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Abstract 

The past literature on the structure of railway costs has emphasised that estimates of economies 

of density should be derived from fixed effects estimation (within-variation); see e.g. Caves et. 

al. (1985). This paper proposes instead that exploitation of between-variation is required to 

estimate economies of density in railway datasets because of the need to capture the step-

function impact of traffic on preventative maintenance regimes. Our empirical case is based on 

a panel dataset of 1149 track sections (2013–2018) for the French rail network. The work is 

important in the policy context in terms of setting rail track access charges in line with marginal 

cost principles and also meeting EU legislative requirements; and has implications for the wider 

rail cost function estimation literature.  

Keywords: economies of density; preventative maintenance; rail infrastructure; marginal cost; 

fixed effects; between effects 
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1.0 Introduction 

There exists a long and established literature studying the cost structure of vertically-integrated 

railways, inter alia to produce estimates of economies of scale and density, comparative 

efficiency analysis, and assessment of the impact of rail reforms internationally (especially with 

respect to Europe and the US; see e.g. Caves et al., 1985; Gathon and Perelman, 1992, Sanchez 

and Villarroya, 2000; Mizutani and Uranishi, 2013; Cantos et. al., 2010; Smith et. al., 2018; 

Bougna and Crozet, 2016; Fitzova, 2020). European rail reforms, starting in the mid-1990s saw 

vertical separation of infrastructure from operations (of various forms), combined with 

competition on the common infrastructure, thus creating the need for the setting of a price for 

access to the rail infrastructure (or track access charge). EU legislation requires track access 

charges to be based on marginal cost principles, with the short run marginal wear and tear cost 

of vehicles running on the network (referred to in the legislation as “direct costs”) forming the 

starting point (Single European Railway Area Directive (2012/34/EU)). 

This requirement has prompted increased academic interest in the cost structure of 

railway infrastructure, focusing in particular on using cost function estimation to estimate 

economies of density (the reciprocal of the elasticity of rail infrastructure costs with respect to 

traffic) in order to obtain an estimate short run marginal cost. In a seminal paper by Johansson 

and Nilsson (2004), estimates of marginal maintenance costs for the Swedish and Finnish 

railway networks were produced using econometric techniques. This work has been followed 

by a number of studies, such as Wheat and Smith (2008), Andersson (2008), Gaudry and Quinet 

(2009), Link (2009), Wheat et. al. (2019), Marti et al. (2009), Odolinski and Nilsson (2017), 

adding multiple case studies, methodological developments and generalisation of results. 

Further, SNCF Réseau and several other infrastructure managers in Europe have used such 



3 

 

 

econometric cost function studies to set track access charges (see. e.g. Walker et. al., 2020)1. 

Whilst the econometric research in this area has focused on the EU, there exists a broader 

literature on rail competition and the importance of non-discriminatory access to (and pricing 

of) rail infrastructure in a broader range of countries, including the US, China and Russia (see 

e.g. Pittman, 2004 and 2010; Kang et. al., 2021). 

It is important to note that the charging principles of the European Commission focus 

on short-run marginal cost – that is, the incremental cost of running an extra train service on a 

fixed network. Likewise, in the general rail cost function literature, the concept of economies 

of density is defined as the reciprocal of the elasticity of costs with respect to traffic levels, 

holding the network fixed (see e.g. Caves et. al., 1985). A key principle in the academic 

literature – as set out in the seminal paper of Caves et. al. (1985) – is that economies of density 

(a short-run concept) should be estimated using the fixed effects estimator (utilising within-

variation in the data). This point reflects the fact that traffic may be correlated with unobserved 

network characteristics that vary across the cross-section, such that utilisation of between-

variation in the data runs the risk of introducing bias, since the network does not remain fixed 

in the cross-sectional dimension (for example, if higher traffic levels require track 

enhancements to accommodate demand and minimize costs in the long run). 

In this paper we challenge the notion that between-variation in datasets should be 

ignored when computing economies of density and in turn short-run marginal costs for rail 

infrastructure usage – and indeed to argue that between-variation is necessary for estimation of 

these quantities. The reason is that rail infrastructure costs comprise both preventative 

(inspections, grinding, tamping etc.) and corrective (or reactive) maintenance elements and both 

aspects should form part of short-run marginal cost. Rail infrastructure managers typically 

determine their preventative maintenance strategies based on assigning parts of the network a 

                                                             
1 The legislation permits use of econometric, engineering or accounting methods to determine marginal costs 

(European Commission (2012): Directive 2012/34/EC Recast of the First Railway Package. 
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different “line category” based on whether the traffic level falls within certain traffic bands or 

ranges. Observed rail infrastructure maintenance costs can therefore be seen to comprise a mix 

between a continuous function (corrective maintenance) and a step function (preventative 

maintenance) as track sections move from one line category to another. 

However, in panel datasets, changes in line category would rarely be observed for a 

given track section over time (within-variation) since preventative maintenance activities are 

not typically adjusted with respect to small (and perhaps temporary) changes in traffic. 

Therefore fixed effect estimates can only pick up changes in corrective maintenance as traffic 

increases; and in turn use of the between-variation in the data is needed in order to capture the 

preventative maintenance element of marginal cost, because it is only through the between 

variation that we observe changes in preventative maintenance regimes. 

Thus we argue that in fact the danger in rail infrastructure cost applications is that fixed 

effects estimation under-estimates the traffic elasticity (over-states economies of density) and 

short-run marginal cost because it ignores the cross-sectional variation in preventative 

maintenance regimes. There is thus a motivation for the use of between-variation in rail 

infrastructure cost applications – this argument running counter to the argument of the key 

Caves et. al. (1985) study, which emphasised the importance of fixed effects for obtaining 

measures of economies of density in railways. 

Indeed, our argument that the between estimator should be preferred is analogous to 

the argument put forward by Caves et. al. (1985) for preferring the between estimator for 

estimating economies of scale in rail datasets. As Caves et. al. (1985) argued, when network 

size changes across the cross-section (between variation), there will likewise be associated 

changes in unobserved network effects that are correlated with network size. In this sense then, 

in the Caves et. al. (1985) work, the between estimator is a “biased” estimate of the pure cost 

effect of scale because it includes the cost effects of the associated unobserved network effects. 
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However, its use allows the variation in unobserved network characteristics to be correctly 

conflated with the pure network size effect. Thus the “biased” estimator is good because it gives 

the most accurate assessment of what really happens to costs when network size changes in 

practice. 

In our case we have controlled for network characteristics through the inclusion of an 

extensive set of control factors, so such bias is not of concern. However, when traffic increases 

across the cross-section (between variation) we argue that there are associated, and in most 

datasets, unobserved effects relating to the cost impact of changes in preventative maintenance 

regimes, and that these are correlated with traffic. Thus the traffic elasticity is “biased”, in the 

same sense as highlighted by Caves et. al. (1985) in respect of the estimation of economies of 

scale, but is useful because it allows the unobserved preventative maintenance effects to be 

correctly conflated with the estimate of a pure traffic effect (where the latter captures only 

reactive maintenance). So as with the Caves et. al. (1985) scale estimator, a “biased” estimator 

for economies of density in rail infrastructure maintenance turns out to be good, as we do not 

seek to estimate a pure traffic effect, but rather one that also captures the additional impact from 

changes in preventative maintenance across the cross-section. 

We make use of a panel dataset from the French railway network during the years 

2013–2018. Importantly, given our utilisation of the between-variation in the data, our dataset 

comprises an extensive set of control variables reflecting differences in the capability / 

characteristics of the different parts of the network, thus guarding against the danger of omitted 

variable bias in the traditional sense (that is avoiding capturing changes in costs related to 

changes in the fixed infrastructure). This means we can be confident that our estimates of 

economies of density and marginal cost are obtained whilst holding the infrastructure fixed and 

thus reflect short-run and not long-run estimates; whilst nevertheless capturing the steps in 

preventative maintenance that are a legitimate part of short-run cost effect of traffic that we 
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want to estimate. We compare the estimates of economies of density and marginal costs using 

fixed effects, the between estimator, and random effects; also including variables to capture 

changes in preventative maintenance regimes to demonstrate their impact and support the 

argument in the paper. 

In the remainder of the paper, Section 2 presents a brief literature review to position 

our work. Section 3 explains the important UIC line category variables used in the model and 

how they relate to traffic and preventative maintenance regimes, with the rest of the dataset 

presented in section 4. The translog cost function method is set out in section 5, while the results 

are shown in Section 6. Section 7 concludes. 

2.0 Literature review 

The estimation of the marginal costs of rail infrastructure has received a great deal of interest 

in the literature. This interest stems from the European Commission’s policy of growing 

competition in rail, which requires some form of vertical separation of infrastructure from 

operations, in turn prompting the question of how to set track access charges. Following the 

seminal paper of rail maintenance marginal costs in Sweden and Finland (Johansson and 

Nilsson, 2004) a substantial academic literature has followed. Indeed, this academic work 

played a role in shaping EU legislation, which requires that access charges are based on direct 

costs (which can be interpreted as short-run marginal costs; Nash, 2005), and that econometric 

cost function or engineering methods may be used to estimate direct costs2. In addition to the 

references noted in the introduction, for a recent summary of this literature see Smith and Nash 

(2018). The rail infrastructure cost literature forms part of the wider literature on rail cost 

function analysis and cost structure and similar methods have been adopted across both 

literatures (see e.g. Caves et al., 1985; Wilson and Bitzan, 2003; Gathon and Perelman, 1992, 

                                                             
2 European Commission (2012): Directive 2012/34/EC Recast of the First Railway Package. 
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Sanchez and Villarroya, 2000; Mizutani and Uranishi, 2013; Cantos et. al., 2010; Smith et. al., 

2018; Bougna and Crozet, 2016; Fitzova, 2020). 

Here we focus on the key issues relevant to this paper. The main methodological tool 

used to derive estimates of the elasticity of cost with respect to traffic / economies of density 

and in turn marginal cost has been either the translog cost function (also with testing of the 

Cobb-Douglas model; see section 5) or in some cases Box-Cox / Box-Tidwell models. Here it 

should be noted that the translog cost function is also the workhorse of the cost modelling 

literature more generally, not just in rail or transport (see e.g. Coelli at. al., 2005). The rail 

infrastructure cost literature has typically utilised high disaggregated track section data (see 

section 4), which means that the number of observations is plentiful, thus supporting the use of 

flexible functional forms. 

Given the focus on economies of density and short-run marginal cost, a key issue is to 

obtain an estimate of the impact of additional traffic on rail infrastructure maintenance costs, 

holding the network fixed (in terms of its capability / characteristics). In a key study in the early, 

general rail cost function literature, Caves et. al. (1985) argued that in order to obtain unbiased 

estimates of economies of density, fixed effects estimation should be used. This point reflects 

the fact that traffic may be correlated with unobserved network characteristics that vary across 

the cross-section. 

However, in the rail infrastructure cost literature, fixed effects models do not always 

produce sensible results and hence random effects is often used (see e.g. Wheat et. al., 2009; 

Walker et. al., 2020). This may occur, for example, if there is limited within-variation in traffic 

and other variables (e.g. linespeed capability) in the model. The same applies to wider vertically 

integrated railway systems applications where random effects (or pooled panel data methods3) 

are widely used (see e.g. Sanchez and Villarroya, 2000; Mizutani and Uranishi, 2013). More 

                                                             
3 Pooled panel data methods such as pooled OLS makes the same assumption as random effects – namely that 

any unobserved firm effects are uncorrelated with the regressors. 
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widely, whilst use of fixed effects can ensure unbiased estimates when working with panel data, 

the general econometrics literature acknowledges that the choice of fixed versus random effects 

is not just a simple choice involving the computation of a Hausman statistic, but also reflects a 

trade-off between bias and precision (see e.g. Taylor, 1980). For this reason random effects may 

sometimes be preferred, even when there is a concern over potential bias. 

The widespread use of random effects models in the rail infrastructure cost literature 

is mitigated by the extensive list of control variables available for such studies to guard against 

omitted variable bias (such as maximum linespeed; maximum axle load; rail weight; proportion 

of electrification; see e.g. Link, 2008). Nevertheless, there remains concern that reliance on 

random effects (and therefore the utilisation of between-variation as well as within-variation) 

may be biasing estimates of the traffic elasticity and marginal cost upwards, given that not all 

heterogeneity across track sections can be controlled for. This is particularly the case given that 

fixed effects estimation tends to produce either statistically insignificant results or much lower 

traffic elasticities (see for example, Wheat et. al., 2009; Wheat and Smith, 2008; Odolinski and 

Smith, 2016). 

The above discussion then forms the entry point for our work which argues that whilst 

the choice of fixed or random effects is a complex balancing act between the dangers of omitted 

variable bias on the one hand and imprecision on the other (as with any panel data application), 

a strong argument in favour of utilising between-variation is the fact that it is able to capture 

variations in preventative maintenance regimes which fixed effects cannot. Rail infrastructure 

managers typically determine their preventative maintenance strategies based on assigning 

different parts of the network a different “line category”; and whilst these vary across the cross-

section, changes in line category would rarely be observed for a given track section over time. 

As described in more detail in section 3, variations in preventative maintenance 

strategies across the line categories can be seen as a valid part of short-run marginal cost, since 
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the regime responds to changes in the level of traffic and not to any changes to the fixed 

infrastructure. Thus we argue that in fact the danger in rail infrastructure cost applications is 

that fixed effects estimation under-estimates the traffic elasticity (over-states economies of 

density) and short-run marginal cost because it is ignores the cross-sectional variation in 

preventative maintenance regimes. This point therefore provides a motivation for the use of 

between-variation in rail infrastructure cost applications – and runs counter to the argument of 

the key Caves et. al. (1985) study, which emphasised the importance of fixed effects for 

obtaining measures of economies of density in railways - as the remainder of the paper 

demonstrates. As noted in the introduction, however, our argument is analogous to the argument 

used by Caves et. al. (1985) for the use of the between estimator to capture estimates of 

economies of scale, but here applied to economies of density estimation. 

3.0 Preventative maintenance and UIC4 categories 

Asset management typically involves preventative maintenance that detects and fixes defects 

before corrective maintenance is required. Examples of preventative maintenance activities on 

rail infrastructure are inspections, grinding, tamping, and minor replacements (major 

replacements are often termed renewals). The timing and volume of these activities are based 

on some type of prediction of the assets’ condition and the consequences of a failure. Traffic 

volume and vehicle speed are important factors since they increase the deterioration of the 

infrastructure, ceteris paribus. These will also imply more train delay minutes if an 

infrastructure failure occurs. 

These two predictors – volume and speed – are used in a UIC code developed to 

classify railway lines for the purpose of track maintenance (UIC, 2009), which are used by 

                                                             
4 UIC refers to the International Union of Railways (https://uic.org/). 
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SNCF Réseau. Specifically, this code defines a set of UIC categories based on a traffic measure 

(𝑇𝑓2) calculated as 

 𝑇𝑓2 = 𝑆(𝑇𝑣 + 𝐾𝑚 ∙ 𝑇𝑚 + 1.4 ∙ 𝑇𝑡)     (1) 

 

where 𝑇𝑣 is daily passenger tonnage, 𝑇𝑚 is daily freight tonnage, and 𝑇𝑡 is daily light engine 

tonnage (locomotive without wagons). 𝑆 is a coefficient for line quality and is 1 for lines without 

passenger trains, 1.1 for lines with passenger trains running at speeds lower than 120 km/h, 1.2 

for speeds at 120 to 140 km/h, and 1.25 for speeds above 140 km/h (see for example Duong et 

al., 2015). 𝐾𝑚 is a coefficient for freight tonnage and is 1.15 if the axle load is lower than 20 

tons and 1.3 otherwise. The UIC categories are then classified with respect to the different levels 

of 𝑇𝑓2 as specified in Table 1 below. SNCF Réseau states that changes in UIC maintenance 

categories may not become effective unless tonnage variations are observed for three 

consecutive years5. 

Table 1. 𝑇𝑓2 levels for UIC categories 

UIC category Tf2 level 

1 Tf2 > 120 000 

2 120 000 ≥ Tf2 > 85 000 

3 85 000 ≥ Tf2 > 50 000 

4 50 000 ≥ Tf2 > 28 000 

5 28 000 ≥ Tf2 > 14 000 

6 14 000 ≥ Tf2 > 7 000 

7 7 000 ≥ Tf2 > 3 500 

8 3 500 ≥ Tf2 > 1 500 

9 1 500 ≥ Tf2 

Source: Duong et al. (2015) 

                                                             
5 Note that this delay does not make this a long-run concept – it is simply an (optimal or pragmatic) delay in re-

classification. The key point is that the infrastructure is held fixed – as noted by Nash (2005), rail renewals form 

part of short-run marginal cost even if the cost response (e.g. a bringing forward of renewal) may not occur until 

many years hence. 
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These categories are used by SNCF Réseau to guide the preventative maintenance regime. For 

example, following a study by Meier-Hirmer and Pouligny (2008), SNCF Réseau decided to 

perform preventative grinding cycles that prioritizes lines belonging to UIC categories 1–4 and 

then category 5 and 6 (NeTIRail, 2015). Specifically, the grinding cycles with respect to UIC 

categories are 2 years for UIC categories 1 and 2, while UIC categories 3 and 4 have a cycle of 

4 years and UIC categories 5 and 6 have a cycle of 6 years (INNOTRACK, 2009). Moreover, 

the inspection cycles also depend on the UIC categories (see Table 2). 

The search for a minimum maintenance cost should lead the infrastructure manager 

(IM) to adjust as closely as possible preventative maintenance interventions according to the 

different levels and types of traffic running on the network. As shown by equation (1) the 

definition of these groups put a higher weight on the tonnage levels with higher line speeds and 

higher axle loads6, both of which have an effect on deterioration. From a practical perspective 

the scale of expansion or reduction of preventative maintenance needs to be made in steps with 

respect to changes in traffic levels, hence the use of the traffic (𝑇𝑓2) bandings. The UIC 

categories can therefore be seen as a useful proxy for how traffic impacts on preventative 

maintenance costs. 

 

Table 2. Minimum inspection frequency for rail surface defects 

UIC category 
Minimum inspection frequency, months 

Ultra-sound inspection Walking inspection / visual inspection 

1 and 2 6 12 

3 9 12 

4 12 12 

5 30 12 

6 Up to 36 12 

7, 8 and 9 Up to 36 36 

Source: IN2SMART, 2017 

                                                             
6 The coefficient 𝐾𝑚 increases when the axle load increases on freight trains, and passenger traffic (which generally 

have lower axle loads) are given a lower weight in the calculations than freight trains. 
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Fig. 1. Assumed cost curves for preventative maintenance (PM) and corrective maintenance 

(CM).  

Source: own work 

 

The assumed relationships between traffic and maintenance costs are illustrated in Figure 1, 

where it is considered that corrective maintenance (CM) is approximately a continuous function 

when aggregated over a large sample, whilst preventative maintenance (PM) is a step function 

for the same level of aggregation. Here we consider that the preventative maintenance steps are 

only partly offset by lower corrective maintenance, generating steps in the total maintenance 

cost function (CM+PM). 

4.0 Data 

The French state-owned railway company and infrastructure manager SNCF Réseau has 

provided data for the French railway network, comprising information about track maintenance 

costs, traffic, infrastructure characteristics, line categories, and regional structure of the 
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network. The original dataset has been processed by SNCF Réseau and IMDM/ECOPLAN to 

resolve errors and data issues such as missing information (see IMDM/ECOPLAN, 2020). 

The dataset covers a rail network of around 26 000 km (route-km) and a total track 

length around 46 000 km, observed during years 2013 to 2018. The network in our dataset is 

divided into 1149 unique sections, which are the observation units for each variable in the 

dataset. We observe about 1080 track sections per year due to an unbalanced panel. In total, we 

have access to 6432 observations. Descriptive statistics of variables for costs, traffic, 

infrastructure characteristics/condition, track capability, and management, are presented in 

Table 3. 

The traffic information distinguishes between freight and passenger traffic, and the 

variables are either ton-km or ton density (ton-km per route-km). Freight and passenger traffic 

may have different impacts on track deterioration. For example, passenger traffic usually 

operates at different speeds – and with more braking and acceleration – than freight traffic and 

their running gear will typically have different characteristics that may imply different damage 

mechanisms for the infrastructure. 

To isolate the impact traffic has on maintenance costs, it is important to control for 

other cost drivers such as infrastructure characteristics and the condition of the assets. For 

example, the average age of the rail is a proxy for the condition of the tracks, where tracks with 

old rails typically require more (corrective) maintenance than track with recently renewed rails. 

The number of parallel tracks may capture the maintenance production environment with 

respect to available capacity, especially when controlling for track length and traffic. 

Specifically, this variable is an indication of line capacity, where a higher available capacity 

can allow more coherent track possessions and less maintenance during night-time (see for 

example Odolinski and Boysen, 2019). 
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Track capability is part of a long run cost concept and is thus important to control for 

when estimating short-run marginal cost (SRMC). The maximum speed allowed on the track 

sections is one capability variable and is closely connected to the LGV (high-speed) line dummy 

variable. Rail weight is also a capability variable since heavier rails (together with other 

associated characteristics of the substructure) can allow heavier trains/axle loads. 

 

Table 3. Descriptive statistics 2013–2018 (6432 obs.) 

Variable Mean Std. Dev. Min Max 

Cost and traffic     

Maintenance cost, track, 000 euro 670.8 1,179.5 0.054 14,589.5 

Freight ton-km, million 71.6 174.7 0 1,901.4 

Passenger ton-km, million 149.6 517.7 0 9,421.9 

Freight ton density (ton-km per route-km), million 3.2 5.3 0 34.2 

Passenger ton density (ton-km per route-km), million 7.6 19.8 0 317.1 

Infrastructure characteristics/condition     

Route length, km 24.01 26.02 0.37 268.17 

Track length, km 42.75 50.98 1.03 559.42 

Number of parallel tracks7 2.03 1.87 1.00 37.20 

Average rail age 33.38 19.78 1.04 137.00 

Switch density (switches and crossings per track-km) 0.84 1.04 0 9.30 

Average switch age 29.62 15.93 0 116.00 

Sleeper density (average number per track-km) 1,654.69 80.47 1,090.00 1,851.84 

Continuously welded rail, proportion 0.69 0.37 0 1 

Curved track, proportion 0.49 0.21 0 1 

Track circuits per track-km 2.64 2.49 0 21.46 

Capability     

Maximum speed, km/h 115.18 50.61 20.00 320.00 

Rail weight, kg/m 51.57 5.06 32.72 65.98 

LGV line, dummy 0.04 0.20 0 1 

Electrified route, proportion 0.65 0.47 0 1 

Management     

Région Alsace Lorraine Champagne-Ardenne, dummy 0.14 0.34 0 1 

                                                             
7 For the number of parallel tracks the vast majority of the data values lie between 1 and 4 but there are a small 

number of instances of higher numbers, reflecting complex infrastructure at very busy and large stations. As an 

added sensitive we tested imposing a maximum number of tracks of 4 and found that this had little effect on 

the results.  
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Région Aquitaine Poitou-Charentes, dummy 0.08 0.26 0 1 

Région Bourgogne Franche-Comté, dummy 0.07 0.26 0 1 

Région Bretagne Pays-de la-Loire, dummy 0.06 0.23 0 1 

Région Centre Limousin, dummy 0.07 0.26 0 1 

Région Haute et Basse Normandie, dummy 0.05 0.21 0 1 

Région Ile-de-France, dummy 0.16 0.37 0 1 

Région Languedoc-Roussillon, dummy 0.03 0.18 0 1 

Région Midi-Pyrénées, dummy 0.04 0.20 0 1 

Région Nord-Pas-de-Calais Picardie, dummy 0.15 0.35 0 1 

Région Provence-Alpes-Côte-d'Azur, dummy 0.04 0.20 0 1 

Région Rhône-Alpes Auvergne, dummy 0.12 0.32 0 1 

 

A set of management variables are available, comprising information about the different regions 

each track section belongs to. Further, a set of year dummy variables are included in the model 

estimations to control for year specific effects, such as overall changes in input prices or in 

budget constraints. However, in common with the literature in this area, input prices are 

typically excluded for within country (and within company) studies of this type because 

national pay scales and common procurement policies mean that most input prices can be 

considered constant across the organisation (further, there are no significant differences in staff 

qualifications and age across regions in France and equipment is rented for a price from the 

central functions within SNCF Réseau). 

The distribution of the network to UIC sections is shown in Table 4 below. Categories 

1 and 2 are combined due to only a small proportion of the network being allocated to UIC 

category 1. Most track sections belong to only one UIC category. In a small number of cases a 

section comprises sub-sections with different categories and in these cases we allocate the 

section to the UIC category which makes up the highest proportion of the section, which in 

most cases makes up the majority of the section length in any case (only one per cent of the 

observations have a maximum proportion in a single UIC category of less than 50%). A small 

share of the network has unknown UIC category classifications in the data – but these represent 
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very small parts of individual track sections, so the sections of which they are part are then 

allocated fully to the dominant UIC category. As discussed earlier, there is some, though only 

limited, re-allocation of sections between categories over the relatively short period of our 

dataset; see the within section standard deviations in Table 4 (this amounts to roughly 450km 

of track having changed UIC category over the course of our sample). 

All track sections are therefore allocated ultimately to one UIC category numbered 

from 2 to 9 (with category 1 and 2 combined as noted). It can be noted that the UIC variables 

are not highly correlated with the infrastructure variables – the highest correlation coefficient 

in our dataset is -0.52, which is between UIC 9 and proportion of continuously welded tracks; 

and variance inflation factors are low. 

 

Table 4. Track length UIC categories, kilometres 

 Year      
Within section  

std. dev., prop. of UIC 

Average share  

of track length  

2013–2018 
UIC 2013 2014 2015 2016 2017 2018 

1 and 2 1,245 1,245 1,210 1,246 1,116 1,116 0.014 2.6% 

3 8,106 8,117 8,019 8,117 8,018 7,811 0.024 17.5% 

4 9,831 9,846 9,854 9,860 9,869 9,818 0.025 21.5% 

5 6,555 6,555 6,555 6,571 6,693 6,582 0.021 14.4% 

6 6,316 6,321 6,331 6,355 6,289 6,310 0.033 13.8% 

7 3,512 3,545 3,577 3,539 3,512 3,412 0.029 7.7% 

8 5,647 5,628 5,519 5,644 5,496 5,279 0.022 12.1% 

9 4,962 4,858 4,676 4,555 4,476 3,904 0.023 10.0% 

Unknown 216 219 219 231 234 244 0.008 0.5% 

Total track 

length 
46,390 46,333 45,960 46,118 45,704 44,476   

 

5.0 Method 

We follow the rail infrastructure cost literature as set out in section 2 (starting with the work or 

Johansson and Nilsson, 2004) in specifying a cost function given by:  
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𝐶𝑖𝑡 = 𝑓(𝒒𝑖𝑡 , 𝒙𝑖𝑡 , 𝑼𝑰𝑪𝑖𝑡 , 𝒛𝑖𝑡)     (2) 

 

where 𝑖 = 1, 2, … , 𝑛 track sections observed over 𝑡 = years 2013 to 2018. 𝐶𝑖𝑡 is maintenance 

costs, 𝒒𝑖𝑡 is a vector of traffic variables (freight and passenger ton density), 𝒙𝑖𝑡 is a vector of 

variables for infrastructure capability and characteristics/condition, 𝑼𝑰𝑪𝑖𝑡  is a vector of 

variables indicating sections belonging to a certain UIC category – from category 2 to category 

9, where one dummy variable is dropped and thus used as the baseline. 𝒛𝑖𝑡 is vector of dummy 

variables for years, and regions. As noted in Section 3, in common with the literature in this 

area, input prices are typically excluded for within country (and within company) studies of this 

type because they are considered to be constant (see section 3 for further discussion of this 

point).  

We start with the translog specification as the functional form (see e.g. Coelli et. al., 

2005) and typically used in the rail infrastructure cost and wider cost function literature: 

 𝑙𝑛𝐶𝑖𝑡 = 𝛼 + ∑ 𝛽𝑘𝑙𝑛𝑞𝑘𝑖𝑡𝑚𝑘=1 + ∑ 𝛾𝑔𝑈𝐼𝐶𝑔𝑖𝑡𝐺−1𝑔=1 + ∑ 𝜗𝑟𝑥𝑟𝑖𝑡𝑛𝑟=1 + 12 ∑ ∑ 𝛽𝑘𝑙𝑙𝑛𝑞𝑘𝑖𝑡𝑙𝑛𝑞𝑙𝑖𝑡𝑚𝑙=1𝑚𝑘=1 +
12 ∑ ∑ 𝜗𝑟𝑠𝑙𝑛𝑥𝑟𝑖𝑡𝑙𝑛𝑥𝑠𝑖𝑡𝑛𝑠=1𝑛𝑟=1 + ∑ ∑ 𝛿𝑘𝑟𝑙𝑛𝑞𝑘𝑖𝑡𝑙𝑛𝑥𝑟𝑖𝑡𝑛𝑟=1𝑚𝑘=1 + ∑ 𝜃𝑑𝑧𝑑𝑖𝑡𝐷𝑑=1 + 𝑢𝑖 + 𝑣𝑖𝑡    (3) 

 

where 𝛼 is a scalar, 𝑢𝑖 is the effect of unobserved track section specific effects, and 𝑣𝑖𝑡 is the 

error term. 𝛽, 𝛾, 𝜗, 𝛿, and 𝜃 are the parameters we estimate, where 𝛽𝑘𝑙 = 𝜗𝑟𝑠 = 𝛿𝑘𝑟 = 0 is the 

Cobb-Douglas constraint that we test using an F-test. As noted earlier in the paper, in estimating 

equation (3) we are seeking to make two important comparisons:  

1. First whether fixed effects, which utilises just the within variation in the data produces 

substantially lower traffic elasticities (higher degree of economies of density) and lower 

marginal costs than models utilising the between variation (between estimator or 
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random effects). This is important because we argue that the between variation is 

important to capture changes in preventative maintenance that are mainly only observed 

through the between variation in the data. 

2. Second, whether we can show empirically that preventative maintenance effects, 

modelled through the UIC dummy variables, are statistically significant. This would 

provide evidence of the additional cost effect of increased traffic, across the cross-

section, beyond the pure traffic effect discussed earlier. 

6.0 Results 

Below we set out first our translog cost function estimation results (section 6.1), followed by 

the computation marginal costs for the different panel estimators (section 6.2). 

6.1 Translog cost function estimation results 

In Table 5, we present results from estimations using fixed effects (FE), between effects (BE), 

and random effects (RE); and for the latter two models we also estimate the models including 

the UIC dummy variables (BE_UIC and RE_UIC). As noted earlier in the paper, our focus here 

is firstly to compare fixed effects against the between and random effects estimators. This is 

important because we argue that the between variation is important to capture changes in 

preventative maintenance that are mainly only observed through the between variation in the 

data. Further, we want to understand whether we can identify the cost impact of moving 

between preventative maintenance regimes via the UIC dummy variables. 

Before turning to these core issues we first comment on the structure of the cost 

function model estimated. As noted in section 5 we start with the standard translog cost function 

that is commonly used in the rail and broader cost function estimation literature (see also section 

2). Owing to the large number of explanatory variables we focus the translog expansion on the 

core output variables, but found that the freight squared variable was not statistically significant 

and that the passenger-freight interaction term produced counter-intuitive results. A similar 
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finding was noted in the modelling work carried out by SNCF Réseau for the purpose of track 

access charges (and approved by the French regulatory body); see IMDM/ECOPLAN, 2020.  

Returning to the choice of panel estimator, we first carry out a cluster-robust test 

between the fixed effects (FE) and random effects (RE) estimators in columns 2 and 5 of Table 

5 by including group means of the time-varying variables when estimating the random effects 

models and test their joint significance with a Wald test (see e.g., Wooldridge, 2010, pp.290–

291). As is standard in this literature, simple interpretation of this statistical test indicates that 

these group mean variables are statistically significant, indicating a preference for fixed effects.  

However, as noted earlier, the rail infrastructure cost literature tends nevertheless to 

utilise random effects because of a lack of statistical significance on the key parameters of 

interest. In this case, we note that at the sample mean, the freight elasticity in the fixed effects 

model is close to zero and not statistically significant, which is hard to explain; whereas it is 

statistically significant in the BE and RE models. The general decision to utilise random effects 

in this literature also reflects the extensive list of control variables that tend to be included in 

the models (as is the case also in our models; see Table 5), which reduces the concern over 

omitted variable bias with respect to characteristics of the fixed infrastructure. In other cases in 

this literature it should be noted that fixed effects results are typically even more unpalatable, 

producing insignificant results for passenger traffic also (whereas in our case, FE does at least 

produce statistically significant results for passenger traffic). 
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Table 5. Estimation results 

Dependent variable: FE8 BE BE_UIC RE RE_UIC 

ln(maintenance cost track) Coef. Coef. Coef. Coef. Coef.  

Constant 18.337*** 12.853*** 12.507*** 13.784*** 13.366*** 

 (2.515) (0.376) (0.393) (0.202) (0.251) 

ln(freight ton density) 0.018 0.062*** 0.047*** 0.034*** 0.023* 

 (0.019) (0.013) (0.015) (0.013) (0.014) 

ln(passenger ton density) 0.180*** 0.225*** 0.209*** 0.182*** 0.175*** 

 (0.064) (0.030) (0.032) (0.032) (0.032) 

0.5ln(passenger ton density)^2 0.018** 0.031*** 0.029*** 0.018*** 0.017*** 

 (0.008) (0.006) (0.006) (0.005) (0.005) 

ln(track length) 2.885** 1.100*** 1.090*** 1.080*** 1.069*** 

 (1.179) (0.033) (0.033) (0.033) (0.033) 

ln(no of tracks) -0.744 -0.324*** -0.283*** -0.215** -0.212** 

 (0.764) (0.093) (0.093) (0.099) (0.100) 

ln(rail age) 0.354*** 0.237*** 0.237*** 0.267*** 0.255*** 

 (0.061) (0.059) (0.059) (0.047) (0.046) 

ln(switch density) -0.006 0.163*** 0.148*** 0.122*** 0.106*** 

 (0.071) (0.045) (0.045) (0.040) (0.041) 

ln(sleeper density) -2.773 -0.029 -0.290 0.225 -0.202 

 (4.322) (0.658) (0.662) (0.878) (0.881) 

Cont. weld. track prop -0.724 -0.369* -0.381* -0.326 -0.351 

 (0.798) (0.213) (0.217) (0.225) (0.230) 

Curved track prop. -3.859 0.680*** 0.661*** 0.615** 0.607** 

 (3.281) (0.220) (0.220) (0.287) (0.286) 

ln(track circ. per track-km) 3.507*** 0.121*** 0.108*** 0.164*** 0.139*** 

 (1.107) (0.036) (0.036) (0.042) (0.043) 

ln(max speed) 0.837** 0.064 0.054 0.227* 0.182 

 (0.389) (0.112) (0.112) (0.127) (0.126) 

ln(rail w) 2.757** -0.388 -0.937* 0.298 -0.252 

 (1.291) (0.414) (0.482) (0.448) (0.542) 

0.5ln(rail w)^2 -1.192 -12.078*** -14.211*** -9.745* -11.721** 

 (12.479) (3.938) (4.186) (5.384) (5.708) 

D.LGV  -0.335** -0.275 -0.655*** -0.569*** 

  (0.166) (0.171) (0.215) (0.212) 

D.UIC 2   0.637**  0.742* 

   (0.254)  (0.381) 

                                                             
8 Note that the FE can be estimated despite the inclusion of apparently time invariant variables such as track 

length because of small variations in those variables for some observations in the sample over the period. 
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D.UIC 3   0.531***  0.627*** 

   (0.183)  (0.215) 

D.UIC 4   0.394**  0.455** 

   (0.163)  (0.194) 

D.UIC 5   0.274*  0.402** 

   (0.150)  (0.173) 

D.UIC 6   0.229*  0.321** 

   (0.136)  (0.156) 

D.UIC 7   0.355***  0.389** 

   (0.132)  (0.158) 

D.UIC 8   0.310***  0.386*** 

   (0.107)  (0.125) 

(Cont. Weld. tr.)(Curved tr.) 0.617 -0.615* -0.607* -0.463 -0.485 

 (1.354) (0.315) (0.315) (0.359) (0.358) 

Region dummies N/A Yes Yes Yes Yes 

Year dummies Yes Yes Yes Yes Yes 

Dummies, zero pass. ton, freight ton,  

switch den., and track circuits9 
Yes Yes Yes Yes Yes 

R^2 overall 0.384 0.536 0.539 0.686 0.689 

***, **, *: Significance at the 1%, 5%, and 10% level, respectively. Robust standard errors in parentheses. 

 

 

Of course, we have a further motivation for abandoning fixed effects, since we want to capture 

the cost impact of changes in preventative maintenance through the between variation in the 

data. We first consider the models without the UIC category dummy variables. Here we find 

that for the BE and RE models the summation of the elasticities of cost with respect to passenger 

and freight traffic (at the sample mean) are indeed higher than in the FE model. Taken together, 

the overall cost elasticity (at the sample mean) with respect to traffic (passenger and freight) is 

0.198, 0.288 and 0.21610 for FE, BE and RE respectively. The individual passenger and freight 

traffic elasticities are also individually statistically significant at the sample mean in the RE and 

                                                             
9 These dummies are used to handle zero observations (e.g. zero freight traffic on some sections), following 

Gaudry and Quinet, 2013.  

 
10 Computed as (0.018+0.180), (0.062+0.225) and (0.034+0.182) respectively. 
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BE model, though the freight elasticity is not significant in the FE model. Thus, we find that 

the utilisation of between variation either through the between estimator or random effects 

models, increases the overall elasticity of costs with respect to traffic, and therefore reduces our 

measures of economies of density compared to fixed effects.  

Before discussing these results further, and also the implications for marginal cost, we 

consider the impact and statistical significance of the UIC dummy variables, which reflect the 

variation in preventative maintenance regimes across the network. Table 5 shows that the UIC 

coefficients in Model BE_UIC vary between 0.229 (UIC 6) and 0.637 (UIC 2), and in Model 

RE_UIC between 0.321 (UIC7) and 0.742 (UIC2). All of the UIC dummy variables are 

statistically significant for both the BE_UIC and RE_UIC models (see Table 5), which means 

that the cost impacts for UIC categories 2 to 8 are all statistically significantly different from 

UIC 9 (the excluded category). Table 6 shows a complete list of tests for the BE_UIC and 

RE_UIC model, showing that there are also statistically significant differences between other 

UIC categories (see Table 6). 

 

Table 6. Tests of differences between UIC coefficients 

 BE_UIC RE_UIC  BE_UIC RE_UIC 

Test: H0 F(1,  1105) Chi2(1) Test: H0 F(1,  1105) Chi2(1) 

UIC 2 = UIC 5 2.81* 1.05 UIC 3 = UIC 9 8.39*** 8.53*** 

UIC 2 = UIC 6 3.41* 1.55 UIC 4 = UIC 9 5.86** 5.49** 

UIC 2 = UIC 9 6.26** 3.79* UIC 5 = UIC 9 3.34* 5.43** 

UIC 3 = UIC 4 1.76 2.99* UIC 6 = UIC 9 2.82* 4.25** 

UIC 3 = UIC 5 4.41** 3.36* UIC 7 = UIC 9 7.23*** 6.05** 

UIC 3 = UIC 6 5.27** 5.09** UIC 8 = UIC 9 8.41*** 9.61*** 

***, **, *: Significance at the 1%, 5%, and 10% level, respectively. 

 

It is informative to observe what happens to the traffic elasticities when the UIC 

variables are included or excluded. For both the BE and RE models, excluding the UIC 

variables from the model (which would be the normal practice in the literature), increases both 

the passenger and freight elasticities, with the sum of the two elasticities at the sample mean 
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increasing from 0.256 to 0.288 for the BE models and from 0.199 to 0.216 for the RE models 

compared to the versions that include the UIC dummies (BE_UIC and RE_UIC; see Table 5). 

This is intuitive since the UIC effects are correlated with traffic; therefore when they are 

excluded we would expect that the effects would partly end up within the traffic elasticities. 

This finding is in line with the thrust of this paper that the traffic effect can be thought of as a 

pure traffic effect plus an effect of changes in preventative maintenance regime that occurs 

across the cross-section. We further note that the inclusion / exclusion of the UIC dummy 

variables does not impact greatly on coefficients on the variables for infrastructure 

characteristics/condition or capability. 

Table 7 summarises the resulting elasticities and measures of economies of density for 

the different models, this time computed in the usual way for this literature, as traffic weighted 

average elasticities. These results broadly mirror the findings from evaluating the elasticities at 

the sample mean reported above. We show the results from the models excluding the UIC 

dummies since in most real railway datasets data would not be readily available on preventative 

maintenance regimes, or the level of aggregation of the cost data – that is, at the firm or regional 

level - would make such variables difficult to construct even if available. Further we saw that 

when dropping the UIC dummies the effects shifted into the traffic elasticities, which increased 

as a result11. 

Table 7 emphasises the importance of accounting for between-variation in the data 

in the computation of economies of density, noting that the between estimator sees a much 

higher overall traffic elasticity than the fixed effects estimator (the random effects elasticity is 

also higher, though to a lesser extent). Table 9 shows that, if we rely simply on fixed effects 

estimation, we would assess economies of density to be as high as 4.72. However, reflecting 

                                                             
11 In our case, since we do have the UIC dummy variable data, it may be possible to consider a more complex 

model whereby economies of density are computed based on the traffic elasticity plus the cost impact of different 

UIC categories, combined with an estimate of the probability that a traffic increment would produce a change in 

preventative maintenance regime. That approach could be an avenue for future research. 
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the between-variation in the data through use of the between estimator leads to much higher 

traffic elasticities and in turn lower estimates of economies of density (3.20). 

 

Table 7. Overall traffic elasticities and economies of density* 

Model Overall traffic elasticity* Measure of economies of density  

FE 0.212 4.72 

BE 0.313 3.20 

RE 0.230 4.35 

* Note this is the sum of the elasticities of costs with respect to passenger and freight volumes (and are based on 

traffic-weighted averages of the elasticities estimated for each track section) 

 

To summarise: based on our prior reasoning and on the empirical results in this paper we 

consider that estimates of the elasticity of cost with respect to traffic – holding the infrastructure 

fixed, and in turn its reciprocal, economies of density – should be estimated using models that 

capture the between variation in the data. That is, we recommend that the between estimator or 

the random effects12 estimator should be used. This is because we want to capture both the pure 

traffic effect and the effects of changes in preventative maintenance regime, where the latter 

only varies across the cross-section. An important caveat here is that researchers need to be 

confident – as we are in our empirical case – that the wider problem of omitted variable bias 

with respect to characteristics of the fixed infrastructure can be avoided through the use of 

appropriate control variables included in the model. 

Our main purpose therefore has been to demonstrate the importance of preventative 

maintenance effects in rail infrastructure data, which in turn justifies the use of the between or 

random effects estimator in computing economies of density for rail datasets. This is an 

important finding because the literature (starting with Caves et. al., 1985) has argued for the 

                                                             
12 Random effects is of course a weighted average of the between and within estimator. It could be considered as 

an alternative to the between estimator in some circumstances e.g. in economic regulation, for example, where 

there is greater familiarity with random effects, or where datasets are relatively small, or simply to avoid over-

reliance on one particular approach. 
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use of fixed effects to estimate economies of density. Further, as noted, our approach is 

analogous to the arguments used by Caves et. al. (1985) for the use of the between estimator 

for estimating scale elasticities because we want to correctly include the associated preventative 

maintenance effects in our traffic elasticity and economies of density, in the same way that 

Caves et. al. (1985) wished to include the associated network effects in their estimate of 

economies of scale. We therefore consider that these results demonstrate the central point of 

the paper – namely that, because of the between-variation in preventative maintenance regimes, 

triggered by increases in traffic, researchers should not rely solely on within variation in the 

data (fixed effects) when deriving economies of density for rail infrastructure costs. 

6.2 Comparison of marginal costs across models 

The final step is to calculate marginal costs based on traffic estimates for the different panel 

estimators. These are important as they would form the basis for setting track access charges.  

 The fixed effects model generates a marginal cost at 0.166 euro per 1000 freight ton-

km and 0.755 euro per 1000 passenger ton-km. The marginal cost for freight traffic is 

substantially higher when using between effects (0.581) or random effects (0.314), while the 

estimate for passenger traffic likewise increases substantially to 0.928 when the between 

estimator is used (in this case, for passenger, the fixed and random effects marginal costs are 

rather similar).  

 

Table 10. Weighted average marginal costs, euro/1000 ton-km 

Model Freight Passenger 

FE 0.166 0.755 

BE 0.581 0.928 

RE 0.314 0.766 

 

The results in Table 10 shows the marginal cost implications of the finding already noted – 

namely that fixed effects estimation will understate the elasticity of cost with respect to traffic 
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/ overstate the extent of economies of density. In turn then marginal costs and ultimately track 

access charges would be set too low. 

This finding therefore calls for the utilisation of between variation in rail datasets, 

either the between estimator or random effects. We further note that the differences between 

the different estimators is particularly pronounced for freight traffic. The past literature has 

noted that rail infrastructure cost function estimation can result in marginal costs for freight 

traffic (per ton-km) that are much lower than passenger traffic, which could be seen as 

surprising when considered against engineering evidence (see e.g. Wheat et. al., 2009). In Table 

10 we see that the estimators that rely on between variation produce freight and passenger 

marginal costs that are closer together. The latter is intuitive, given the increased weighting that 

freight is given in defining the preventative maintenance regimes as shown in equation (1) 

above. 

7.0 Conclusion 

Economies of density in the railway cost structure literature is concerned with the question of 

what happens to costs as traffic increases on a fixed network. The past literature on railway cost 

function estimation has therefore emphasised that estimates of economies of density should be 

derived from fixed effects estimation, thus utilising only the within-variation in the data (see 

e.g. Caves et. al., 1985). The reason is that utilisation of between-variation in the data would 

run the risk of omitted variable bias as there may be unobserved factors relating to the fixed 

infrastructure that are correlated with traffic that vary over the cross-section – i.e. the network 

does not remain fixed in the cross-sectional dimension of railway datasets.  

Similar concerns have been raised in the more recent rail infrastructure cost literature 

where the aim is to obtain a measure of cost variability and in turn the short-run marginal cost 

of running an extra train service on a fixed network. In the EU, track access charges are set 

based on such marginal cost estimates, and the level of track access charges is hugely important 
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in ensuring efficient use of rail capacity and also allowing new competitors to gain fair access 

to the network. In this context the concern is that use of between-variation runs the risk of 

capturing long-run rather than short-run marginal costs for the same reason as noted in the wider 

rail cost literature – namely that the network does not remain fixed over the cross-section.  

This paper offers a new perspective, and provides a motivation for the use of between-

variation in rail cost datasets because of the need to capture the changes in preventative 

maintenance that occurs when moving from one line category to another. Since such changes 

are rarely observed in the within-variation in the data (at least over short panels), this means 

that fixed effects estimation will miss the preventative maintenance element of marginal cost.  

The foregoing discussion therefore emphasises that on the one hand utilisation of 

between-variation runs the risk of overstating marginal costs because of omitted variable bias, 

whilst on the other, use of fixed effects risks understating marginal costs because it ignores 

(marginal) preventative maintenance costs. Since the literature shows that rail infrastructure 

cost studies typically have access to an extensive set of control variables for track characteristics 

and capability and thus avoid the associated omitted variable bias, we argue that the greater 

danger is therefore the risk of omitting an important element of marginal costs – namely that 

part relating to preventative maintenance. We therefore argue for the use of between variation 

in the data to estimate economies of density for rail infrastructure, which implies using the 

between estimator or random effects rather than fixed effects. 

It is also important to note that our argument for the use of the between estimator for 

estimating economies of density is analogous to that put forward by Caves et. al. (1985) in 

respect of estimating economies of scale. In the same way that Caves et. al. (1985) argued for 

the need to capture associated changes in unobserved network effects within the estimate of 

economies of scale as network size changes across the cross-section, we argue that it is 

necessary to capture the associated changes in preventative maintenance regimes as traffic 
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changes across the cross-section within the estimate of economies of density. In both cases 

(ours and Caves et. al., 1985) the estimates are “biased” but in a good way – in our case, use of 

the between variation allows the unobserved preventative maintenance effects to be correctly 

conflated with the estimate of a pure traffic effect (that latter would capture only reactive 

maintenance), thus giving a true reflection of what happens to costs as traffic increases across 

the cross-section. In our case it is also important to note that the changes in preventative 

maintenance regime are not related to changes in the fixed infrastructure and that we have an 

extensive set of control variables to capture the fixed infrastructure characteristics. 

`Compared to the between estimator or random effects, our work shows that fixed 

effects produces considerably lower elasticities of cost with respect to traffic, thus producing 

higher estimates of the degree of economies of density, and lower marginal costs. The 

differences are particularly pronounced in respect of freight traffic, where fixed effects 

estimation produces elasticities that are close to zero and not statistically significant. The choice 

of estimator therefore impacts not just estimates of economies of density but also marginal costs 

(for different types of traffic), with consequent implications for the setting of track access 

charges in the EU context, which are required to be based on short-run marginal cost (referred 

to in the legislation as “direct costs”).  

Overall, we consider that our work makes a strong case for the utilisation of between-

variation when estimating rail infrastructure cost functions, either through the between 

estimator or random effects. Indeed these arguments also suggest that previous estimates of 

economies density derived from overall rail system cost datasets – which include rail 

infrastructure maintenance as an important part – might need to be re-considered. 
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