
1. Introduction
The volcanic forcing of climate arises primarily from emitted sulfur dioxide (SO2), forming a sulfate aerosol 
haze, that scatters solar radiation back to space, and absorbs a relatively lower amount of terrestrial long-wave 
radiation (e.g., Lacis et al., 1992). After major tropical eruptions, a localized heating from this volcanic aerosol 
absorption increases stratospheric water vapor (SWV) via greater tropopause entry (e.g., Joshi & Shine, 2003). 
Some volcanic eruptions can emit large amounts of water vapor directly into the stratosphere, for example, after 
1883 Krakatau (Joshi & Jones, 2009; Self, 1992; Self & Sparks, 1978) and from the January 2022 Hunga-Tonga 
eruption (Millán et al., 2022).

Attributing volcanic SWV changes due to volcanically enhanced aerosol is complex because there are few suffi-
ciently large eruptions in the observational era. There is also substantial internal SWV variability associated with 
the El Niño–Southern Oscillation (ENSO) and Quasi-Biennial Oscillation (QBO) (see Garfinkel et al., 2013; 
Rosenlof & Reid, 2008; Scaife et al., 2003). There has also been a gradual SWV increase from decadal changes in 
the strength of the stratospheric circulation (e.g., Dhomse et al., 2008; Randel et al., 2006; Rosenlof et al., 2001) 
and from increased methane oxidation (e.g., Considine et al., 2001; Evans et al., 1998). An alternative approach is 
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to isolate the volcanic signal with the aid of model (e.g., Kilian et al., 2020; Kroll et al., 2021; Löffler et al., 2016), 
but large uncertainties still exist due to different models, forcing input and internal climate variability (Zanchettin 
et al., 2016).

We analyze the UKESM VolMIP volc-pinatubo-full experiment (see Zanchettin et  al.,  2016), specifically 
designed to enable to separation of the volcanic signal from internal climate variability within atmosphere-ocean 
coupled Earth System Model simulations. Section 2 and 3 detail our experimental design, methods, and the key 
characteristics of the model performance related to the SWV entry mechanism. Section 4 presents our key results 
about modification of SWV entry mixing ratios followed by Summary and discussion in Section 5.

2. Models
The model experiments apply version 1 of the UK Earth System Model (UKESM1, Sellar et al., 2019), built 
around the Global Atmosphere 7.1 (GA7.1) configuration of the UK Met Office Unified Model (Mulcahy 
et al., 2018; Walters et al., 2019) with coupling to the NEMO ocean model (Storkey et al., 2018), and the JULES 
land-surface model (Best et al., 2011). The atmosphere model has a well-resolved stratosphere achieving an inter-
nally generated QBO with stratosphere-troposphere chemistry (Archibald et al., 2020) and tropospheric aerosol 
radiative forcing from the GLOMAP-mode modal aerosol microphysics model (Bellouin et al., 2013; Dhomse 
et al., 2014; Mann et al., 2010). Briefly, the experiment design is a 27-member “initial conditions ensemble” of 
36-month “Pinatubo-aerosol forcing only” simulations, each branched off from the parent Pre-Industrial (PI-ctrl) 
control runs (see Table S1 in Supporting Information S1). These simulations are designed to explore the sensi-
tivity of volcanic impacts to internal climate variations by selecting years from the PI-ctrl to sample modes of 
tropical and Atlantic variability in the winter after the June 15th eruption. The 27 ensemble simulations include 3 
simulations for each of warm, neutral, and cold ENSO phases, and positive, neutral, and negative North Atlantic 
Oscillation (NAO) indices. All 27 initialization files for the UKESM PI-ctrl were selected so that the mean QBO 
phase was in easterly phase after eruption from July 1991 to December 1991 (based on a 50 hPa mean tropical 
zonal wind diagnostic).

3. Methods
Here we analyze the UKESM-simulated SWV response from this VolMIP “volc-pinatubo-full” experiment 
(Zanchettin et  al.,  2016), analyzing co-variations with temperature, heating rates and tropical upwelling. All 
anomalies in the Pinatubo-forced runs are calculated with respect to the PI control runs. A two-tailed student-t 
test is performed to detect the significance of the anomalies. The modulation of volcanic impacts by ENSO and 
NAO variability is investigated by comparing the subsampled volcanic-forced runs and PI-ctrl runs under the 
same states of ENSO or NAO. The Clausius–Clapeyron equation is used to assess the co-variation of temperature 
and water vapor to demonstrate the saturated air in the tropical tropopause region, for the “freeze drying” effect 
hypothesized to generate the observed post-eruption SWV moist anomaly.

The transformed Eulerian mean (TEM) residual velocity is used as a metric for quantifying the overall strength 
of the Brewer–Dobson circulation (BDC) (e.g., Butchart & Scaife, 2001; Seviour et al., 2012). The vertical (𝐴𝐴 𝜔𝜔

∗ ) 
component of the TEM residual circulation, which we refer to simply as “tropical upwelling”, is calculated via 
Equation 3.5.1 in Andrews et al. (1987):

𝜔𝜔
∗

= 𝜔𝜔 + (𝑎𝑎cos𝜙𝜙)
−1

[

cos𝜙𝜙

(

(𝑣𝑣′𝜃𝜃′ ∕𝜃𝜃𝑝𝑝

)]

𝜙𝜙
 (1)

with θ the potential temperature, 𝐴𝐴 𝜔𝜔 the zonal-mean vertical velocity in pressure coordinates, and subscripts p and 
ϕ denoting derivatives with respect to pressure and latitude.

4. Results
4.1. Timing and Longevity of the SWV Increase

Figure 1 shows the UKESM-predicted SWV anomalies caused by the Pinatubo aerosol on the 27-member ensem-
ble mean. Peak SWV enhancement at 100 hPa occurs 17 months after the eruption, with a magnitude of ∼1.0 
ppmv on the ensemble mean. The SWV enhancement first becomes significant around 3 months post-eruption, 
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but remains below 10% (Figures 1b and 1d) for the entire first year after the eruption. Months 12–18 after the 
eruption see a sudden change to a rapid moistening, with the enhancement transported upwards within the tropi-
cal stratospheric reservoir. A slight reduction in the enhancement is seen into DJF 1991, which likely reflects the 
6-month-period variation associated with the BDC seasonal cycle that we will discuss later. It is worth noting that 
the VolMIP experiment design produces a pre-industrial-BDC-strength upwelling, which is slower than will have 
been the case after Pinatubo (e.g., Eichinger et al., 2019).

The observed signal of post-eruption water vapor increase in the tropical stratosphere can be seen here to corre-
spond to an initial phase of slow but steady increase into a second phase of much steeper increase in the second 
post-eruption year. Here this reaches a maximum in October 1992; the increase from 10% to 17% above back-
ground level occurring in just 4 months. Other post-volcanic changes of radiatively active species such as meth-
ane (Dlugokencky et al., 1994, 1996) and ozone (Hofmann & Solomon, 1989; Kinne et al., 1992) will also occur, 
alongside the localized aerosol heating, and the co-variations explored in this isolated volcanic-forcing experi-
ment enable the balance among these drivers to be assessed.

This amplification of SWV entry in the winter half of the second post-eruption year differs from previous studies 
using general circulation models (GCMs) (Joshi & Shine, 2003, their Figure 3b) or simpler 2D models (Considine 
et al., 2001, their Figure 16b) which found that peak SWV entry at 100 hPa occurs in the first eruption year. Using 
nudged interactive chemistry-climate model simulations, Löffler et al. (2016) showed a triple peak in SWV entry 
at similar levels, each peak an increase of more than 40%. A follow-up study by Kilian et al. (2020) attributes this 

Figure 1. SWV response to Pinatubo-like volcanic aerosol forcing. (a) Absolute and (b) percentage difference in water vapor above 140 hPa in the tropics (23°S–23°N) 
averaged between volcanically perturbed and unperturbed ensemble runs, and (c, d) their time series at 100 hPa, 50 hPa, and 30 hPa. Regions covered by dots indicate 
statistically significant differences with confidence of 95% (based on Student's t-test).
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increase to the volcanic aerosol heating effect, separating the heating-driven changes from the volcanic aerosol 
chemistry effect, which by contrast leads to dehydration in the lower stratosphere after a cooling due to ozone 
loss. Kroll et al. (2021) showed an increase of 25% at corresponding levels with two peaks in the same year 1992, 
but used a GCM without interactive chemistry. HALOE satellite measurements appear to be contaminated by 
volcanic aerosol in the first post-eruption year, but it did see an increase in SWV entry of around 1 ppmv in the 
tropics (12°S–12°N) in late 1992 (Mote et al., 1996, their plate 1a; Fueglistaler, 2012). Our results are in good 
agreement with the observational records for the increase in the SWV entry in the second eruption year when 
the observations are more reliable. Another notable feature in Figure 1 is a smaller peak SWV increase of 17% 
in our simulations, which is lower than the range from 25% to 45% at the corresponding level in earlier modeling 
studies mentioned above.

The timing of SWV increase mirrors in the tropical tropopause temperature due to the cold-point temperature 
“freeze-drying” mechanism (Figure 2). Although the cold point is defined as the lowest temperature in the 
inner tropical (5°S–5°N) tropopause layer region, a pressure level of 100 hPa is used as an approximation 
for the tropical cold-point tropopause level. The anomalous warming of cold-point temperature rises to a 
maximum of (2.24 ± 0.23) K and peaks in October 1992, leading to the peak for the inner tropical water 
vapor anomalies of (1.07  ±  0.12) ppmv (Figure  2a). The vertical temperature profiles are included in the 
Supplement (Figure S1 in Supporting Information S1) with pronounced separation of cold-point temperature 
response during the peak entry season October-November-December 1992, indicating a significant increase 
of cold-point temperature in the second post-eruption year among different ensemble members. The water 
vapor entry value and tropical cold-point tropopause temperature relationship in the peak SWV entry season 
in October-November-December 1992 fits the line which approximates the Clausius–Clapeyron equation very 
well under this temperature range assuming the atmosphere around the cold point is saturated in the unper-

Figure 2. SWV entry constrained by cold-point temperature. Differences in the inner tropical (5°S–5°N) (a) cold point 
temperature (K) and stratospheric water vapor (ppmv) between volcanically perturbed and unperturbed ensemble runs. The 
ensemble means are shown with their standard errors. The time of the volcanic eruption is indicated by a vertical blue line. 
(b) The seasonal averages of specific humidity (ppmv) at the cold point as function of cold-point temperature for the peak 
season (October-November-December 1992). Values for each individual ensemble member are shown as dots for the inner 
tropics. An approximation (see text) for the Clausius-Clapeyron equation at this temperature range with a 12% increase of 
specific humidity per K is indicated by a dashed gray line. The ensemble mean cold-point temperatures and specific humidity 
for volcanically perturbed and unperturbed ensemble runs are indicated in orange.
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turbed runs (Figure 2b). The ensemble mean of the simulated entry value agrees well with the seasonal-mean 
value predicted using the equation, with only a very small discrepancy (less than 1% of the predicted value by 
the Clausius–Clapeyron equation).

We now assess the sensitivity of the timing and longevity of this heating-driven volcanic entry to the internal vari-
abilities involving ENSO and NAO by comparing the SWV anomalies under different ENSO and NAO phases 
(Figure 3). The QBO phase is the same for each member (Figure S2 in Supporting Information S1) so that we 
can ensure that the differences of the SWV entry between each member are attributed to the different background 
state associated with ENSO and NAO. In general, the temporal evolution of additional SWV entry shows consist-
ent features in the mean of 27 ensemble members, indicating the robustness of our results. The dependence of 
the SWV entry value on NAO is relatively small, but it is substantially larger in 9 members under the cold ENSO 
phase (La Niña) compared with the neutral ENSO and warm ENSO (El Niño) phases. The entry value averaged 
in the peak months (October-November-December 1992) is 1.39 ppmv for the subsampled ensemble (9 members) 
means under the La Niña phase; this exceeds all the other ensemble (18 members) means (0.58 ppmv) by ∼80%. 
In addition, this peak increase is more persistent in case of La Niña than other phases of ENSO. While ENSO's 
net effect on the zonal mean SWV entry is still not clear (see review by Domeisen et al., 2019), our result supports 
evidence from earlier observations and model studies by Garfinkel et al. (2018, 2021) that La Niña acts to moisten 
the stratosphere in Northern Hemisphere winter relative to neutral ENSO. The dynamical mechanism for this La 
Niña enhancement is discussed in detail later. However, El Niño shows a rather weak, if any, moistening effect 
in the ensemble mean, although one member is distinct from the ensemble mean showing a strong enhancement 
in the SWV entry. The warming of tropical cold-point tropopause coherently exhibits strong dependence under 
different ENSO phases, with the largest temperature increase in case of La Niña exceeding those under El Niño 
and neutral ENSO phases (Figure S3 in Supporting Information S1). A note of caution is due here since the 
ensemble size is reduced by the sub-sampling analysis.

Figure 3. Heating-driven volcanic entry dependence on ENSO and NAO. (a, b) Stratospheric water vapor anomalies (ppmv) 
averaged over the subsampled ensemble members with different ENSO and NAO conditions. (c) Averaged SWV anomalies 
in the inner tropical region in October-November-December 1992 as a function of different ENSO and NAO conditions for all 
ensemble members. Each point represents one ensemble member; the horizontal lines denote the subsampled ensemble mean 
under the respective conditions.

 19448007, 2023, 19, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
103076 by T

est, W
iley O

nline L
ibrary on [26/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

ZHOU ET AL.

10.1029/2023GL103076

6 of 11

4.2. Causes of the Timing and Longevity of Heating-Driven Volcanic Entry

We now investigate in detail the thermodynamics leading to the prolonged volcanic entry. The plot of trop-
ical temperature anomalies shows a clear signal of the descending anomalous heating over time, with the 
largest signal descending to the cold-point tropopause (100  hPa) during the period of October–November 
1992 (Figure 4a), in agreement with the peak months for volcanic entry. Consistent with this, the anomalous 
shortwave heating maximum is first detected in the region of highest aerosol concentrations near 30 hPa and 
descends to the tropopause layer at the same point of two years after eruption (Figure  4b). The longwave 
heating, with a relatively smaller rate, also contributes to anomalous heating (Figure S4 in Supporting Infor-
mation S1). The positive shortwave heating anomalies in the upper stratosphere one year after eruption are 

Figure 4. Descending warming signal driven by a decelerated tropical upwelling. (a, b) Differences in the temperature and shortwave heating rate averaged in the 
inner tropics. (c) Seasonal mean of the differences in 𝐴𝐴 𝜔𝜔

∗ profiles, with means taken within the latitude near 15° in summer hemisphere. The solid line represents the 
ensemble mean; the error bars represent the ensemble standard deviations. (d, e) Differences in the tropical cold-point tropopause temperature (CPTT) as a function of 
differences in 𝐴𝐴 𝜔𝜔

∗ at 100 hPa averaged in peak entry season (October-November-December 1992). Each circle represents one ensemble member; the plus signs denote 
the subsampled ensemble mean under the respective conditions.

 19448007, 2023, 19, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
103076 by T

est, W
iley O

nline L
ibrary on [26/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

ZHOU ET AL.

10.1029/2023GL103076

7 of 11

probably associated with increased ozone concentrations above aerosol layer (Richter et al., 2017). We see 
a clear stratospheric warming related to shortwave heating due to volcanic aerosol and this correlation is in 
line with other modeling and observational studies (e.g., Ming & Hitchcock, 2022; Robock, 2000; Stenchikov 
et al., 1998). The joint descending signal in temperature and shortwave heating anomalies also hints that there 
is an anomalous downward vertical motion in the tropical stratosphere. Gravitational settling of the Pinatubo 
aerosol can descend the radiative heating after eruption (Dhomse et  al.,  2014), but a prolonged downward 
motion persisting for two years is very possibly linked with the changes in the stratospheric circulation. We 
diagnose the tropical branch of the BDC as a proxy for the Lagrangian-mean motion in the stratosphere. 
Figure 4c shows changes in the vertical profile of seasonal averaged tropical upwelling after eruption. A gener-
ally decelerated tropical upwelling in the lower stratosphere in response to volcanic forcing is found, explain-
ing the persistent downward motion in temperature and shortwave heating anomalies. There are significant 
differences at latitudes near 15° in both hemispheres between the ensemble means of Pinatubo-aerosol-forced 
and control simulations. Map views of the tropical upwelling at 100 hPa in response to volcanic forcing and a 
meridional view of the seasonal averaged vertical structure of the BDC for control and perturbed runs, as well 
as their difference in 1992 winter, are included in the Supplement (Figures S5 and S6 in Supporting Infor-
mation S1). Both the shallow and deep branches show a clear deceleration with the upwelling shifting into 
the summer hemisphere. The largest differences do not occur at the equator because of the seasonal shift of 
tropical upwelling toward the summer hemisphere (Randel et al., 2008). We show in Figure 4d and Figure S6 
in Supporting Information S1 the vertical structure of 𝐴𝐴 𝜔𝜔

∗ with significantly slowed upwelling throughout the 
lower stratosphere, thus the results are not sensitive to the level chosen in the lower stratosphere.

This result is very different from many previous findings using models in which an intensified BDC was shown 
(e.g., Abalos et al., 2015; Aquila et al., 2013; DallaSanta et al., 2021; Kinne et al., 1992; Pitari, 1993; Pitari 
& Mancini,  2002; Toohey et  al.,  2014). However, Garfinkel et  al.  (2017) and Garcia et  al.  (2011) found the 
post-volcanic BDC response was an acceleration effect, but mainly in the mid and upper stratosphere, and 
Garfinkel et al.  (2017) showed very little change in the BDC in the lower stratosphere (see their Figure 6b). 
Diallo et  al.  (2012,  2017), using Lagrangian model (cLaMS) and ERA-Interim reanalysis data, and Muthers 
et al. (2016), using climate model (SOCOL), suggested an increase of age-of-air after Pinatubo, corresponding to 
a slower BDC. DallaSanta et al. (2019) using a simplified model showed a poleward shifting and strengthening 
jet in response to the enhanced meridional gradient of temperature by tropical stratospheric warming, which is 
also found in our more detailed model (Figure S7 in Supporting Information S1). This anomalous wind pattern 
alters the propagation of wave activities. The slowdown in tropical upwelling occurs as a result of a decrease in 
wave forcing in the subtropics diagnosed by the anomalous EP flux divergence (Figure S7 in Supporting Informa-
tion S1). Meanwhile, the vertical stability of the atmosphere is enhanced in the tropical lower stratosphere (Figure 
S8 in Supporting Information S1), which also acts to reduce tropical upwelling (DallaSanta et al., 2021). Together 
these results indicate an overall deceleration of the tropical upwelling in response to the volcanic eruption. The 
3-month lag corresponds to the time for the convergence of extratropical stratosphere to the equilibrium as shown 
in the zonal wind response, which also explains the time lag we see in the SWV entry (Figure 1). This signal in 
the tropical tropospheric circulation persists and maintains a significant value lasting throughout two years after 
eruption, especially in the winter seasons. The aerosol sedimentation in the first few months and the persistent 
changes in tropical upwelling response, together, serve as a critical mechanism for bringing down the volcanic 
aerosol and thus shortwave heating to the tropical tropopause.

The role of internal variabilities involving ENSO and NAO in modulating the volcanic entry value is analyzed 
by comparing the response of tropical upwelling in subsampled simulations according to their different back-
ground states. Figures 4d and 4e show the response of cold-point tropopause temperature as a function of trop-
ical upwelling at 100 hPa for these members averaged in the peak entry season (October-November-December 
1992). Different colors are used to distinguish different ENSO and NAO phases. These members follow the 
relationship that an anomalously decelerated tropical upwelling leads to adiabatic warming of the tropical 
cold-point tropopause, as proved by previous studies (e.g., Holton et al., 1995; Thompson & Solomon, 2005). 
Almost all members for La Niña, except one, simulate a decelerated tropical upwelling and thereby a warming 
in the tropical cold-point tropopause temperature. These 9 members for La Niña are in general well separated 
from the other 18 members for neutral ENSO and El Niño, showing more decelerated tropical upwelling and 
more warmed cold-point tropopause temperature. This explains the large SWV entry value in peak season 
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in case of La Niña, exceeding both El Niño and neutral ENSO ensemble mean shown in Figures 3a and 3c. 
In addition, the slowdown in the tropical upwelling is more persistent than the other two ENSO phases until 
decaying after December 1992 (Figure S9 in Supporting Information S1). The comprehensive dynamics for 
the slowdown in tropical upwelling in the lower tropical stratosphere during La Niño and acceleration in El 
Niño via modulating the propagation and dissipation of the gravity waves are discussed in Calvo et al. (2010). 
However, one member for El Niño is well beyond the other members, showing strong decelerated tropical 
upwelling and warmed tropical tropopause temperature (Figure 4d) and corresponding to the member with the 
highest SWV entry value among the 9 El Niño members in the peak season (Figure 3c). The reason for this 
one-member discrepancy is not clear, which is possibly linked with the nonlinearity in the SWV response to El 
Niño strength. The members for different NAO phases have a large spread and their ensemble means are very 
close (Figure 4e), leading to the small differences in their ensemble means for the SWV entry value in peak 
season (Figure 3c).

5. Summary and Discussion
Analysis of UKESM1 model simulations suggests that dynamical response of the SWV from the volc-pinatubo-full 
experiment reveals a two-phase increase in SWV with a slow increase in the first year, followed by a second 
phase of much steeper increase for months 12–18 after eruption. The peak SWV enhancement at 100 hPa is 
seen 17  months after eruption, with a magnitude of ∼1.0 ppmv (∼17% increase over background levels) on 
the ensemble mean. This significant moistening effect lasts for more than 2 years, indicating its importance in 
understanding the SWV interannual variability and long-term change. This response, both the increased level and 
the time evolution, is captured by the changes in the tropical cold-point temperature. By comparing simulations 
with very different background dynamical conditions including positive, neutral and negative ENSO and NAO 
phases, we determine statistically robust volcanic signals from background dynamical variability. We show that 
La Niña leads to a more persistent SWV entry after eruption, with its peak value exceeding ∼80% of the other 
two ENSO phases. The peak SWV entry in the second eruption year occurs when the volcanic-aerosol-induced 
heating reaches the tropopause, with ENSO phase at 6–9 months post-eruption strongly modulating the dynam-
ically induced SWV increase.

A caveat is that our result on tropical SWV entry is driven by the tropical tropopause temperature response to the 
volcanic eruption, an effect that may be dependent on the prescribed volcanic aerosol forcing data set (Rieger 
et al., 2020), forcing implementation and radiation scheme used in climate models (Zanchettin et al., 2022a), and 
more generally how the model describes the volcanic plume (Stenchikov et al., 2021). Whilst the 27 ensemble 
members and VolMIP experiment design have enabled to quantify ENSO modulation of heating-driven SWV 
increases within an easterly post-eruption QBO regime, a future protocol with a larger ensemble would poten-
tially enable to explore the effect within westerly or transitory QBO phase. Improving our current knowledge of 
volcanic injection is a necessary step to understand its climate perturbation. Future experiments with both direct 
injection and modified tropopause entry, and work to fully consider the internal variabilities including ENSO, 
and NAO, are needed.

Data Availability Statement
The time series used in the analysis are available from the World Data Center for Climate (WDCC) public repos-
itory at the Deutsches Klimarechenzentrum (DKRZ) (https://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acro-
nym=VolMIP_pC, https://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=VolMIP_volc_UKESM1; 
Zanchettin et  al.,  2022b,  2022c). Figures were made with python open-source software libraries: aostools 
(Jucker, 2022), matplotlib (Hunter, 2007), numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), and xarray 
(Hoyer et al., 2022). Code to produce the figures in this manuscript is available from https://doi.org/10.5281/
zenodo.7810072 (Zhou, 2023).
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