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Fast Parametric Model Checking with
Applications to Software Performability Analysis

Xinwei Fang∗, Radu Calinescu∗, Simos Gerasimou, and Faisal Alhwikem

Abstract—We present an efficient parametric model checking technique for the analysis of software performability, i.e., of the

performance and dependability properties of software systems. The new parametric model checking (pMC) technique works by using a

heuristic to automatically decompose a parametric discrete-time Markov chain (pDTMC) model of the software system under

verification into fragments that can be analysed independently, yielding results that are then combined to establish the required

software performability properties. Our fast parametric model checking (fPMC) technique enables the formal analysis of software

systems modelled by pDTMCs that are too complex to be handled by existing pMC methods. Furthermore, for many pDTMCs that

state-of-the-art parametric model checkers can analyse, fPMC produces solutions (i.e., algebraic formulae) that are simpler and much

faster to evaluate. We show experimentally that adding fPMC to the existing repertoire of pMC methods improves the efficiency of

parametric model checking significantly, and extends its applicability to software systems with more complex behaviour than currently

possible.

Index Terms—parametric model checking; software performability; nonfunctional software properties; Markov models

✦

1 INTRODUCTION

Most software operates in environments characterised by
workloads, usage profiles, failures and available resources
that are stochastic in nature [17], [23], [43]. As such, prob-
abilistic models such as Markov chains [11], [30], [34], [50],
queueing networks [8], [31] and stochastic Petri nets [9], [47],
[51] have long been used to analyse the performability (i.e.,
the performance, dependability and other nonfunctional
properties) of software.

In this paper, we focus on the analysis of software
performability using parametric discrete-time Markov chains
(pDTMCs), i.e., Markov chains that have transition proba-
bilities and/or that are augmented with rewards specified
as rational functions over the parameters of the analysed
system. The technique used to analyse these stochastic mod-
els is called parametric model checking (pMC) [18], [22], [39],
[44]. Given a pDTMC model of a software system, and a set
of nonfunctional system properties specified in probabilistic
temporal logic, pMC computes algebraic formulae for these
properties. The concept is straightforward. As a simple
example, consider a web server (Figure 1) that handles two
types of requests, and suppose that requests belong to these
types with probabilities p and 1 − p. If the mean times to
handle the two types of request are t1 and t2, respectively,
then the expected (i.e., mean) time for handling a request is
computed by pMC as pt1 + (1− p)t2.

The algebraic formulae produced by pMC have many
important applications in software engineering. They can
be used to analyse the sensitivity of nonfunctional software
properties to parametric variability [30], to identify optimal
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Fig. 1: pDTMC model of a web server that handles requests
of type REQ1 (received with probability p) and REQ2

(received with probability 1− p) with expected times t1 and
t2, respectively.

system configurations for software product lines [35], [36],
[46], and to establish confidence intervals for the analysed
nonfunctional properties [2], [14], [15]. Furthermore, pMC
formulae precomputed prior to deployment (when some
of the system parameters are unknown) can be evalu-
ated at runtime (when the parameter values are deter-
mined through monitoring), to verify if the nonfunctional
requirements of a system are still satisfied after environ-
mental changes [49], [55]. Last but not least, self-adaptive
systems can use these formulae to efficiently select new
configurations when requirements are violated after such
changes [28], [54].

Despite these benefits, pMC is seldom used in practice
due to its limited scalability. While theoretical advances over
the past decade [39], [44] and their implementation in state-
of-the-art model checkers [24], [38], [45] have alleviated this
limitation, existing pMC approaches are often unable to
analyse pDTMCs with large numbers of parameters.

Our paper presents a fast parametric model checking
(fPMC) technique that extends the applicability of pMC
to software systems with considerably more complex be-
haviour and with much larger sets of parameters than cur-
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rently possible. fPMC is a compositional analysis technique
that uses well-defined rules (described later in the paper) to
partition, in a heuristic manner, the graph induced by the
pDTMC under analysis1 into subgraphs called fragments.
The fPMC fragments define small pDTMCs that are anal-
ysed individually to generate pMC subexpressions. Finally,
the overall pMC result is obtained by combining these
subexpressions with an expression produced by analysing
an abstract model created by replacing each fragment from
the original pDTMC with a single state.

fPMC fragments are not strongly connected components
(SCCs) of the analysed pDTMC. They can typically be
assembled to ensure that each fragment is small enough for
its individual pMC analysis to be feasible, and large enough
to avoid the creation of so many fragments that the abstract
pDTMC becomes difficult to analyse. This flexibility yields
both fragments that include only a part of an SCC and
fragments that include multiple SCCs, and explains why
fPMC can efficiently analyse many pDTMCs not handled
by the SCC-partitioning pMC approach from [44], as shown
in our experimental evaluation from Section 6.

fPMC builds on recent research that laid the groundwork
for the use of pDTMC fragments to speed up parametric
model checking [18]. However, that research provides no
algorithm for the partition of pDTMCs into fragments. The
main contributions of our paper are:

1) The fPMC theoretical foundation comprising algo-
rithms (a) for pDTMC fragmentation, and (b) for
pDTMC restructuring, to aid the formation of suit-
ably sized fragments.

2) A new parametric model checking tool that (a) em-
ploys a simple heuristic to determine whether the
analysis of a pDTMC requires fragmentation, and
(b) performs the analysis of the pDTMC by using
our fPMC fragmentation and restructuring algo-
rithms if fragmentation is required, or by invoking
the model checker Storm [24] otherwise.

3) An extensive evaluation of the fPMC theoretical
foundation and tool for 62 variants of three pDTMC
models and a wide range of performability software
properties taken from the research literature.

A preliminary fPMC version that only supports the analysis
of reachability probabilistic temporal logic formulae over
pDTMCs was introduced in [27]. This paper extends the
theoretical foundation from [27] with:

1) Support for the pMC of unbounded until formu-
lae, which correspond to the analysis of software
properties such as the probability of successful ter-
mination without intermediate errors or timeouts.
To ascertain the usefulness of this new contribution,
we analysed the frequency with which unbounded
until formulae are used in leading-venue software
engineering research papers from the repository
assembled in [2], which includes all research papers

1. i.e., the directed graph comprising a vertex for each pDTMC state
and an edge between each pair of vertices that correspond to pDTMC
states between which a transition is possible

that use discrete-time Markov chains and were pub-
lished in CORE20202

2) Support for the pMC of reachability reward
formulae—a significant improvement because using
pMC to analyse nonfunctional properties related to
the performance, cost, utility and resource usage of
software systems requires the specification of these
properties as reward formulae over pDTMCs. Such
properties of software systems are analysed using
reward formulae in 50% of the research papers from
the publication repository from [2].

3) Formal correctness proofs for the fPMC fragmenta-
tion algorithm and pDTMC restructuring methods,
in contrast to the experimental evaluation from our
previous work [27].

4) A formal complexity analysis of the end-to-end
fPMC fragmentation technique, which aids in un-
derstanding the scalability of fPMC.

The three types of temporal logic formulae currently sup-
ported by fPMC allow the analysis of a wide range of
software properties, including many properties that could
not be handled by our preliminary fPMC version from [27].
For instance, out of all software properties analysed by
the research papers from the repository in [2], 41% are
reachability properties, 18% are unbounded until properties,
and 23% are reachability reward properties—giving an 82%
fPMC coverage. Thus, by adding support for unbounded
until properties and reachability reward properties, we dou-
bled the coverage of our algorithm. Additionally, we con-
siderably extended and improved the validation of fPMC
by evaluating it for a much broader range of models and
properties (Section 6). Finally, we augmented the fPMC tool
support with the heuristic for determining if the pDTMC
under analysis requires fragmentation (Section 6.2.1).

The remainder of the paper is structured as follows. Sec-
tion 2 provides formal definitions and explanations of the
techniques used in this work. Section 3 describes a software
system we use to motivate the need for fPMC and to illus-
trate its application. The fPMC algorithms and their proofs
are presented in Section 4, followed by the implementation
details in Sections 5. We then evaluate fPMC in Section 6,
and discuss threats to validity in Section 7. Finally, Section 8
compares fPMC to related work, and Section 9 provides a
brief summary and discusses directions for future work.

2 PRELIMINARIES

Parametric model checking [18], [22], [39], [44] is a math-
ematically based technique for the analysis of pDTMC
properties expressed in probabilistic computation tree logic
(PCTL) [10], [19], [42] extended with rewards [4]. This section
provides formal definitions for each of these concepts.

2.1 Discrete-time Markov Chains

Discrete-time Markov chains (DTMCs) are finite state-
transition models used to analyse the stochastic behaviour

2. https://www.core.edu.au/conference-portal rank A* software en-
gineering journals and conferences between 2016–2020. This analysis
(whose detailed results are provided on our project’s website [1]) found
that 37% of these research papers use unbounded until formulae to
examine properties of software systems.
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of real-world systems. They comprise states that correspond
to relevant configurations of the system under analysis, and
transitions that model the changes that can occur between
these configurations.

Definition 1. A (non-parametric) discrete-time Markov chain is
a tuple

D = (S, s0,P, L), (1)

where: (i) S is a finite set of states; (ii) s0 ∈ S is the initial state;
(iii) P : S × S → [0, 1] is a transition probability matrix such
that, for any states s, s′ ∈ S, P(s, s′) represents the probability
that the Markov chain transitions from s to s′, and, for any
s ∈ S,

∑
s′∈S P(s, s′) = 1; and (iv) L : S → 2AP is a labelling

function that maps every state s ∈ S to elements of a set of
atomic propositions AP that hold in that state.

Given a discrete-time Markov chain (1), a state s ∈ S

is an absorbing state if P(s, s) = 1 and P(s, s′) = 0 for all
s 6= s′, and a transient state otherwise. A path π over a DTMC
D is a (possibly infinite) sequence of states from S, such that
for any consecutive states s and s′ from π, P(s, s′) > 0. The
i-th state on the path π, i ≥ 1, is denoted π(i). For any state
s, PathsD(s) represents the set of all infinite paths over D

that start with state s.

To enlarge the spectrum of nonfunctional properties that
can be analysed using DTMCs, these models are often
augmented with reward functions.

Definition 2. A reward function over a DTMC (1) is a function

rwd : S → R≥0 (2)

that associates a non-negative quantity (i.e., a reward) with each
Markov chain state.

Finally, parametric DTMCs are used when a reward-
augmented Markov chain contains probabilities or rewards
that are unknown or that correspond to adjustable parame-
ters of the system under analysis. These probabilities and
rewards are specified as rational functions over a set of
continuous variables that correspond to parameters of the
modelled system and its environment.

Definition 3. A rational function qV : RN → R over a finite
set of N ≥ 1 real-valued continuous variables V = {v1, v2, . . . ,
vN} is a function that can be defined as

qV (v1, v2, . . . , vN ) =
PV (v1, v2, . . . , vN )

RV (v1, v2, . . . , vN )
, (3)

where PV and RV are polynomials over the variables from V .

Definition 4. A reward-augmented parametric discrete-time
Markov chain (pDTMC) over a set of continuous variables
V is a Markov chain (1) with transition probability matrix
P : S × S → QV and reward functions rwd : S → QV ,
where QV denotes the set of all rational functions over V .3

3. We note that, by requiring that a parametric discrete-time Markov
chain is a Markov chain (1), Definition 4 implicitly requires that,
for any allowed parameter valuation, each element of the transition
probability matrix P is a valid probability, and the sum of the outgoing
probabilities in each pDTMC state sums up to 1.
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Fig. 2: pDTMC fragment F = (Z, z0, Zout)

2.2 Probabilistic Computation Tree Logic

The properties of (non-parametric and parametric) discrete-
event Markov chains are formally specified in reward-
extended PCTL.

Definition 5. A PCTL state formula Φ, path formula Ψ, and
reward state formula ΦR over an atomic proposition set AP are
defined by the grammar:

Φ ::= true | a | ¬Φ |Φ ∧ Φ | P=?[Ψ]

Ψ ::= XΦ | Φ U Φ | Φ U≤k Φ

Φ:
R
:= Rrwd

=? [I=k] | Rrwd
=? [C≤k] | Rrwd

=? [F Φ] | Rrwd
=? [S]

(4)

where a ∈ AP is an atomic proposition, k ∈ N>0 is a timestep
bound, and rwd is a reward structure (2).

The PCTL semantics is defined using a satisfaction rela-
tion |= over the states s ∈ S and paths π ∈ PathsD(s) of a
Markov chain (1). Thus, s |= Φ means “Φ holds in state s”,
π |= Ψ means “Ψ holds for path π”, and we have: s |= true

for all states s ∈ S; s |= a iff a ∈ L(s); s |= ¬Φ iff ¬(s |= Φ);
and s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2.

The next formula XΦ holds for a path π if π(2) |= Φ.
The time-bounded until formula Φ1 U

≤k Φ2 holds for a path
π iff π(i) |= Φ2 for some i ≤ k and π(j) |= Φ1 for all
j = 1, 2, . . . , i − 1; and the unbounded until formula Φ1 UΦ2

removes the bound k from the time-bounded until formula.
The quantitative state formula P=?[Ψ] specifies the prob-

ability that paths from PathsD(s) satisfy the path property
Ψ. Reachability properties P=?[trueUΦ] are equivalently writ-
ten as P=?[FΦ] or P=?[FR], where R⊆S is the set of states
in which Φ holds.

Finally, the reward formulae specify the expected values
for: the instantaneous reward at timestep k (Rrwd

=? [I=k]); the
cumulative reward up to timestep k (Rrwd

=? [C≤k]); the reach-
ability reward cumulated until reaching a state that satisfies
a property Φ (Rrwd

=? [F Φ], or Rrwd
=? [F R] if R⊆ S is the set

of states in which Φ holds); and the steady-state reward in
the long run (Rrwd

=? [S]). A complete description of the PCTL
semantics is available in [4], [10], [42].

2.3 Parametric Model Checking through Fragmentation

Our fPMC technique builds on recently introduced theo-
retical results on the use of pDTMC fragmentation to speed
up parametric model checking [18]. These results, which
explain how pDTMC fragments can be exploited—but not
how they could be obtained—are summarised below. We
start by introducing the concept of a pDTMC fragment.
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Fig. 3: Parametric model checking through fragmentation

Definition 6. A fragment of a pDTMC (S, s0,P, L) is a tuple

F = (Z, z0, Zout), (5)

where (Figure 2):

• Z⊆S is a subset of transient pDTMC states or Z={z0};
• z0 is the (only) input state of F , i.e., {z0} = {z ∈ Z |

∃s∈S\Z .P(s, z) > 0};
• Zout = {z ∈ Z | (∃s ∈ (S \ Z) ∪ {z0} . P(z, s) >

0) ∧ (∀z′ ∈ Z \ {z0} .P(z, z′) = 0)} is the non-empty
set of output states of F .

This definition is much less restrictive than that of a
strongly connected component. In particular, any pDTMC
state z (including any absorbing state) forms a one-state,
degenerate fragment F = ({z}, z, {z}). Furthermore, the
“inner” states Z\({z0}∪Zout) of a fragment can include one
or several SCCs. Finally, an SCC can be split into multiple
fragments, because paths that start from the output states
of a fragment and reach its input state (either directly
or through intermediate states outside the fragment) are
permitted.

Given a fragment F = (Z, z0, Zout) of a pDTMC D

augmented with a reward function rwd , the pMC of reacha-
bility, unbounded until, and reachability reward properties
of D can be carried out compositionally by using the fol-
lowing four-step process introduced in [18] and illustrated
in Figure 3:

1) Use standard pMC to obtain algebraic formulae for:

i) the probabilities probz of reaching each of the output
states z ∈ Zout of F from the input fragment state z0;

ii) the cumulative reward rwdout associated with reach-
ing the output state set Zout from z0.

2) Assemble an abstract pDTMC model D′ = (S′, s′0, P
′)

augmented with a reward function rwd ′, where:

i) S′ = (S \Z)∪{z′}, i.e., the states from Z are replaced
with a single, abstract state z′;

ii) s′0 = s0 if z0 6= s0, and s′0 = z′ otherwise;

iii) the incoming transitions and transition probabilities
of z′ are inherited from z0;

iv) z′ has outgoing transitions to each state that one or
more states from Zout have outgoing transitions to
in D; and the probabilities of these transitions can
be expressed in terms of the reachability properties

Market
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mode

1-x

x

retry

do transaction

objectives met

objectives not met

1-z1-z2
z2

z1

y1

y2

Alarm
1-y1-y2

error

Fundamental
Analysis

Technical
Analysis

Notification

end

Fig. 4: FX service-based system, where x, y1, y2, z1, z2 are
the (unknown) probabilities of different execution paths, i.e.,
the operational profile of the system

computed in step 1—details about the calculation of
these probabilities are provided in [18];

v) the new reward function is given by rwd ′(s) = rwd(s)
for all s ∈ S′ \ {z′}, and rwd ′(z′) = rwdout.

3) Compute the pMC formula for the original property
under analysis, for the abstract model from step 2.

4) Combine the pMC formulae from step 1 and the pMC
formula from step 3 into a system of expressions.

The system of expressions from step 4 provides a closed-
form analytical model for the analysed property. This ana-
lytical model is equivalent to the pMC formula obtained by
analysing the original pDTMC in one step, and we will refer
to it as fPMC or fPMC-computed algebraic formulae in the
rest of the paper.

The pMC carried out in steps 1 and 3 uses models
that are simpler and smaller than the original model D.
As such, this four-step approach is often faster, produces
much smaller algebraic formulae, and enables the analysis
of models that are larger and more complex than those
supported by previous pMC methods.

3 MOTIVATING EXAMPLE

In this section, we introduce a software system that will be
used to illustrate the use of our fPMC approach throughout
the paper. Taken from [33], [34], this is a six-operation
service-based system performing trading in the foreign
exchange (FX) market. The workflow of the FX system is
shown in Fig. 4 and described briefly below.

FX workflow. The FX system has two execution modes that
a trader can choose from: an expert mode and a normal mode.

In the expert mode, the Market watch operation extracts
real-time exchange rates (i.e., bid/ask prices) of selected
currency pairs, and this information is then passed to the
Technical analysis operation for further analysis, such as
evaluating the current trading conditions, predicting future
price movement, and deciding which actions to take. Three
actions can be taken: carrying out a trade by calling the
Order operation; performing the Market watch operation
again, e.g., on different or additional currency pairs; and
reporting an error that triggers an Alarm operation. The
Order and Alarm operations are each followed by a user
Notification operation, and the end of the workflow.

In the normal mode, the system uses a Fundamental anal-
ysis operation to evaluate the economic outlook of a country



5

1 dtmc

2
3 // Operational profile parameters
4 const double x;const double y1;const double y2;const double z1;const double z2;
5 // Operation implementation parameters
6 const double p11; const double r11; const double p12; const double r12;
7 const double p21; const double r21; const double p22; const double r22;
8 const double p31; const double r31; const double p32; const double r32;
9 const double p41; const double r41; const double p42; const double r42;
10 const double p51; const double r51; const double p52; const double r52;
11 const double p61; const double r61; const double p62; const double r62;
12 // Reward parameters
13 const double t11; const double t12;
14 const double t21; const double t22;
15 const double t31; const double t32;
16 const double t41; const double t42;
17 const double t51; const double t52;
18 const double t61; const double t62;
19
20 module WorkflowFX
21 // FX states
22 s : [0..11] init 0;
23 // Retry status of each service implementation
24 rtry : [1..2] init 1;
25 // Employed service for operation op1...op6
26 op1 : [1..2] init 1; op2 : [1..2] init 1; op3 : [1..2] init 1;
27 op4 : [1..2] init 1; op5 : [1..2] init 1; op6 : [1..2] init 1;
28
29 // Start: expert mode or normal mode
30 [fxStart] s=0 → x:(s’=1) + (1-x):(s’=4);
31
32 // Operation #1 : Sequential execution strategy with retry for the Market Watch
33 [op11] (s=1)&(rtry=1)&(op1=1) → p11:(s’=2) + (1-p11):(rtry’=2);
34 [op11r] (s=1)&(rtry=2)&(op1=1) → r11:(rtry’=1) + (1-r11):(op1’=2)&(rtry’=1);
35 [op12] (s=1)&(rtry=1)&(op1=2) → p12:(s’=2) + (1-p12):(rtry’=2);
36 [op12r] (s=1)&(rtry=2)&(op1=2) → r12:(rtry’=1) + (1-r12):(s’=9);
. . .

46 // Operation #3 : Sequential execution strategy with retry for the Alarm
47 [op31] (s=3)&(rtry=1)&(op3=1) → p31:(s’=6) + (1-p31):(rtry’=2);
48 [op31r] (s=3)&(rtry=2)&(op3=1) → r31:(rtry’=1) + (1-r31):(op3’=2)&(rtry’=1);
49 [op32] (s=3)&(rtry=1)&(op3=2) → p32:(s’=6) + (1-p32):(rtry’=2);
50 [op32r] (s=3)&(rtry=2)&(op3=2) → r32:(rtry’=1) + (1-r32):(s’=9);
. . .

76 // Technical analysis result
77 [TAResult] s=7 → y1:(s’=5) + y2:(s’=1) + (1-y1-y2):(s’=3);
78 // Fundamental analysis result
79 [FAResult] s=8 → z1:(s’=5) + z2:(s’=9) + (1-z1-z2):(s’=4);
80 // FX final states (workflow completed successfully or failed)
81 [failedFX] s=9 → 1:(s’=9);
82 [successFX] s=10 → 1:(s’=10);
83 endmodule

84
85 // Time taken by services as state reward
86 rewards “time”
87 (s=1)&(op1=1)&(rtry=1) : t11;
88 (s=1)&(op1=2)&(rtry=1) : t12;
89 (s=2)&(op2=1)&(rtry=1) : t21;
90 (s=2)&(op2=2)&(rtry=1) : t22;
91 (s=3)&(op3=1)&(rtry=1) : t31;
92 (s=3)&(op3=2)&(rtry=1) : t32;
93 (s=4)&(op4=1)&(rtry=1) : t41;
94 (s=4)&(op4=2)&(rtry=1) : t42;
95 (s=5)&(op5=1)&(rtry=1) : t51;
96 (s=5)&(op5=2)&(rtry=1) : t52;
97 (s=6)&(op6=1)&(rtry=1) : t61;
98 (s=6)&(op6=2)&(rtry=1) : t62;
99 endrewards

Fig. 5: pDTMC model of the FX system

and decides whether to: call the Order operation to trade
the currency of that country; re-do the Fundamental analysis
operation; or end the execution of the workflow.

Given its business-critical nature, the underlying soft-
ware architecture of the FX system needs to be highly
reliable. To avoid single points of failure, each FX operation
is implemented by two functionally-equivalent services, and
each service is invoked in order using a sequential execution
strategy with retry (SEQ R). For the i-th operation, if the first
service fails, it is re-invoked with probability ri1 or, with
probability 1 − ri1, the second service is invoked. If the
second service also fails, it is re-invoked with probability
ri2, or the operation is abandoned with probability 1 − ri2,
leading to the failure of the entire workflow execution.

initial

successFX

failedFX

Fig. 6: Graph representation of the FX pDTMC; the model
comprises 29 states and 58 transitions

FX pDTMC. Fig. 5 shows the pDTMC model of the FX
workflow, specified in the modelling language of PRISM
probabilistic model checker [45]. Lines 3–18 define the
model parameters associated with (a) the FX operational
profile (line 4), with (b) the implementations of the FX op-
erations (lines 6–11), and with (c) the mean execution times
of each service used by these implementations (lines 13–
18). The parameters pij , rij and tij represent the probability
of successful execution, the probability of retrying and the
mean execution time, respectively, for the i-th operation us-
ing the j-th service implementation, where i ∈ {1, 2, . . . , 6}
and j ∈ {1, 2}. The use of parameters to model the system
aspects from lines 3–18 is justified because:

1) the operational profile of a system is often unknown
when its model is developed;

2) modelling the system configuration by means of a
set of parameters allows the exploration and better
selection of suitable system configurations;

3) the execution times of individual services are not
available until the system is deployed and executed
(and may change over time).

Inside the WorkflowFX module, we use the local variable
state (line 22) to model the operations in the FX system,
and use retry (line 24) and opi (line 26–27) to encode the
retry status of a service implementation and the employed
service implementation for each operation, respectively. The
selection of the expert or normal mode is decided in line 30,
and the execution of the FX operations is modelled in
lines 33–75. Due to space constraints, we only show the
modelling of the Market Watch operation (line 33–36) and the
Alarm operation (lines 46–50); all the other FX operations are
modelled similarly. For both operations, the invocation of
the first service succeeds with probability pi1 and FX moves
to the next operation, fails with probability 1 − pi1 and is
retried with probability ri1 (lines 33 and 34, and lines 47 and
48, respectively); otherwise, the second service is executed
and succeeds, or is re-invoked with probabilities pi2 and ri2
in lines 35 and 36, and lines 49 and 50, respectively. If both
service implementations fail, the FX workflow execution
terminates with a failure in line 81.

Fig. 6 shows the directed graph induced by the FX
pDTMC, with the initial and final states of the FX workflow
highlighted in colour. For this pDTMC model, we assume
that we are interested in analysing the three non-functional
properties from Table 1. We note that despite the relatively
small number of states and transitions from the FX pDTMC
model, the leading parametric model checkers PRISM [45]
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TABLE 1: Non-functional properties for the FX system from the motivating example

ID Property type Informal description Property specified in PCTL

P1 Reachability probability that FX workflow completes successfully P=?[F successFX]

P2 Reachability reward expected workflow execution time Rtime
=?

[F failedFX∨ successFX]

P3 Unbounded until probability that FX workflow completes successfully without triggering an alarm P=?[ !Alarm U successFX]

and Storm [24] could not return a closed-form pMC formula
for any of these properties within an hour when run on
the MacBook Pro computer we used in all our experiments
(please see Section 6.1 for a detailed specification of this
computer). In the next section, we explain how fPMC can
successfully analyse those three properties via automated
model fragmentation.

4 FPMC THEORETICAL FOUNDATION

We present the model fragmentation algorithm that under-
pins the fPMC analysis of reachability, unbounded until
and reachability reward pDTMC properties in Section 4.1. A
pDTMC model restructuring algorithm that aids the forma-
tion of fragments is discussed in Section 4.2. Section 4.3 pro-
vides formal proofs for the correctness the fPMC algorithms.
Finally, Section 4.4 illustrates the application of fPMC to the
pDTMC model and PCTL properties from our motivating
example from Section 3.

4.1 Markov Chain Fragmentation Algorithm

fPMC partitions a pDTMC into fragments that can be anal-
ysed individually by current parametric model checkers.
This partition is carried out by the function FRAGMENTA-
TION from Algorithm 1, supported by the auxiliary func-
tions from Algorithms 2, 3 and 4. The function FRAGMEN-
TATION takes four arguments:

1) the analysed pDTMC D(S, s0,P, L);
2) the analysed PCTL formula φ, which can be a

reachability property P=?[FΦ], an unbounded un-
til property P=?[Φ1 UΦ2], or a reachability reward
property Rrwd

=? [FΦ], where the inner state formulae
Φ, Φ1 and Φ2 cannot contain the probabilistic oper-
ator P ;4

3) a reward function rwd over D, which is only rel-
evant if φ is a reachability reward property (we
assume that rwd(s) = 0 for all s ∈ S otherwise);

4) a fragmentation threshold α ∈ N>0, whose role is
described later in this section.

Given these arguments, the function returns (line 29):

1) a restructured version of the original pDTMC,
where the restructuring (described later in this sec-
tion) aids the formation of fragments;

2) a revised version of the reward function rwd that
matches the restructured pDTMC;

3) a set of fragments FS that satisfy Definition 6, with
each state of the restructured pDTMC either in-
cluded in a regular, multi-state fragment or organised
into a one-state (degenerate) fragment.

Algorithm 1 pDTMC model fragmentation

1: function FRAGMENTATION(D(S, s0,P, L), φ, rwd , α)

2: V ←

{

{s∈S | s |=Φ1∨s |=Φ2}, if φ=P=?[Φ1 UΦ2]
{s∈S | s |=Φ}, if φ=P=?[FΦ]∨φ=Rrwd

=?
[FΦ]

3: FS ← {({s}, s, {s}) | s ∈ V }
4: for all z0 ∈ S \ V do
5: Z ← {z0}
6: ZOUT, Z′ ← {}, {}
7: T ← EMPTYSTACK()
8: EXPAND(D(S, s0,P, L), rwd ,FS , V, T, Z, z0, true)
9: while ¬EMPTY(T ) do

10: z ← T.POP()
11: if pred(z)⊆Z ∧ succ(z)⊆S\Z then
12: ZOUT ← ZOUT ∪ {z}
13: else
14: if #Z < α then
15: EXPAND(D(S, s0,P, L), rwd ,FS , V, T, Z, Z′, z, false)
16: else
17: TERMINATE(D(S, s0,P, L), φ, rwd , FS,

V, T, Z, Z′, ZOUT, z)
18: end if
19: end if
20: Z ← Z ∪ {z}
21: end while
22: if ¬VALIDFRAGMENT((Z, z0, ZOUT)) then
23: Z ← {z0}, ZOUT ← {z0}
24: REMOVENEWSTATES(D(S, s0,P, L), Z′)
25: end if
26: FS ← FS ∪ {(Z, z0, ZOUT)}
27: V ← V ∪ Z
28: end for
29: return D(S, s0,P, L), rwd , FS
30: end function

The function starts by placing the pDTMC states that
satisfy Φ1 and Φ2 (if the analysed property is an unbounded
until formula P=?[Φ1 UΦ2]) or Φ (if the analysed property
is a reachability formula P=?[FΦ] or a reachability reward
formula Rrwd

=? [FΦ]) into a set of “visited” states V (line 2).
Each state from V is then used to assemble a one-state
fragment that is placed into the fragment set FS (line 3).
The states from V are preserved as one-state fragments so
that they can appear in the fPMC abstract model (see the
description from Section 2.3). This allows the direct analysis
of the PCTL property φ, which refers to these states from
the abstract model.

Next, additional fragments (Z, z0, ZOUT) are generated
in each iteration of the for loop from lines 4–28 as follows.
First, a node z0 not yet included in any fragment is selected
(line 4) and inserted into the fragment state set Z (line 5),
while the fragment output set Zout and a set Z ′ of new
states that may be created during the assembly of the
current fragment are initialised to the empty set (line 6).
An empty stack, T , is created in line 7, and then populated
with the states reached by the outgoing transitions from

4. Like other parametric model checking methods [22], [39], [44],
fPMC only supports non-nested probabilistic properties.
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Algorithm 2 Traversal of pDTMC-induced graph

1: function EXPAND(D(S,s0,P,L), rwd ,FS ,V,T, Z, Z′, z, inputState)
2: if ¬inputState then ⊲ z is not the fragment’s input state
3: I ← pred(z) ∩ (S\Z)
4: if I ∩ V = {} then
5: T.PUSH(I)
6: else
7: FS ← FS ∪ {({z}, z, {z})}
8: V ← V ∪ {z}
9: return

10: end if
11: end if
12: O ← succ(z) ∩ (S\Z)
13: if O 6⊆ V then
14: T.PUSH(O\V )
15: if V \O 6= {} then
16: O′ ← RESTRUCTURESTATE(D(S, s0,P, L), rwd , Z, Z′, z)
17: T.PUSH(O′)
18: end if
19: end if
20: end function

z0 through invoking (in line 8) the function EXPAND from
Algorithm 2. Each state z from this stack, T , is processed
by the while loop from lines 9–21, ending up in ZOUT if
it satisfies the constraints associated with output fragment
states (lines 11 and 12, where pred(z) = {i∈S |P(i, z) 6=0}
and succ(z) = {o ∈ S | P(z,o) 6= 0} denote the sets of
predecessor and successor states of state z, respectively).
When z does not satisfy these constraints, two options are
possible (lines 13–19):

• If Z has accumulated fewer states than the threshold α,
the graph traversal function EXPAND is invoked again to
add to the stack the predecessor and successor vertices
of z that are not already in the fragment (line 15).

• Otherwise, the function for the early fragment formation
TERMINATE from Algorithm 3 is invoked to “force” z into
becoming an output state (by restructuring the pDTMC)
whenever that is possible (line 17).

In this way, the threshold α provides a soft upper bound
for the fragment size. When this bound is reached, the
model restructuring techniques detailed in Section 4.2 are
used to force the formation of a valid fragment if possible.
Irrespective of the way in which z is processed in lines 11–
19, it becomes part of the fragment being constructed, and
therefore it is added to the fragment state set Z in line 20.

The fragment candidate (Z, z0, ZOUT ) assembled by the
while loop from lines 9–21 is validated in line 22. If the
candidate does not satisfy the constraints from Definition 6,
the fragment is “downgraded” by using its input state, z0, to
form a degenerate, one-state fragment (line 23) and any new
states created through pDTMC restructuring are removed
(in line 24) because they were not used. We note that this
step is included mainly for purposes of the termination
proof (see Theorem 1 in Section 4.3) and does not affect the
fPMC output formula. After validation (and, if necessary,
degradation or restructuring), the new fragment is added
to the fragment set FS (line 26), and its states are added to
the set of “visited” states V already assigned to fragments
(line 27), ensuring that they are not re-used by the loop
starting in line 4.

The growing of a fragment in Algorithm 1 is carried out
by the function EXPAND from Algorithm 2. Given a state z,

EXPAND examines:

• its incoming transitions in lines 2–11 (only if z is not the
input state z0 of the fragment under construction, i.e., if
inputState is false in line 2);

• its outgoing transitions in lines 12–19.

The states that are directly connected to z via the examined
incoming and outgoing transitions, and that are not already
in the set of fragment states Z , are collected into an input
state set I (line 3) and an output state set O (line 12), respec-
tively. These two sets of states are processed as follows.

Firstly, the states from I are added to the stack T (line 5)
if none of them belongs to an existing fragment (line 4).
Otherwise, z is organised into a one-state fragment and
the traversal of the pDTMC-induced graph is terminated
(lines 7–9) because, with an incoming transition from a state
belonging to an already assembled fragment, z cannot be
an inner or output state of the fragment under construction.
Note that creating this one-state fragment halfway through
assembling another fragment may impact the construction
of the other fragment. If this is the case, then the issue will
be detected and dealt with by the validation process from
Algorithm 1 (line 22).

Secondly, if the output set O has at least one state
not belonging to other fragments (line 13), growing the
fragment under construction with the “successors” of z may
be feasible. As such, the function:

• places the states from O that do not belong to other
fragments onto the stack T (line 14);

• if O contains states belonging to previously constructed
fragments (line 15), it attempts to continue to grow
the fragment under construction by using the function
RESTRUCTURESTATE from Algorithm 4 to extend the
pDTMC with auxiliary states O′ that allow z to become
an inner fragment state (lines 16 and 17).

4.2 Early Termination of Fragment Construction and

Model Restructuring to Aid Fragment Formation

As we will show in Section 4.3, the function FRAGMENTA-
TION from Algorithm 1 is guaranteed to partition a pDTMC
into a set of valid fragments. However, the success of fPMC
also depends on these fragments being of an appropriate
size. If a fragment is too large, existing pMC techniques
(which fPMC uses for the fragment analysis, see Figure 3)
will be unable to handle it. Conversely, partitioning a
pDMTC into a very large number of small fragments may
yield an abstract model whose analysis is unfeasible.

Based on our experience (see Section 6), pDTMCs that
model complex systems often comprise many loops (e.g., see
the pDTMC from Figure 6), whichs favour the formation of
fragments that may be too large for existing pMC techniques
to analyse. To address this issue, FRAGMENTATION uses
the threshold α to decide when to force the formation of
a fragment, preventing it from growing too large (line 14
from Algorithm 1). This early termination of the fragment
formation is accomplished by the function TERMINATE. This
function is supplied (in line 17) with complete information
about the fragmentation process so far and, importantly,
with a state z that does not satisfy the condition from line 11
and therefore cannot be an output state for the fragment
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Algorithm 3 Early termination of fragment formation

1: function TERMINATE(D(S,s0,P,L), φ, rwd ,FS ,V,T, Z, Z′, ZOUT, z)
2: if pred(z) ∩ (S\Z) 6= ∅ ∧ succ(z) ∩ (Z\{z0}) = ∅
3: ∧ (φ 6= Rrwd

=?
[FΦ] ∨ rwd(z)=0) then

4: RESTRUCTURETRANS(D(S, s0,P, L), Z, z)
5: ZOUT ← ZOUT ∪ {z}
6: else if pred(z) ∩ (S\Z) = ∅ ∧ succ(z) ∩ (Z\{z0}) 6= ∅ then
7: O ← RESTRUCTURESTATE(D(S, s0,P, L), rwd , Z, Z′, z)
8: Z ← Z ∪O, ZOUT ← ZOUT ∪O
9: else

10: EXPAND(D(S, s0,P, L), rwd ,FS , V, T, Z, z, false)
11: end if
12: end function

under construction. The role of TERMINATE is to modify
the pDTMC states and/or transitions such that: (i) z meets
the condition for being an output fragment state in the
restructured pDTMC; (ii) the modifications do not affect
the pMC result. This restructuring is possible in one of
the following two scenarios, which are handled in lines 2–
5 and 6–8 of TERMINATE, respectively. If neither scenario
applies, TERMINATE cannot support the early termination of
the fragment construction, and therefore needs to invoke the
function EXPAND, which will continue to grow the fragment
(line 10). As such, the threshold α only provides a soft upper
bound for the size of an fPMC fragment.

Scenario 1. The state z has m≥ 1 incoming transitions (of
probabilities pi1, pi2, . . . , pim) from states si1, si2, . . . , sim
outside the fragment, and all its n≥ 1 outgoing transitions
(of probabilities po1, po2, . . . , pon) to states so1, so2, . . . , son
outside the fragment or to the state z0 of the fragment under
construction (line 2 from Algorithm 3 and Figure 7a–left);
additionally (for reasons explained in Theorem 2 in Sec-
tion 4.3) either the analysed property φ is not a reacha-
bility reward property, or z is a zero-reward state. In this
scenario, we replace the transition between each state sij ,
1 ≤ j ≤ m, and z with transitions of probabilities pijpo1,
pijpo2, . . . , pijpon, between sij and the states so1, so2, . . . ,
son, respectively. This modification of the pDTMC structure
is shown in Figure 7a–right, and is carried out by function
RESTRUCTURETRANS from Algorithm 4. To perform the
restructuring, the function first assembles the sets of states
I = {si1, si2, . . . , sim} (line 2) and O = {so1, so2, . . . , son}
(line 3), and then iterates through state pairs (i, o) ∈ I × O,
removing the transition from state i to state z (line 5) and
inserting a transition from state i to state o. As a result of
this modification of the original pDTMC, state z meets the
condition for becoming an output state of the fragment un-
der construction, and will be placed into the set of outputs
states ZOUT in line 5 from Algorithm 3.

Scenario 2. The state z has no incoming transitions from
outside the fragment under construction, but has outgoing
transitions to one or more states inside the fragment in ad-
dition to n ≥ 1 outgoing transitions (of probabilities p1, p2,
. . . , pn) to states s1, s2, . . . sn outside of the fragment or to
the state z0 of the fragment under construction (Figure 7b–
left). In this scenario, we augment the pDTMC with states
z′1, z′2, . . . , z′n, and we replace each transition between states
z and sj , 1 ≤ j ≤ n with a transition of probability pj
between z and z′j and a transition of probability 1 between
z′j and sj . This change supports the formation of a fragment

Algorithm 4 pDTMC restructuring

1: function RESTRUCTURETRANS(D(S, s0,P, L), Z, z)
2: I ← pred(z ) ∩ (S\Z)
3: O ← succ(z)
4: for all i ∈ I do
5: P(i, z)← 0
6: for all o ∈ O do
7: P(i, o)← P(i, z) · P(z, o)
8: end for
9: end for

10: end function

11: function RESTRUCTURESTATE(D(S, s0,P, L), rwd , Z, Z′, z)
12: O ← succ(z ) ∩ (S\(Z\{z0}))
13: NewStates ← {}
14: for all o∈O do
15: z′ ← NEWSTATE()
16: S ← S ∪ {z′}
17: for all s ∈ S do
18: P(s, z′)← 0, P(z′, s)← 0
19: end for
20: P(z, z′)← P(z, o), P(z, o)←0, P(z′, o)←1
21: L(z′)← {}
22: rwd(z′)← 0
23: NewStates ← NewStates ∪ {z′}
24: end for
25: Z′ ← Z′ ∪NewStates
26: return NewStates
27: end function

28: function REMOVENEWSTATES(D(S, s0,P, L), Z′)
29: for all z′∈Z′ do
30: {i} ← pred(z′), {o} ← succ(z′)
31: P(i, o)← P(i, z′)
32: end for
33: S ← S \ Z′

34: end function

whose output state set includes the auxiliary states z′1, z′2,
. . . , z′n (Figure 7b–right), and is performed by the function
RESTRUCTURESTATE from Algorithm 4. This function as-
sembles a set O comprising the states s1, s2, . . . sn in line 12
and creates the set of NewStates z′1, z′2, . . . , z′n in the for
loop from lines 14–24. After it is created in line 15, each new
state is added to the state set S in line 16, has its incoming
and outgoing transition probabilities initialised in lines 17–
20, is associated with an empty label set and with a zero
reward in lines 21 and 22, respectively, and is added to the
set of NewStates in line 23. This NewStates set is added to
the overall set of new states Z ′ in line 25 and then returned
in line 26, so that the function TERMINATE can add the new
states to both the set Z of fragment states and the set ZOUT

of output fragment states (line 8 from Algorithm 3).

The pDTMC restructuring through the creation of new
states by RESTRUCTURESTATE may not always lead to the
assembly of a valid fragment. When this is the case, the func-
tion REMOVENEWSTATES from Algorithm 4 is invoked in
line 24 from Algorithm 1 to remove these unnecessary new
states. This removal involves first restoring the transitions
from the left-hand side of the transformation from Figure 7b
(which is carried out by the for loop from lines 29– 32 of
REMOVENEWSTATES), and then removing the states from
the pDTMC (line 33).

Before providing correctness proofs for the fPMC frag-
mentation in the next section, we note that the function
RESTRUCTURESTATE is also used to support the growing
of the fragment under construction in the function EXPAND
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(a) Transition replacement to force creation of output fragment state

(b) Auxiliary state insertion to force formation of fragment containing the new states among its output states

Fig. 7: Model restructuring techniques supporting fragment formation

from Algorithm 2. This use occurs when EXPAND processes
(in lines 16 and 17) a state z that has outgoing transitions to
states belonging to previously constructed fragments.

4.3 Correctness of the fPMC Fragmentation

We start by showing that the pDTMC fragmentation pro-
duced by fPMC is valid, noting that the way in which the
fragments of a pDTMC can be used to speed up parametric
model checking is summarised in Section 2.3 and proven
correct in our previous work [18]. We also note that the
correctness proof is made easy by the fact that the fPMC
fragmentation method is a heuristic, and therefore we only
need to show that it returns a correct set of fragments for
the (restructured) pDTMC model; nothing is proven about
the quality of the fragmentation, which is evaluated experi-
mentally later in the paper. Before providing this result, we
show that the pDTMC restructuring carried out within each
iteration of the for loop from lines 4– 28 of Algorithm 1 does
not result in any new states being present in S \ V at the
beginning of the next loop iteration.

Lemma 1. The set S \ V used to select an input fragment
state z0 in line 4 of Algorithm 1 contains only elements from
the initial pDTMC D passed as an argument to the function
FRAGMENTATION.

Proof. To prove the lemma, we show that no new state
created by function RESTRUCTURESTATE during an iteration
of the for loop is left in S \V by the end of that iteration.
RESTRUCTURESTATE may be called in two parts of the fPMC
fragmentation: in line 16 from Algorithm 2, and in line 7
from Algorithm 3. After any instance of the former call, the
new states created by RESTRUCTURESTATE are added to the
stack T (in line 17 of Algorithm 2) and then moved, one by
one, to the fragment state set Z in line 20 of the while loop
from lines 9– 21 of Algorithm 1. After any instance of the
latter call, the new states created by RESTRUCTURESTATE

are immediately added to the fragment state set Z in line 8
of Algorithm 3. As such, all newly created states will even-
tually end up both in Z and, due to the operations in lines 16
and 25 of Algorithm 4, also in S and Z ′.

What happens to these new states after the while loop
from lines 9– 21 from Algorithm 1 depends on whether the

fragment (Z, z0, ZOUT) under construction is found to be
valid or not in line 22 of Algorithm 1:

• If (Z, z0, ZOUT) is a valid fragment, it is added to the set
FS in line 26 and the set of visited states V is extended
with the states from Z (which include all the newly
created states) in line 27. As a result, the new states end
up in both S and V when the for loop iteration finishes,
and therefore S\V will contain no such state.

• Otherwise, the newly created states are removed from S

when function REMOVENEWSTATES is called in line 24
from Algorithm 1 (see also line 33 from Algorithm 4),
and therefore S \V will again contain no new state by
the time the for loop iteration finishes. We note that
calling REMOVENEWSTATES restores the pDTMC D to
its variant from the beginning of current iteration of the
for loop from lines 4–28 of Algorithm 1 by using the state
set Z ′, which contains all new states created during this
iteration because Z ′ starts empty in line 6 of Algorithm 4
and is only modified to include the new states created
by the function RESTRUCTURESTATE in line 25 of this
function. To achieve the pDTMC restoration, REMOVE-
NEWSTATES exploits the fact that each new state z′i ∈ Z ′

only has one incoming transition of probability pi from
a state z and one outgoing transition of probability 1
to a state si, where z and si are the states between
which z′i was “inserted” into D (see Figure 7b–right and
line 20 from Algorithm 4). As such, REMOVENEWSTATES

replaces these two transitions with a direct transition (of
probability pi) from state z to state si in lines 30 and 31
(thus restoring the pDTMC structure from Figure 7b–
left), and then eliminates all new states from the pDTMC
state set S in line 33.

Theorem 1. Function FRAGMENTATION returns a valid frag-
mentation of the pDTMC D(S, s0,P, L) as restructured by its
auxiliary functions.

Proof. We prove this result by showing that: (a) the set
FS assembled by FRAGMENTATION comprises only valid
fragments; (b) the fragments from FS are disjoint (i.e., no
state from S is included in more than one fragment); and
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(c) the function terminates and returns a set of fragments
FS that includes all the states from the state set S of the
restructured pDTMC.

To prove part (a), we note that new fragments are
added to FS in three lines from Algorithms 1 and 2. In
line 3 of Algorithm 1 and in line 7 of Algorithm 2, FS is
augmented with tuples that represent degenerate, one-state
fragments according to the definition given in Section 2.3.
Finally, in line 26 of Algorithm 1, FS is augmented with a
tuple (Z, z0, ZOUT) that either passes the fragment-validity
check from line 22, or is reduced to a degenerate, one-
state fragment in line 23 before it is included in FS . As
such, any tuple inserted into FS is a valid fragment. We
note that this part of the proof did not consider lines 9–
21 from Algorithm 1 because, as stated earlier, these lines
only influence the quality and not the correctness of the
fragmentation.

To prove part (b), we note that the states from the set V
assembled in line 2 of FRAGMENTATION are each placed into
a degenerate, one-state fragment in line 3 of Algorithm 1,
and that the state set Z of any fragment (Z, z0, ZOUT) added
to FS comes from S \ V , where V is updated (in line 27 of
Algorithm 1, and in line 8 of Algorithm 2) to include all the
states of new fragments included in FS . To see that the states
of all new fragments come from S \ V , observe that:

(i) state z0 added to Z in line 5 and line 23 of Algorithm 1
comes directly from S \ V (line 4);

(ii) state z added to Z in line 20 of the same algorithm
(or included into FS as the only vertex of a degener-
ate fragment in line 7 of Algorithm 2) comes from the
stack T , which can only acquire vertices from S \ V

(as enforced by the if statements before lines 5 and 14
from Algorithm 2, and by the use of states newly created
by function RESTRUCTURESTATE in line 17 from Algo-
rithm 2);

(iii) the states added to Z in line 8 from Algorithm 3 are
states newly created by function RESTRUCTURESTATE,
which do not belong to any existing fragment.

Therefore, the fragments from FS are disjoint.
To prove part (c), we note that all the functions from

Algorithms 1–4 terminate. RESTRUCTURETRANS and RE-
STRUCTURESTATE from Algorithm 4 terminate because each
of their statements (including the assembly of the state sets
I and O in RESTRUCTURETRANS and of the state set O

in RESTRUCTURESTATE, and their for loops) operate with
finite numbers of states. As such, EXPAND also terminates
because it builds and operates with finite sets of states I

and O, and invokes a function that terminates (i.e., RE-
STRUCTURESTATE). The function TERMINATE contains no
loops and invokes one of three functions, each of which
is guaranteed to terminate; therefore, TERMINATE is also
guaranteed to terminate. Finally, FRAGMENTATION termi-
nates because:

(i) each iteration of its for loop adds at least state z0 from
S \ V to V in line 27, until S \ V = {} in line 4 (since S

is a finite set of states) and the loop terminates with all
states from S included in fragments from FS ;

(ii) its while loop terminates since it iterates over the ele-
ments of stack T , to which every state in the finite set S

is added at most once;

(iii) according to Lemma 1, any new states that RESTRUC-
TURESTATE adds to the pDTMC are not present in S\V
by the end of the FRAGMENTATION for-loop iteration in
which they were created.

Thus, FRAGMENTATION terminates, returning a fragment
set FS that includes all the states from S.

Having demonstrated that the function FRAGMENTA-
TION yields a valid fragmentation of the restructured ver-
sion of the pDTMC received as its first argument, we will
show next that using this restructured pDTMC instead of
the original pDTMC to analyse the PCTL formula φ under
verification does not change the pMC result.

Theorem 2. Applying the model restructuring techniques from
Algorithm 4 and Figure 7 to a pDTMC does not affect its
reachability, unbounded until and reachability reward properties.

Proof. We first show that the theorem holds for any reach-
ability property φ = P=?[FΦ]. To that end, we consider a
generic pDTMC D, the pDTMC D′ obtained by applying
one of the model restructuring techniques from Figure 7 to
D, and the sets of all paths Π over D and Π′ over D′ that sat-
isfy φ. According to the semantics of PCTL, we need to show
that Prs0(Π) = Pr′s0(Π

′), where Prs0 is a probability mea-
sure defined over all paths π = s0s1s2 . . . sn starting in the
initial state s0 of D such that Prs0(π) =

∏n−1

i=0 P(si, si+1),
and Pr′s0 is a similarly defined probability measure for D′.
We focus on the paths that differ between Π and Π′, and
show that Prs0(Π\Π′) = Pr′s0(Π

′ \Π) for each technique
from Figure 7 in turn:

• For the technique from Figure 7a, a path from Π\Π′ has
the form π = s0ω1sijzsokω2, with j ∈ {1, 2, . . . ,m}, k ∈
{1, 2, . . . , n}, and ω1, ω2 subpaths such that ω2 ends in
a state that satisfies Φ. Path π has a corresponding path
π′ = s0ω1sijsokω2 ∈ Π′\Π (and the other way around)
such that

Prs0(π) = Prs0(s0ω1sij)P(sij , z)P(z, sok)Prsok(sokω2)
= Pr′s0(s0ω1sij)P

′(sij , sok)Pr
′
sok

(sokω2)
= Pr′s0(π

′)

since the restructuring technique guarantees that
P

′(sij , sok) = P(sij , z)P(z, sok).

• For the technique from Figure 7b, a path from Π\Π′ has
the form π = s0ω1zsiω2 for some i ∈ {1, 2, . . . , n} and
subpaths ω1, ω2, with ω2 ending in a state that satisfies
Φ. Path π has a corresponding path π′ = s0ω1zz

′
isiω2 ∈

Π′\Π (and the other way around) such that

Prs0(π) = Prs0(s0ω1z)P(z, si)Prsi(siω2)
= Pr′s0(s0ω1z)P

′(z, z′i)P
′(z′i, si)Pr

′
si
(siω2)

= Pr′s0(π
′)

since the restructuring technique guarantees that
P

′(z, z′i) = 1 and P
′(z′i, si) = P(z, si).

We showed that neither of the restructuring techniques from
Figure 7 affects the value of the reachability property φ,
and therefore the finite number of applications of these
techniques within the fPMC fragmentation approach do not
affect this value either.
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To show that the theorem holds for a generic unbounded
until property φ = P=?[Φ1 UΦ2], we first note that the sets
of paths Π over D and Π′ over D′ that satisfy φ are subsets
of the path sets Πreach and Π′

reach
that satisfy the reachability

property P=?[FΦ2] over D and D′, respectively. We know
from the first part of the proof that Πreach and Π′

reach
are

equiprobable. Consider now a generic path π ∈ Πreach\Π, i.e.,
a path that ends in a state that satisfies Φ2, but without any
intermediate state where Φ1 is satisfied. We have two cases.
If π is unaffected by the restructuring technique used to ob-
tain the pDTMC D′ from D, then π ∈ Π′

reach
\Π′. Otherwise,

the equiprobable path π′ ∈ Πreach constructed from π as in
the first part of the theorem will not be in Π′ because none of
its intermediate states can satisfy Φ2. Indeed, any such states
that are identical to states from π do not satisfy Φ1 because
no intermediate state of π does, and any new states created
by the pDTMC restructuring is labelled with an empty set
of atomic propositions (in line 21 of Algorithm 4) and thus
does not satisfy any PCTL formula. We showed that path
sets Π and Π′ are obtained by removing equiprobable paths
from the equiprobable path sets Πreach and Π′

reach
. As such,

Π and Π′ are also equiprobable, and the theorem holds for
unbounded until properties.

Finally, for a generic reachability reward property
φ = Rrwd

=? [FΦ], we note that the value of φ is given by a
weighted sum of the probabilities of all DTMC paths that
satisfy the associated reachability property P=?[FΦ], where
the weight associated with a path π = s0s1s2 . . . is the
cumulative reward rwd(s0)+rwd(s1)+rwd(s2)+. . . for the
states on the path. As shown in the first part of the theorem,
the path formula FΦ is satisfied by pairs of equiprobable
paths π and π′ over D and D′, respectively. We will show
that the paths in every such pair have the same cumulative
reward. We have three cases. First, if π is unaffected by the
restructuring technique used to obtain the pDTMC D′ from
D, then π′ = π, and the two cumulative rewards are trivially
equal. Second, when the restructuring from Figure 7a is
used, a state z from path π is skipped on path π′, but
otherwise the two paths are identical. However, z is in this
case a zero-reward state (cf. line 2 from Algorithm 3), so
the two cumulative rewards are equal. Finally, when the
restructuring from Figure 7b is used, path π′ only differs
from π through the inclusion of an auxiliary state z′i. Since
rwd(zi) = 0 (cf. line 22 from Algorithm 4), the cumulative
rewards for the two paths are again equal. As such, the
theorem also holds for reachability reward properties.

We have shown so far that fPMC produces valid pDTMC
fragmentations, and that the model restructuring used dur-
ing this fragmentation does not impact the pMC of reacha-
bility, unbounded until and reachability reward properties.
The next result establishes the complexity of the fPMC
fragmentation. To derive this result, we adopt the standard
graph notation indegree(s) = #{s′ ∈ S |P(s′, s) 6= 0},
outdegree(s) = #{s′ ∈ S |P(s, s′) 6= 0} and degree(s) =
max{indegree(s), outdegree(s)} to denote the number of
incoming transitions, the number of outgoing transitions,
and the maximum between the two numbers, respectively,
for a state s of a pDTMC.

Theorem 3. The function FRAGMENTATION requires at most
O(n3d) steps, where n represents the number of pDTMC states

after model restructuring5 and d = maxs∈S degree(s).

Proof. The function RESTRUCTURETRANS (Algorithm 4) re-
quires O(n) steps to assemble the state sets I and O, and at
most O(d2) steps to process up to indegree(z) · outdegree(z)
pairs of incoming-outgoing transitions of a state z. As such,
it has O(max{n, d2}) overall complexity. Given a state z, the
function RESTRUCTURESTATE requires O(n) steps to assem-
ble the state set O, and then O(nd) steps to initialise 2n tran-
sition probabilities for each new state it creates, since one
new state is created for each of the up to outdegree(z)−1 < d

outgoing transitions of z. Therefore, the overall complexity
of RESTRUCTURESTATE is O(nd).

The function EXPAND requires at most O(nd) steps due
to the invocation of RESTRUCTURESTATE, with its other
operations (i.e., building the set I and placing it onto the
stack T , and building the set O and placing O\V onto the
stack T ) performed in O(n) time.

The function TERMINATE requires O(n) time to evalu-
ate the conditions whose values determine which of the
functions RESTRUCTURETRANS, RESTRUCTURESTATE and
EXPAND it needs to invoke. As such, the complexity of
TERMINATE is given by the highest complexity among these
three functions, i.e., O(nd) for both RESTRUCTURESTATE

and EXPAND. Note that this complexity is higher than the
O(max{n, d2}) complexity of RESTRUCTURETRANS since
nd ≥ n, and (because n ≥ d) nd ≥ d2.

In the worst-case scenario where the fragmentation pro-
duces only one-state fragments, the execution of FRAGMEN-
TATION requires the execution of its for loop from lines 4–28
for each of the n0 ≤ n states of the initial pDTMC (with any
new states created by RESTRUCTURESTATE included into
the same fragment as the state that led to their creation,
cf. Figure 7b). Each iteration of this loop executes:

i) EXPAND (line 8) in O(nd) steps;

ii) a while loop (lines 9–21) with at most n iterations (one
for each pDTMC state) that may each invoke the O(nd)-
step EXPAND or the O(nd)-step TERMINATE, yielding an
O(n2d) complexity for the while loop;

iii) the fragment validity check from line 22, which requires
no more than O(nd) operations.

Thus, each iteration of the for loop from lines 4–28 is com-
pleted in no more than O(n2d) steps (due to the while loop
from lines 9–21), and the entire FRAGMENTATION requires
O(n3d) steps in the worst-case scenario.

We note that the coefficients associated with n and d

from the big-O notation in Theorem 3 are typically well be-
low 1. For instance, in all our experiments, the for loop from
FRAGMENTATION was only executed for a small fraction of
the pDTMC states (because many fragments with multiple
states are typically produced), and TERMINATE, RESTRUC-
TURETRANS and RESTRUCTURESTATE were only executed
sparingly. Furthermore, it is worth noting that pDTMCs
are typically sparsely connected graphs, and therefore d is
relatively small.

5. RESTRUCTURESTATE may add up to outdegree(z) − 1 new states
for each of the n0 states of the initial pDTMC (i.e., of the pDTMC that
FRAGMENTATION receives as its first argument), yielding a restructured
pDTMC with n0(d− 1) vertices in the worst-case scenario.
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(a) pDTMC fragmentation for the reachability property from
the first row of Table 1: 13 fragments were obtained, including
five one-state fragments.

successFX

failedFX

(b) pDTMC fragmentation for the reachability reward property
from the second row of Table 1 and the “time” reward function
from Figure 5: 17 fragments were obtained, including 11 one-
state fragments.

successFX

failedFX

(c) pDTMC fragmentation for the unbounded until property
from the last row of Table 1: 15 fragments were obtained,
including nine one-state fragments.

Fig. 8: fPMC fragmentation of the pDTMC from Figure 5 for
the PCTL properties from Table 1 and α = 5, with different
shading used to highlight each fragment.

4.4 fPMC Application to the Motivating Example

We illustrate the use of fPMC by using the pDTMC model
and properties from our running example (cf. Figure 5 and
Table 1). The leading parametric model checkers Storm and
PRISM time out without producing results for any of these
properties within 60 minutes of running on the computer
with the specification provided in Section 6.1. The outcome
of applying fPMC to this pDTMC and each of the three
PCTL properties from Table 1 (with fragmentation threshold
α = 5) are summarised in Figure 8 and Table 2.

Figure 8 depicts the pDTMC fragments generated by
fPMC, which are different for each property because the
function FRAGMENTATION from Algorithm 1 starts by cre-
ating property-specific sets of one-state fragments in lines 2

and 3. Table 2 shows:

• the change in pDTMC size due to fPMC restructuring
(an increase of 59%–69% in the number of states, and
31%–43% in the number of transitions compared to
the initial pDTMC from Figure 6);

• the time taken by the end-to-end fPMC process from
Figure 3 (under 8s for each property by running the
tool presented in the next section on the computer
with the specification provided in Section 6.1);

• the number of arithmetic operations from the alge-
braic formulae of the fPMC closed-form analytical
model for each analysed property, and the time
required to evaluate these algebraic formulae for a
given parameter valuation by running MATLAB on
the computer from Section 6.1 (up to 30ms for the
evaluation of the 2020-operation formulae of prop-
erty P2).

Given the large size of the fPMC algebraic formulae for the
three FX properties, we do not include them in the paper;
they are provided on our project website [1].

5 IMPLEMENTATION

We developed a parametric model checking tool that im-
plements the fPMC algorithms presented in the previous
section. This tool uses:

• the model checker PRISM, to identify the pDTMC
states that satisfy Φ, Φ1 and Φ2 in line 2 of Al-
gorithm 1, and to obtain the transition probability
matrix P (used throughout the fPMC algorithms)
from a pDTMC specified in the PRISM modelling
language (e.g., see Figure 5);

• the model checker Storm, to apply standard pMC
to each pDTMC fragment and to the abstract model
from Figure 3.

We note that the current version of our tool selects the
first pDTMC state not yet allocated to a fragment as the
initial state z0 of each new fragment from line 4 of Algo-
rithm 1. While our experiments from Section 6 show that
this selection yields good results, the associated pDTMC
fragmentations may be suboptimal, and we plan to explore
better approaches to selecting z0 for future versions of the
tool.

As pDTMCs with small numbers of parameters are al-
ready handled extremely efficiently by Storm, our tool only
invokes the end-to-end fPMC approach for pDTMCs whose
number of such parameters exceeds a user-configurable
threshold β ∈ N>0. For pDTMCs with up to β model
parameters, the tool invokes Storm directly, and the pMC
is performed on the unfragmented model. According to our
experimental results (presented in Figure 9), β values in the
range 21..30 work well for most models.

6 EVALUATION

6.1 Evaluation Methodology

We carried out extensive experiments to answer the research
questions summarised below.
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TABLE 2: Summary of fPMC application to the pDTMC and properties of the FX system in Section 3

Restructured pDTMC† fPMC closed-form analytical model (cf. Fig. 3)

ID Property type States Transitions fPMC time Arithmetic operations Evaluation time

P1 Reachability 49 83 7s 1456 <1s
P2 Reachability reward 47 76 8s 2020 <1s
P3 Unbounded until 46 79 5s 1224 <1s

†starting from the initial FX pDTMC model with 29 states and 58 transitions in Figure 6

RQ1 (Efficiency): Does fPMC model fragmentation im-
prove the efficiency of parametric model checking? We
assess if our fPMC approach speeds up parametric model
checking in comparison to PRISM [45] and Storm [24], and
whether it can handle pDTMCs that cannot be analysed by
the two leading model checkers (with a 60-minute timeout).

RQ2 (Result complexity): Does fPMC reduce the complex-
ity of the closed-form formulae generated by parametric
model checking? We assess whether the fPMC-computed
algebraic formulae are simpler (in terms of number of
arithmetic operations) than those computed by the leading
model checkers, and whether they can be evaluated faster
than those produced by Storm.

RQ3 (Configurability): How does the fragmentation
threshold α affect the results of fPMC? We examine
how different fragmentation threshold values affect fPMC
in terms of the number of operations from the computed
closed-form formulae, and execution time for producing
those formulae.

Three pDTMC models with parameterization options
that yield 62 different model variants are used in the eval-
uation. These pDTMCs model the behaviour of a service-
based system (FX system), a software product line (PL
system), and a middleware (COM process). The significant
differences among the key characteristics of these models
are summarised in Table 3. These three software systems
and processes were chosen from distinct application do-
mains and were sourced from leading software engineering
venues [18], [20], [33], [36], [41] to mitigate the bias that
might have been introduced if models assembled specif-
ically for evaluating fPMC had been used. Additionally,
these particular systems were selected because their Markov
models contain:

(i) multiple transition probabilities that can be mean-
ingfully specified as functions over a set of system
parameters;

(ii) configuration variables that can be instantiated to
obtain pDTMCs of different sizes (i.e., with a broad
range of state and transition numbers).

All model variants available for the FX system and COM
process were used in the evaluation. The PL model vari-
ants used in the evaluation were selected so as to include
pDTMCs with a wide range of feature numbers, with a focus
on variants with large numbers of features. More details
about these models are provided below.

FX system. We introduced this system in Section 3, and its
pDTMC corresponding to the sequential execution strategy

with retry (SEQ R) in Figures 5 and 6. For the fPMC evalua-
tion in this section, we also considered the additional strate-
gies below (applied to between one and five functionally
equivalent service implementations per FX operation):

• SEQ—the services are invoked in order, stopping
after the first successful invocation or after the last
service fails;

• PAR—all services are invoked in parallel (i.e., simul-
taneously), and the operation uses the result returned
by the first service terminating successfully;

• PROB—a probabilistic selection is made among the
available services;

• PROB R—similar to PROB, but if the selected service
fails, it is retried with a given probability (as in
SEQ R).

PL system. We used a pDTMC model of a product line
(PL) system taken from [20], [36]. This pDTMC models the
software controller of a vending machine that dispenses
a user-selected beverage and, if applicable, takes payment
from and gives back change to the user.

The possible features of this system comprise: the bev-
erage type (soda, tea, or both), the payment mode (cash
or free), and the taste preference (e.g., add lemon or
sugar). This variability enables the derivation of vending
machines—and the specification of associated pDTMCs—
with between four and 22 features.

COM process. We considered a communication (COM)
process among n ≥ 2 agents taken from [41], and inspired
by the way in which honeybees emit an alarm pheromone
to recruit workers and protect their colonies from intrud-
ers. Given the self-destructive defence behaviour in social
insects (the recruited workers die after completing their
defence actions), a balance between efficient defence and
preservation of a critical mass of workers is required. The
induced pDTMC is a stochastic population model with
n parameters. The quantitative analysis of such stochastic
models of multi-agent systems is often challenging because
the dependencies among the agents within the population
make the models complex.

Throughout the evaluation, fPMC is compared to the
leading pMC model checkers PRISM (version 4.6) and Storm
(version 1.5.1), both with their default settings. In total,
308 model variant/property combinations were analysed,
of which 82 correspond to reachability properties, 165 cor-
respond to reward properties, and 61 correspond to un-
bounded until properties. All experiments were performed
on a MacBook Pro with 2.7GHz dual Core Intel i5 processor
and 8GB RAM, using a timeout of 60 minutes. For a fair
comparison, we ensured that both PRISM and Storm can
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TABLE 3: Key characteristics of the systems and pDTMC models used for the fPMC evaluation

FX system PL system COM process

Application domain Financial Vending machine controller Communication protocol

System type Service-based system Software product line Middleware

Number of model variants 21 40 1
Number of states 11–208 92–115 234
Number of transitions 22–399 167–198 444
Number of model parameters 11–71 10–198 20

Analysed properties
Reachability (FX:P1)
Reward × 2 (FX:P2; FX:P4)
Unbounded until (FX:P3)

Reachability (PL:P1)
Unbounded until (PL:P2)

Reachability×21(COM:P1–P21)
Reward (COM:P22)

Sample reachability property P=?[F successFX] P=?[F SUCCESS] P=?[F ¬a0 ∧ ¬a1 ∧ . . . ∧ ¬a19]

Sample reachability reward property Rtime
=?

[F successFX∨ failFX] – Rcoin flips
=?

[F b]
Sample unbounded until property P=?[¬alarm U successFX] P=?[¬Function1 U SUCCESS] –

successfully process at least the simplest pDTMC of each
system. The following experimental data were collected:

1) the time required to compute the pMC formulae;
2) the number of arithmetic operations in the pMC

formulae;6

3) the time required to evaluate the pMC formulae (in
MATLAB) for a parameter valuation.

Software and data availability. The source code for our
fPMC tool, as well as the models, properties and results
for all the experiments presented in the paper, plus addi-
tional materials supporting the adoption of fPMC are freely
available on our project’s website [1].

Sanity check to verify the fPMC tool through testing. To
examine the correctness of our fPMC tool, we evaluated the
fPMC formulae produced for each analysed property using
randomly generated combinations of parameter values, and
confirmed that the resulting property value matched that
produced by PRISM and Storm (subject to negligible round-
ing errors). For the purpose of this check, the PRISM and
Storm results were obtained by running the probabilistic
model checking on the non-parametric DTMC obtained by
replacing the pDTMC parameters with the relevant combi-
nation of parameter values. While this is not a formal proof
that the fPMC tool was implemented correctly, we note that
even small alterations of the non-trivial formulae generated
by the tool yield noticeable changes in the evaluation re-
sults, so this random testing strongly suggests that our tool
implements the algorithms from Section 4 correctly.

6.2 Results and Discussion

6.2.1 RQ1 (Efficiency)

FX system. We used fPMC, PRISM and Storm to analyse
pDTMC models corresponding to 21 variants of the FX
system. The first of these system variants used a single
service for each FX operation, and the remaining vari-
ants used one of the five execution strategies (i.e., SEQ,
SEQ R, PAR, PROB or PROB R) and between two and five
functionally equivalent services for each FX operation. For
each of the 21 pDTMCs, four properties were analysed: the

6. PRISM and Storm produce a single pMC formula per property,
whereas fPMC yields a set of formulae per property (cf. Figure 3).

properties P1, P2 and P3 from Table 1, and an additional
reachability reward property (property P4) used to establish
the expected cost of executing the FX workflow.

The parametric model checking times for these exper-
iments are presented in Table 4. These results show that
fPMC successfully computed all pMC formulae well ahead
of the 60-minute timeout for all four properties. It took
fPMC just 2.9s to analyse properties P1 and P3 for the sim-
plest pDTMC variant (ID 1), and under 600s for analysing
each of the four properties for most of the other models.
Only the analyses of properties P2 and P4 for the pDTMC
variant with ID 17 required more time, i.e., 1305.4s and
1335.9s, respectively. In contrast, Storm only completed the
analysis for 31 of the 21 × 4 = 84 model–property combi-
nations before the 60-minute timeout. These combinations
correspond to the simplest pDTMC variants (which Storm
analysed slightly faster than fPMC) across all execution
strategies except the PROB strategy. For this strategy, Storm
produced pMC formulae for all model-property combina-
tions, but with an execution time that increased very quickly
over the fPMC time for the more complex PROB pDTMC
variants with four and five functionally equivalent services
per FX operation (i.e., the pDTMC variants with IDs 12 and
13 in the table). PRISM completed the analysis for even
fewer model–property combinations: only 15 of the 84 pMC
analyses returned results within 60 minutes. These results
correspond again to the simplest pDTMC variants.

PL system. We used fPMC, PRISM and Storm to analyse
pDTMC models corresponding to system configurations
with four, 16, 18 and 22 software product line features, and
with increasing numbers of parameters. To that end, we
used different parameters for 10%, 20%, . . . , 100% of the
transition probabilities of the models for the four system
configurations, obtaining 4× 10 = 40 pDTMC variants. The
reachability and unbounded until properties from Table 3
were analysed for each of these pDTMC variants, and the
time taken by these analyses are reported in Table 5.

The results are similar to those obtained for the FX
system. fPMC produced all pMC formulae successfully in
between 13.3 and 93.1 seconds, while Storm and PRISM
completed only 50% and 35% of the pMC analyses, re-
spectively, before the 60-minute timeout. The two existing
model checkers could analyse the pDTMCs with lower
numbers of parameters, and performed their pMC faster
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TABLE 4: Parametric model checking times (in seconds, ‘–’ indicates a timeout) for the 21 FX pDTMC variants and their
four properties (FX:P1 - Reachability, FX:P2 and FX:P4 - Reachability reward, FX:P3 - Unbounded until); STG, #SVC, #S

and #T represent the strategy used to invoke multiple functionally equivalent services for an FX operation, the number of
such services, and the numbers of pDTMC states and transitions, respectively.

pDTMC variant FX:P1 pMC time FX:P2 pMC time FX:P3 pMC time FX:P4 pMC time

ID STG #SVC #S #T fPMC Storm PRISM fPMC Storm PRISM fPMC Storm PRISM fPMC Storm PRISM

1 – 1 11 22 3 <1 <1 4 <1 <1 3 <1 <1 4 <1 <1

2

SEQ

2 17 34 4 3 57 4 3 6 3 <1 18 5 3 6
3 3 23 46 4 – – 7 – – 4 1128 – 7 – –
4 4 29 58 5 – – 9 – – 5 – – 9 – –
5 5 35 70 6 – – 12 – – 5 – – 11 – –

6

PAR

2 40 36 6 2 2 6 3 4 5 <1 2 6 2 3
7 3 64 111 7 – – 8 – – 6 – – 9 – –
8 4 112 207 14 – – 22 – – 15 – – 33 – –
9 5 208 399 31 – – 45 – – 27 – – 78 – –

10

PROB

2 23 46 3 <1 10 6 <1 – 5 <1 5 6 <1 –
11 3 29 64 5 3 – 9 5 – 5 1 – 8 5 –
12 4 35 82 7 27 – 12 46 – 7 10 – 11 49 –
13 5 65 130 8 593 – 17 611 – 8 153 – 16 580 –

14

SEQ R

2 29 58 7 – – 8 – – 5 – – 8 – –
15 3 41 28 19 – – 35 – – 19 – – 35 – –
16 4 53 106 86 – – 152 – – 50 – – 159 – –
17 5 65 130 496 – – 1305 – – 331 – – 1336 – –

18

PROB R

2 29 58 8 34 55 9 – – 4 3 – 8 – –
19 3 35 75 17 – – 24 – – 13 – – 23 – –
20 4 41 93 65 – – 80 – – 52 – – 80 – –
21 5 47 111 200 – – 244 – – 171 – – 244 – –

than fPMC for pDTMCs with the fewest parameters, but
increasingly slower than fPMC for pDTMCs with more than
approximately 40% of their transition probabilities specified
as parameters.

COM process. As indicated in Table 3, a single pDTMC
variant (with 234 states and 444 transitions) was analysed
for the COM process. A number of 21 reachability properties
and one reachability reward property (taken from [41])
were considered, and the times required to complete their
parametric model checking are reported in Table 6.

Once more, fPMC was the only approach that success-
fully analysed all properties. Storm completed the analysis
of reachability properties 1–13 much faster than fPMC,
but took significantly longer to analyse the reachability
properties 14–21, and timed out for the reachability reward
property. PRISM completed the fewest analyses (12 out of
22) but produced the pMC formulae for these approximately
55% of the properties faster than fPMC.

Discussion. fPMC outperforms both Storm and PRISM in
its ability to handle complex pDTMC with large numbers
of parameters. In many of our pMC experiments with such
models, fPMC completed its analysis within a few tens of
seconds, while the other model checkers timed out after
3600 seconds. Thus, our approach often sped up the analysis
of complex models by two or more orders of magnitude.
Furthermore, the increase in the fPMC analysis time as
the models became more complex was consistently much
slower than the increase in the analysis time for the other
model checkers for the FX and PL systems, and the fPMC
pMC time was not affected much by the analysed property
for the COM process.

For some of the simpler pDTMC variants (in the case of
the FX and PL systems) or properties (in the case of the COM
process), Storm and, only occasionally, PRISM completed
the analysis faster than fPMC. These results are expected for
the models and properties that Storm and PRISM can handle
because the two leading model checkers use highly efficient
internal representations (e.g., sparse matrices, binary deci-
sion diagrams) for DTMCs and sophisticated algorithms for
their analysis. In contrast, fPMC needs to perform fragmen-
tation before leveraging the same functionality (by using
Storm) for the resulting fragments and the abstract model
induced by these fragments (cf. Figure 3).

To exploit the capabilities of both fPMC (which can
efficiently analyse complex pDTMCs that other tools cannot
handle) and Storm (which can efficiently analyse simpler
pDTMCs), our fPMC tool employs the user-configurable
threshold β we mentioned in Section 5. For models with
β or more parameters, the tool performs the analysis by
using fPMC fragmentation, while for simple models with
fewer than β parameters Storm is used directly to per-
form monolithic pMC. This simple heuristic represents a
first step towards utilising the most suitable parametric
model checking approach for the pDTMC under analysis.
To support the selection of a suitable value for the threshold
β, we compared the execution times of fPMC and Storm
for pDTMC variants with different numbers of parameters
from our evaluation. The result of this comparison is sum-
marised by the histogram in Figure 9, which shows that
most pDTMCs with up to 20 parameters were analysed
faster by Storm, while almost all the pDTMCs with over
30 parameters were analysed faster by fPMC. The two tools
were each able to analyse faster a subset of the pDTMCs
with numbers of parameters in the range 21 . . . 30, though
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TABLE 5: Parametric model checking times (in seconds, ‘–’
indicates a timeout) for the 40 PL pDTMC variants and their
two properties (PL:P1 and PL:P2); #F and %PAR represent
the number of features in the model, and the percentage of
parametric transitions, respectively.

pDTMC variant† Reachability(PL:P1) Unbounded until(PL:P2)

ID #F %PAR fPMC Storm PRISM fPMC Storm PRISM

1

4

10 48 <1 <1 24 <1 <1
2 20 57 <1 <1 27 <1 <1
3 30 55 3 1 27 3 2
4 40 56 32 5 29 23 5
5 50 74 1671 106 37 712 57
6 60 82 – – 42 – –
7 70 87 – – 52 – –
8 80 92 – – 50 – –
9 90 93 – – 52 – –

10 100 93 – – 51 – –

11

16

10 47 <1 15 16 <1 5
12 20 50 16 – 16 6 –
13 30 20 23 – 17 3 –
14 40 20 32 – 16 4 –
15 50 23 165 – 17 16 –
16 60 22 165 – 18 92 –
17 70 23 – – 18 – –
18 80 24 – – 19 – –
19 90 26 – – 19 – –
20 100 24 – – 19 – –

21

18

10 14 <1 <1 14 <1 <1
22 20 14 <1 1 13 <1 <1
23 30 14 <1 2 13 <1 2
24 40 14 19 42 14 16 28
25 50 15 911 86 14 841 70
26 60 14 – 189 14 – 79
27 70 15 – – 14 – –
28 80 18 – – 15 – –
29 90 17 – – 16 – –
30 100 17 – – 16 – –

31

22

10 39 <1 2 38 <1 <1
32 20 46 4 53 41 3 23
33 30 42 42 – 42 39 –
34 40 42 793 – 41 569 –
35 50 42 – – 42 – –
36 60 43 – – 42 – –
37 70 43 – – 43 – –
38 80 43 – – 44 – –
39 90 48 – – 49 – –
40 100 49 – – 49 – –

†pDTMCs sizes: four-feature models = 92 states, 167 transitions
16-feature models = 110 states, 193 transitions
18-feature models = 104 states, 183 transitions
22-feature models = 115 states, 198 transitions

Storm timed out before completing the analysis of several
of these models. Further decomposing this set of pDTMCs
into smaller ranges (e.g., between 21 . . . 25 and 26 . . . 30
parameters) does not yield a better separation into models
handled faster by the two tools. As such, the comparison
summarised in Figure 9 suggests that setting the threshold
β to a value between 21 and 30 is likely to work well.
While this rule of thumb may not always apply, we note that
adopting it is never going to cause a problem: in borderline
cases, one can easily analyse a pDTMC using both pMC
tools. The exploration of more sophisticated heuristics that
consider additional contributing factors to select the most
appropriate model checking approach is an important area
of future work.

TABLE 6: Parametric model checking times (in seconds, ‘–’
indicates a timeout) for the COM model and its 22 properties
(COM:P1–P22)

Property pMC time

ID Type fPMC Storm PRISM

1

Reachability
(COM:P1–P21)

13 <1 <1
2 12 <1 <1
3 12 <1 <1
4 12 <1 <1
5 13 <1 1
6 13 <1 <1
7 13 <1 3
8 13 <1 <1
9 13 <1 5

10 13 <1 2
11 12 4 4
12 12 8 9
13 12 2 –
14 12 15 –
15 12 19 –
16 13 94 –
17 12 74 –
18 12 317 –
19 12 131 –
20 11 39 –
21 12 22 –

22 Reward (COM:P22) 42 – –
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Fig. 9: pDTMCs analyses completed faster by Storm and by
fPMC for models with different numbers of parameters. The
dashed boxes show the total numbers of analyses completed
by Storm within 60 minutes (fPMC completed all analyses).

6.2.2 RQ2 (Result complexity)

For each of our three case studies and experiments pre-
sented in the previous section, we compared the number
of arithmetic operations from the pMC formulae generated
by fPMC, Storm and PRISM, and the time required to
evaluate the fPMC and Storm formulae in MATLAB on the
computer with the specification from Section 6.1. We only
considered Storm in the latter comparison because Storm
completed significantly more pMC analyses than PRISM in
our experiments (92 versus 55 out of a total of 186 analyses).

FX system. The sizes of the FX pMC formulae produced
by fPMC, Storm and PRISM are shown in Figure 10. With
one exception (for property P3 of the pDTMC variant with
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Fig. 10: Number of operations in the pMC formulae for the FX pDTMC variants and properties from Table 4, with the
values corresponding to the same service combination strategy (SEQ, PAR, etc.) joined by continuous lines to improve
readability

TABLE 7: MATLAB evaluation time for the FX pMC formulae (in seconds)

pDTMC variant P1 P2 P3 P4

ID STG #SRV fPMC Storm fPMC Storm fPMC Storm fPMC Storm

1 – 1 <1 <1 <1 <1 <1 <1 <1 <1

2 SEQ 2 <1 4 <1 8 <1 8 <1 <1

6 PAR 2 <1 4 <1 9 <1 2 <1 <1

10

PROB

2 <1 <1 <1 <1 <1 <1 <1 <1
11 3 <1 5 <1 11 <1 11 <1 <1
12 4 <1 156 <1 272 <1 267 <1 13
13 5 <1 4245 <1 7507 <1 7499 <1 143

18 PROB R 2 <1 17 <1 –† <1 –† <1 <1

†pMC formula unavailable for evaluation due to Storm analysis timeout

ID 1), fPMC generated formulae with significantly fewer
operations than the other model checkers. This difference
increases quickly for larger and more complex models, with
an extreme case (for property P1 of the pDTMC variant with
ID 13) in which the formulae obtained by fPMC contain over
225 times fewer operations than the Storm pMC formula
(i.e., 2629 versus 593426 operations).

The MATLAB evaluation times for the pMC formulae
produced by Storm and fPMC are reported (for the analyses
completed by Storm) in Table 7. For the simplest models
(e.g., pDTMC variants 1 and 10) all evaluations can be
carried out within a few milliseconds. However, when the
complexity of the model increases, the evaluation of the
fPMC formulae is significantly faster than that of the Storm
formulae. This is particularly noticeable for the pDTMC
variants corresponding to the PROB service-combination
strategy, e.g., the evaluation of the P2 property of pDTMC
variant 13 took over 7500s when the Storm formula was
used compared to only 16ms when the fPMC formulae were
used. Even for pDTMC variants for which Storm completed
the analysis faster than fPMC (e.g., those with IDs 2, 6, 10
and 11, cf. Table 4), the Storm pMC formulae are orders
of magnitude larger than those computed by fPMC, and
therefore they require much longer time to evaluate.

PL system. Figure 11 shows the pMC formula sizes gen-
erated by the three model checkers for the PL system. As
expected, with a gradual increase of parametric transitions
(i.e., the percentage of pDTMC transitions probabilities

growing from 10% to 100%) in each model variant, larger al-
gebraic formulae are obtained across all three model check-
ers, with exponential growth for the formulae computed by
Storm and PRISM, neither of which can handle the pDTMC
variants with over 60% of their transition probabilities spec-
ified as parameters.

For simpler pDTMC variants (i.e., those with up to 40%
of their transitions specified as probabilities), the Storm and
PRISM formulae have significantly fewer operators than the
fPMC formulae. We investigated this unexpected result, and
found it to be due to a large number of parameters in the
fPMC abstract pDTMC model: one such parameter for each
probability probz of reaching an output state z of a fPMC
fragment, as described in Section 2.3. As such, the fPMC
abstract models generated from the pDTMC variants with
between 10–40% parametric transition probabilities end up
with more probz parameters than the number of initial
parameters from the PL pDTMC variants they are obtained
from. However, for these pDTMCs variants, many of the
fPMC fragments contain no or only a few PL parameters,
and therefore multiple or even all probz parameters for these
fragments are in fact constant probabilities. We carried out
separate experiments in which the constant values of such
probz parameters were used in the abstract fPMC model
instead of these parameters, and the size of the resulting
fPMC formulae became similar to that of the Storm and
PRISM formulae for these pDTMC variants. Given these
findings, we plan to include this simplification in the next
version of our fPMC tool.
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Fig. 11: Number of operations in the pMC formulae for the PL pDTMC variants and properties from Table 5, with the
values corresponding to the system with the same number of features joined by continuous lines to improve readability

TABLE 8: MATLAB evaluation time for the PL pMC formu-
lae (in seconds)

pDTMC variant Reachability Unbounded until

ID #F %PAR fPMC Storm fPMC Storm

1

4

10 6 <1 6 <1
2 20 6 <1 6 <1
3 30 7 <1 7 <1
4 40 7 3 7 4
5 50 11 1636 10 1214

11

16

10 2 <1 2 <1
12 20 21 <1 6 <1
13 30 23 <1 6 <1
14 40 23 3 6 <1
15 50 33 216 9 68
16 60 34 4189 9 660

21

18

10 2 <1 2 <1
22 20 2 <1 2 <1
23 30 2 <1 3 <1
24 40 2 15 3 15
25 50 2 17114 3 16959

31

22

10 116 <1 106 <1
32 20 160 <1 142 <1
33 30 165 2 146 2
34 40 122 6050 153 5992

A similar trend can be observed in the MATLAB eval-
uation time for the PL pMC formulae (Table 8). For the
formulae derived for the pDTMC variants with up to 30%
parametric transitions, the Storm formulae can be evaluated
within milliseconds, while the evaluation of the fPMC for-
mulae takes seconds (for the pDTMC variants modelling PL
instances with four and 18 features), tens of seconds (for
pDTMC variants modelling PL instances with 16 features)
or even more than 100s (or pDTMC variants modelling
PL instances with 22 features). Again, this difference is
due to fPMC operating with abstract models with unnec-
essarily many parameters, and can be resolved through
the simplification explained earlier. For pDTMC variants
with over 40% parametric transitions, the fPMC formulae
are consistently and increasingly much faster to evaluate
than those produced by Storm and PRISM, or these model
checkers do not complete the pMC within 60 minutes.

COM process. As shown in Figure 12, the pMC formula
sizes generated by fPMC, Storm and PRISM for the COM
process follow a pattern similar to that obtained for the
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Fig. 12: Number of operations in the pMC formulae for
the COM pDTMC and properties from Table 6; Storm
and PRISM computed pMC formulae for several additional
properties, but the multi-megabyte files required to store
these extremely large formulae (which are available on
our project website [1]) were difficult to process, so their
numbers of operations are not provided in the diagram. The
property ID ranges from COM:P1 to COM:P22.

PL system. Thus, for the simplest properties (i.e., those
with IDs between 1 and 5), the sizes for the Storm and
PRISM formulae are much smaller than those of the fPMC
formulae; this is for the reason explained in our earlier dis-
cussion of the PL system results. However, as the analysed
properties become more complex (i.e., because longer paths
are required to reach the states from the reachability PCTL
formulae), the number of operations from the Storm and
PRISM formulae grows exponentially. In contrast, the size
of the fPMC-computed formulae remains relatively stable
with the increased complexity of the properties.

The MATLAB evaluation times for the Storm pMC for-
mulae (Table 9) are again increasing exponentially from a
few millisecond for properties 1–4 to tens of thousands of
seconds for properties 9 and 10, with MATLAB unable to
complete the evaluation before a seven-hour timeout for
properties 11–21. MATLAB, however, managed to evaluate
all formulae produced by fPMC within at most 42s.

Discussion. The complexity of the pMC formulae (i.e., their
number of arithmetic operations) in our three case studies
increased with the complexity of the analysed pDTMC and
PCTL property. For the Storm and PRISM formulae, this
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TABLE 9: MATLAB evaluation time for the COM process pMC formulae (in seconds)

Property ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

fPMC 29 33 15 35 35 15 33 17 19 34 35 38 41 42 36 35 35 42 36 33 30
Storm <1 <1 <1 <1 1 2 156 330 24528 14042 * * * * * * * * * * *

*pMC formula failed to be evaluated in MATLAB using the experimental machine with a seven-hour timeout

increase was exponential for all case studies (cf. Figures 10,
11, and 12). In contrast, the complexity of fPMC formulae
increased relatively little for the PL and COM case studies,
and exponentially—but at a significantly slower rate than
for the Storm and PRISM formulae—for the FX system. For
low complexity PL and COM model-property combinations,
Storm and PRISM computed pMC formulae with fewer
operations than fPMC. This was an unexpected behaviour
that we investigated and explained in the analysis of the
PL experiments, and for which we proposed a fix (to be
implemented in the next version of our fPMC tool).

The MATLAB evaluation time reflects the complexity of
the pMC formulae generated by the three model checkers.
The evaluation of the fPMC formulae took milliseconds
for the FX system, up to 165s for the most complex PL
model-property combination, and up to 42s for the COM
process. In contrast, the evaluation time for the pMC formu-
lae generated by Storm (for the subset of model-property
combinations that the model checker could analyse within
3600s) increased very rapidly with the complexity of these
formulae—from milliseconds for the simplest formulae to
several hours for the complex ones. The much faster eval-
uation made possible by fPMC is highly beneficial, as it
allows the parametric model checking of systems of far
greater complexity than previously possible. Furthermore,
self-adaptive systems that use parametric model checking
(e.g., [28], [29]) can leverage the simpler fPMC formulae
to perform their runtime decision-making much faster, and
with significantly lower CPU overheads.

6.2.3 RQ3 (Configurability)

We evaluated the impact of varying the fPMC fragmentation
threshold α on: (1) the fPMC execution time, and (2) the
number of operations from the resulting algebraic formulae.
To that end, we randomly selected one pDTMC model–
reachability property combination from each of our three
case studies, and we performed its fPMC analysis for all
possible values of α (i.e., from 1 to the maximum number
of states in the analysed pDTMC). The results of these
experiments are summarised in Fig. 13.

FX system. Figures 13a and 13d show the results for the
analysis of the reachability property of FX pDTMC variant
19, which has 35 states. fPMC completed the analysis suc-
cessfully within 60 minutes for 1 ≤ α ≤ 32. For small α
values (α < 10), the time spent checking the abstract model
was higher than that required to analyse the fragments.
This is because smaller α values often lead to a larger
abstract model by limiting the size of each fragment, and
therefore increasing the number of fragments. For α ≥ 10,
each fragment was allowed to grow larger, resulting in
abstract models with fewer states. As a result, the time
spent checking the abstract model decreases (and the time
spent checking the fragments grows) with the increase of α.

For α ≥ 32, fPMC could not complete the analysis of its
first fragment within the 60-minute timeout. This indicates
that a single fragment can become too large and complex
(as a result of α being too large) to be handled by the
model checker that fPMC uses for the analysis of individual
fragments (i.e., Storm). The same pattern can be observed in
the size of the obtained closed-form formulae: their numbers
of operations increase in the fragments but decrease in the
abstract model with the increase of α. A mid-range α value
of between 10 and 20 minimises both the fPMC execution
time and the complexity of the generated formulae.

PL system. Figures 13b and 13e show the results for the
analysis of the reachability property of PL pDTMC variant
30. This pDTMC has 104 states, and fPMC completed its
analysis within 60 minutes for all α values between 4 and
104. For 1 ≤ α ≤ 3, fPMC timed out in the analysis of the
abstract model, which was too complex. For α > 3 but still
relatively small (i.e., 4 ≤ α ≤ 8), the time spent analysing
the abstract model is higher than that required to analyse
the fragments. As α increases further, a similar trend to
that from Figure 13a can be observed: the abstract model
analysis time starts to decrease, and the fragment analysis
goes up slightly. However, increasing α beyond 10 has no
noticeable impact on the analysis time and formula size.
This is due to the fact that fPMC partitions this pDTMC into
fragments of up to 10 states “naturally”, meaning that the
forced fragment termination from line 17 of Algorithm 1 is
not exercised for α > 10. As a consequence, the abstract
model remains relatively complex even for large α values,
and—irrespective of the value of α—the vast majority of the
operations from the fPMC formulae for the PL reachability
property come from the abstract model formula.

COM process. Figures 13c and 13f show the results for the
analysis of reachability property 19 of the COM pDTMC
model. This pDTMC has 234 states, and fPMC completed
the analysis successfully for all possible values of α, i.e., 1 ≤
α ≤ 234. Similar to the FX and PL experiments, increasing
α led to lower analysis times and fewer formula operations
for the abstract model, but resulted in higher analysis times
and more formula operations for the fragments. As for the
FX system, an intermediate α value (of between 30–70 in
this case) yields the lowest total analysis time and number
of operations.

Discussion. The fragmentation threshold α serves as a soft
upper bound for deciding whether fPMC should continue
model traversal (adding further states to its stack, cf. line 14
of Algorithm 1) or invoke fragment termination by forcing
the currently analysed state to become an output fragment
state (cf. line 16 of Algorithm 1). The experiments sum-
marised in Figure 13 suggest that the selection of optimal α
values depends on many factors, including pDTMC struc-
ture and number of states. Trying all the possible values
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Fig. 13: fPMC execution time for (a) the reachability property of FX pDTMC variant 19, (b) the reachability property of PL
variant 30, and (c) reachability property 19 of the COM pDTMC; and fPMC formula complexity (i.e., number of operations)
for the same pDTMC-property combinations of (d) the FX system, (e) the PL system, and (f) the COM process.

of α as what we did here is impractical. Thus, the deter-
mination of optimal α values (other than by exhaustive
search) remains an open research question. Nevertheless,
our experimental results suggest useful rules of thumb for
the selection of suitable α values. First, adopting a default
α value between 10–30 is likely to produce good results (by
guiding fPMC to create abstract models with at least one
order of magnitude fewer states than the original pDTMC).
Second, increasing α may help if the time to analyse the
abstract model is too high (or the formula produced by this
analysis is too complex); conversely, decreasing α may help
if the time to analyse one of the fragments is too high (or
the formulae from the fragment analyses are too complex).
Used in conjunction with hill climbing [53], the latter thumb
rule could enable the optimisation of the threshold α, e.g., to
ensure that fPMC yields formulae with the lowest number
of operations possible.

7 THREATS TO VALIDITY

Construct validity threats. These threats may be caused by
over-simplifications and invalid assumptions made when
devising the evaluation experiments. To avoid them, we
carried out the evaluation of fPMC by using case stud-
ies based on two software systems and a communication

process that are freely available from other published soft-
ware engineering projects. Furthermore, the pDTMCs and
properties evaluated in our paper were also used in related
research [18], [20], [33], [36], [41].

Internal validity threats. To avoid these threats—which
could have introduced bias in the identification of cause-
effect relationships in our experiments—we evaluated fPMC
by answering three independent research questions (cf. Sec-
tion 6.1). To further mitigate the potential bias, the evalua-
tion results were compared against the leading probabilistic
model checkers Storm [24] and PRISM [45], and the cor-
rectness of each result produced by fPMC was individually
checked using the approach described in Section 6.1. Finally,
we published the source code and data from our experi-
ments online [1], enabling other researchers to reproduce
and verify our results.

External validity threats. These threats could affect the
generalisability of our findings. As summarised in Table 3,
we mitigated them in our evaluation by applying fPMC
to three types of systems (i.e., service-based systems [3],
[56], software product lines [5], [21], and communication
processes [25], [26]) taken from different application do-
mains. Moreover, we used multiple model variants and
properties, allowing us to test our approach on a wide
range of pDTMC structures and sizes, and thus to show that
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fPMC provides consistently better performance in terms
of faster computation time, fewer arithmetic operations in
the derived algebraic formulae, and faster evaluation of
these formulae than the model checkers PRISM and Storm
for complex models. Finally, we eased the use of fPMC
in practice by providing tool support for our approach.
However, additional experiments are needed to confirm that
fPMC is applicable to a wider range of pDTMC models and
to other application domains.

8 RELATED WORK

Parametric model checking was firstly introduced by
Daws [22] less than two decades ago. The technique enables
the analysis of a DTMC when some or all of its transi-
tion probabilities are specified as rational functions over
the parameters of the modelled system. pMC produces an
algebraic formula for each analysed property. Such formulae
are used in the design and verification of software sys-
tems, e.g., to compare alternative system designs [35], [36],
to dynamically evolve the configuration of self-adaptive
software [16], [23], [28], [29], and for system parameter
analysis and synthesis [12], [13], [30], [37], [52]. Despite
this wide adoption, the computationally intensive nature of
pMC limits the scalability and applicability of the multiple
software engineering methods that rely on it.

To the best of our knowledge, the research aimed at
improving the efficiency of pMC is limited to the approaches
proposed in [7], [18], [32], [39], [44]. For the purpose of
comparing these approaches to fPMC, we consider them
organised into two classes: those which (like Daws’ original
pMC technique) operate on the entire pDMTC under analy-
sis [7], [32], [39], and those which (like our fPMC approach)
operate by partitioning this pDTMC into components that
are then analysed individually [18], [44]. We term these
classes of approaches standard pMC and compositional
pMC, respectively.

Standard pMC approaches. The first class of pMC ap-
proaches are complementary to our work. Any of them
can be used in conjunction with fPMC, to ensure that the
individual probabilistic model checking of the fPMC frag-
ments and fPMC abstract model is carried out efficiently.
We summarise these approaches below.

In comparison to Daws’ initial pMC technique [22], the
technique proposed by Hahn et al. [39] yields a significant
improvement in pMC performance. Both pMC approaches
derive an algebraic formula for the probability of reaching
a set of parametric Markov chain states specified in a PCTL
path formula. However, instead of computing a regular
expression by exploiting the pDTMC structure as in [22],
the pMC technique from [39] produces a rational expression
and leverages symmetry and “cancellation” properties of
rational formulae to simplify this expression. The cancel-
lation involves computing the greatest common divisor
(GCD) of the denominator and numerator polynomials of
the rational pMC formula, and using this GCD polynomial
to simplify the formula. The model checkers PARAM [38]
and PRISM [45] implement this technique.

According to our classification, Jansen et al. [44] propose
a hybrid pMC approach, and we discuss its pMC “com-
ponents” separately. The standard pMC component of [44]

consists of sophisticated partial polynomial factorisations
that support the efficient simplification of large pMC ratio-
nal expressions. This pMC approach is implemented by the
parametric model checker Storm [24].

More recently, Baier et al. [7] have introduced a new
technique for obtaining simplified pMC formulae. This tech-
nique avoids the computationally expensive calculation of
GCD polynomials (which the pMC approaches from [39],
[44] rely on) by leveraging fraction-free Gaussian elimi-
nation, which is an existing efficient method for solving
systems of parametric linear equations. This method is
implemented in the Storm model checker.

A different type of approach to speeding up pMC is
proposed by Gainer et al. [32]. This approach involves the
stepwise elimination of the states of the analysed pDTMC,
through a process that resembles the mapping of finite
automata to regular expressions. The outcome of this elimi-
nation is a directed acyclic graph encoding of the pMC result
instead of the usual rational formula produced by other
pMC techniques. The authors’ evaluation of the approach
(implemented in their ePMC/ISCASMC model checker [40])
shows that it can outperform the formula-based pMC en-
gine used by PRISM by up to two orders of magnitude.

Compositional pMC approaches. These approaches oper-
ate in a similar way to fPMC. As such, we will compare
each of them to our work.

The pMC approach devised by Jansen et al. [44] im-
proves the efficiency of parametric model checking by
decomposing the state transition graph induced by the
pDTMC under analysis into strongly connected components
(SCCs). pMC expressions are then computed independently
for each SCC, and then combined to obtain the final pMC
output in the form of a single rational formula over the
parameters of the system modelled by the pDTMC. Because
it is predetermined by the SCCs of the analysed pDTMC,
this decomposition (which is implemented by the paramet-
ric model checker Storm) is very rigid. In particular, it may
produce SCCs that are too large to be analysed efficiently,
and that cannot be further decomposed. In contrast, the
fPMC fragmentation of a pDTMC is much more flexible. The
analysed pDTMC is partitioned into fragments whose size is
guided by the fragmentation threshold α. These fragments
can include one or more small SCCs. Most importantly,
fPMC can split any SCCs that are too large to be analysed
individually into multiple fragments. The experimental re-
sults from Section 6 provide ample evidence about the
benefits of this flexible pDTMC partitioning. Furthermore,
the fPMC fragmentation can, in theory, be applied repeat-
edly, e.g., to partition a large fragment into sub-fragments
(although this still has to be confirmed experimentally).

The fPMC theoretical foundation comprises two comple-
mentary parts. The first part, which we introduced in [18],
defines the method for using pDTMC fragments to speed
up parametric model checking—but does not provide any
method for partitioning a pDTMC into fragments. There-
fore, the solution from [18] can only be applied when its
users are able to exploit domain knowledge in order to
manually specify the fragments of the analysed pDTMC.
This limitation represents a significant barrier for the practi-
cal adoption of fragmentation-based pMC. The second part
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of the fPMC theoretical foundation, which is introduced in
this paper and complements our results from [18], removes
this barrier by providing a tool-supported method for the
automated fragmentation of pDTMCs.

9 CONCLUSION

We presented fPMC, a tool-supported technique for soft-
ware performability analysis through compositional para-
metric model checking. fPMC supports the efficient analysis
of reachability, unbounded until and reachability reward
properties of parametric discrete-time Markov chains by
automatically partitioning these models into fragments that
can be analysed independently. The results of these analyses
are then combined into a system of closed-form algebraic ex-
pressions that represent the solution of the initial parametric
model checking problem.

To evaluate fPMC, we used it to analyse 28 PCTL proper-
ties of 62 pDTMC variants modelling three types of software
systems (i.e., service-based systems, software product lines,
and middleware) from different application domains. The
experimental results show that fPMC can analyse pDTMCs
with over 10–20 parameters much faster than previous pMC
techniques, and—in many cases—when these techniques
cannot complete their analyses within 60 minutes on a
standard computer. Furthermore, our evaluation showed
that the algebraic expressions generated by fPMC for such
models comprise considerably fewer operations and are
much faster to evaluate than those produced by previous
pMC techniques.

In future work, we will explore several opportunities for
extending the applicability and efficiency of fPMC. First,
we will examine the possibility to apply fPMC fragmen-
tation repeatedly, to partition pDTMC fragments that may
be too large or too complex to analyse as a whole into
sub-fragments. This opportunity, which is unique to our
compositional pMC technique, has the potential to support
the analysis of complex pDTMCs that cannot be handled by
any existing model checkers.

Second, we aim to enhance the fPMC fragmentation
algorithm with the ability to generate close-to-optimal frag-
ments, i.e., fragments that: (i) are non-trivial in terms of
structure, size and number of parameters; (ii) can be anal-
ysed efficiently; and (iii) produce pMC expressions of ac-
ceptable complexity. Options for obtaining such fragments
include: 1) adapting the fPMC fragmentation threshold
to the characteristics of the fragment under construction;
2) employing methods such as satisfiability modulo the-
ories or mixed-integer linear programming to search for
“good” fragments based on well-defined fragment con-
straints; 3) implementing an improved policy for early
termination of a fragment (e.g., based on the complexity
of the fragment under construction rather its number of
states); and 4) using recent advances on partial exploration
for Markov systems [6], [48] to instantiate and analyse the
model for a set of parameter valuations, thereby guiding the
fragmentation process with these results.

Last but not least, we plan to improve our fPMC tool. In
particular, we will implement the simplification identified
in Section 6.2.2. To that end, we will update the fPMC
tool to ensure that abstract model parameters associated

with constant-valued fragment reachability properties are
replaced with the actual values of those properties. Addi-
tionally, we will explore options for selecting an effective
pMC technique (e.g., standard or compositional) for the
analysis of a given pDTMC, pDTMC fragment or pDTMC
strongly connected component, paving the way for the
development of a highly efficient hybrid parametric model
checker that uses the available pMC techniques together.
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