with velocity encoding. The increase in error was computed by comparing the error in degraded

model to the error of the full model. Finally, we used the Wilcoxon signed rank test for statistical significance.

Comparing exponentially-weighted moving average (EWMA) to other filtering methods. In Figure S1D, alternative smoothing

methods were evaluated to compare against the EWMA in the model. The alternatives were: optimal Gaussian kernel (Gaussian

smoothing), optimal shift (shifting to maximize the absolute correlation), and optimal lowpass filter. For each method, including
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the EWMA, gradient descent was used to minimize the error (MSE) between the neural trace and the transformed velocity in order to

find optimal filtered versions of velocity for eachmetho. This was repeated across all recorded neurons for the analysis in Figure S1E.

As is shown, EWMA performed the best.

Statistical tests to determine encoding properties of neurons
Summary of statistical approach

Our strategy for determining whether neurons encode a particular behavioral feature (for example, whether the neuron encoded

ventral head curvature during forward locomotion) is briefly summarized here. More details are provided below.

d Wefirst convert the CePNEMparameters into a spacewhere the encoding of the neuron to that behavioral feature can be quan-

tified for each point in the posterior. (‘Deconvolved activity matrix’ section below)

d Compute an empirical p-value based on the fraction of points in the posterior with sufficiently strong encoding of the behavioral

feature. ‘‘Sufficiently strong’’ means exceeding two thresholds that were defined based on GFP and wrong-behavior controls.

(‘statistical encoding tests’ section below).

d Multiple-hypothesis correct these p-values across different types of tunings to each behavior, across neurons, and/or across

time ranges, as appropriate for the analysis in question.

Deconvolved activity matrix

In order to be able to make statistical assertions about the neural encoding of behavior based on the posterior distributions from

CePNEM fits, we first needed to transform model parameters into a more intuitive space. To accomplish this, for each neuron, we

constructed a 10001343232 deconvolved activity matrix M constructed as follows: Mnijk corresponds to the modeled activity of

the nth particle from that neuron’s CePNEM fit at velocity V ½i�, head curvature qH½j�, and pumping rate P½k�. Here, where qh is the

animal’s head curvature (dorsal is positive) and p is the animal’s pumping rate over the course of the recording, we have:

V =

�
medðrev speedÞ; 1

100
medðrev speedÞ; 1

100
medðfwd speedÞ;medðfwd speedÞ

�

qH = ½percentileðqh;25Þ;percentileðqh;75Þ�
P = ½percentileðp;25Þ;percentileðp;75Þ�
For this calculation, the EWMA and residual components are excluded from the modeled activity; the idea is that this matrix con-

tains information about the neuron’s activity at high and low values of each behavior, so we can now run analyses on this matrix and

not have to take into account the actual behavior of the animal. In particular, many simple combinations of entries in this matrix have

intuitive meanings:

d The slope of the neuron’s tuning to velocity during forward locomotion is

Mn4jk � Mn3jk
d The slope of the neuron’s tuning to velocity during reverse locomotion is

Mn2jk � Mn1jk
d The neuron’s deconvolved forwardness (overall slope of the neuron’s tuning to velocity) is

ðMn4jk � Mn3jkÞ+ ðMn2jk � Mn1jkÞ
d The rectification of the neuron’s tuning to velocity (difference between forward and reverse slopes) is
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ðMn4jk � Mn3jkÞ � ðMn2jk � Mn1jkÞ
d The slope of the neuron’s tuning to head curvature during forward locomotion (positive means dorsal during forward) is

Mn42k � Mn41k
d The slope of the neuron’s tuning to head curvature during reverse locomotion (positive means dorsal during reverse) is

Mn12k � Mn11k
d The neuron’s deconvolved dorsalness (overall slope of the neuron’s tuning to head curvature) is

ðMn42k � Mn41kÞ+ ðMn12k � Mn11kÞ
d The rectification of the neuron’s tuning to head curvature with respect to locomotion direction (positive means the neuron is

more dorsal during forward; negative means the neuron is more ventral during forward) is

ðMn42k � Mn41kÞ � ðMn12k � Mn11kÞ
d The neuron’s tuning to feeding follows the same pattern as its tuning to head curvature.

Importantly, the linear structure of the multiplexing component of CePNEM implies that the value of the unset parameters i; j; k in

the expressions above do not change the value of those expressions. For head curvature, since worms can lay on either side, we

manually checked the location of the animal’s vulva from the NIR recordings of each animal and flipped dorsal/ventral labels as

appropriate.

Statistical encoding tests

With the intuition derived from the deconvolved activity matrix, for each particle in the posterior distribution of the neuron, we can ask

whether that particle satisfies a certain property. For example, to categorize a particle as representing forward locomotion, we would

check whether that particle had a sufficiently large deconvolved forwardness value. Specifically, we would check whether its decon-

volved forwardness value was at least max ðx1;x2Þ, where x1 = 0:125
signal (here signal = stdðFÞ

meanðFÞ and F is the un-normalized ratiometric fluo-

rescence of the neuron in question), and x2 = 0:25 sD
sM

(here sD is the standard deviation of the model fit corresponding to that particle

with s = 0 and sM is the standard deviation of the model fit corresponding to that particle). The number 0.125 was selected based on

its ability to filter out the small amount of motion artifacts observed in our three GFP control datasets (see STAR Methods section on

that control above). Specifically, we chose a value that filtered out almost all of themotion artifacts (leaving only 2.1%of GFP neurons

showing false behavioral encoding), while removing as few true encodings from our GCaMP data as possible. Similarly, the number

0.25 was selected based on its ability to filter out extremely weak correlations between neural activity and behavior, which was

measured by our controls attempting to fit neurons with behaviors from different animals (after the correction, only 2.7% of such neu-

rons showed behavioral encoding). The sD
sM

term is a correction for the fact that neurons with large s values will have higher values inM.

If the particle’s deconvolved forwardness value was at least max ðx1;x2Þ, it would be classified as representing forward locomotion.

By the same token, we would classify a particle as representing reverse locomotion if its deconvolved reverseness (negative

forwardness) value was at least max ðx1; x2Þ, we would classify a particle as representing more dorsal information during forward

locomotion if its rectification to head curvature with respect to locomotion direction was at least max ðx1;x2Þ, and so on.

Now that we can classify particles, we can create empirical p-values for neurons based on the fraction of their particles that share a

category. For example, if 98% of particles for a neuron are classified as representing forward locomotion, then that neuron’s p-value
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for forward locomotion would be 0.02. We can then construct a list of such p values computed for each neuron in an animal that was

fit with CePNEM and use Benjamini-Hochberg correction with FDR=0.05 to get a list of forward-encoding neurons in that animal. We

can similarly get a list of reversal neurons, dorsally-rectified head curvature neurons, neurons activated by feeding during forward

locomotion (i.e. have a positive slope to feeding during forward locomotion), and so on.

To construct larger categories, such as neurons with any behavioral encoding, or neurons with head curvature encoding, another

multiple hypothesis correction step is necessary. For this step, we first use Bonferroni correction on opposing categories where it is

impossible for a neuron to have both categories (for instance, dorsal and ventral tuning), followed by a Benjamini-Hochberg correc-

tion step on the Bonferroni-corrected p-values. We then proceed with the inter-neuron Benjamini-Hochberg correction, as before.

A neuron is categorized as encoding head curvature if it expresses statistically significant information about any of the four head

curvature categories outlined above, in either direction; feeding encoding is computed similarly. A neuron is categorized as encoding

velocity if it either expresses statistically significant information about any of the four velocity categories, or if it expresses statistically

significant information about any of the rectified categories, since rectification of head curvature or feeding based on forward/reverse

locomotion state is a form of velocity information. A neuron is categorized as encoding if it has statistically significant information in

any of the tests. Note that for datasets without any feeding information (defined as the 25th and 75th percentile of feeding in that data-

set being the same, causing P½1� = P½2�), neurons cannot encode feeding information, so feeding is not included in the multiple-hy-

pothesis correction to check whether a neuron encoded any behavior.

Time ranges

One final note is that all neurons are fit twice – once over the first half of the data, and once over the second half. Thus, for consistency

between all our datasets, we fit all of our SWF415 and NeuroPAL datasets in this manner.

For Figure 2A, the encoding statistics are computed on a per-neuron basis, with an additional Benjamini-Hochberg correction step

to account for the fact that each neuron got two chances to qualify as encoding. Time ranges with insufficient feeding variance (this

time, definedas thedifferencebetween the25th and75th percentile of feedingbeingatmost 0.5) are excluded from feedinganalysis. To

avoid different behaviors having different amounts of available data, animals that never had sufficient feeding variance are excluded

from Figure 2A entirely. For Figure 2B, the same analysis is used, and there is an additional multiple-hypothesis step across the three

behaviors. For Figures 2C, S2I, and S2J, all time ranges are used. Fits on different time ranges from the same animal are added to the

CDF independently of each other, but only encoding neurons are included. For example, a neuron that encoded behavior in both time

ranges would have its EWMA timescale from both fits added to the CDF, while a neuron that only encoded behavior once would have

that EWMA timescale added. In Figures S2I and S2J, only neurons that statistically significantly encoded the appropriate behavior are

included

Neuron Subcategorization

We next sought to combine various pieces of information from our encoding analysis together to generate a holistic view of how a

given neuron is tuned to a given behavioral parameter (Figure 2E). To accomplish this, we sorted neurons as follows (this analysis is

done independently on each time range):

d If the neuron had a different sign to its tuning to behavior during forward and reverse (eg: a slow neuron that has a positive slope

in its tuning to velocity during reversal, but a negative slope during forward locomotion), then the neuron was categorized as

such. In Figures 2G–2I, these neurons would appear in the bins (+,-) and (-,+); for head curvature, they would be (D,V) or (V,D).

d Otherwise, if the neuron has rectified tuning to the behavior (depending on the behavior, one of the following categories: for-

ward slope > reverse slope, reverse slope < forward slope, more dorsal during forward, more ventral during more activated

during forward, more activated during forward, or more inhibited during forward), it will be placed in one of the four rectified

bins (+,0), (-,0), (0,-), or (0,+), depending on the sign of the rectification and sign of the slopes of the neural tuning to behavior.

d Otherwise, if the neuron had the same slope during both forward and reverse movement, it will be classified in one of the two

analog bins (+,+) or (-,-) depending on the sign of that slope. Notably, it would be placed in a rectified bin (and not an analog bin)

if it had rectified information, even if it had the same slope during both forward and reverse locomotion.

d If none of the above were true, the neuron lacked statistical significance in at least two of the three parameters (forward slope,

reversal slope, rectification) with respect to the behavior in question, and it will be excluded from Figure 2E.
Methods to determine encodings of neuron classes across recordings
Hierarchical model to fit neuron classes recorded across multiple animals

Neuron classes that were detected in multiple animals had multiple CePNEM fits. To attain a more accurate depiction of the neuron

across datasets, we used a hierarchical model that takes into account the parameters and uncertainty of each CePNEM fit to

compute the global mean and variability between datasets. The global mean provides the best overall model to the neuron class,

while the variability (see below for further details) provides a description of how reliably the neuron encodes behavior.

Specifically, if the neuron was detected n times, with CePNEM posteriors Pi corresponding to each model fit 1% i% n, the hier-

archical model fits maximum a posteriori (MAP) estimates of vectors of parameters m;s;xi, where 1% i% n. Here m corresponds to the

global mean parameters for the neuron taking into account its data across observations, s corresponds to the global variability, and xi
corresponds to a point estimate for the parameters of the neuron in each observation. The rough form of the hierarchical model is that
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xi come from adistribution determined by m and s, but simultaneously come from the distributionsPi, so they are fit in such away as to

maximize the likelihood under both of these distributions.

More specifically, the parameters m and xi are comprised of a 5-vector ½cvT ; r; q; 4; s�, where cvT and s are analogous to their

respective CePNEM parameters and ðr; q;4Þ is a spherical-coordinate transform of ðcv;cqh;cPÞ. The variability s is comprised of a

4-vector ½scvT ; sr ; k; ss�. The reason for the spherical transform is that some neural variability could be simply a result of different

normalization in different animals, which is difficult to perfectly correct for; in spherical coordinates, all of that possibly-spurious vari-

ability is encapsulated in one parameter sr , rather than being spread across multiple parameters.

The likelihood function of the hierarchical model then specifies the distribution of the xi given m and s. Specifically, for the non-angle

parameters, model assumes the normal distributions xiv � Nðmv; svÞ for 1% i%n, v˛ ½cvT ; r;s�. Meanwhile, the angular parameters

are determined by a von Mises-Fisher distribution: xiv � VMFðmv; kÞ for 1% i% n, v˛ ½q;4�.
Finally, to ensure that the xi carry information about the actual CePNEM fits, the posterior distributions Pi are first approximated by

fitting themwith amultivariate-normal distributionMVNi. This approximationwas necessary in order tomake the problem of fitting the

hierarchical model computationally tractable. We verified using manual examination of Q-Q plots that the posteriors were well

approximated by multivariate-normal distributions, though the approximation was not perfect. After this approximation, the param-

eters xi are transformed back to Cartesian coordinates bxi = ½cvT ; cv; cqh; cP; s� and then the likelihood of these parameters under the

multivariate-normal approximation is computed: bxi � MVNi. The other five CePNEM parameters are not of biological interest and

are not included in the hierarchical model.

The priors for the hierarchical model are as follows (the priors for the mean values were created by examining the full set of

CePNEM parameter values, after fitting):

m½cvT � � N ð0;0:3Þ
lnðm½r�Þ � N ð0:1;0:4Þ
m½q;4� � unit sphere
lnðm½s�Þ � N ð0:7;0:7Þ
ln
	
scvT


 � Nð�1;1Þ
lnðsrÞ � N ð� 1; 1Þ
lnðkÞ � N ð1;1Þ
lnðssÞ � N ð � 1; 1Þ
Cartesian average. The hierarchical model was designed to compute neural variability, but we also found that it provided a useful

method of measuringmean neural parameters across animals. However, for neurons with high variability, simply using m as themean

parameters is not the correct metric since the spherical coordinates prevent it from properly canceling out opposing tunings (rather, it

would instead try to pick an angle in between and keep the same r). Thus, we decided to instead convert all the xi of the model back

into Cartesian coordinates and average them to produce mcart, the Cartesian average model parameters of the neuron under the hi-

erarchical model. This mcart is what is being plotted in Figure S5E.

Forwardness, Dorsalness, and Feedingness

The forwardness metric for a neuron class is computed as FD$
sM
sD
$signal, where FD is the deconvolved forwardness of the Cartesian

average mcart of the hierarchical model fit to that neuron class (see ‘‘deconvolved activity matrix’’ and ‘‘hierarchical model’’ methods

sections above for more details; the behavior values used in the deconvolved forwardness computation were constructed by ap-

pending together all of the behaviors for the neuron class), sD is the standard deviation of the model fit corresponding to mcart

with s = 0, sM is the standard deviation of themodel fit corresponding to mcart, sD, and signal is defined as in the ‘‘Statistical encoding
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tests’’ section. This ratio is intended to correct for the fact that themodel parameters need to be larger (resulting in larger deconvolved

forwardness values) for the same neural response size if the neuron has a long EWMA decay. Dorsalness and feedingness are

computed in a similar fashion.

Encoding strength and relative encoding strength

Encoding strength is a metric designed to approximate the information content a neuron contains about each behavior, given its

CePNEM model fits. It is computed on each particle i of the CePNEM posterior by generating three model traces niv, niqh, and niP,

each of which is identical to the full model ni½t� except that the behavior b is set to 0 for model nib. Thus, the MSE between ni and

nib provides a metric of how important behavior b was for the neuron. We compute the relative encoding strength of a neuron to

behavior b as the ratio

RESb = mediani

0
B@ MSEðni;nibÞP

c˛ ½v;qh;P�
MSEðni; nicÞ

1
CA

For neuron classes labeled with NeuroPAL (eg: in Figures 4 and 5), instead of taking themedian over parameters from the posterior

distribution, we used one set of parameters whichwas theCartesian average of the hierarchical model fit for that neuron, andwe used

behaviors constructed by appending together the behaviors from all observations of that neuron class. Then we define the encoding

strength of the neuron to behavior b as ESb = RESb

MSEðn;0Þ, where n was the full model fit.

Analyses of dynamic encoding of behavior
Statistical tests to examine dynamic changes in neural encoding

To determine whether a given neuron in a recording changed how it encoded behavior, we used the following procedure. First, we fit

two CePNEM models to compare against each other. For baseline datasets without any stimulation (both SWF415 and NeuroPAL),

we split the dataset in half and used fits from each half – the same fits used in the encoding analysis. For the NeuroPAL heat-stim-

ulation datasets, we took one fit from the timepoints up until just before the stimulation (799 or 800 timepoints), and another fit from

the 800 time point block (stim+10) to (stim+809). For the SWF415 heat-stimulation datasets, we took one fit from the timepoints up

until just before the stimulation, and another fit from the 400 timepoint block (stim+10) to (stim+409) for heat-stimulation datasets

without a gap in themiddle, or alternatively (stim+10) to 800 for datasets with such a gap. Note that almost all of the heat-stim analysis

uses the NeuroPAL datasets rather than the SWF415 ones, because the longer durations and equal time lengths of the pre-stim and

post-stim data allow for much more powerful analysis.

Next, we computed deconvolved activity matrices as defined above on each of the CePNEM fit posteriors. We ran the same pro-

cedure used to detect encoding, but this time instead of computing metrics on individual particles, we computed those metrics on

differences between the deconvolved activity matrices for all possible pairs of particles from each of the two model fits, which was a

total of slightly more than 108 such differences per neuron. We used our residual threshold x1 as before, but x2 is set to 0 for this test

because it is not well-defined when considering multiple model fits. Neurons that passed our encoding test at p = 0:05 using the dif-

ferences between the deconvolved activity matrices for behaviors other than feeding (there were too few datasets with enough

feeding variance in both time ranges to make a meaningful statistical comparison), and encoded behavior (using our standard

behavior encoding test) in at least one time range were added to the list of encoding changing neuron candidates. Additionally,

we checked whether the EWMA parameter s changed by computing differences between all possible values of s in the two model

fits, and asking whether that was greater than 0. This comparison was Benjamini-Hochberg corrected over all neurons, and neurons

that passed the test at p = 0:05 and also encoded behavior (using our standard behavior encoding test) in both time ranges were

added to the list of encoding changing neuron candidates.

Variability index

To compute the variability index of labeled neurons, we fit our hierarchical model (see above) on all CePNEM fits for that neuron, and

then computed the variability index as scvT +CircSDðkÞ, whereCircSD is a function that computes the circular standard deviation from

the vonMises-Fisher concentration parameter k. Note that variability in the EWMAparameter s is not included as this parameter is not

meaningful if the neuron lacked behavioral information. Furthermore, variability in encoding strength r is also not included as this can

include variability related to data normalization differences between animals.

Inter-dataset variability. To compute the inter-dataset variability, first the set of model parameters xi of the neuron within the same

animal are transformed into Cartesian coordinates (because normalization is the samewithin the same animal, we can use the scaling

information), averaged together, and projected back into spherical coordinates to produce a per-animal model estimate yi. Then scvT
is computed as the standard deviation of the cvT component of the yi, and k is estimated by fitting a von Mises-Fisher distribution to

the angular parameters q;4 of the yi. Variability is then computed as above.

Intra-dataset variability. To compute the intra-dataset variability, first the set of model parameters xi corresponding to different ob-

servations of the neuron in the same animal in the same time range are averaged together as with inter-dataset variability. This results

in a set of averaged model parameters yi1 and yi2, where i is the animal number, corresponding to the CePNEM fits in the first and

second halves of the recording. We then compute
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di =

�
jyi1½cvT � � yi2½cvT �j;2EuclideanDistðyi1½cv; cqh; cP�; yi2½cv; cqh; cP�Þ

yi1½r�+yi2½r�
�

Here yij½p�is the value of the parameter or vector of parameters p in the averaged model parameters yij, transforming coordinates

as appropriate. This di represents a distance in model parameter space between the two CePNEM fits in the same animal; the

normalization by 1
2 ðyi1½r� + yi2½r�Þ serves to ensure that differences in normalization do not result in different animals being weighted

differently, similarly to how r wasn’t included in the variability index. The intra-dataset variability can then be computed as
1ffiffi
2

p ðmeanðdi½1�Þ +meanðdi½2�ÞÞ, where the division by
ffiffiffi
2

p
transforms distance into standard deviation.

Amount of encoding change (Figure S7G)

The amount of encoding change of a neuron in an animal is defined as 0 if that neuron did not exhibit an encoding change in that

animal, and the variability index of a hierarchical model fit on data from only that animal (for Figure S7G, pre-stim and post-stim

data) if that neuron did exhibit an encoding change. It is computed separately for different components of neuron pairs, and in Fig-

ure S7G it is averaged over all detections of the given neuron.

Feeding decoder analysis for encoding change (Figures 7I and 7J)

In order to detect encoding changes in the feeding circuit triggered by the heat stimulus, we needed to develop a different approach.

This is because the animal doesn’t feed after the heat stimulation, so the CePNEM post-stim feeding parameters for each neuron will

not be possible to constrain, resulting in it being impossible to statistically demonstrate a differencewhen comparedwith the pre-stim

condition. Thus, instead of using the CePNEM encoder model, we compared the performance of decoder models on the pre-stim

and post-stim data to determine if an encoding change was taking place for a given neuron class.

More specifically, for each neuron class, we trained a linear decoder model to predict feeding behavior from neural activity. Each

model was trained on detections of its neuron class in the 21 baseline NeuroPAL animals, with the neural activity and feeding behavior

being appended together for the training. The neural activity was normalized as F
F10

, where F10 was the 10th percentile of the raw (ra-

tiometric) fluorescence in each animal.

After training, we determined the set of neuron classes where the decoder analysis succeeded. This was determined based on the

MSE of the predicted feeding rate in the training data (compared to the actual feeding rate) being at least 0.0075 better than the MSE

of the null model (which is given a constant vector as neural activity). We also only considered neurons that had at least 3 detections in

both the baseline and heat-stim datasets. This yielded a set of neurons that are almost exactly the same as the feeding-encoding

neurons from CePNEM: AIN, AQR, I2, I3, I6, IL2L, M1, M3, M4, M5, MC, MI, RIH, RIR, RMG, and SIBV. For this set of neurons,

we then evaluated the performance difference of the trained model and the null model on each heat stimulus dataset, evaluating

the pre-stim and post-stim halves of each dataset separately. We then ran a Wilcoxon rank-sum test on this paired data to identify

neuron classes where the decoder performed significantly worse on post-heat-stim data. Benjamini-Hochberg multiple-hypothesis

correction was applied across the list of neurons subject to this analysis.

Modified intra-dataset variability (Figure 7G)

In Figure 7G, we also made a modification to the intra-dataset variability index (see above) to account for CePNEM’s inability to

resolve feeding information post-stim (which would erroneously lead to neurons with feeding encoding changes having low vari-

ability). Specifically, we defined the modified intra-dataset variability of a neuron to be

MIV = IV + 10$maxð0;Perfpre � PerfpostÞ
Here IV is the intra-dataset variability index for the neuron and Perfx is the mean performance (measured as MSE of the training

model minus MSE of the null model) of the feeding decoder for that neuron evaluated on the x-stim data. Thus, if the decoder per-

forms better on the pre-stim data and degrades on the post-stim data, it will result in an increase to the modified intra-dataset vari-

ability index for that neuron.

Connectome analysis
Connectomes used

For all quantitative analysis, the two adult datasets fromWitvliet et al.11 were averaged. Self-looping edges and single-synapse edges

were excluded. For the pharyngeal circuit analysis, the connectome from the original White et al.10 was used, as theWitvliet connec-

tome only covers the head ganglion. For the 2D embedding of the connectome (the sensorimotor layer and the graph eigenvector;

see below), theWhite et al.10 connectome was used to replicate the embedding previously used in the field.61 On Figures 4B–4D), the

Witvliet connectome was used for visualization.

2D embedding of the connectome

The 2D embedding of the connectome was performed by determining the sensorimotor layer (referred to as processing depth in the

original paper) for each neuron and the 2nd eigenvector of the Laplacian of the graph. See the Text S1 in Varshney et al.61 for the exact

methods used in determining those values.

Connectome localization analysis

In Figures 5E–5G, the marginal distribution (kernel density estimation using KernelDensity.jl) of the group of neurons of interest (top

15th percentile of the feature of interest, which was either (i) high encoding strength, (ii) long decay, or (iii) high variability) was
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compared to the marginal distribution of the random control group (shuffling the features across the neurons that were recorded).

One-proportion z-test was used in each trisected segment, along the sensorimotor layer axis of the connectome region axis. All

selected neuron distributions (blue lines) were significantly different from the random control distributions (overall, without trisecting)

at *p<0.05. Mann-Whitney U test. For the localization in the connectome region axis (Figure 5G), further testing was done to show that

the high variability group of neurons were interconnected above chance. For that test, the variability values were shuffled across the

recorded neurons and the intra-group synapse fraction was computed in the same way for these random shuffles (Figure 5H). The

random sampling was repeated 100,000 times. Then the p-value was empirically determined by computing the percentile of the

actual intra-group synapse fraction among the random control samples.

Connectivity vs joint encoding change analysis

To assess the relationship between the connectivity type and joint encoding probability for neuron pairs (Figure 6I), a random shuffling

test was used. Among the joint encoding neurons shown in Figure 6H, we iterate through all possible pairs (other than self-pairing).

For each pair of neurons, we record the type of the connection (no connection, unidirectional chemical, bidirectional chemical, bidi-

rectional electrical/gap junction) and the joint encoding change probability. For control, we shuffle the neuron assignments on the

joint encoding change matrix and repeat the analysis (1000 random samples). Finally, the actual value was compared to the random

shuffled distribution for each connection type to empirically compute p-value.

Handling of left/right bilateral pairs

For the neuron classes with bilateral pairing (left/right), the left/right pairs were merged for all quantitative analysis, except for the

group of neurons with bilateral asymmetry in encoding (ASE, SAAD, IL1, IL2). Analysis of relationships between connectivity and cor-

relation (or other aspects of encoding) were then conducted on merged neuron classes. The purpose of this merging was to prevent

the special case of left/right connectivity and correlation from dominating our analyses of connectome trends. Left/right pairs are

typically well connected and strongly correlated, so including them in these analyses would have resulted in there being strong re-

lationships between connectivity and activity, even if these were only found in the left/right pairs. Excluding them allowed us to ask

whether connections between neuron classes were associated with trends in neural activity and behavior encoding.

For visualization (2D embedding of the connectome), left/right pairs were kept separate and not merged.

Other analysis methods applied to neural recordings
Decoding behavior from neural activity

Full activity, current behavior. We trained L1-regularized linear decoder models to predict the worm’s current velocity, head curva-

ture, feeding rate, angular velocity, and body curvature based on its current (z-scored) neural activity. To set the regularization param-

eter, we withheld three datasets that were randomly selected from the set of datasets with feeding standard deviation of at least 0.5.

The other eleven datasets were used to evaluate decoder performance. The decoderswere evaluated using five-fold cross-validation

splits. All behaviors were z-scored for the decoder, and the decoder accuracy is reported as one minus the MSE between the de-

coder’s prediction and actual behavior, evaluated on the test-time data.

Model residuals, current behavior. We computed model residuals for each neuron by taking that neuron’s activity and subtracting

the modeled n½t� (computed based off of the median of all posterior CePNEM parameters for that neuron), and then z-scoring the

resulting residual trace. We then trained separate decoder models using the same procedure as above, except using the model re-

siduals instead of neural activity. We regularized these decoders separately using the same three set-aside datasets.

Decoding past and future behavior (Figures 2D and S2K). The following outlines the decoder method for predicting past (retrospec-

tive) or future behavior (prospective). For predicting head curvature and velocity, the samemethodwas used; for ease of explanation,

in this description we focus on velocity. We trained linear decoder models to predict the average velocity of the worm at various tem-

poral shifts, based on the worm’s current (z-scored) neural activity; only neurons that encoded velocity (or head curvature, for the

head curvature prediction) were included. The models were trained on data from all 14 SWF415 animals. A separate model was

trained for each time point. The average velocity was computed in the window spanning ðDt � 8;Dt + 8� where Dt is the difference

between the time point to be predicted and the current time (Dt = 0 is current; positive values indicate future values of behavior while

negative values indicate past values). This approximately corresponds to a 10-sec time window. Velocity across the full 1600 time

points was z-scored before being averaged. Each dataset was split into 5 segments for cross-validation, with 100-timepoint gaps

in between to prevent the training time information from spilling over to the test time segment. The models were regularized using

an elastic net (L1 and L2).

As a control, separate models were trained that attempted to predict shifted velocity, which should scramble the relationship be-

tween neural activity and behavior. Velocity was circularly shifted by an amount between 125 and 600 time points, and, additionally,

shifts that would result in a correlation of greater than 0.2 with actual velocity were discarded. 50 such decoders were trained, each

using a different, randomly-selected shift. The performance of the decoder trained to predict averaged velocityDt time points into the

past was then defined as the difference between the cost (square root of MSE) of that decoder and the average cost of each of the 50

decoders trained on shifted velocity.

To ensure that decoder performance based on neural activity with Dt > 0 was actually a representation of historical velocity infor-

mation, and not simply due to the autocorrelative nature of velocity, a separate family of decoders were trained that was given the

worm’s current (z-scored) velocity as input instead of neural activity. The error of those decoders to their shifted controls is also dis-

played in Figure 2D. Finally, to estimate the maximum possible performance of these decoder models, separate ‘‘perfect’’ decoders
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were trained that were given the worm’s (z-scored) velocity at time points t +Dt for each value of Dt˛ ð � 108;108Þ, and were then

subjected to the same shift test.

Constructing low-dimensional embeddings of neurons via UMAP

Wewanted to use CePNEM to construct a low-dimensional UMAP space where any neuron from any animal could be embedded. To

accomplish this, we took the three modeled behaviors from 12 SWF415 animals and appended them, so as to have a wide range of

possible behavioral dynamics. Then, we took 4,004 median CePNEM fits (sampled from 4004 neurons across 14 SWF415 animals)

and extrapolated them over the appended behavioral data, to estimate what the neuron would have done under our model over a

wide range of behaviors. We then ran UMAP on the resulting 4004319200 matrix to define a two-dimensional embedding space.

Finally, we projected all posterior CePNEM fits from each neuron into this UMAP space to create the point cloud shown in Figure 3A.

We also projected subsets of neurons based on encoding type (Figures 3B–3F), identity (Figure 5E), and dataset (Figure S3); to do

this, we simply run the same projection procedure on all posterior CePNEM fits from each neuron in the subset in question (i.e. the

UMAP space was the same for all embeddings shown in the paper).

Neural trace reconstruction using principal component analysis

To determine the number of principal components needed to reconstruct each neuron, PCA was performed first on all neurons in

each dataset. Neurons without high enough SNR were excluded from the analysis. We determined the SNR cutoff based on our

GFP datasets. Specifically, a given neuron needed to have signal standard deviation higher than 1
1�psGFP, where sGFP is the GFP

signal standard deviation and p is the required fraction of variance explained. To reconstruct the neurons, each neuron’s loadings

were sorted by absolute value. Then we increase the number of principal components used to reconstruct until the required variance

explained is met. In each dataset, this process is repeated for all neurons with high enough SNR.

Neural trace clustering analysis

To estimate the optimal number of clusters in the neural traces (Figure S4A), we first mean center each neuron. Then k-means clus-

tering is performed on each dataset with varying number of clusters, k, ranging from 2 to 10. For each k, we compute the Calinski-

Harabasz index. We repeat this on all SWF415 datasets.

State neuron detection analysis (Figures 7F and 7G)

For detecting state neurons whose persistent activity changes are aligned to the heat-induced state change, we needed to find neu-

rons with activity changes that were approximately time-locked to the heat stimulus, rather than neurons that simply have very slowly

varying activity. To accomplish this, we trained decoder models to decode the indicator function of a time point t from neural activity,

and then asked whether the neuron was able to decode better when t was the time of the heat-stim, when compared to other control

values of t. Neurons where the heat-stim decoder outperformed all of the other decoders were considered to have time-locked state

responses to the stimulus. Time points that were too close to the beginning or end of the recording, or too close to the heat-stim were

excluded from the controls.

The average persistent change in activity in response to the heat stimulus metric displayed in the Figure 7G heatmap was

computed as the average difference between mean pre-stim and post-stim neural activity F
Fmean

. When the neuron statistically failed

to have time-locked responses to the stim in a dataset, the difference was entered into the average as 0 for that dataset in order to

filter out responses that were not time-locked to the stimulus.

Behavioral analyses during cellular perturbations
For behavioral analysis in animals that had single neuron classes chronically silenced or ablated, we (i) recorded animal speed on

multi-worm trackers, as previously described,62 (ii) recorded head curvature behaviors on high-resolution single worm trackers,

as previously described,63 and (iii) quantified pharyngeal pumping manually. For single neuron manipulations that involved optoge-

netic activation or silencing, we used the same methods for behavioral quantification, but delivered blue (250 uW/mm2) or red (700

uW/mm2) wavelength light at defined times, as described in the figures and figure legends.

List of key software packages used
Gen.jl, PyPlot.jl, PyCall.jl, HDF5.jl, ProgressMeter.jl, Distributions.jl, Images.jl, Nlopt.jl, DelimitedFiles.jl, NaNMath.jl, Clustering.jl,

DataStructures.jl, Interpolations.jl, MultivariateStats.jl, Optim.jl, TotalVariation.jl, UMAP.jl, Lasso.jl, VideoIO.jl, Impute.jl, JLD2.jl, JSON.jl

LsqFit.jl, MLBase.jl, ImageTransformations.jl, HypothesisTests.jl, MultipleTesting.jl, GLM.jl, GLMNet.jl, ForwardDiff.jl, FFTW.jl, Distan-

ces.jl, DSP.jl, CoordinateTransformations.jl, Combinatorics.jl, Colors.jl, ColorTypes.jl, Cairo.jl, CUDA.jl, KernelDensity.jl

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical methods used in the paper are described in the figure legends and, where indicated, additional details are provided in

themethod details. Definitions of sample size, measures of center and dispersion, and precisionmeasures are also indicated in figure

legends. Statistics were computed using Julia, MATLAB, and GraphPad Prism. Non-parametric statistics were exclusively used in

the study. When appropriate, corrections for multiple comparisons were implemented via Benjamini-Hochberg or Bonferroni correc-

tion, as indicated in the figure legends.
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Figure S1. Behavioral assays, GFP control recordings, and evaluation of model parameters, related to Figure 1

(A) Salt learning assay for N2 control animals, compared with pan-neuronal GCaMP7f animals. Naive refers to animals grown on 0 mM NaCl; conditioned (Cond)

refers to animals grown under the same conditions but exposed to 50 mM NaCl with food for 1 h prior to assay, which causes animals to prefer higher salt

concentrations. Chemotaxis was measured on a plate with a 0–50 mM NaCl gradient with sorbitol added to ensure uniform osmolarity. Positive values corre-

spond to chemotaxis directed toward high NaCl. Data are shown asmeans and standard deviation across plates. n = 12–13 chemotaxis plates per group for naive

and n = 4–6 plates per group for conditioned. n.s. not significant, Mann-Whitney U test.

(B) Un-normalized F heatmap of neural traces collected and extracted from a control animal expressing eat-4::NLS-GFP. SinceGFP is expressed only in a fraction

of cells in this strain, perfect neural identity mapping would result in a set of bright horizontal lines (GFP-positive neurons) and a set of dark horizontal lines (GFP-

negative neurons), while a registration mismatch would appear as a bright spot in the trace of an otherwise GFP-negative neuron, or a dark spot in the trace of an

otherwise GFP-positive neuron. Note that there are very few instances of registration mismatches visible in the traces. As described in the main text, we estimate

the number of neuron identification errors to be 0.3% of frames (see STAR Methods).

(C) Heatmap of neural traces collected and extracted from three GFP control animals.

(D) Analysis of which velocity filtering method best matches neural dynamics. An example neuron that encodes behavior with a long timescale value according to

CePNEM (blue; same for all four traces) and different processed versions of velocity (gray). Velocity was processed in different ways and the match to neural

activity was evaluated. Average performance across all neurons is in (E). For each method of processing velocity, the optimal fit to the neuron was taken by

minimizing the error (MSE) using gradient descent. The different methods of processing velocity were: (1) EWMA: exponentially weighted average of recently

velocity; (2) optimal shift: time-lagged shift in velocity; (3) optimal Gaussian kernel: Gaussian averaging of velocity at each time point; and (4) optimal lowpass filter:

velocity filtered based on frequency. The alternative smoothing methods were evaluated to compare against the EWMA used in the model.

(E) Average fit of how velocity filtered in the indicated ways (see D legend for more description) matches neural activity, quantified as mean square error (lower is

better). This was averaged across all recorded neurons. ***p < 0.0005, Wilcoxon signed-rank test.

(F) Degradation analysis on eachmodel parameter, comparing the percentage that the error (asmeasured by cross-validatedmean-squared error when fitting the

model with MSE optimization—see STARMethods) increases when themodel is refit with that parameter removed. Wilcoxon signed-rank test (comparing the full

model and the partial model) resulted in p value below 0.0005 for all shown parameters. For reference, black line shows the error increase for a model with no

behavioral parameters (just an offset parameter so that the model would guess each neuron’s mean activity).

(G) Degradation analysis using same procedure as in (F) but plotting a different outcome. For ‘‘behavior’’ predictor terms (left): for each neuron the three degraded

models were fit (lacking each predictor term) and the predictor termwhose deletion caused the greatest increase in error was determined. The fraction of neurons

that had each parameter as their most important predictor term is displayed. For ‘‘non-linearity’’ terms (right): the same procedure was conducted, except the

degraded models lacked one or both model non-linearities. Model lacking both non-linearities was the fully ‘‘linear’’ model. The analysis was done on the en-

coding neurons and averaged across datasets.
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Figure S2. Controls for model fitting, decoding analyses, and analyses of neurons’ timescales, related to Figure 1
(A) Simulation-based calibration results for CePNEM. Simulation-based calibration was performed by simulating 1,997 neurons from CePNEM using behaviors

from 4 different animals and fitting them each twice, on different time ranges. For each model parameter, the ground-truth parameter was ranked within the fitted

posterior. If model fitting is perfectly calibrated, the ground-truth parameter’s rank should be the uniform distribution. Therefore, for each parameter, we per-

formed a c2 test to distinguish their distribution from the uniform distribution with p = 0.05. All parameters passed this test, except for the timescale parameter s,

which has a very small calibration artifact predicted to impact <4 neurons per dataset. See STAR Methods.

(B) A series of CePNEMmodel fits to various neurons, showing the model’s ability to fit a wide variety of neural tunings to behavior. The model was fit on the first

half of the dataset and tested on the second half, revealing that these neurons have robust tunings to behavior across time that is well-explained by CePNEM. The

inset cross-validation (cv) indicates the goodness of fit of the model on testing data (see STAR Methods for additional details).

(C) The fraction of neurons with encoding versus the fraction of active neurons (the signal value above the GFP threshold). Each dot is a dataset. The fractions are

computed by averaging across two time segments in each dataset. The tight clustering of dots indicates that datasets were roughly consistent, according to

these basic metrics.

(D) Controls comparing the percentage of neurons that were detected as encoding behavior using real GCaMP traces with the same animal’s behavior, using the

sameGCaMP traces but attempting to fit with a different animal’s behavior (essentially a scramble control; ‘‘wrong behavior’’), and usingGFP datasets. See STAR

Methods for statistical methods used to determine if a given neuron significantly encodes a behavior.

(E) Cumulative distribution of cross-validation scores across neurons in continuous SWF415 recordings (see STAR Methods). Its intuitive meaning is that a value

of zero indicates that the fit CePNEMmodel fails to generalize to the testing data, whereas a value of +1 indicates that the model perfectly explains neural activity

on withheld testing data. 96% of neurons had a positive cross-validation score.

(F) Distribution of overall neuron signals (as a metric for overall activity levels) across all neurons in three categories: GFP control neurons, encoding neurons

(GCaMP neurons that significantly encoded at least one behavior based on CePNEM), and non-encoding neurons (GCaMP neurons that did not significantly

encode any behaviors according to CePNEM). Neuron signal here is defined as signal = stdðFÞ
meanðFÞ where F is the un-normalized ratiometric fluorescence of the

neuron in question. It provides ameasure of overall level of dynamics exhibited by the neuron. Note that non-encoding neurons still exhibited robust dynamics, for

the most part exceeding the negative control GFP neurons.

(G) Linear, L1-regularized decoder models were trained to predict various behaviors (velocity, head curvature, feeding, angular velocity, and curvature,

respectively) from 11 animals from either neurons (blue) or CePNEMmodel residuals (orange). Decoding accuracy was assessed as 1�MSE (decoded behavior,

true behavior), averaged over five 80/20 cross-validation splits (see STAR Methods). Note that the decoder models do much worse when trained on CePNEM

model residuals than when trained on the full neural data, suggesting that the model can explain most neural variance overtly related to behavior.

(H) An analysis of decoding accuracy from specific subsets of neurons. Linear, L1-regularized decoder models were trained to predict the behavioral parameters

listed on the x axis. For each behavioral parameter we compared decoder accuracy when the model was trained on (1) the neurons that encoded that behavioral

feature according to CePNEM (e.g., for forward speed, the full set of neurons that had significant information about forward speed; shown as red lines); versus (2)

random subsets of neurons equal in size to group (1) selected from the neurons that did not encode that behavioral feature (gray distributions). *p < 0.05,

**p < 0.005, empirical p values based on rank of red lines in respective gray distributions.

(I) Mean ECDF of the model half-decay time of all neurons demonstrated to encode forward locomotion, contrasted with the ECDF of neurons demonstrated to

encode reverse locomotion, in 14 animals. The shaded regions represent the standard deviation between animals. The median fraction (across animals) of

forward neurons with long timescales (half-decay t1=2 > 20s) was 0.12, compared with only 0.03 for reversal neurons; this difference was statistically significant

(p = 0:029) under a Mann-Whitney U test.

(J) Mean ECDF of model half-decay time of all neurons that encode the indicated behaviors. Data are shown as in (H).

(K) Performance of a decoder trained to predict past and future head curvature of animals based on current population neural activity. Models were trained, and

data are displayed as in Figure 2D, except these models were trained to predict head curvature rather than velocity. See Figure 2D legend for additional details.

(L) Violin plots showing distribution of head curvature angles (in radians) during forward and reverse movement. Note that the distributions are similar, suggesting

that the widespread differences in neural encoding of head curvature during forward versus reverse movement are not due to animals exhibiting different head

angles based on their movement direction.

(M) A neuron that encodes angular velocity (defined as longer-timescale head curvature; due to the higher frequency nature of head curvature oscillations, longer-

timescale is defined here as at least 5 s). This neuron has a half-decay of t1=2 = 9:5± 1:3 s and is multiplexed with velocity as well.
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Figure S3. Additional analyses of UMAP projections, related to Figure 3

(A) Projections of all neurons from each of four different SWF415 animals into the same UMAP space (built from full population of animals; same as in Figure 3A).

Observe that the overall structure is very similar, suggesting that the locations of neurons in UMAP space are similar across datasets.

(B) Projections of all neurons from each of two different NeuroPAL animals into the UMAP space. These neurons also fill in a similar pattern to that of the SWF415

animals, suggesting that the overall neural encodings of the two strains are similar.

(C) Projections of all neurons from each of two different GFP control animals into the UMAP space. These neurons fail to fill most of the space, which is consistent

with the non-encoding nature of neurons in this control strain.

(D) Projections of all neurons from 14 different SWF415 animals into the UMAP space, taking the median of each neuron’s posterior point cloud in the UMAP

space. Note that the medians fill out the same space as when projecting the full posteriors (as in Figure 3), suggesting the continuity of the UMAP space is not

merely an artifact of parameter uncertainty.

(E) An analysis of clusterability of all neurons that encode behavior. For each dataset, we attempted to cluster all neurons that encode behavior using a similarity

metric based on the difference of the neurons’ GCaMP traces. To determine the optimal number of clusters, we computed the Calinski-Harabasz index over

varying number of clusters when performing k-means clustering on the neural traces. Clustering was done on a per dataset basis on all SWF415 datasets, and the

mean and standard error values are plotted. Note that the optimal number of clusters in this analysis is 2, which is the minimum number that can be assessedwith

this metric. This suggests that there is not a larger set of discrete subgroups of neurons that are separable from one another.

(F) Cumulative variance explained by the top 20 PCs, averaged over 14 animals. The shaded region is the standard deviation across animals.
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Figure S4. Analysis of NeuroPAL recordings and effects of perturbing neural activity, related to Figure 4

(A) A RGB composite image of one of the NeuroPAL animals that we recorded. The composite was constructed by combining images of NLS-mTagBFP2 (shown

in blue), NLS-cyOFP2 (shown in green), and NLS-mNeptune2.5 (shown in red). Using this composite image, wewere able to label a large number of neurons in this

animal. Neural identity was determined while making use of all 3D information, but for display purposes here we show amaximum intensity projection of a subset

of the z-slices from the recording. Therefore, this image does not show all the neurons in the head (a maximum intensity projection of all z-slices is too dense with

neurons to show for display purposes here).

(B) Comparison of behavioral parameters during recordings of brain-wide GCaMP7f in animals without NeuroPAL (SWF415, labeled ‘‘415’’) and with NeuroPAL

(SWF702, labeled ‘‘NP’’). Four behavioral metrics are shown. n = 14 and 21 animals for SWF415 and SWF702, respectively. *p < 0.05 ***p < 0.0005,Mann-Whitney

U test.

(C) Average overall neural signal across recordings of animals expressing pan-neural GFP (green), pan-neural GCaMP (blue), and pan-neural GCaMP with

NeuroPAL transgene (orange). Overall neural signal here is defined as stdðFÞ
meanðFÞ where F is the un-normalized ratiometric fluorescence.

(D) A comparison of how much variance in neural activity is explained by different number of principal components in pan-neural GCaMP strains without

NeuroPAL (blue, SWF415) and with NeuroPAL (orange, SWF702).

(E) Distribution of cross-validation scores (see STAR Methods for quantitative details) for pan-neural GCaMP strain without NeuroPAL (blue) and with NeuroPAL

(orange).

(F) UMAP plot showing the posterior distributions of the CePNEMmodel fits for various neurons; each neuron is plotted in a different color. The same set of time

points from the same animal were used for each neuron’s fit. This plot shows a subset of neurons with largely non-overlapping tunings, just to illustrate how

neurons map onto the UMAP space described in Figure 3.

(G) Event-triggered averages showing average neural activity of the indicated neuron classes aligned to key behaviors, as indicated in the column labels. Data are

pooled across all instances of recordings of the neuron classes for the behaviors indicated. Note that event-triggered averages in general are noisier for feeding

due to a lower number of events where feeding suddenly started or stopped (compared with forward/reverse and dorsal/ventral transitions). The shading in-

dicates the standard error across the recorded animals.

(H) Table of the signal values of the neuron classes identified in NeuroPAL. For each neuron class, dot is themedian level of overall activity (‘‘signal’’) for the neuron

across all recorded instances, quantified as in Figure 4A. The line denotes the 25th–75th percentile range. The neurons are ordered by the median signals. The

dashed green line indicates the boundary below which neurons are likely to be inactive, determined based on the signal values in the GFP control datasets.

(I) Effects of perturbing the indicated neurons on the animal’s behavioral output. For all perturbations, we quantified forward speed (shown as means ± standard

error of themean [SEM]), reverse speed (means ±SEM), median head curvature during dorsal and ventral head bends (boxplots showing 25th and 75th percentiles

and medians as red lines; separate boxes for dorsal and ventral bending), frequency of head bending (plotted as distribution of intervals between head swings),

and feeding rates (means ± SEM). Neuron inactivation methods were: (1) RIC: tetanus toxin (TeTx) expression; (2) AIM: chemogenetic silencing using the his-

tamine-gated chloride channel (HisCl); (3) AUA: chronic silencing via expression of leaky potassium channel unc-103(gf); (4) RIF: chronic silencing via unc-103(gf);

(5) AVL: chronic silencing via unc-103(gf); (6) SAA: neuron ablation via split caspase expression; (7) SMB: neuron ablation via split caspase expression; (8) MC:

optogenetic inactivation via GtACR2; (9) M4: optogenetic inactivation via GtACR2; (10) ASG: optogenetic activation via Chrimson. All promoters were single-cell

specific, either through highly specific single-cell promoters or intersectional Cre/Lox promoters. Details of promoters used are in method details under the

transgenic animals section. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Bonferroni-corrected Mann-Whitney test. n.s., not significant.
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Figure S5. Analysis of variable encoding neurons, related to Figure 4
(A) Locations of different neuron classes in UMAP space, showing results for multiple recordings of each neuron. The UMAP space is the same as is shown in

Figure 3, where distance between neurons is proportional to the difference in how they encode behavior. Here, each colored dot depicts how the indicated neuron

class encoded behavior in a single recording. Two types of neurons are shown: (1) Low variability neurons that have consistent encoding of behavior according to

CePNEM: RIM, RIB, MC, IL2D; and (2) High variability neurons that have variable encoding across animals according to CePNEM: URX, OLQD. Note that the dots

for the variable neurons are more distributed in this space than the dots for the low variability neurons. Only six neuron classes are shown to prevent the plot from

being overcrowded.

(B) Scatter plot of labeling confidence (a qualitative metric determined by person scoring, reflecting their confidence that the neuron is correctly identified based

on position andmulti-spectral fluorescence; the higher the better; note that neuronswith sufficiently low confidencewere entirely excluded from all analyses in the

paper, and this plot only shows values above this threshold) and encoding variability (lower value means more consistency). There is no evident relationship

between these values, suggesting that labeling error does not introduce encoding variability.

(C) Scatter plot of GCaMP region of interest (ROI) match score (the higher the better in terms of confidence that NeuroPAL ROI was confidently mapped to a

GCaMP ROI; see STAR Methods) and encoding variability shows no relationship. This suggests that the process that matches the NeuroPAL ROI to the GCaMP

ROI does not introduce encoding variability.

(D) Examples of a variable coupling neuron (OLQD from 3 animals shown). On the left column, the NeuroPAL fluorescence images with OLQD labeled show

consistent color combination and location of this neuron class. On the right column, the corresponding neural traces (blue) are shown along with CePNEM fits

(orange) and a written description of the encoding properties. Note that the neurons of the same class from different animals encode different sets of behaviors.

(E) Performance of CePNEM model across different animals, for neuron classes with different levels of variable encoding. In this analysis, the optimal CePNEM

model parameters learned from 21 animals’ neural and behavioral data was determined (using a hierarchical Bayesian approach; see STAR Methods). These

model parameters were then used to predict neural activity in three additional animals shown here (animals 22–24). This analysis is shown for three categories of

neurons: (1) neurons with low variability according to CePNEM: RIB, ASG, and SMDV; (2) neurons with moderate variability according to CePNEM: AUA, CEPD,

and URYV; and (3) neurons with high variability according to CePNEM: URX, IL1D, and OLQD. The variability index for each neuron is displayed by the neuron’s

name. Note that the level of variability in neural encoding, determined by our analysis, scales with the ability of models to successfully predict neural activity

across different animals, as expected.
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Figure S6. Analysis of dynamic encoding neurons, related to Figure 6

(A) An analysis of what fraction of neurons were detected as changing encoding in our GCaMP datasets and simulated datasets. Simulated datasets are labeled

‘‘SBC’’ for simulation-based calibrations. These are neurons simulated from the CePNEM model, where ground-truth parameters were set to not have any

encoding changes.

(B) Scatterplot of datasets showing that extent of photobleaching is not correlated with detection of encoding changes. Each dot is a SWF415 dataset.

(C) Scatterplot depicting each neuron class’s likelihood of changing encoding in a single continuous recording (x axis) versus its variability overall across all

animals (y axis). Each dot is a single neuron class. Note the positive trend (p < 0.05, conditional independence test). The box highlights neurons that are variable

both across and within animals.

(D) The frequency of neurons changing encoding in single recordings, separating neurons based on whether they are sensory, inter-, or motor neurons. No major

difference was observed between these three groups, and this remains true when variability index is used instead of encoding change fraction.

(legend continued on next page)
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(E) The same dataset in Figure 6F but also plotting the relative model performance averaged over the static encoding neurons. Note that the black line does not

show the sudden changes in value seen for the purple line.

(F) Same as (E), but for the dataset in Figure 6G.

(G) An example dataset that shows a less synchronized encoding change, displayed in the same manner as in (E) and (F).

(H) Two example encoding changing neurons from the animal in (G), one with an abrupt encoding change at approximately 12 min, and another neuron that

appears to have a slowly increasing gain to its behavioral encoding over the last �10 min of the recording.

(I) A plot of the fraction of encoding neurons that exhibited encoding change in a dataset, compared with the behavioral difference between the first and second

half of that dataset. Behavioral variability was computed as the sum of the absolute values of the differences (across the two time segments) of the following

behavioral parameters (each such parameter was normalized to the standard deviation of that behavior across all 14 SWF415 datasets): median of reverse

velocity, median of forward velocity, 25th percentile of head curvature, 75th percentile of head curvature, 25th percentile of feeding rate, and 75th percentile of

feeding rate. This value provides a general description of how much the distributions of behavioral parameters changed across the two halves of the recording.

Observe that datasets with large behavioral changes tend to have more encoding changes, suggesting that the neural flexibility may be related to the observed

behavior changing.
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Figure S7. Analysis of stimulus-induced encoding changes, related to Figure 7

(A) Experiments to examine the impact of the heat stimulation on the behavior and health of the animals. Animals subjected to the heat stimulation did not display a

significant difference (p = 0:62 in a Mann-Whitney U test computed over 10 animals) in their exploratory behavior (computed as counting the number of squares

each animal entered on an assay plate) relative to mock-stimulated animals (animals that were mounted on imaging slides but not given the thermal stimulus).

Behavior was quantified 1 h after the heat stimulation.

(B) The heat stimulation did not kill any animals (all animals were alive 2 days after the stimulation).

(C) Connectome localization of neurons that exhibit sensory responses to the thermal stimulus. Neurons in red generated transient (<4 s) excitatory responses to

the heat stimulus, and neurons in blue generated transient inhibitory responses. Layout of connectome is the same as in Figures 5C–5F (see that legend for further

details). Marginal distributions show the enrichment of each group of neurons along the two axes, relative to a random shuffle control (gray). *p < 0.05 **p < 0.005,

one sample Z test for proportion on the excitatory responses; the inhibitory responses were not significant.

(D) Connectome localization of neurons that exhibit long-lasting (15–30 s) excitatory (red) or inhibitory (blue) responses to the thermal stimulus. Data are displayed

as in (C); there was not a significant enrichment of these neurons in any sensorimotor layer.

(E) A comparison of the relative model performance averaged across all 11 SWF415 animals that underwent a heat shock (top) with the same metric computed

over 4 animals that were not stimulated (bottom). Note that the baseline animals do not have a sharp change in relative model performance at the train/test split,

suggesting that the encoding changes in the heat-stimulation datasets are a direct result of the stimulation.

(F) Fraction of times that each neuron class changed encoding after the heat stimulus. More specifically, the fraction of times that decoders trained on baseline

data to predict feeding from the given neuron’s activity performed better on the pre-stim data than the post-stim data (see STARMethods). Note that the neurons

have degradations in performance well above what would be expected by chance (50%); this indicates that the neurons changed encoding after the heat

stimulus. *p < 0.05, **p < 0.005, ***p < 0.0005, Wilcoxon signed-rank test comparing pre-stimulus versus post-stimulus performance of the decoders across

animals, as an indicator of whether these encoding changes were reliable across animals. The neurons shown here encoded feeding prior to the heat stimulus.

p values for encoding change were Benjamini-Hochberg corrected over all neurons where the decoder succeeded at predicting feeding in the baseline data (see

STAR Methods for additional details).

(G) Average amount of encoding change between pre-stim and post-stim CePNEM fits across heat-stimulated animals. Insets display the fraction of times that

the indicated neurons changed encoding at all after the heat stimulus. Neurons shown here encoded either velocity or head curvature prior to the heat stimulus

(the neurons that encoded feeding prior to the stimulus are analyzed in (F); different statistical methods needed to be used for these two categories, since feeding

was strongly suppressed post-heat-stim; see STARMethods for details). (*)p < 0.1, *p < 0.05, **p < 0.005, p value based on rank of actual magnitude of encoding

change across animals (red) to level expected by chance (gray distribution), as an indication of whether the reliability of encoding change was greater than

expected by chance. The p values were Benjamini-Hochberg corrected over this set of neurons.

(H) A plot that relates each neuron class’s variability in encoding of behavior within heat-stimulation datasets (y axis) to its variability within baseline spontaneous

behavior datasets (x axis). See STAR Methods for additional detail on how intra-dataset variability was computed based on encoding in the first versus second

halves of the recordings. Black line is the identity line, and each dot is a neuron class. Note the positive trend.
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