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Abstract
OBJECTIVES. Real-world evidence is playing an increasingly important role in health technology assessment, but is prone to selection and confounding bias.
We demonstrate how to conduct a real-world within-study cost per quality-adjusted life-year (QALY) analysis. We combined traditional within-trial bootstrapped
regression-baseline-adjustment with causal inference methods, using a Target Trial framework, inverse probability weights (IPWs), marginal structural models
(MSMs), and g-computation, applied to England’s Talking Therapies for anxiety and depression services (TTad) mental-health e-records.

METHODS.The ‘Assessing a Distinct IAPT service’ (ADAPT) quasi-experimental-study evaluated an Enhanced-TTad-service Vs. TTad-services’ treatment-as-
usual. TTad-services collect patient-reported PHQ-9-depression and GAD-7-anxiety scores at index-assessment and each treatment session, from which we
predicted EQ-5D utilities using a mapping function. Our primary estimands were incremental costs and QALYs for Enhanced-TTad Vs. treatment-as-usual at
16-weeks post-TTad-service-index-assessment.

We prespeci�ed our target trial including eligibility, treatment strategies, assignment procedure, follow-up, outcomes, estimands, and analysis plan. We used
stabilised treatment-related and censoring-related IPWs within MSMs to reduce selection and confounding bias due to non-randomised treatment allocation
and informative censoring, respectively. Our doubly-robust approach involved MSM-adjusted baseline confounders and g-computation to estimate incremental
utilities, costs, and QALYs, with bootstrapped bias-corrected 95% con�dence-intervals (95%bCIs) and cost-effectiveness acceptability curves.

RESULTS. Primary analysis sample: Enhanced, N=5,441; treatment-as-usual, N=2,149. Naïve regression-baseline-adjustment and doubly-robust approaches
suggested Enhanced-TTad-service dominated treatment-as-usual, with average per-person (95%bCIs) cost-savings of £30.64 (£22.26 to £38.90) or £29.64
(£20.69 to £37.99) and QALYs-gained of 0.00035 (-0.00075 to 0.00152) or 0.00052 (-0.00105 to 0.00277), respectively; probability of cost-effectiveness at
£30,000 per QALY was 99% or 95%, respectively. The doubly-robust and naïve results concurred; albeit, the doubly-robust results suggested average QALY
gains were higher but less certain. The cost-effectiveness results were driven by potential cost-savings.

CONCLUSION. When treatment allocation is non-randomised, the Target Trial framework alongside doubly-robust analyses should be used to reduce selection
and confounding bias.

Article Summary
We describe how to conduct a causal economic evaluation using mental health real-world data based on the ‘Assessing a Distinct IAPT service’ (ADAPT) study

Highlights
What is already known about the topic? [TBC]

What does the paper add to existing knowledge? [TBC]

What insights does the paper provide for informing health care-related decision making? [TBC]

1. Introduction
Randomised controlled trials (RCTs) are considered the gold standard for causally estimating comparative average treatment effects (ATEs) of alternative
care interventions to inform evidence-based decision-making (1, 2). RCTs are key vehicles for cost-effectiveness analyses (CEA), for example based on within-
trial economic evaluation methods to account for the costs and consequences of alternative care strategies to assess value-for-money (3–7). However, issues
with RCTs include poor external validity, randomisation not always being possible (e.g. unethical), and long-time and high-cost requirements (1, 8–10). As
such, there is a need to identify ways to overcome the shortcomings of RCTs, but any alternative must produce an appropriate and trusted evidence-base like
RCTs; for example, by emulating RCTs within non-randomised studies based on real-world data (RWD) including electronic health records (EHRs) and
registries (9–12).

RCT evidence informs health technology assessment (HTA) processes used to guide evidence-based recommendations about treatments and procedures; for
example, by the National Institute for Health and Care Excellence (NICE) in England and Wales (13). NICE’s real-world evidence (RWE) framework (published
June 2022) states: “Non-randomised studies can be used to provide evidence on comparative effects in the absence of RCTs or to complement trial evidence
to answer a broader range of questions about the effects of interventions in routine settings” (8). NICE’s RWE framework de�nes RWE as “evidence generated
from the analysis of [RWD] relating to patient health or experience or care delivery collected outside the context of a highly controlled clinical trial[, e.g. non-
randomised studies]”(8). Timely and cost-e�cient RWD studies are needed, for example related to mental health as outlined in the UK’s NHS Long Term plan
(14); however, these studies need to be conducted and reported appropriately, for example by following NICE’s RWE framework (8).

NICE’s RWE framework details structural (e.g. study design) and analytical causal inference methods for reducing/removing or quantifying bias within any
within-study derived comparative effect estimates (8). Appendix S1 de�nes confounding, selection, and information bias based on Hernán and Robins (15)
and NICE’s (8) de�nitions; alternatively, refer to the Catalogue of Bias (www.catalogofbias.org). For non-randomised studies based on RWD, it is possible to
emulate trial designs by using the Target Trial (TT) framework which reduces bias by clearly articulating seven study dimensions: eligibility criteria, treatment
strategies, assignment procedure, follow-up period, outcomes, estimand(s), and analysis plan (12, 15). The TT framework is intended to mimic the ideal
‘pragmatic’ RCT, which underpins the Cochrane ROBINS-I risk-of-bias tool for non-randomised studies (8, 16). A particular key issue for non-randomised
studies compared to RCTs though is confounding, whereby for RCTs randomised treatment allocation avoids confounding at study-entry. As analytical
examples when adjusting/conditioning on measured confounders, baseline covariates can be used within traditional adjustment methods including

http://www.catalogofbias.org/
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restriction, strati�cation, exact matching, multivariable regression and propensity-score methods (8, 17). There are also ‘doubly-robust’ approaches, for
example by combining the propensity-score and regression methods means only one need be correctly speci�ed to obtain an unbiased effect estimator (18,
19). However, it is not yet wholly common to combine a range of causal inference methods with economic evaluation methods to conduct CEAs alongside
non-randomised studies (6, 7, 20–23); e.g., for cost per quality-adjusted life-year (QALY) analyses as recommended by NICE and HTA agencies internationally
(4, 5, 24). For example, Krief’s (23) review of CEA statistical practice to address selection and confounding bias when using observational data identi�ed
studies mainly used regression alone (51%), with 22% using propensity-score methods. Similarly, a systematic review of non-randomised cardiology CEAs by
Guertin, Conombo (22) found only 45% of identi�ed studies adjusted for confounding at all. Both Kreif, Grieve (23) and Guertin, Conombo (22) recommend
doubly-robust methods which weren’t generally used in their identi�ed CEA studies; additionally, only methods such as inverse probability weights (IPWs) can
address time-varying confounding and there are other biases which require consideration/controlling (see Appendix S1).

Our aim is to describe and demonstrate how to conduct a real-world within-study cost-per-QALY analysis. We combine traditional within-trial bootstrapped
regression-baseline-adjustment with causal inference methods recommended by the NICE RWE framework, including using a Target Trial (TT) framework,
directed acyclic graphs (DAGs), inverse probability weights (IPWs), marginal structural models (MSMs), and g-computation – we describe these methods in
reasonable detail to aid the naïve reader understand the basic need and principles that underpin these methods, with appropriate references for further reading
and statistical software code. We demonstrate the application of these methods using England’s Talking Therapies for anxiety and depression services (TTad)
mental-health EHRs for the ‘Assessing a Distinct IAPT service’ (ADAPT) study – IAPT (Improving Access to Psychological Therapies) is the previous name of
TTad-services.

2. NHS Talking Therapies for anxiety and depression services and the ADAPT case-study
NHS England’s TTad-service 2021/22 annual report stated 1.8-million people had been referred to TTad-services that reporting year, up 24.5% since 2020/21
(25). Common mental health disorders, like anxiety and depression, affect ≈ 15% of the population, associated with high mortality levels and years lost with
disability (26, 27). TTad-services offer a variety of NICE recommended psychological therapies and routinely collects data on its service-users to inform its key
performance metric reports, for which national TTad dataset metadata and annual reports are available online (25, 28, 29). TTad health-outcome metrics are
based on the service-user-reported Patient Health Questionaire-9 (PHQ-9) depression-scale and Generalised Anxiety Disorder (GAD-7) anxiety-scale from 0
(best state) to 27 or 21 (worst states), respectively, collected at index assessment (i.e. baseline) and each treatment session until service discharge (29). One
such health-outcome metric is ‘recovery’ since baseline, quanti�ed as moving from ‘caseness’ (GAD-7 ≥ 8; PHQ-9 ≥ 10) on either measure to ‘no caseness’
(GAD-7 < 8; PHQ-9 < 10) on both measures up to service discharge (29).

In 2021, a new Health and Wellbeing pathway was introduced into the TTad-service in one geographical area of the UK to address the wider determinants of
mental health problems (30). This ‘enhanced’ TTad-service was developed and delivered in three local authorities in South-West England. In the enhanced
TTad-service after index assessment for caseness before waiting-list allocation, service-users could be referred to TTad treatment-as-usual (TAU) only (talking
therapies, e.g. psychotherapy), TTad plus the enhanced service, or the enhanced service only. The enhanced service consisted of two elements. First, the
‘Healthy Living Healthy Minds’ programme as a six-session group webinar series offering guided exercise and advice on healthy lifestyles. Secondly as an
‘and/or’, one-to-one sessions with a ‘Wellbeing Navigator’, who facilitated access to community organisations to address the wider psychosocial problems
individuals were experiencing (e.g., poverty, unemployment, social isolation). Appendix S2 provides a visual representation of the enhanced pathway.

For the ADAPT study, the enhanced TTad-service (intervention) in South-West England was compared to the same TTad-service before the enhanced service
was introduced in March 2021 (historical-control), and a standard TTad-service with TAU in South-East England (geographical-control). The intention was to
estimate the effectiveness (reported elsewhere) and cost-effectiveness (reported here) of the enhanced service. A published qualitative study provides
additional detail about the enhanced service (30). Appendix S3 provides an overview of the TTad-service data requested for the ADAPT study, including data
cleaning and structuring. The Health Research Authority and Health and Care Research Wales granted ethical approval (21/PR/0230).

3. Structural and analytical methods to account for bias in the economic evaluation
This within-study CEA focuses on the NICE reference case of cost-per-QALY. The primary comparator is the geographical-control due to TTad-service data
coding being the same as for the intervention-group (version-2), whereas the historical-control used an older coding system (version 1.5) which may have
in�uenced the comparative cost analyses (see Appendix S3). The costing perspective is from a TTad-service perspective in 2020/21 Great British Pounds
(GBP £), rather than NICE recommended health and social care perspective due to using TTad-service EHR data only. Appendix S4 describes resource-use
parameters, unit costs, and associated cost calculations/assumptions.

We followed NICE’s methods guide and RWE framework, CHEERS and ROBINS-I tools, and recommended methods for handling utilities, costs, missing data
and informative censoring using Stata version 17 (6, 7, 31–39). For drawing DAGs, we used DAGitty: https://dagitty.net/. Application of our analytical
methods were particularly informed by Stata code provided by Smith, Mansournia (40), Fewell, Hernán (41), Gabrio, Plumpton (42), among short-courses
described in our acknowledgements.

3.1. Target Trial (TT) speci�cation including causal contrasts and estimands
Table 1 provides an overview of our a-priori TT speci�cation based on the recommendations of Hernán and Robins (12), with an extended rationale for our TT
speci�cation provided in Appendix S5. Hernán and Robins (12) TT framework refers to ‘causal contrasts’ such as speci�ed intention-to-treat (ITT) or per-
protocol (PP) analyses; however, the related estimand framework has grown in importance and popularity to more clearly state what is intended to be
estimated from any speci�c analysis (43–45). The estimand framework’s usefulness and importance for patient-reported outcomes (e.g. PHQ-9 and GAD-7),
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partly to provide a common and transparent language, is described by Lawrance, Degtyarev (46). As the economic evaluation outcome of interest are QALYs,
we used mapping functions by Franklin and Hernández Alava (47) to predict EQ-5D-5L cross-walked utilities for the EQ-5D-3L UK value set from PHQ-9 and
GAD-7 scores, age, and sex recorded in TTad-service data. The ADAPT economic evaluation primary estimand was de�ned as:

In new referrals to TTad-services, what is the between-group difference in mean TTad-service costs and QALYs accumulated since index assessment (i.e.
baseline), with QALYs based on EQ-5D-5L crosswalk utilities predicted from PHQ-9 and GAD-7 scores, age, and sex, for those referred to the enhanced TTad-
service compared to treatment-as-usual (TAU) for those within a geographical-control-site up to 16-weeks after baseline, regardless of TAU received and
service discharge?

For shorter descriptive purposes, we de�ne other analyses on traditional principles of ITT and PP. Our primary and secondary ITT analyses are based on an
ITT principle that the enhanced service is available for anyone referred to the intervention site; therefore, the ITT sample is all new referrals to the interventions-
site if they then received TAU and/or enhanced elements, among other eligibility criteria (see Table 1). In contrast, our PP analyses for the intervention-group is
focussed on only people who engaged with the enhanced elements, i.e. people who were in the intervention-group who received TAU only were omitted from
these PP analyses.

3.2. Directed Acyclic Graphs (DAGs)
DAGs are an increasingly popular approach for specifying causal pathways and identifying confounding variables that require conditioning when estimating
causal effects, for which there is published guidance (48). NICE’s RWE framework recommends DAGs when rationalising the causal analyses conducted (8).

DAGs can be developed through structured and repeated discussions between researchers, clinicians, and other relevant experts to understand the causal
pathways between intervention/exposure, outcome, and other covariates which may be a confounder, mediator, or collider (see Appendix S1) (49). It is
important to identify confounders for conditioning which are variables (L) that causally affects both exposure (A) and outcome (Y), such that L affects A and
Y, compared to variables that are mediators (A affects L and L affects Y) or colliders (A and Y affects L). Whereas conditioning on confounders is required to
estimate the causal relationship from exposure to outcome; conditioning on a collider or mediator should be avoided, which can be avoided by not
conditioning on any covariate recorded after baseline (i.e. post-exposure such as treatment allocation). Although this has complications when accounting for
time-updated confounders, it is simpler when controlling for baseline (i.e. time-�xed) confounders. For transparent reporting purposes, our DAG was developed
after some initial analyses but before the �nal analysis had been conducted, presented in Appendix S6.

3.3. Stabilised Inverse Probability of Treatment Weights (IPTWs)
Chesnaye, Stel (50) provides an introduction to adjusting for confounding using IPTWs, with ‘best practice’ recommendations by Austin and Stuart (51). The
essence of IPTW is to balance the differences in prognostic and/or confounding characteristics between comparison groups by reweighting the outcome
variable of these individuals by the inverse probability of the treatment actually assigned, i.e. the propensity-score (40). Propensity-scores can be estimated
using logistic regression with treatment assignment as the dependent variable alongside other covariates that are prognostically important (related to
outcomes) or confounders (related to treatment and outcomes) (51). So-called ‘unstabilised’ and ‘stabilised’ weights use the propensity-score as the
denominator; however, stabilised weights use the marginal probability of being in the treatment actually assigned as the numerator (i.e. logistic regression
with treatment allocation as the only covariate) compared to a numerator of ‘1’ for unstabilised weights – see Smith, Mansournia (40) for example software
code. Unstabilised weights tend to have larger values than stabilised weights, forcing the variance to increase and exacerbate the uncertainty of the ATE
estimation; as such, stabilised weights are used more in practice (40)

In cross-sectional data, regression adjustment, propensity-score-matching, or IPTW may yield very similar results – for longitudinal data though the advantage
lies with IPTW: regression adjustment is not possible if time-varying treatments and time-varying confounders are present (see Appendix S1) (52). Our IPTWs
included baseline predicted utility score (e.g. predicted EQ-5D-5L cross-walked utility) and demographic variables (age, sex, ethnicity, Index of Multiple
Deprivation [IMD] decile) as independent variables – no time-updated covariates were included due to data and data structure limitations. Balance between
groups due to using IPTWs was checked using weighted standardised differences to compare means of baseline covariates and visually using graphical
methods (e.g. to compare the propensity-score distribution), presented in Appendix S7 (51).

3.4. Stabilised Inverse Probability of Censoring Weights (IPCWs)
Censoring can be a missing data problem as the outcome isn't fully observed, and if censoring is informative (i.e. related to outcomes) it causes selection bias
(8, 15). Informative censoring can be addressed using g-methods, such as inverse probability of censoring weights (IPCW) which are similar to IPTWs with
similar assumptions, although for IPCWs we weight by the inverse probability of being observed (rather than censored) – both IPTWs and IPCWs are described
(the latter as ‘censoring weights’) by Fewell, Hernán (41).

TTad-services only collect PHQ-9 and GAD-7 data up to the point of discharge because this data is collected to mainly inform treatment, therefore data post-
discharge is not considered relevant nor necessary. However, for QALY estimation this leads to informative censoring as it is hypothesised that discharge is
directly related to PHQ-9 and GAD-7 scores which are used to predict health utilities which informs the quality-adjustment part of our QALYs. IPCWs were only
considered relevant for utilities/QALYs as costs post-discharge were considered zero costs (not censored) as part of the TTad-service-only costing perspective.
Calculating stabilised IPCWs uses similar methods and the same covariates as our IPTWs, but for the IPCWs we use a ‘observed/censored’ rather than
‘treatment (allocation)’ binary variable used for the IPTWs. Additionally, for the IPCWs we used a restricted cubic spline to account for time (i.e. weeks since
baseline) with 4 degrees of freedom for the time-based knots over the analysis period (e.g. 16-weeks). Appendix S7 describes and presents our IPCW checks.

3.5. Inverse Probability Weights (IPWs) within doubly-robust Marginal Structural Models
(MSMs)
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Marginal structural models (MSMs), introduced by Robins (53), are a class of causal (regression) models whose parameters are estimated using IPWs
estimators (e.g. IPTWs) (54). A key bene�t of IPWs within MSMs is that they can deal with time-updated covariates (speci�ed for the IPW), speci�cally to
address time-varying confounders and for analysing time-varying treatments (52). In the causal inference literature, this model is known as a MSM because
causal models are often referred to as structural in the econometric and social science literature; at the same time, it is a model for the marginal distribution of
the counterfactual variable (e.g. the counterfactual utility values associated with each treatment allocation) conditional on baseline variables, rather than the
joint/conditional distribution of the counterfactual variables (15, 41). Although MSMs rely on the use of IPWs, the regression form we use can be described as
either a Generalised Estimating Equation (GEE) or Generalised Linear Model (GLM). Speci�cally, we use GLMs with a Normal-distribution and identity-link for
utilities, and Gamma-distribution with log-link for costs. When using longitudinal data, the use of GLMs can be referred to as GEEs, whereby GEE and GLM are
equivalent when using/assuming an independent correlation structure. Hereafter to align with the causal inference literature for descriptive purposes, we refer
to MSMs.

Both IPTWs and IPCWs are used within our MSMs by multiplying the IPWs together, for which we use the notation IPTCW (i.e. IPTCW = IPTW * IPCW). When
IPWs are combined with baseline covariate adjustment in the MSM, this approach is de�ned as ‘doubly-robust’ as only the weights or the regression need be
correctly speci�ed to obtain an unbiased effect estimator (18). We use the same baseline covariates for direct-MSM-adjustment as we used for our IPWs. G-
computation was subsequently also used as a parametric regression implementation of the g-formula, presented and described by Smith, Mansournia (40).
The g-formula allows us to obtain an unconfounded marginal estimation of the ATE, whereas g-computation (simply put) is an algorithm to practically
implement the g-formula (40). In essence for g-computation, we follow a two-step process: �rst �t the outcome MSM (i.e. for utility or costs) for the
intervention sample only then predict the outcome for the whole analytical sample, then do the same again but using the outcome MSM for the control-group
only. The ATE is the subsequent differences in MSM-predicted mean outcomes between intervention and control (40).

3.6. Calculating QALYs and total costs post-MSM-estimation
QALYs are typically calculated assuming a linear change between utilities overtime by using the trapezoid-based total area-under-the-curve (AUC) method as
described by Hunter, Baio (7); note, we also utilise this linear change assumption as part of a linear interpolation to address interval censored utility values to
inform the QALY calculation, as described in Appendix S3. Typically, observed utility values are used to calculate QALYs based on the trapezoid-AUC method,
with the QALY (not individual utility scores) then being the outcome of interest for the regression model; it is then common (even in RCTs) to condition on
baseline utility scores (7, 55). However, here utility scores are the outcome of interest with QALYs calculated post-estimation (i.e. post-regression-adjustment),
for which the key reason is that the IPWs can be based on time-updated covariates and therefore the IPWs differ at each time-point such that we need to focus
on the time-dependent utilities rather than cross-time QALYs, so QALYs can’t be calculated until post-estimation of the adjusted utility scores.

To calculate QALYs post-estimation of the adjusted utility values, we used a week-based-time dummy variable in our MSMs as an interaction term with
treatment allocation (other than when using g-computation when time was an independent covariate) such that utilities could be estimated on a per-week
basis. Relatedly, we used individually-clustered standard errors to account for intra-individual correlation due to the repeated-measure nature of our
longitudinal data. We subsequently used the rectangular-AUC method described by Gabrio, Plumpton (42) to calculate the QALYs from the week-based,
adjusted utility values. The main difference in the AUC calculation is that whereas Hunter, Baio (7) trapezoids-AUC calculation is based on the (traditionally
de�ned) sum of multiple trapezoid areas, the calculation can be re-written such that the rectangular-AUC is the sum of rectangular areas – see Gabrio,
Plumpton (42) (their Appendix C). An advantage of the rectangular-AUC approach is that is can be used to calculate QALYs post-estimation as weighted linear
combinations of the coe�cient estimates from the utility-focussed MSM, which can’t be done using the trapezoid-AUC as it requires the baseline utility score
which becomes null post-estimation. Similarly, total costs are calculated based on weighted linear combinations of the coe�cient estimates from the weekly-
cost focussed MSMs.

3.7. Con�dence intervals, bootstrapping, and cost-effectiveness acceptability curves
Bootstrapping with 1,000 iterations were used to calculate bias-corrected 95% con�dence intervals (95% bCIs) for weekly-costs, weekly-utilities, total costs, and
QALYs. When using IPWs with MSMs, both generation of the IPWs and the MSMs must be included in the bootstrap procedure to ensure that the appropriate
redrawn analytical samples are accounted for in the whole process, e.g. you need to generate IPTWs for each redrawn analytical sample independently as a
single IPTW-set will not achieve the necessary balance between comparison groups across all redrawn samples. For CEA, bootstrapping is common for
estimating bCIs as it also enables generation of cost-effectiveness planes (CE-planes) and cost-effectiveness acceptability curves (CEACs). However,
computationally time-consuming bootstrapped CIs are only used for speci�c analyses when needed (e.g. to generate CEACs and when using g-estimation as it
accounts for the two-step process), otherwise the delta-method is a less computationally time-consuming and suitable method for estimating CIs.

3.8. Result robustness: sensitivity analyses
Our sensitivity analyses included comparing the naïve regression (i.e. GLM with no IPWs or g-computation) and doubly-robust approach (i.e. MSMs with IPWs
and g-computation), and stepped-inclusion of different weights (i.e. IPTW, IPCW, then IPTCW) in the MSMs with/out g-computation. Alternative follow-ups
were also considered over 12-, 20, and 24-weeks post-baseline, and alternative predicted utility scores for the EQ-5D-5L Value Set for England (VSE) and
Recovering Quality of Life Utility Index (ReQoL-UI) UK value set (47).

Weighting-based sensitivity analyses can include restricting analysis to the ‘common support’ (i.e. restricted to the range of propensity-scores at which we
observe both counterfactual group subjects) and further trimming based on the propensity-score which can gain accuracy and precision in mean estimates by
excluding subjects with particularly large or small propensity-scores, but at the expense of e�ciency as we are removing eligible subjects from the analysis
(51): trimming is considered for the IPTWs at both the 5th and 10th centile.

4. Results
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Table 2 provides baseline descriptive statistics for the intervention ITT-group and PP-group, and geographical- and historical-controls. Overall, all four groups
were quite similar in terms of their means and/or distributional aspects related to age, sex, ethnicity, IMD decile, mental health scores, proportion with anxiety
and/or depression caseness, and predicted health-related quality-of-life (aka. utility) scores. The PP-group who received an element of the enhanced service
was 10.1% (N = 549) of the ITT-group (N = 5,441) and had slightly worse mean baseline mental health scores and slightly larger proportions of people with
anxiety and/or depression caseness compared to the ITT group.

4.1. ITT- or PP-intervention vs geographical-control
Table 3 shows that in the primary analysis for the ITT-intervention-group, the naïve regression-baseline-adjustment and doubly-robust approaches suggested
the enhanced service dominated treatment-as-usual, with average per-person (95%bCIs) cost-savings of £30.64 (£22.26 to £38.90) or £29.64 (£20.69 to
£37.99) and QALYs-gained of 0.00035 (-0.00075 to 0.00152) or 0.00052 (-0.00105 to 0.00277), respectively; probability of cost-effectiveness at £30,000 per
QALY was 99% or 95%, respectively. Although the estimated costs-savings were statistically signi�cantly different, the QALY gains were not.

Table 3 also shows that compared to the ITT-intervention-group, the naïve regression-baseline-adjustment and doubly-robust approaches suggests that for the
PP-sample who speci�cally received the enhanced elements (i.e. PP-intervention-group) that although similar cost-savings were estimated of £34.09 (£22.70
to £45.95) or £33.33 (£21.82 to £45.24), there was an estimated mean QALY loss of 0.00478 (0.00233 to 0.00729) or 0.00157 (-0.00322 to 0.00736),
respectively; probability of cost-effectiveness at £30,000 per QALY was 31% or 46%, respectively. Similar to the ITT analyses, the cost-savings were statistically
signi�cant. The key difference with the ITT analyses was the PP analyses suggested a mean QALY loss; however, although the naïve regression suggested this
was statistically signi�cant, this was not con�rmed by the doubly-robust analysis. Figures 1 and 2 presents the relevant CE-planes and CEACs, respectively.

4.2. ITT- or PP-intervention vs historical-control
The TTad-service data for the historical-control is based on an older coding system than the intervention-group: version 1.5 vs version-2, respectively. Although
we hypothesised it shouldn’t have an effect of QALY estimates/comparisons, there were some concerns with the appointments data/details which may impact
the comparative cost analyses (see Appendix S3 for further details). Taking this concern into consideration, Table 3 suggests that the cost-savings against the
historical-control were almost 2.5-times the size of that against the geographical-control; although the suggestion of cost-savings is con�rmatory of the
geographical-control comparison results, we opt not to focus too much on the cost-saving magnitude given our known concern with this historical-control
comparison.

In terms of QALY differences, comparisons against the historical-control generally suggested higher mean QALYs than estimated against geographical-control.
ITT-intervention comparisons suggest higher QALY gains which are now statistically signi�cant compared to what was estimated against the geographical-
control. PP-intervention comparisons suggest lower QALY losses which are non-statistically signi�cant, noting against the geographical-control only the naïve
regression PP analysis suggested statistically signi�cant QALY losses.

4.3. Other secondary and sensitivity analyses
Given the methodological focus of the article, Table 4 presents how the results from the TT-intervention (and PP-intervention for comparison) versus
geographical-control changes when introducing the different aspects which enhances our naïve regression-based analysis into the doubly-robust approach.

For example, compared to naïve regression alone, when IPTWs were introduced the mean QALY gain increased due to higher estimated QALYs in the ITT-
intervention and lower estimated QALYs in the geographical-control (Table 4, analysis-1 vs analysis-2). Before IPTWs were used, we had unacceptable
imbalance in our baseline utility score between ITT-intervention and geographical-control (0.643 vs 0.609, respectively; standardised difference: 0.251)
whereas after weighting we had acceptable balance (0.627 vs 0.627, respectively; standardised difference: -0.002). As higher baseline utility limits ability for
utility gain post-exposure, we hypothesise re-balancing baseline utility in particular may have led to the higher estimated QALY gain compared to naïve
regression alone which may not have as su�ciently addressed this imbalance (56).

Alternatively, when IPCWs were introduced the mean QALY gain dropped although there was higher estimated QALYs in both ITT-intervention and
geographical-control (Table 4, analysis-1 vs analysis-3). IPCWs address informative censoring, thus it makes logical sense that the QALYs would be higher for
both groups if there had been no censoring and overall suggests this censoring had a bigger impact on the estimated QALYs in the geographical-control
compared to ITT-intervention.

Although overall the change in QALYs (and costs) are minimal when stepping through the analyses, Table 4 provides an indication that the methods are
adjusting the estimates in a way that post-hoc make logical sense when considering what each method is attempting to achieve. Additionally, an appropriately
designed TT should limit the adjustments required through analytical methods, which may also explain why a minimal difference was observed when moving
from naïve regression to our doubly-robust approach; although, both structural and analytical methods are required to adjust for potential bias, but also
improve trust in the analysis conducted. A range of other secondary and sensitivity analyses are described and presented in Appendix S8.

5. Discussion
In the primary economic evaluation focussed on the ITT-intervention vs geographical-control, the doubly-robust and naïve results concurred that the cost-
effectiveness results were driven by the potential for the enhanced service to provide cost-savings, with statistically insigni�cant QALY gains. Our PP-
intervention analyses also suggested potential cost-savings, but suggested a mean QALY loss which was statistically signi�cant for the naïve regression but
insigni�cant for the doubly-robust approach. Although the historical-control has limitations particularly related to the comparative cost-analyses, the results
generally suggested the same thing as the geographical-control comparison: potential for the enhanced service to provide cost-savings, but uncertainty
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around the QALY gains/losses dependent on the analysis and comparison. Additionally, our DAG suggests potential unmeasured confounding in our analyses
which may have affected our results, partly due to the data available for analysis. Sensitivity analyses related to these results are described and presented in
Appendix S8.

5.1. Structural aspects to account for bias including data structuring and cleaning
The TT framework’s elements are perhaps commonly known for those used to working alongside RCTs, including those who conduct within-trial economic
evaluation; it is the emulated observational study based on RWD and developing DAGs which are perhaps not as familiar. DAGs are a useful tool for
identifying confounders for conditioning and being transparent around hypothesised causal pathways, which included a recognition that unmeasured
confounding is a potential issue for our analyses. Although the usefulness of DAGs to choose/specify confounders for conditioning has been questioned, the
transparency they provide around the covariates included (or not) in the causal analyses conducted is a valuable asset (48). The implications of unobserved
confounding could be explored using analytical methods such as e-values and quantitative bias analyses, which were not used for this study mainly due to
time-restrictions to learn and use another set of methods despite their usefulness (57, 58).

The time to clean and structure RWD is a considerable task which takes knowledge and expertise to accomplish (e.g. see Appendix S3), even more so when
using linked datasets (e.g. TTad-service linked with hospital data). The ADAPT study data and associated structure was not perfect, meaning that some
desirable analytical aspects could not be achieved, e.g. including time-updated covariates in the IPWs. As such there is potentially time-varying confounding
that has not been accounted for in the analysis, mainly due to the data not being available/structured in a way to enable these analyses. There was no funded
time to request further data and allow additional data cleaning and structuring which could have resolved/reduced this issue; however, our results are still
informative for decision-makers, while recognising such limitations (Section 5.4).

5.2. Combining within-trial economic evaluation and causal inference analytical methods
For those familiar with conducting within-trial CEAs, it is perhaps g-methods (e.g. IPWs and g-computation) which are unfamiliar, as regression-based
analyses and bootstrapping are common practice (6, 7, 20, 38). Baseline adjustment for covariates is still common for RCTs, because if a covariate is
prognostic (i.e. related to outcomes) accounting for its effect will improve power to detect a treatment effect; in fact, IPTWs still have a place in RCTs to
complement or replace direct regression-based adjustment (59). Although methods like using IPWs may represent a learning curve, their use are
recommended/required when accounting for baseline confounding in non-randomised studies, and necessary if accounting for time-varying confounding.
Although there are other g-methods (noting g-computation was also used in ADAPT), becoming familiar with IPWs and doubly-robust methods is a good-step
forward to better conducting causal economic evaluation in non-randomised studies (40).

5.3. Limitations with real-world data for causal inference and economic evaluation
Reliance on single or even linked RWD sources (e.g. linked EHRs with surveys) have limitations, as there is only a �nite amount of data which can be
collected/reported at any given point and then used for public bene�t (e.g. research) – it may never be enough for some analyses or commentators, but it may
be su�cient to guide decision-making if used appropriately and built on for future, better research.

Even when RWD are used to supplement primary data collection in RCTs, a decision has to be made about which data should be based on questionnaires (e.g.
person or proxy-reported) or EHRs, with some information needing perhaps to come from surveys/questionnaires (e.g. related to informal care) as such
information is never/rarely recorded in EHRs (60). RCTs and RWD studies embedded within the con�nes of any given single or linked datasets are restricted to
the data available, which requires making assumptions to utilise the data and/or having a restricted analysis perspective (e.g. restricted time horizon and
costing perspective) (61). For example, for the ADAPT economic evaluation our costing perspective is that of the TTad-service only, whereas data linkage with
other datasets (e.g. hospital data) could have expanded this perspective; however, it still wouldn’t be su�cient to cover a whole healthcare and social care
perspective desirable to NICE which would require extensive data linkage/cleaning/structuring, but such limited perspective analyses can still be informative.
Modelling-based CEAs (e.g. decision-analytic models) allows evidence synthesis of a range of estimates which can overcome some of the limitations of
within-study CEAs (e.g. account for broader outcome/cost implications over a longer-time horizons) (62, 63). However, causal within-study CEAs alongside
non-randomised RWD studies still have a place to statistically identify the potential causal effect of treatments/exposures on costs and health-outcomes,
rather than relying on mathematical models using existing estimates which may or may not have external validity/generalisability.

5.4. Limitations of causal analyses for non-randomised studies including ADAPT
Quantitative research constantly requires making (untestable) assumptions about the analyses we conduct and often requires making inferences within the
limitations of the study, data, and analyses conducted. For example, here we stated unmeasured and time-varying confounding was not adequately accounted
for and is a key limitation which may impact the inferences we can make from our estimates. Although, it is worth recognising that the vast majority of non-
randomised studies making causal claims are potentially subject to some sort of confounding bias. There is still value in such evidence to guide decision-
making, if su�cient structural and analytical processes have been used to account for such bias and limitations are transparent. It is also worth recognising
that attempting to undertake every recommended ‘ideal’ structural and analytical method, including all possible sensitivity analyses, is a substantial
undertaking for any researcher (as alluded to in this article given the substantial additional supplementary appendices available online). As such, pre-speci�ed
analysis plans should balance off the ideal analyses within time and budget restrictions, while making sure any time and budget is su�cient for an adequate
analysis if not the ideal; subsequent additional sensitivity analyses can always be run if time/funding permits (see Appendix S8), rather than overreaching to
do the ‘perfect’ analyses.

For the ADAPT study, it is justi�able to suggest there is evidence that the enhanced TTad-service has the potential to provide cost-savings (albeit the QALY
gains are small and particularly uncertain) compared to TAU-only from the perspective of TTad-services, within the con�nes and limitations of the analysis
conducted. As always, future research is required which can build from the strengths and limitations of this study.
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6. Conclusion
When treatment allocation is non-randomised, the TT framework alongside doubly-robust analyses should be used to reduce selection and confounding bias.
Although the consideration and use of such methods is more complex and time-consuming than the analytical stage of many (perhaps not all) traditionally
conducted within-RCT CEAs, the approach and methods described in this article can aid people conduct better and more appropriate causal economic
evaluation alongside non-randomised studies including those using RWD.
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Table 1
Target Trial protocol overview for the ADAPT study economic evaluation

Component Description

Eligibility

criteria

New referrals to TTad-services: no attendance at the TTad site in the previous 6-months since the new referral

Newly referred during: March 2021 to March 2022 (intervention & geographical-control) or March 2018 and March 2019 (historical-
control)

Baseline data: recorded PHQ-9 (depression severity) and GAD-7 (anxiety severity) score at baseline – necessary for ‘Condition caseness
at baseline’

Baseline condition caseness: classi�ed as having depression caseness (PHQ-9 ≥ 10) or anxiety caseness (i.e. GAD-7 ≥ 8) at index
assessment (i.e. baseline)

As-started treatment: service-users had attended at least one treatment session to be de�ned as ‘as-started’ treatment

Su�cient TTad data for follow-up period: available data time-horizon must be at least that of the analysis follow-up period (e.g. primary
analysis: 16-weeks)

Treatment

strategies

Intervention: Enhanced TTad-service (South-West, England), as TAU and/or ‘Healthy Living Healthy Minds’ programme and/or 1–1
Wellbeing Navigator sessions.

Geographical control: TAU TTad-service in South-East, England;

Historical control: TAU TTad-service in the intervention area but before the enhanced service had been implemented.

Assignment Non-randomised and unblinded: all intervention site referrals are offered the enhanced TTad-service, with uptake based on service-user
preference

Follow-up

period(s)

Baseline (time zero): index appointment to assess condition caseness and allocate people to the waiting-list before �rst treatment
session

Primary follow-up: starts at baseline and ends at 16-weeks after baseline, regardless of TAU received and service discharge

Secondary follow-up: starts at baseline and ends at 12-, 20-, or 24-weeks after baseline, regardless of TAU received and service discharge

Outcome(s) Primary: PHQ-9 and GAD-7 scores, sex, and age mapped to EQ-5D-5L UK crosswalk utility scores for QALY estimation

Secondary: PHQ-9 and GAD-7 scores, sex, and age mapped to EQ-5D-5L VSE OR ReQoL-UI utility scores for QALY estimation

Resource-use/costs: TTad-service EHR recorded resources-use with costs applied for, or in�ated to, the year 2020/21

Estimand(s)

(causal
contrasts)

Primary ITT: In new referrals to TTad-services, what is the between-group difference in mean TTad-service costs and QALYs accumulated
since index assessment (i.e. baseline), with QALYs based on EQ-5D-5L crosswalk utilities predicted from PHQ-9 and GAD-7 scores, age,
and sex, for those referred to the enhanced TTad-service compared to treatment-as-usual (TAU) for those within a geographical-control-
site up to 16-weeks after baseline, regardless of TAU received and service discharge?

Primary PP: same as ‘as-started’, but intervention group participants must have had at least one enhanced TTad-service treatment
session

Analysis plan Overall: pre-speci�ed SHEAP with any deviations to be reported at publication stage; below are highlighted examples.

Selection bias: a Target Trial approach is used to aid reduce/avoid selection bias among other biases in the analysis.

Confounding bias: IPTWs used within MSMs alongside baseline confounder adjustment as a double robust approach, informed by
bespoke DAGs as a visual presentation of hypothesised causal relationship between treatment strategies and outcomes(s) and other
covariates to identify confounders for conditioning

Information bias: informative censoring is a known issue as PHQ-9 and GAD-7 data collection stops at the point of patient discharge
(administrative censoring); however, people discharged due to completing treatment or feeling well enough to be discharged were
hypothesised to have better mental health outcomes post-discharge than those who left the service early (e.g. due to service
dissatisfaction). As such, IPCWs are used alongside IPTWs in the MSMs to account for this informative censoring.

Sensitivity analyses: alternative utility scores, time-horizons, and weighting assumptions/speci�cations (e.g. for IPTWs) will be used to
assess result robustness

Acronyms &
abbreviations

ADAPT, Assessing a Distinct Improving Access to Psychological Therapies (researchregistry7322); EHR, electronic health record; GAD-7,
Generalized Anxiety Disorder-7 anxiety-scale; HRQoL, health-related quality-of-life; IAPT, Improving Access to Psychological Therapies;
IPCW, inverse probability of censoring weights; IPTW, inverse probability of treatment weights; ITT, intention-to-treat; MSM, marginal
structural model; PHQ-9, Patient Health Questionnaire-9 depression-scale; PP, per protocol; QALY, quality-adjusted life-year; ReQoL-UI,
Recovering Quality of Life Utility Index; SHEAP, statistical and health economic analysis plan; TAU, treatment-as-usual; TTad, NHS Talking
Therapies for anxiety and depression services; VSE, Value Set for England.
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Table 2
Baseline descriptive statistics of sample populations for the primary 16-week time-horizon analyses

  Intervention

ITT

Intervention

PP

Geographical

control

Historical

control

N 5,441 549 2,149 4,001

Socio-demographics        

Age, mean (SD, range) 35 (13.4, 16 to 92) 39 (14.1, 17 to 89) 39 (15.6, 15 to 107) 37 (14.0, 16 to 93)

Sex, Female %N 69.7% 67.9% 69.6% 63.9%

Ethnicity, %N        

- White 90.4% 85.8% 90.1% 90.5%

- Mixed 3.3% 3.8% 2.4% 3.1%

- Asian/Asian British 2.7% 4.4% 3.0% 3.1%

- Black/Black British 2.3% 4.2% 3.7% 2.9%

- Other 1.2% 1.8% 0.8% 0.9%

IMD decilea, mean (SD, range) 5.5 (1.9, 2.4 to 9.3) 5.3 (1.9, 2.4 to 9.3) 5.6 (2.3, 2.3 to 9.3) 5.1 (1.8, 2.5 to 9.1)

Mental health scores        

PHQ-9, mean (SD, range) 14.4 (5.2, 0 to 27) 16.6 (5.1, 1 to 27) 15.7 (5.5, 0 to 27) 15.8 (5.4, 5.4, 0 to 27)

GAD-7, mean (SD, range) 13.4 (3.5, 0 to 21) 14.1 (4.7, 0 to 21) 14.1 (4.4, 0 to 21) 13.9 (4.4, 0 to 21)

Depression caseness (PHQ-9 ≥ 10), %N 83.7% 91.6% 86.7% 87.3%

Anxiety caseness (GAD-7 ≥ 8), %N 89.9% 91.7% 92.8% 92.1%

Depression & anxiety caseness, %N 73.6% 82.5% 79.5% 79.4%

Predicted health-related quality-of-life        

Predicted EQ-5D-5L crosswalk, mean (SD,
range)

0.634 (0.093, 0.359 to
0.828)

0.596 (0.105, 0.359 to
0.821)

0.609 (0.104, 0.359 to
0.809)

0.609 (0.104, 0.359 to
0.840)

Predicted EQ-5D-5L VSE, mean (SD,
range)

0.712 (0.077, 0.472 to
0.874)

0.682 (0.088, 0.472 to
0.873)

0.691 (0.086, 0.471 to
0.865)

0.693 (0.086, 0.472 to
0.882)

Predicted ReQoL-UI, mean (SD, range) 0.757 (0.057, 0.605 to
0.898)

0.734 (0.059, 0.605 to
0.894)

0.743 (0.061, 0.605 to
0.890)

0.743 (0.061, 0.605 to
0.902)

Acronyms & abbreviations. ADAPT, Assessing a Distinct Improving Access to Psychological Therapies (researchregistry7322); EHR, electronic health record;
GAD-7, Generalized Anxiety Disorder-7 anxiety-scale; HRQoL, health-related quality-of-life; IAPT, Improving Access to Psychological Therapies; IMD, Index of
Multiple Deprivation; ITT, intention-to-treat; LSOAs, Lower Layer Super Output Areas; PHQ-9, Patient Health Questionnaire-9 depression-scale; PP, per protocol;
ReQoL-UI, Recovering Quality of Life Utility Index; SD, standard deviation; TTad, NHS Talking Therapies for anxiety and depression services; VSE, Value Set for
England.

a IMD decile description: LSOAs in decile 1 fall within the most deprived 10% of LSOAs nationally and LSOAs in decile 10 fall within the least deprived 10% of
LSOAs nationally
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Table 3
Cost-effectiveness results for ITT and PP-intervention Vs control over 16-weeks with bootstrapped bias-corrected con�dence intervals

Comparison Methoda QALYs (ATE) Costs, £ (ATE) ICERb Prob. CE < λ per QALYc

    Mean bSEM BC 95% bCIs Mean bSEM BC 95% bCIs   λ =
£0

λ =
£20k

λ =
£30k

Intervention Vs Geographical control (16-weeks)

ITT (N = 
5,441) Vs.

Naïve
regression

0.00035 0.00058 -0.00075 0.00152 -
£30.64

£4.21 -
£38.90

-
£22.26

Dominates 100% 100% 99.3%

Geog (N = 
2,149)

Doubly
robust

0.00052 0.00102 -0.00105 0.00277 -
£29.64

£4.26 -
£37.99

-
£20.69

Dominates 100% 98.1% 95.0%

PP (N = 
549) Vs.

Naïve
regression

-0.00478 0.00130 -0.00729 -0.00233 -
£34.09

£5.80 -
£45.95

-
£22.70

< Q & < £ 100% 49.2% 31.3%

Geog (N = 
2,149)

Doubly
robust

-0.00157 0.00261 -0.00736 0.00322 -
£33.33

£5.84 -
£45.24

-
£21.82

< Q & < £ 100% 57.8% 46.2%

Intervention Vs Historical control (16-weeks)

ITT (N = 
5,441) Vs.

Naïve
regression

0.00364 0.00053 0.00261 0.00471 -
£84.54

£4.10 -
£92.78

-
£76.61

Dominates 100% 100% 100%

Hist (N = 
4,001)

Doubly
robust

0.00153 0.00069 0.00025 0.00298 -
£84.86

£4.05 -
£92.52

-
£76.50

Dominates 100% 100% 100%

PP (N = 
549) Vs.

Naïve
regression

0.00008 0.00134 -0.00278 0.00262 -
£85.50

£5.80 -
£97.60

-
£75.07

Dominates 100% 99.9% 95.9%

Hist (N = 
4,001)

Doubly
robust

-0.00103 0.00170 -0.00535 0.00167 -
£88.15

£5.79 -
£99.83

-
£77.06

< Q & < £ 100% 96.9% 89.4%

Acronyms, short-hand text, and symbols. ATE, average treatment effect; BC 95% bCIs, bias-corrected 95% bootstrapped con�dence intervals; ICER, incremental
cost-effectiveness ratio; ITT, intention-to-treat; PP, per-protocol; QALYs / Q, quality-adjusted life-years; bSEM, bootstrapped standard error of the mean; w/, with;
£, cost in Great British Pounds (2020/21); λ, cost-effectiveness threshold per QALY.

a Naïve regression involved using a generalised linear model (GLM) with baseline covariate adjustment only. The doubly robust method used censoring-related
and treatment-related inverse probability weights within marginal structural models (MSM) followed by g-computation. The family and link functions were the
same for GLMs and MSMs: utility (for QALYs), Normal-distribution with identity-link; costs, Gamma-distribution with log-link.

b A numerical ICER is only presented if the intervention produces higher mean incremental QALYs (> Q) and costs (>£) than control. If > Q & <£, then intervention
dominates control. If < Q & >£, the intervention is dominated by control. If < Q & <£, then the intervention produces less QALYs but is cost-saving, thus this is
stated rather than presenting a numerical ICER.

c Cost-effectiveness thresholds (λ) are set at £20,000 (£20k) and £30,000 (£30k) as the NICE approval norms; when λ=£0, this represents the probability of
cost-savings given QALYs have no designated £ value.
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Table 4
Cost-effectiveness results for ITT or PP intervention vs geographical control over 16-weeks – sensitivity analyses using different met

No. Methoda Outcome Mean SEM 95% CIs Mean SEM 95% CIs Mean SEM 95% C

ITT     Intervention (ITT), N = 5,441 Geographical-control, N = 2,149 ATE

1 Naïve
regression

QALYs 0.20532 0.00029 0.20475 0.20589 0.20498 0.00049 0.20402 0.20593 0.00035 0.00058 -0.000

  Naïve
regression

Costs (£) £173.85 £1.79 £170.35 £177.36 £204.49 £3.68 £197.29 £211.70 -£30.64 £4.10 -£38.6

2 MSM w/
sIPTW

QALYs 0.20555 0.00030 0.20497 0.20613 0.20488 0.00047 0.20395 0.20580 0.00067 0.00056 -0.000

  MSM w/
sIPTW

Costs (£) £173.78 £1.79 £170.28 £177.28 £203.42 £3.78 £196.01 £210.84 -£29.64 £4.17 -£37.8

3 MSM w/
sIPCW

QALYs 0.20706 0.00028 0.20651 0.20761 0.20685 0.00047 0.20593 0.20778 0.00020 0.00056 -0.000

  No. 2 Costs (£) £173.78 £1.79 £170.28 £177.28 £203.42 £3.78 £196.01 £210.84 -£29.64 £4.17 -£37.8

4 MSM w/
sIPTCW

QALYs 0.20723 0.00028 0.20668 0.20779 0.20676 0.00048 0.20582 0.20769 0.00048 0.00056 -0.000

  No. 2 Costs (£) £173.78 £1.79 £170.28 £177.28 £203.42 £3.78 £196.01 £210.84 -£29.64 £4.17 -£37.8

5 No. 4 & g-
compc

QALYs 0.20519 N/A N/A N/A 0.20467 N/A N/A N/A 0.00052 N/A N/A

  No. 2 & g-
compc

Costs (£) £175.13 N/A N/A N/A £204.77 N/A N/A N/A -£29.64 N/A N/A

PP     Intervention (PP), N = 549 Geographical-control, N = 2,149 ATE

6 Naïve
regression

QALYs 0.19803 0.00102 0.19604 0.20003 0.19980 0.00049 0.19883 0.20076 -0.00176 0.00113 -0.003

  Naïve
regression

Costs (£) £171.52 £4.22 £163.25 £179.79 £205.62 £3.64 £198.49 £212.74 -£34.09 £5.56 -£45.0

7 MSM w/
sIPTW

QALYs 0.19782 0.00101 0.19584 0.19979 0.19982 0.00049 0.19885 0.20079 -0.00200 0.00112 -0.004

  MSM w/
sIPTW

Costs (£) £172.49 £4.23 £164.20 £180.79 £205.94 £3.64 £198.80 £213.09 -£33.45 £5.54 -£44.3

8 MSM w/
sIPCW

QALYs 0.20304 0.00107 0.20094 0.20514 0.20425 0.00057 0.20314 0.20537 -0.00122 0.00124 -0.003

  No. 2 Costs (£) £172.49 £4.23 £164.20 £180.79 £205.94 £3.64 £198.80 £213.09 -£33.45 £5.54 -£44.3

9 MSM
w/sIPTCW

QALYs 0.20267 0.00108 0.20056 0.20479 0.20428 0.00058 0.20315 0.20541 -0.00161 0.00121 -0.003

  No. 2 Costs (£) £172.49 £4.23 £164.20 £180.79 £205.94 £3.64 £198.80 £213.09 -£33.45 £5.54 -£44.3

10 No. 4 & g-
compc

QALYs 0.19800 N/A N/A N/A 0.19958 N/A N/A N/A -0.00157 N/A N/A

  No. 2 & g-
compc

Costs (£) £172.23 N/A N/A N/A £205.56 N/A N/A N/A -£33.33 N/A N/A

Acronyms, short-hand text, and symbols. ATE, average treatment effect; 95% CIs, con�dence intervals; g-comp, g-computation; ICER, incremental cost-
effectiveness ratio; IPCW, inverse probability of censoring weight; IPTW, inverse probability of treatment weight; IPTCW, inverse probability of treatment and
censoring weight (i.e. IPTW*IPCW); ITT, intention-to-treat; MSM, marginal structural model; No., number; PP, per-protocol; QALYs / Q, quality-adjusted life-years;
SEM, standard error of the mean; w/, with; £, cost in Great British Pounds (2020/21)

a Naïve regression involved using a generalised linear model (GLM) with baseline covariate adjustment only. The family and link functions were the same for
GLMs and MSMs: utility (for QALYs), Normal-distribution with identity-link; costs, Gamma-distribution with log-link.

b A numerical ICER is only presented if the intervention produces higher mean incremental QALYs (> Q) and costs (>£) than control. If > Q & <£, then intervention
dominates control. If < Q & >£, the intervention is dominated by control. If < Q & <£, then the intervention produces less QALYs but is cost-saving, thus this is
stated rather than presenting a numerical ICER.

c Due to the two-step process associated with g-computation, distributional statistics are not produced and therefore not presented.

Appendix
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The Appendix is not available with this version

Figures

Figure 1

Cost-effectiveness planes up to 16-weeks – ITT or PP Vs Geographical control, using naïve regression or doubly-robust approach
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Figure 2

Cost-effectiveness acceptability curves up to 16-weeks – ITT or PP Vs Geographical control, using naïve regression or doubly-robust approach


