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ARTICLE OPEN

A Phase Ib/II study of IGF-neutralising antibody xentuzumab
with enzalutamide in metastatic castration-resistant prostate
cancer
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BACKGROUND: This multicentre, open-label, Phase Ib/II trial evaluated the insulin-like growth factor (IGF) 1/2 neutralising antibody
xentuzumab plus enzalutamide in metastatic castrate-resistant prostate cancer (mCRPC).
METHODS: The trial included Phase Ib escalation and expansion parts and a randomised Phase II part versus enzalutamide alone.
Primary endpoints in the Phase Ib escalation, Phase Ib expansion and Phase II parts were maximum tolerated dose (MTD), prostate-
specific antigen response and investigator-assessed progression-free survival (PFS), respectively. Patients in the Phase Ib escalation
and Phase II parts had progressed on/after docetaxel/abiraterone.
RESULTS: In the Phase Ib escalation (n= 10), no dose-limiting toxicities were reported, and xentuzumab 1000mg weekly plus
enzalutamide 160mg daily (Xe1000+ En160) was defined as the MTD and recommended Phase 2 dose. In the Phase Ib expansion
(n= 24), median PFS was 8.2 months, and one patient had a confirmed, long-term response. In Phase II (n= 86), median PFS for the
Xe1000+ En160 and En160 arms was 7.4 and 6.2 months, respectively. Subgroup analysis suggested trends towards benefit with
Xe1000+ En160 in patients whose tumours had high levels of IGF1mRNA or PTEN protein. Overall, the combination was well tolerated.
CONCLUSIONS: Xentuzumab plus enzalutamide was tolerable but lacked antitumour activity in unselected patients with mCRPC.
CLINICAL TRIAL REGISTRATION: EudraCT number 2013-004011-41.

British Journal of Cancer (2023) 129:965–973; https://doi.org/10.1038/s41416-023-02380-1

INTRODUCTION
Androgen deprivation therapy is standard of care for advanced or
metastatic prostate cancer [1]. Unfortunately, most patients will
progress to a castration-resistant disease state after 2–3 years [2, 3].
Recognition that androgen receptor (AR) signalling is a key driver of
castration-resistant prostate cancer (CRPC) [2] led to the development
of potent inhibitors of the AR pathway. Enzalutamide, a second-
generation androgen antagonist, targets multiple steps in the AR
signalling pathway and is licensed for use in CRPC [4, 5]. Nevertheless,
most patients eventually develop resistance [6], highlighting a need
for novel agents for patients with refractory disease.
The insulin-like growth factor (IGF) axis plays an important role

in prostate cancer progression. Castration leads to increased
signalling via the type I IGF tyrosine kinase receptor (IGF-1R),
activating the PI3K/AKT/mTOR pathway [7] which may lead to
androgen-independent AR transactivation, facilitating progression
to castration-resistance [8]. IGF-1R activation and signalling has

also been shown to dephosphorylate AR, enhancing AR transloca-
tion to the nucleus [9]. Thus, there is biological rationale for co-
targeting AR and IGF signalling in patients with CRPC.
Xentuzumab is a humanised monoclonal antibody that binds to

and neutralises the IGF-1 and IGF-2 ligands [10]. Xentuzumab has
demonstrated antitumour activity in preclinical studies [10],
including in combination with enzalutamide in prostate cancer
models [11]. In Phase I trials undertaken in patients with advanced
solid tumours, xentuzumab monotherapy has demonstrated
manageable tolerability and antitumour activity [12].
This Phase Ib/II trial evaluated xentuzumab plus enzalutamide in

patients with metastatic CRPC (mCRPC). In patients who had
progressed on docetaxel-based chemotherapy and abiraterone, a
Phase Ib dose escalation part was conducted to determine the
maximum tolerated dose (MTD), and a randomised Phase II part
assessed the combination versus enzalutamide alone. A Phase Ib
expansion cohort evaluated the addition of xentuzumab to
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enzalutamide in docetaxel/abiraterone naïve patients experien-
cing prostate-specific antigen (PSA) progression on enzalutamide.

METHODS
Study design and patients
This multicentre, open-label, Phase Ib/II trial was conducted in 27 centres
in eight countries. The trial comprised: a Phase Ib 3+ 3 escalation phase to
determine the MTD and/or recommended Phase II dose (RP2D) of
xentuzumab plus enzalutamide in patients with mCRPC after docetaxel
and abiraterone; a Phase Ib exploratory expansion phase in patients with
mCRPC and PSA progression on enzalutamide; and a Phase II phase, where
patients with mCRPC were randomised (1:1) to xentuzumab plus
enzalutamide or enzalutamide alone. Randomisation was performed
centrally via an Interactive Voice/Web Response system.
Eligible patients were adults with histologically or cytologically

confirmed adenocarcinoma of the prostate and radiographic evidence of
metastatic disease (stage M1 or D2). Other eligibility criteria were: PSA
≥20 ng/ml (later amended to ≥5 ng/ml) and prior surgical or chemical
castration with a serum testosterone of <50 ng/ml; Eastern Cooperative
Oncology Group performance status (ECOG PS) of 0 or 1 (ECOG PS 2 was
permitted in the dose escalation part); and adequate organ function.
For the Phase Ib escalation and Phase II parts, patients had experienced

progressive disease (PD) while, or after, receiving docetaxel and
abiraterone. They were required to have received ≥12 weeks of docetaxel
and were intolerant to, or unlikely to derive benefit from, further
docetaxel-based therapy. PD was defined as progressive measurable
disease per Response Evaluation Criteria in Solid Tumors (RECIST) v1.1,
bone scan progression (at least two new lesions plus rising PSA values), or
an increasing PSA level (at least two consecutive rising values taken at least
1 week apart). Patients must not have received more than two prior non-
docetaxel-containing cytotoxic chemotherapy regimens for mCRPC, a
taxane-based treatment or abiraterone within 4 weeks prior to study
treatment start, or prior enzalutamide in any setting. For the exploratory
expansion cohort, patients had to be receiving enzalutamide and had PSA
progression with at least two consecutive rising values at least 1 week
apart. Patients must not have received prior taxane-based chemotherapy
or abiraterone in any setting.
Other exclusion criteria were prior therapy with agents targeting the IGF

pathway; prior chemotherapy, immunotherapy, biological therapies,
molecular targeted therapy, hormone therapy (except luteinizing
hormone-releasing hormone agonists/antagonists), radiotherapy (except
localised therapy for analgesic purposes or for lytic lesions at risk of
fracture) within 4 weeks of starting trial treatment; small cell or
neuroendocrine tumours; known or suspected leptomeningeal metastases;
uncontrolled or poorly controlled hypertension; previous or concomitant
malignancies at any other site (except for benign basal cell carcinoma,
benign low grade transitional cell carcinoma of the bladder, or an
effectively treated malignancy that had been in remission for >5 years and
was considered cured).
The trial was conducted in accordance with the principles of the

Declaration of Helsinki and Good Clinical Practice. The protocol was
approved by the independent ethics committees (IECs) and institutional
review boards of the participating centres The IEC (National Research
Ethics Service Committee London – Chelsea Research Ethics Committee
Bristol Centre, Bristol, United Kingdom) of the Coordinating Investigator
gave a favourable opinion for the study on 14 August 2014. All patients
provided written informed consent.

Treatment
In the Phase Ib escalation, patients received xentuzumab at a starting dose
of 750mg weekly (intravenous infusion) plus enzalutamide 160mg daily
(oral; Xe750+ En160), escalating to xentuzumab 1000mg weekly plus
enzalutamide 160mg daily (Xe1000+ En160) (Supplementary Fig. 1). In
the Phase Ib expansion, patients received xentuzumab plus enzalutamide
at the MTD/RP2D. In the Phase II part, patients were randomised to
xentuzumab plus enzalutamide (MTD/RP2D) or enzalutamide alone
(160mg daily). Treatment continued until disease progression, intolerable
adverse events (AEs) or other reasons for withdrawal.

Endpoints and assessments
In the Phase Ib escalation, the primary endpoint was the MTD of
xentuzumab based on occurrence of dose-limiting toxicities (DLTs). MTD

was defined as the dose level at which ≤1 DLT was observed in six patients
during the first 28-day cycle of treatment. DLTs were defined as per the
criteria in the Supplementary Methods.
In the Phase Ib expansion, the primary endpoint was PSA response

(defined as a decline in PSA value >50% compared with baseline and
confirmed by the next available value at least 3 weeks later). Secondary
endpoints were investigator-assessed progression-free survival (PFS) and
circulating tumour cell (CTC) response. PFS was defined as time from
randomisation until radiological tumour progression in bone (based on
Prostate Cancer Clinical Trials Working Group 2 [PCWG2] criteria) or soft
tissue (based on modified RECIST v1.1), whichever occurred earlier, or
death from any cause. CTC response was defined as a CTC reduction from
≥5 to <5 cells per 7.5 ml blood for at least one post-baseline timepoint
The primary endpoint in Phase II was investigator-assessed PFS.

Secondary endpoints were centrally-assessed PFS, overall survival (OS;
defined as the time from randomisation to death from any cause), time to
PSA progression (defined as time from first treatment until a ≥25%
increase in PSA and an absolute increase of >2 ng/ml from the nadir, in
cases where there had been a PSA decline from baseline before increasing,
or from the baseline if there had been no PSA decline from baseline),
maximum decline in PSA, percentage change in PSA at Week 12, PSA
response (as defined above) and CTC response assessed by three criteria:
CTC reduction (decline from ≥5 to <5 cells per 7.5 ml blood for at least one
post-baseline timepoint), maximum decline in CTC counts from baseline,
and CTC status at Week 12 (≥5 to <5 cells per 7.5 ml blood).
Tumours were assessed at screening by computed tomography or

magnetic resonance imaging of the chest, abdomen and pelvis, and a
bone scan. The same radiographic procedure had to be used throughout
the study. In the Phase Ib escalation, imaging was performed every
12 weeks. In the Phase Ib expansion and Phase II parts, imaging was
performed at baseline, every 2 cycles (8 weeks) up to Week 24 and every 3
cycles (12 weeks) thereafter. All imaging data collected in the Phase II part
were sent to a central imaging unit to obtain an independent blinded
confirmation of tumour response assessment.
PSA assessments were performed locally. Blood samples were taken at

screening, baseline, at the start of cycle 3, and every cycle thereafter. Upon
PSA progression, patients were to be kept on trial treatment until
radiological or symptomatic progression was documented. Blood samples
for CTC assessment were taken at baseline, at the beginning of cycles 1–3,
5 and 7, and every 12 weeks thereafter. CTCs were analysed by cell
counting at an authorised Contract Research Organisation (Veridex
CellSearch technology).
Safety was assessed by incidence and severity of AEs which were graded

according to Common Terminology Criteria for Adverse Events version
4.03. The Brief Pain Inventory short form was used in all parts of the trial to
assess pain at the start of each cycle [13]. The Functional Assessment of
Cancer Therapy-Prostate questionnaire was used to assess quality of life in
the Phase II part, at the start of cycles 1, 2, 3, 5, 7 and 10, and every
12 weeks thereafter [14].
Evaluation of biomarkers was conducted as an exploratory objective of

the trial. Blood samples were taken for quantification of free and total IGF-1
and IGF-2, total IGF binding protein (IGFBP)-3 and IGF bioactivity. IGF-1,
IGF-2 and IGFBP-3 were quantified using validated immunoassays. IGF
bioactivity was analysed in plasma by the quantification of IGF-1R-
phosphorylation in cells expressing human IGF-1R. PTEN expression was
assessed by immunohistochemistry (IHC) in archival formalin-fixed,
paraffin-embedded (FFPE) tumour samples and was undertaken centrally
by Discovery Life Sciences (Kassel, Germany) using the antibody clone
138G6 (cat #9559, Cell Signaling Technology) and the fully automated
Ventana Benchmark Ultra platform following the Ultra View DAB procedure
(cat #760-500, Ventana Medical Systems/Roche Diagnostics).
RNA and DNA were extracted from archival FFPE tumour tissue, to

determine gene expression profiles and mutational status (FoundationOne
Assay, bait set T7; Foundation Medicine, Cambridge, MA [15]) respectively.
Blood samples were collected at the start of cycles 1, 3, and 4 and after
disease progression. DNA was extracted for genotyping of IGFBP3 gene
polymorphisms and circulating free DNA (cfDNA) was extracted from
plasma for mutation analysis using a predesigned gene panel from Qiagen.

Statistical analysis
In the Phase Ib escalation, 9–12 patients were planned to be assessed,
assuming that two cohorts were needed to determine the MTD, 3–6
patients per cohort. In the Phase Ib expansion, a 30% PSA response rate
was assumed [13], and therefore 25 patients were planned to be treated to
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obtain a sample size of 21 evaluable patients for a probability of ~80% of
observing at least five patients with a PSA response. Sample size for Phase
II was calculated based on a hazard ratio for PFS of 0.65 for xentuzumab
plus enzalutamide versus enzalutamide alone. A sample size of 80 patients
(40 per arm) was planned.
PFS and OS were assessed based on the Kaplan–Meier method. Point

estimates, together with confidence intervals (CIs; based on Greenwood’s
method) were provided for median time to event and quartiles. An
estimation of the effect of xentuzumab plus enzalutamide on PFS
compared with enzalutamide alone was given by the hazard ratio (HR)
and its 95% CIs using a Cox proportional hazards model (HR <1 favoured
treatment with xentuzumab plus enzalutamide) and an exploratory p value
from the two-sided log rank test was calculated. The consistency of
treatment effect on PFS across subgroups was investigated in the Phase II
part; the cut-off for continuous biomarkers was determined using a model
optimising the partial likelihood with regard to PFS based on investigator
assessment. Analyses of AEs were descriptive.

RESULTS
Phase Ib escalation
Patients and treatment. The Phase Ib escalation part was
conducted at four sites in the UK. Ten patients were treated
(Table 1); three received Xe750+ En160 and seven received
Xe1000+ En160. All patients had discontinued treatment at data
cut-off (October 2019; Fig. 1). Median duration of treatment was
2.6 months (range 0.9–10.8).

MTD determination. Nine patients were evaluable for MTD (one
was not evaluable due to missing >3 consecutive doses of
enzalutamide in cycle 1). There were no DLTs in either dose cohort
in cycle 1. Based on the definition of the MTD as the dose level at
which ≤1 DLT was observed in six patients during cycle 1,
Xe1000+ En160 was defined as the MTD and the RP2D.

Safety. All patients reported a treatment-emergent AE (including
two grade 4 events [spinal cord compression and condition
aggravated] and one grade 5 event [malignant neoplasm
progression]). None of the grade 4 or 5 AEs were considered
drug-related. The most frequent drug-related AEs were fatigue
(70.0%) and decreased appetite (50.0%; Supplementary Table 1).
There was one serious AE (SAE) that was considered drug related:
a grade 1 infusion-related reaction. Three patients in the
Xe1000+ En160 cohort had AEs leading to discontinuation of
xentuzumab and enzalutamide.

Phase Ib expansion
Patients and treatment. The Phase Ib expansion was conducted at
seven sites in Spain, the UK and the USA. Twenty-four patients were
treated (Table 1), and one patient remained on treatment at data
cut-off (Fig. 1). Median duration of treatment was 4.1 months (range
0.3–35.0); median duration of xentuzumab was slightly shorter than
overall treatment duration (median [range] 3.6 months [0.3–34.7]).

Table 1. Patient demographics.

Phase I escalation Phase I expansion Randomised Phase II

Xe750/1000+ En160
(n= 10)

Xe1000+ En160
(n= 24)

Xe1000+ En160
(n= 43)

En160 (n= 43)

Median age, years (range) 71.5 (55–79) 74.0 (55–89) 68.0 (46–88) 72.0 (51–82)

Race, n (%)

Asian 0 0 15 (34.9) 10 (23.3)

White 10 (100) 23 (95.8) 27 (62.8) 33 (76.7)

Black/African American 0 1 (4.2) 0 0

Missing 0 0 1 (2.3) 0

ECOG PS, n (%)

0 3 (30.0) 9 (37.5) 14 (32.6) 21 (48.8)

1 6 (60.0) 15 (62.5) 29 (67.4) 22 (51.2)

2 1 (10.0) 0 0 0

Smoking status, n (%)

Never smoked 3 (30.0) 13 (54.2) 22 (51.2) 26 (60.5)

Ex-smoker 6 (60.0) 11 (45.8) 16 (37.2) 14 (32.6)

Current smoker 1 (10.0) 0 5 (11.6) 3 (7.0)

Median time since first diagnosis, months
(range)

81.5 (26.9–245.2) 56.1 (15.4–198.5) 69.8 (6.3–200.9) 68.5
(21.6–239.8)

Visceral involvement at screening, n (%) 4 (40.0) 0 8 (18.6) 11 (25.6)

Bone involvement at screening, n (%) 10 (100) 19 (79.2) 43 (100) 40 (93.0)

Gleason total score, n (%)

2–6 1 (10.0) 1 (4.2) 1 (2.3) 3 (7.0)

7 3 (30.0) 4 (16.7) 7 (16.3) 15 (34.9)

8 2 (20.0) 3 (12.5) 10 (23.3) 7 (16.3)

9 2 (20.0) 14 (58.3) 19 (44.2) 15 (34.9)

10 0 0 2 (4.7) 2 (4.7)

Missing 2 (20.0) 2 (8.3) 4 (9.3) 1 (2.3)

Median PSA, µg/l (range) 286.1 (60.0–1087.0) 36.0 (6.7–1232.7) 217.6 (6.8–3616.7) 147.9
(7.5–9106.0)

ECOG PS Eastern Cooperative Oncology Group performance status, PSA prostate-specific antigen, Xe1000+ En160 xentuzumab 1000mg weekly plus
enzalutamide 160mg daily, Xe750+ En160 xentuzumab 750mg weekly plus enzalutamide 160mg daily.
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Efficacy. One patient (4.2%) in the expansion cohort had a
confirmed PSA response; the patient had a long-term PSA and scan
response and remained on study at data cut-off (Fig. 2). Limited
biomarker evaluation of this patient’s archival FFPE diagnostic biopsy
showed a PTEN H-score of 100. A further patient had an unconfirmed
PSA response. Fifteen patients (62.5%) in the expansion cohort had
experienced a PFS event at data cut-off; median PFS was 8.2 months
(95% CI 3.5–14.6). Nine patients had ≥5 CTC per 7.5ml blood at
baseline; of these, one patient (11.1%) had a CTC response.

Safety. All patients reported a treatment-emergent AE. No grade
4 or 5 AEs were reported. Drug-related AEs were reported in 21
(87.5%) patients; most frequently, fatigue (25.0%) and decreased
appetite (20.8%; Supplementary Table 2). Two patients had drug-
related SAEs (grade 2 atrial fibrillation and grade 1 electrocardio-
gram T-wave inversion), and three and five patients, respectively,
discontinued xentuzumab and enzalutamide due to AEs.

Randomised Phase II
Patients and treatment. This phase was conducted at 23 sites in
seven countries (Hong Kong, Netherlands, Singapore, South Korea,

Spain, Taiwan and the UK). Eighty-six patients were randomised to
Xe1000+ En160 (n= 43) and En160 (n= 43). Patient demo-
graphics are shown in Table 1. The treatment arms were
imbalanced with respect to ECOG PS (more patients in the
Xe1000+ En160 arm had a score of 1) and Gleason score (more
patients in the Xe1000+ En160 arm had a score of ≥8). Two
patients remained on treatment at data cut-off, both in the
Xe1000+ En160 cohort; Fig. 1). Median duration (range) of
treatment was similar in both arms (Xe1000+ En160: 3.2
[0.5–40.1] months vs En160: 3.7 [0.5–32.2] months).

Efficacy. At data cut-off, 24 patients (55.8%) in the Xe1000+
En160 arm had experienced a PFS event versus 29 patients
(67.4%) in the En160 arm. Investigator-assessed median PFS was
7.4 months in the Xe1000+ En160 arm and 6.2 months in the
En160 arm (HR 0.98, [95% CI 0.57–1.70]; Fig. 3a). Results were
similar when adjusted in a post-hoc analysis for baseline
imbalances between treatment arms in ECOG PS and Gleason
score (HR 0.83 [95% CI 0.47–1.46]).
There was no evidence of a difference in PFS between

treatment arms by central review. Median PFS was 3.6 months

12/2015 12/2016 12/2017 12/2018 12/2019 12/2020 12/2021 12/2022

0

80

60

40

20

P
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A
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g
/L

Fig. 2 PSA profile of patient with extended response to Xen1000+ En160. The patient presented at age 64 in 2011 with PSA 83, bilateral
prostate adenocarcinoma Gleason grade group 5 (4+ 5= 9) and left acetabular metastasis on MRI scan. He was treated with leuprorelin,
enzalutamide 160mg daily was added in May 2015 but after initial PSA response there was PSA progression. CT scan May 2016 showed pelvic
nodal progression (left pelvic side-wall node 19 × 15mm, right external iliac and common iliac nodes, largest 16 × 14mm). In November 2016,
he was recruited to the Phase Ib expansion part of the trial. Baseline assessment showed ECOG PS 0, PSA 62.98, with increase in
retroperitoneal and pelvic lymphadenopathy since May 2016. He remained on enzalutamide and weekly xentuzumab was added.
Enzalutamide was dose reduced (120mg daily) after he developed grade 1 QTc prolongation, intermittent atrial fibrillation and hypertension
requiring adjustment of antihypertensive medication and anticoagulation (edoxaban 60mg daily, replaced by aspirin 75mg April 2021 after
reversion to sinus rhythm). Xentuzumab infusions were interrupted April–August 2020 (due to COVID-related restricted access to the Trials
Unit) and subsequently re-started. Trial treatment continues, scans showing pelvic nodes below size criteria with no evidence of bone
metastases. Graph: PSA values prior to and on trial. Arrow: baseline PSA at trial entry. Dotted line: upper limit of normal. ECOG PS Eastern
Cooperative Oncology Group performance status, PSA prostate-specific antigen.

Phase Ib dose escalation Phase Ib dose expansion Phase II

Xe750+En160/Xe1000+En160

(n = 3/7)

Xe1000+En160

(n = 24)

Xe1000+En160

(n = 43)

En160

(n = 43)

Discontinued (n = 10) Discontinued Xe (n = 23)

Discontinued En (n = 23)

PD (n = 6)
AE (n = 3)
Patient withdrawal (n = 1)

PD (n = 21)

PD (n = 19)
AE (n = 1)

Other (n = 1)

Patient withdrawal (n = 2)

Patient withdrawal (n = 2)

Discontinued Xe (n = 41)

Discontinued En (n = 41)

PD (n = 24)

PD (n = 26)
AE (n = 6)

AE (n = 7)

Other (n = 1)
Patient withdrawal (n = 9)

Discontinued En (n = 43)
PD (n = 31)
AE (n = 6)
Patient withdrawal (n = 6)

Patient withdrawal (n = 9)

Fig. 1 Patient disposition. AE adverse event, En160 enzalutamide 160mg daily, PD progressive disease, Xe750+ En160 xentuzumab 750mg
weekly plus enzalutamide 160mg daily, Xe1000+ En160 xentuzumab 1000mg weekly plus enzalutamide 160mg daily.
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in the Xe1000+ En160 arm versus 7.1 months in the En160 arm
(HR 1.19 [95% CI 0.68–2.06]; Fig. 3b). Subgroup analyses based on
patient and clinical parameters, circulating markers and tissue
markers were generally consistent with the primary results (Fig. 3c).
At data cut-off, 64 patients had died (33 in the Xe1000+ En160
arm and 31 in the En160 arm); no difference in OS was observed
between the treatment arms (median 13.6 months in each arm;
HR 1.16 [95% CI 0.71–1.90]; Fig. 4a). Again, subgroup analyses
were generally consistent with primary results (Fig. 4b).
PSA response rates and changes in PSA levels were similar in

both arms (Table 2). Median time to PSA progression was 4.6
months in the Xe1000+ En160 arm and 3.7 months in the En160
arm (HR 0.64 [95% CI 0.35–1.18]). CTC results are shown in Table 2;
there were no notable differences in CTC response between
treatment arms. There were no differences between treatment
arms with respect to pain worsening, pain palliation or quality of
life (data not shown).

Biomarkers and pharmacogenomic evaluation. Circulating and
tissue markers were assessed for prognostic and predictive
potential. In the Xe1000+ En160 arm, total circulating IGF-1 and
IGF-2 concentrations increased after the start of xentuzumab
treatment, reaching a plateau by the start of cycle 2; free IGF-1 and
bioactive IGF decreased following xentuzumab treatment. While
circulating biomarkers showed prognostic potential, e.g., high
levels of IGF-1 and IGF-2 at baseline tended to be associated with
better PFS and OS regardless of treatment (data not shown), none
of the circulating biomarkers tested showed predictive potential
for PFS or OS (Figs. 3c and 4b).
Archival prostate tissue samples were analysed for PTEN

expression by IHC in 90 patients, including 72 Phase II patients
(36 per arm) and 18 patients from the Phase 1b expansion part.
Median PTEN H-score was 177.5 in the Xe1000+ En160 arm, 100.0
in the En160 arm and 130 in all 90 patients. PTEN H-score was not
prognostic for PFS or OS (data not shown). There was no OS
difference in the Xe1000+ En160 versus En160 arms in patients
whose tumours had PTEN H-score >80 (17.8 vs 17.4 months; HR
1.07, 95% CI 0.52–2.20) or >130 (17.8 vs 17.4 months; HR 1.18, 95%
CI 0.55–2.53). However, there was a trend towards OS benefit with
Xe1000+ En160 versus En160 in patients with tumours with PTEN
H-score >220 (median OS 19.4 vs 12.7 months; HR 0.66 [95% CI
0.24–1.81]; Fig. 4b). In contrast, in patients with PTEN H-score of
≤220, OS was longer in the En160 arm (median OS: 10.5 vs
21.3 months; HR 2.01 [95% CI 1.03–3.94]; Fig. 4b).
Expression of IGF-pathway-related genes was determined in

archival tissue samples from 55 patients (Xe1000+ En160, 29
patients; En160, 26 patients). Low expression of CDK6, EGFR, ETS1,
MAPK3, PIK3CA, RPS6KB1 or SOS1 showed prognostic potential for
longer PFS, and low expression of BCL2, CDK6, EGFR, ESR1, ETS1,
IGF2a, MAPK1, MPAK3, PIK3CA and SOS1 was prognostic for longer
OS (data not shown). The analysed genes were also assessed for
their predictive potential for PFS and OS. Of note, high IGF1 mRNA
levels (above 115.3) appeared to be associated with trends
towards improved PFS (HR 0.52 [95% CI 0.23–1.14]; interaction
p= 0.003) and OS (HR 0.71 [95% CI 0.35–1.42]; interaction
p= 0.014) in the Xe1000+ En160 arm, although this was based
on small sample sizes (Figs. 2c and 3b). In addition, trends towards
PFS benefit with Xe1000+ En160 were observed if expression of
CCND1, CDKN1B, CDKN1C, ELK1, IGF1R, IGFBP2, IGFBP5, MAPK3, or
SOS1 was high or if expression of AR b, BRAF, CCND3, IGFBP3, or
INSR was low (interaction p-values were <0.1). Trends towards OS
benefit with Xe1000+ En160 were observed if expression of
CCND1, CDKN1B, CDKN1C, IGFBP2, IRS1, MAPK1, or SOS1 was high
or if expression of AR b, BRAF, ERG, IGFBP3, INSR, or PGRa was low.
Tumour mutations were analysed in archival FFPE samples from

24 patients (Xe1000+ En160, 11 patients; En160, 13 patients).
Median number of mutations per tumour was 14 in the
Xe1000+ En160 arm and nine in the control arm. Assessment of
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>65 years

Number of bone metastases at screening
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1.21 (0.45, 3.26)
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Visceral involvement

No

Yes
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0.3424
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Fig. 3 Progression-free survival for xentuzumab plus enzaluta-
mide versus enzalutamide alone in the randomised Phase II part
of the study. a According to investigator assessment. b According
to central review. c Subgroup analysis of progression-free survival by
investigator assessment.
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prognostic potential showed that patients were more likely to stay
progression free and alive if their tumour showed ≤10 mutations
(>10 vs ≤10 mutations: HR 0.21 [95% CI 0.07–0.70]) or if their
tumour had ≤9 short variants (>9 vs ≤9 short variants: HR 0.08

[95% CI 0.02–0.39]). Patients were more likely to stay alive for a
longer period of time if their tumour had ≤9 short variants (>9 vs
≤9 short variants; HR 0.135 [95% CI 0.040–0.459]). Mutational
status by cfDNA showed that the mean (standard deviation [SD])
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Fig. 4 Overall survival for xentuzumab plus enzalutamide versus enzalutamide alone in the randomised Phase II part of the study.
a Overall survival analyses. b Subgroup overall survival analyses.
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number of mutations at baseline was similar in both treatment
groups (Xe1000+ En160: 2.2 [1.5], n= 25; En160: 1.8 [1.1], n= 21).
At the end of treatment, the mean (SD) number of mutations was
slightly higher in both treatment arms (Xe1000+ En160: 4.1 [5.5],
n= 22; En160: 3.9 [5.4], n= 17). None of the analysed mutations
showed prognostic potential for PFS or OS.

Safety. All patients reported at least one treatment-emergent AE.
Two patients in the Xe1000+ En160 arm had an AE leading to
death (respiratory failure and general physical health deteriora-
tion); neither were considered related to treatment. Drug-related
AEs occurred in 41 (95.3%) of patients in the Xe1000+ En160 arm
and 35 (81.4%) in the En160 arm. The most common drug-related
AEs are shown in Table 3. Three patients had drug-related SAEs in

the Xe1000+ En160 arm (grade 1 vomiting, grade 3 fatigue and
grade 4 general physical health deterioration) and one patient in
the En160 arm had a drug-related SAE (grade 3 asthenia). Overall,
nine patients (20.9%) in Xe1000+ En160 arm discontinued
treatment with xentuzumab due to AEs, most commonly due to
fatigue (three patients [7.0%]). Seven patients (16.3%) in the
Xe1000+ En160 arm and eight (18.6%) in the En160 arm
discontinued enzalutamide treatment due to AEs.

DISCUSSION
Xentuzumab in combination with enzalutamide demonstrated a
manageable safety profile across all three parts of the study. No
DLTs were reported in the first cycle during the Phase Ib dose
escalation phase and the MTD/RP2D was determined to be
Xe1000+ En160. The most common AEs across all parts of the
study were fatigue and decreased appetite. There were no notable
differences in safety profile between the xentuzumab plus
enzalutamide and enzalutamide alone arms in the Phase II part.
No new safety signals were observed, and the AE profile was as
expected based on previous xentuzumab monotherapy trials [12]
and the known profile of enzalutamide [5].
The exploratory dose expansion phase suggested that xentu-

zumab did not have antitumour activity in combination with
enzalutamide in patients with mCRPC with rising PSA levels on
enzalutamide. Addition of xentuzumab to enzalutamide in the
Phase II part did not prolong PFS versus enzalutamide alone in
patients with mCRPC after previous treatment with docetaxel and
abiraterone. The groups were imbalanced with respect to baseline
characteristics, with more adverse factors (ECOG PS, Gleason
score, mutation burden) in the Xen1000+ En160 arm, although
the outcomes with respect to PFS and OS were not altered after
correction for PFS and Gleason score. Thus, while there is a strong
preclinical rationale for targeting of IGF in prostate cancer, this did
not translate to clinical efficacy in this study. This finding is
consistent with other trials of IGF-1R inhibitory drugs in mCRPC
patients. In a study of chemotherapy-naïve patients, addition of
the IGF-1R inhibitory antibody, figitumumab, to docetaxel/
prednisone did not significantly improve the PSA response rate
above the null value of 45%, had a detrimental effect on PFS (4.9
vs 7.9 months) and substantially increased toxicity versus
docetaxel/prednisone alone [16]. Another IGF-1R antibody,
cixutumumab, had limited antitumour activity in combination
with the mTORC1 inhibitor temsirolimus, with an unexpectedly
high degree of toxicity and no patient having a >50% PSA
decrease from baseline [17]. While the IGF-1R/INSR tyrosine kinase
inhibitor linsitinib was well tolerated in a study of patients with
chemotherapy-naïve mCRPC, there was no evidence of anti-
tumour activity [18].
Although the current and previous studies indicate that IGF or

IGF-1R inhibition do not confer clinical benefit in unselected
patients, certain patients with mCRPC appear to benefit. Therefore,
there is a need to identify predictive biomarkers that might
identify patients most likely to respond. As part of the current trial,
there was an exploratory analysis of biomarkers to expand
understanding of the disease and study treatment. PTEN is
frequently downregulated by gene deletion or mutation as
prostate cancers progress to mCRPC [19], with evidence that
PTEN gene loss correlates with reduction or loss of PTEN signal by
IHC [20]. We tested PTEN H-score cut-offs of >130 (the median
value for all tumours tested) and >80 vs 0–80, the latter reported
to reflect heterozygous PTEN loss [21] but neither were predictive.
There were too few tumours with H-score 0–10 (12/90, 1.3%) to
test the predictive power of very low PTEN signal consistent with
biallelic loss of PTEN [21]. In patients whose tumours expressed
high PTEN (H-score >220) there was a trend towards improved OS
in those on Xen1000+ En160 versus En160. Conversely there was
a trend towards lack of OS benefit in patients with low PTEN

Table 2. PSA-related and CTC endpoints in the randomised Phase
II part.

Xe1000+ En160
(n= 43)

En160
(n= 43)

PSA response, n (%)

Yes 9 (20.9) 8 (18.6)

Confirmed 7 (16.3) 8 (18.6)

Unconfirmed 2 (4.7) 0

No 31 (72.1) 29 (67.4)

Missing 3 (7.0) 6 (14.0)

Maximum decline in PSA compared to baseline, µg/l

N 40 37

Median (range) –20.4 (–2803.8, 1210.2) –9.0 (–5857.0, 1646.2)

Maximum decline in PSA compared to baseline, %

N 40 37

Median (range) –8.5 (–99.8, 272.7) –8.1 (–97.5, 287.9)

Change in PSA from baseline to week 12, %

N 31 30

Median (range) 18.6 (–99.2, 251.1) 18.3 (–94.8, 360.7)

CTC status at week 12, n (%)

≥5 cells per
7.5 ml blood

26 (60.5) 20 (46.5)

<5 cells per
7.5 ml blood

11 (25.6) 16 (37.2)

Missing on-
treatment value

6 (14.0) 7 (16.3)

Odds ratio (95%
CI); p value

1.89 (0.73, 5.06); 0.192

Maximum decline in CTC counts, %

N 32 28

Median (range) –46.3 (–100.0, 1153.4) –34.5 (–100.0, 933.3)

CTC response, n (%)

N (patients with
baseline CTC
value ≥5 cells
per 7.5 ml)

25 19

Yes 4 (16.0) 2 (10.5)

No 19 (76.0) 15 (78.9)

Missing on-
treatment value

2 (8.0) 2 (10.5)

Odds ratio (95%
CI); p value

1.58 (0.27, 12.52);
0.619

CI confidence interval, CTC circulating tumour cell, PSA prostate-specific
antigen, Xe1000+ En160 xentuzumab 1000mg weekly plus enzalutamide
160mg daily.
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tumours. These observations provide initial clinical support for
preclinical data suggesting that PTEN status may be a marker of
responsiveness to xentuzumab plus enzalutamide. In PTEN
proficient prostate cancer cells and xenografts, treatment with
xentuzumab plus enzalutamide was growth inhibitory, but
treatment resistance was induced upon PTEN depletion [11].
Using the 220 H-score cut-point, the diagnostic biopsy of the
exceptional responder contained relatively low PTEN (H-score 100,
Fig. 2). However, primary prostate cancers show intra-tumoral
heterogeneity that is poorly captured at diagnostic biopsy, and it
is increasingly recognised that clones with metastatic potential are
identifiable only at the genetic level [22, 23]. Therefore, PTEN IHC
on diagnostic biopsies cannot be used reliably to infer PTEN status
of metastatic sites, and it would have been preferable to have had
access to tumour tissue biopsied at trial entry to ascertain current
PTEN status. As a result, we cannot exclude PTEN proficiency as a
driver for response to xentuzumab plus enzalutamide.
Several IGF-pathway-related genes, including IGF1, IGF1R and

IGFBP5 were identified as potential predictive biomarkers in this
study, with high expression associated with PFS benefit from
xentuzumab plus enzalutamide. IGFBP5 is a well-characterised
transcriptional readout of IGF axis activity in multiple cell types
[24–27]. Thus, IGF1 and IGFBP5 upregulation reflect high baseline
IGF axis activity; it is plausible that this state could indicate IGF-
dependence, potentially contributing to possible benefit from
xentuzumab. Another potential biomarker of interest identified in
this study was ERG gene expression. Patients appeared to be more
likely to derive OS benefit from xentuzumab plus enzalutamide if
tumour expression of ERG was low. This observation contrasts with
an in vitro study where ERG silencing reduced the sensitivity of
prostate cancer cells to IGF-1R inhibition [28]. While these
observations are of interest, patients in this trial were not
preselected or stratified for PTEN status or transcriptional profiles,
and further studies would be required to assess these parameters
as predictive biomarkers for response to IGF inhibition in CRPC.
In conclusion, while xentuzumab and enzalutamide can be

safely combined, the combination did not show antitumour
activity in the overall population of patients with mCRPC. Further
assessment of potential markers of response or resistance is
required to enable selection of patients who may benefit from this
combination.
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