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ABSTRACT The commercial adoption of Autonomous Vehicles (AVs) and the positive impact they are
expected to have on traffic safety depends on appropriate insurance products due to the high potential losses.
A significant proportion of these losses are expected to occur from the out-of-distribution risks which arise
from situations outside the AV’s training experience. Traditional vehicle insurance products (for human-
driven vehicles) rely on large data sets of drivers’ background and historical incidents. However, the lack of
such datasets for AVs makes it imperative to exploit the ability to deploy AVs in simulated environments.
In this paper, the data collected by deploying Autonomous Driving Systems (ADSs) in simulated environ-
ments is used to develop models to answer two questions: (1) how risky a road section is for an AV to
drive? and (2) how does the risk profile vary with different (SAE levels) of ADSs? A simulation pipeline was
built on the CARLA (Car Learning to Act): an open-source simulator for autonomous driving research.
The environment was specified using parameters such as weather, lighting, traffic density, traffic flow,
no. of lanes, etc. A metric - risk factor was defined as a combination of harsh accelerations/braking,
inverse Time to Collision, and inverse Time Headway to capture the crashes and near-crashes. To assess
the difference between ADSs, two ADSs: OpenPilot (Level 2/3) and Pylot (Level 4) were implemented in
the simulator. The results (from data and model predictions) show that the trends in the relation between the
environment features and risk factor for an AV are similar to those observed for human drivers (e.g., risk
increases with traffic flow). The models also showed that junctions were a risk hot-spot for both ADSs. The
feature importance of the model revealed that the Level 2/3 ADS is more sensitive to no. of lanes and the
Level 4 ADS is sensitive to traffic flow. Such differences in feature importance provide valuable insights into
the risk characteristics of different ADSs. In the future, this base model will be extended to include other
features (other than the environment), e.g., take over requests, and also address the deficiencies of the current
simulation data in terms of insensitivity to weather and lighting.

INDEX TERMS Autonomous vehicle, insurance, risk modelling, simulation, traffic flow, traffic density.

I. INTRODUCTION
Autonomous vehicles (AVs) are a widely anticipated driv-
ing technology, that are undergoing rapid development and
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expansion due to the recent surge in advancements in deep
learning, behavioural cloning and computer vision research,
leading to current and future commercial products that look
to disrupt industries surrounding transport and logistics [1].
These self-driving technologies look to change the way
humans commute, in particular, aiming to reduce the number
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of road accidents faced by road users, which is a significant
cost to public health [2], [3]. Despite these benefits, the large
scale adoption of AVs has been very slow. One of the hurdles
slowing down the commercialisation of AVs is their insur-
ance. Apart from the legal aspects of who bears the responsi-
bility of the crash [4], insurers do not have sufficiently good
models that can predict the risk profile of an AV [5].

Traditional insurance products for human-driven vehicles
use historical accident and claims data to build experience
and exposure-based risk models [6]. However, these datasets
are not useful for modelling the risk profile of an AV since
the factors that contribute to risk in an AV are different from
those that contribute to human driving [7]. For example,
fatigue is a major factor for human drivers [8], [9] which is
non existent for AVs. On the other hand, humans are good
at generalising their driving skills to different geographical
locations. This is not the case for AVs that need to be trained
with data from specific regions with well defined Operational
Design Domains (ODD) [10]. Hence, an alternative approach
to quantify the risk profile of an AV is needed.

However, the risk profile of anAV can be complex tomodel
since it is affected by several factors such as the environ-
ment its driving in (e.g., road type, traffic density, weather
conditions), the human-machine interaction (e.g., Take Over
Request procedures, timings), the cyber-security aspects, etc.
In this paper an initial step towards formulating a risk profile
for AVs is taken, and hence the scope of this paper has been
limited to only the environment risk (road type, traffic density,
weather conditions). Additionally, the approaches that are
suited from an insurers perspective (who is required to insure
different types of AVs, Automated Driving Systems (ADS)
Level 1 -Level 5 [11]), are explored and developed.

In summary, the focus of this paper is on answering the
questions: how risky a road section is for an AV to drive? and
how does the risk profile vary with different (SAE levels) of
ADSs?

A. LITERATURE
Several researchers have worked on quantifying the risk of
AVs and these approaches found in literature could be broadly
classified into two types: (1) The Fault Tree Analysis (FTA)
and (2) Simulation of ADS in a virtual environment.

In the Fault Tree Analysis approach, the AV is first dis-
assembled into its components and then a fault tree model
is developed for each system (e.g., Camera, Lidar, GPS,
Mechanical components) [12]. Failure probabilities to each
component are then assigned using estimates from literature
and by analysing publicly available datasets. This method
provides a comprehensive risk analysis of the AV and pro-
vides insights for OEMs into the vulnerable subsystems that
could be improved. However, it requires a detailed and sys-
tematic evaluation of each subsystem to assign failure prob-
abilities which is not feasible for an insurer who aims to
insure different AVs with a wide range of architectures and
components.

The second approach of simulating AVs in a virtual envi-
ronment has become popular in the recent years, especially
with the advancements in simulators that render realistic
environments [13], [14], [15]. For example OEMs such as
Waymo, Motional, Cruise, etc. use simulations to replay the
data recorded from the real world and evaluate their versions
of software stack [16]. Such what-if [17] kind of simulations
are beneficial for OEMs to investigate if a crash that actually
occurred in the real world could have been avoided by their
AV. Simulators have also been used to test the real-time capa-
bilities of the AV software stack by emulating hardware [18].
However, such simulations although beneficial, do not pro-
vide a complete picture of the risk profile of an AV from an
insurers perspective.

Simulating AVs in a virtual world is a powerful technique
but is challenging due to the large variety and continuum of
scenes that occur in naturalistic driving. To overcome this
hurdle, several researchers have taken the scenario based
approach to quantify risk for AVs [19], [20]. In this approach,
the environment is parameterized (e.g., weather = clear,
raining, cloudy, road type = highway, rural, urban). The
AV algorithm is then tested in a virtual environment where
all possible combinations of this parameter values are sim-
ulated. For example, De Gelder et al. [21] parameterize the
environment, and calculate the exposure and severity of the
AV for different scenario types (cut-inn during lane change
etc.). This approach is the most relevant for the question that
is being answered in this paper. However, from an insurers
perspective, it is very difficult obtain the ‘scenario type’ when
the risk is analysed in real time while the AV is driving on the
road. Hence, in this paper the first question: how risky a road
section is for an AV to drive? is answered by borrowing the
parametrization of the environment concept from the above
papers. However, we did not define specific scenario types.
Instead, a large number simulations are run, assuming that
all possible combinations of scenario types will occur in a
given set of environments. A similar procedure was adopted
by Norden et al. [22] in a study where they evaluate risk
exposure of a single ADS.

Answering the second question: how does the risk profile
vary with different (SAE levels) of ADSs, is challenging due
to the fact that these ADSs are complex and rarely open-
source. Additionally, it is challenging to integrate them into
identical simulation environments for comparative testing. To
the best of our knowledge, there are no papers that performed
a one-on-one comparison of ADSs in similar settings. Hence,
in this paper, we will be addressing this gap by implementing
a Level 2/3 and a Level 4 ADS in a virtual environment and
assessing their risk profiles.

The remainder of the paper is organised as follows:
In the Methods Section II, we describe our simulation

pipeline. More specifically, how the environment is parame-
terized (into weather, lighting, no of lanes, traffic, etc.) and
what values each parameter can assume (e.g., weather =

{clear, raining, cloudy}). Next, we define the metrics used to
quantify how risky a road section was and describe the two
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different ADSs (level 2 and 4) that were simulated. In theData
Analysis Section III, we analyse the dataset generated from
simulations and provide a summary of the feature (environ-
ment) distributions and label (risk factor) distributions. In the
Results Section IV we train and test a model for each of the
ADSs (level 2 and 4). The feature importance analysis, com-
parison of the predictions of the model to data from literature,
and the comparison of the difference in risk profiles of the two
ADSs is discussed in the discussion section. Finally, we draw
conclusions and discussion from the results (Section V) and
provide future steps that could help improve and simplify the
process of generating risk profile for ADSs from an insurers
perspective.

II. METHODS
Since the approach that we chose to quantify the risk was
based on simulating AVs in a virtual world, the main task
in this paper was to setup and develop a simulation pipeline
(Fig. 2). The simulation pipeline consists of four stages:
(1) AV simulation, (2) AV Post-processing, (3) AV Mod-
elling, and (4) AV Application.

A. AV SIMULATION
The main component of the simulation is the simulator itself.
In this study, we chose to use CARLA [14] due to its
flexibility, realism (in rendering visuals and physics), and
the availability of open-source support for integrating with
ADSs such as OpenPilot (Level 2/3) [23] and Pylot (Level 4
ADS) [24]. The simulation involved two steps: (1) Simulating
the environment, and (2) Simulating the Automated Driving
Systems (ADSs).

1) SIMULATE THE ENVIRONMENT
To answer the first research question: how risky a road section
is for an AV to drive?, the approach was to parameterize the
environment and then generate the combinations of the differ-
ent parameter values to define a large number of simulation
scenes (Fig. 1). The parameters and their corresponding val-
ues are shown in Table 1 (details in Supplementary material
Section I).

TABLE 1. Parameters defining the CARLA simulation.

2) SIMULATE THE AUTOMATED DRIVING SYSTEMS (ADSs)
To answer the second research question: how does the risk
profile vary with different (SAE levels) of ADSs, two ADSs

0aSpecifies a combination of a CARLA map and a start point realising
different road types (highway, intersections, curvy rural roads).

were integrated into the CARLA simulation environment.
Their behaviours tested in different scenarios and assessed
for risky behaviour.

1) OpenPilot [23] from Comma.ai (Level 2/3 ADS).
2) Pylot [24] from the Erdos Project (Level 4 ADS).

The above two ADSs were chosen because they are open-
source and provide us with the two different ADS levels we
are interested in. It was also important that these ADS were
being widely used in (on-road) vehicles and simulators. For
example, OpenPilot can be installed in most modern vehicles
and driven on-road, while Pylot being a powerful modular
ADS has been widely used in AV research. The advantage
of open-source ADSs is that several researchers can evaluate
these systems. For example, Chen et al. [25] re-implemented
OpenPilot and evaluated its capabilities as a level 2 ADS
using several on-road and simulated datasets.

OpenPilot being a level 2/3 ADS, has limitations compared
to Pylot which is a Level 4 ADS. Hence, directly comparing
them would result in the trivial conclusion that a Level 4
ADS is safer than the Level 2/3 ADS. Since this paper is
aimed at assessing the effect of the environment on the ADSs,
we assume that the ADSs will be used while respecting their
Operation Design Domain (ODD). Violations of the ODD are
not dealt in this paper, and will be a separate module in the
final insurance product. The ODD for Pylot was not restric-
tive (as per their documentation) and all the road geometries
(1-124) could be used. On the other hand, OpenPilot (version
0.8.6) had 2 main restrictions which needed to be addressed:
(1) It could not modulate the target speed according to the
speed limit (Comma.ai have now added this feature is later
versions). Hence, we implemented a module that acquired
the speed limit from CARLA and set the target speed for
OpenPilot thus mimicking a driver in charge. (2) OpenPilot
was not intended to be used in sharp corners. Hence, all
the road geometries where the OpenPilot crashed on its own
accord in clear weather, daylight, without any traffic or pedes-
trians on the road were discarded for OpenPilot (details in
Supplementary material Section II-A).

Each simulation was intended to last 150 seconds and the
output of the AV Simulation was a raw time series dataset
which included the position, velocity, bounding boxes of
every actor (vehicle and pedestrian) in the scene (Fig. 2). The
traffic interacting with the ADSs was spawned around the
AV and was controlled by the default Autopilot provided in
CARLA.

B. AV POST-PROCESSING
Practically, we intend to train amodel and use it for predicting
a risk score while an AV is driving in the real-world. The
data from the real-world is usually obtained from traffic and
weather APIs (e.g., OSM). Hence, in the AV Post-processing
stage we convert the raw output of the AV Simulation stage
into data of a similar format that can be obtained from the
APIs. But, before we could post-process the data, data clean-
ing was performed which involved discarding the simulations
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FIGURE 1. Traffic simulations: Screenshots of the simulations in different road, traffic and weather conditions. (a) Urban intersection at night with
sparse traffic and hence low interactions. (b) Curved section of a highway at night with traffic surrounding the AV, leading to high interactions.
(c) A T-junction merging onto a highway at night presents a challenging situation for the AV. (d) Curved section of highway in daylight with sparse traffic
is one of the easier scenarios for the AV. (e) An off-ramp on a highway section in daylight presents challenges to the AV since vehicles are switching
lanes to get off the highway. (f) A straight section of a highway with surrounding vehicles. (g) An intersection in a urban area with medium-to-dense
traffic conditions. (h) Some simulations failed due to computational overload and were discarded from the dataset.

that ended before the intended 150 seconds (often indicated
some problem with computational resources).

1) POST-PROCESSED ENVIRONMENT METRICS (FEATURES)
The parameters related to weather and lighting can be directly
obtained fromweather APIs and hence, did not need any post-
processing. Parameters related to vehicles, pedestrians, and
the road geometry were post-processed to obtain the metrics
listed in Table 2:

TABLE 2. Post-processed metrics.

All the above metrics that are mentioned (features) define
the environment, and as can be seen from the definition of the
metrics above, a crucial part of the post-processing was the
current road section. The current road section was obtained

from the CARLA World object. However, in many cases,
especially in curves, the road sections defined by CARLA
are small and hence were aggregated together to form a road
section with a minimum length of 50 m (details in Supple-
mentary material Section III).

2) POST-PROCESSED RISK METRICS (LABELS)
Since our task was to quantify the risk an AV finds itself
exposed to, we post-processed the raw AV simulation data to
derive several metrics that literature suggests correlate with
risk.

The first metric was the total (lateral and longitudinal)
acceleration that the AV experienced. The aim was to cap-
ture harsh accelerations, braking, cornering and crash events.
Hence a signal named harsh accelerations was derived from
all the total accelerations >5 m/s2 (values <5 m/s2 are
set = 0).
However, not all risks translate to high values of accelera-

tions. For example, if an oncoming car whizzes past the AV
on a narrow road, it does not reflect in the accelerations of
the AV but is a risky scenario that needs to be captured. For
this reason, we also calculated the Time To Collision (TTC)
metric [26], [27] (equation (1)) and has been used to quantify
risk exposure of AVs in different situations [28]. Put simply,
it is the time before a collision will occur if the AV and the
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FIGURE 2. Data processing pipeline. The top row shows the 4 steps in the pipeline. (1) AV Simulation: The different ADSs are simulated in different
environments and generate one folder per simulation. Each folder contains five ’.zarr’ files which contain raw data about the scenario (e.g., weather,
lighting), ego_vehicle (e.g., speed, acceleration), all the pedestrians (e.g., position, bounding box), all the traffic vehicles (e.g., position, bounding box),
and all the traffic_lights (e.g., traffic light state, position). (2) AV Post-processing: In this stage one DataFrame (saved as ‘.parquet’) is created from the
raw data (five ‘.zarr’) files. The columns of the DataFrame consist of metrics such as traffic density and each row represents one time step.
(3) AV Modelling: Since the goal of our modelling is to predict ‘how risky a road section is for an AV to drive?’, we need to aggregate the time-stamped
rows from the ‘.parquet’ file over an entire road section. The aggregation of each column is detailed in section II-C. Hence, each row in the aggregated
DataFrame (saved as ‘.csv’) represents a unique road section. The aggregated DataFrame is used for the train, validate, and test data spilt for the ML
model. (4) Once we have the trained model, it is deployed in Humn.ai’s cloud infrastructure, that connects with the AV on the road. It gathers the GPS
location of the vehicle and queries several APIs to collect the values for the features (e.g., traffic density, traffic average speed) at the current GPS
location and feeds it into the model. The model then makes a prediction about how risky the current road section is.
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other vehicle continue moving at the same velocity.

TTC =
Relative distance
Relative velocity

(1)

However, the TTCmetric has a flaw, i.e. it does not work well
when the vehicles are driving at the same velocity (relative
velocity = 0). Hence, if a vehicle is tailgating the ego AV
or if the AV was tailgating another vehicle (keeping a small
relative distance) but following at the same speed, TTCwould
be infinite (suggesting zero risk). This problem is addressed
by the Time Head Way (THW) metric [29], [30] given by
equation (2)

THW =
Relative distance

Velocity of ego vehicle
(2)

Since the inverse values of TTC and THW correlate with
risk [31], a single metric that quantified the risk an AV is
exposed to was calculated using the three metrics: harsh
acceleration, inverse TTC (iTTC = 1/TTC), and inverse
THW (iTHW = 1/THW).

A second iteration of data cleaning (details in Supple-
mentary material Section IV) was performed after the post-
processing, where:

1) Traffic density was capped to 250 vehicles/km.
2) All road sections with length < 50 m were discarded.
3) Number of lanes were capped at 4.
In summary, the output of the AV Post-processing stage

is a time series dataset with metrics such as iTTC, iTHW,
harsh acceleration, which quantify risk, as well as metrics
such as traffic density, and traffic average speed which can
be obtained via external APIs and define the environment the
AV is travelling in Fig. 2.

C. AV MODELLING
In this stage the post-processed data was aggregated and
classical machine learning models were trained. Since the
aim is to to predict how risky a road section is for an AV to
drive?, each data point in the dataset needs to correspond to a
single road section. Hence, the time series data obtained from
the AV Post-processing stage was aggregated over each road
section (Fig. 2).

The metrics which remain constant through out a simula-
tion (weather, lighting) do not need any aggregation. Number
of laneswas aggregated as the closest integer to the (weighted
by length) average number of lanes on the road section.
The mean value was used as the aggregated metric for road
curvature, traffic density, traffic average speed, and walker
density. If any part of a road section was a junction, the is
junction feature was aggregated to True.
The metrics that quantify the risk (iTTC, iTHW, harsh

accelerations) were aggregated as the mean value over each
road section. However, the road sections in our dataset had
different lengths (>50 m) and a longer road section would
have a larger probability of having a risky event. Hence, the
mean values of iTTC, iTHW, and harsh acceleration were
scaled by the length of the road section.

Since the total risk was a combination of the three risk
metrics (iTTC, iTHW, and harsh acceleration), the final risk
factor (label) was a summation of the three metrics. A simple
summation sufficed since the three metrics had values in
similar range (Table. 3).

TABLE 3. The three components of risk factor.

Additionally, the feature traffic flow (equation 3) replaced
the traffic average speed feature, since literature [32] sug-
gests that traffic flow is highly correlated with accident rates
equation (3).

Traffic flow = Traffic density × Traffic average speed (3)

The data was prepared for machine learning by (1) splitting
the aggregated dataset into train, validation, and test datasets,
(2) one-hot encoding the categorical features (weather, light-
ing), and (3) normalizing the continuous features (traffic
density, traffic average speed, road curvature, walker density,
no. of lanes).

TABLE 4. Number of data points for in the datasets.

Finally, for each ADS we had a train, validation and test
dataset with the number of data points shown in Table 4. The
training, structure and predictions of the models are discussed
in the Results section, later in this paper. The AV application
stage shown in Fig. 2 is not discussed in this paper, but
involves the practical implementations (data engineering) to
gather at from real world data via external APIs to generate
an online risk estimate for the AV.

III. DATA ANALYSIS
In this section, the aggregated data which is the output
of aggregation step in the AV Modelling stage is analysed
and the distributions of environment parameters (Features in
Table 5) and risk factor (Label in Table 5) for both ADSs are
presented.

A. FEATURE AND LABEL DISTRIBUTIONS
The distributions of the environment parameters (features)
and the risk factor (label) along with its components (harsh
accelerations, iTTC, iTHW) for the two ADSs are provided
in Fig. 3. The first two columns of Fig. 3 show the features
and the third column shows the label.

1) FEATURE (ENVIRONMENT) DISTRIBUTIONS
Since the two ADSs were simulated in environments that
were closest to the environments we expect them to be used
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FIGURE 3. Data analysis summary: The distributions of the (environment) features (first two columns) and (risk factor) label (third column) are shown.
The label (and its components) are represented in a per unit road section length format.

TABLE 5. Features and label for machine learning.

in the real-world, differences can be observed in the distri-
butions of the different features. OpenPilot being a Level
2/3 ADS was simulated mainly on the highways where the

no. of lanes > 1. Pylot, on the other hand, being a Level 4
ADS was simulated on both highways and urban settings.
This difference can be clearly seen in the no. of lanes plot
in Fig. 3 where the percentage of road sections with 1 lane
for OpenPilot is low compared to that for Pylot. On the other
hand, Pylot experienced fewer number of 3 lane highways
compared to OpenPilot. This is also reflected in other plots
(traffic density, traffic flow, walker density) in Fig. 3 where
the density of higher values is more in Pylot compared to
OpenPilot, indicating that Pylot was exposed to more dense
scenarios in terms of the traffic.
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The features that remain constant throughout a simula-
tion (weather and lighting) were designed to be uniformly
distributed (25% for each weather type and 33% for each
lighting type). The minor deviations from the uniform dis-
tribution occur due to the simulations that were excluded
in the data cleaning process. With regards to the junctions;
as expected, the number of road sections without a junction
(OpenPilot=87.6%, Pylot=84.0%) are far fewer compared to
the ones with a junction (OpenPilot=12.4%, Pylot=15.9%).

2) LABEL (RISK FACTOR) DISTRIBUTIONS
The risk factor plot (Fig. 3 third column) shows that the risk
for Pylot has higher density at higher values, as compared to
OpenPilot. This is hypothesized to be also an affect of the
differences in environment distributions. The components:
iTTC and iTHW show similar trends in distribution as the
risk factor. The total acceleration distributions show themost
amount of difference between Pylot and OpenPilot. This
is mainly because Pylot being simulated mainly in dense
traffic scenarios (e.g., on urban roads) has more interaction
with the traffic which results in higher number of (harsh)
accelerations.

B. VALIDATING THE SIMULATION ENVIRONMENT
One of the essential components of the simulation was
the traffic that interacted with the ADSs. Since, AVs will
(at least initially) be sharing the roads with human drivers,
it becomes vital that the simulated traffic exhibits patterns
that are observed in human driving data (at the very least) on
a macroscopic level. Figure 4 shows the macroscopic patterns
generated by the traffic simulated in our scenarios.

The top row of Fig. 4 shows the scatter plots of traffic
average speed VS traffic density for OpenPilot, Pylot, and
from data measured on a highway from literature [33]. The
measured data (human driving) shows that the traffic aver-
age speed decreases as the traffic density increases. This is
because at low traffic densities vehicles can move at free flow
speed, whereas at high traffic densities there is almost a ‘grid
lock’ situation which results in low traffic average speed.
The simulated traffic for OpenPilot shows a similar trend.
However, in addition to the points that indicte the inverse
relation between traffic average speed and traffic density,
the plot is populated with points that are ‘below the curve’.
This is because the measured data from [33] is from highway
sections, whereas the data from our simulations includes
several factors such as traffic lights, junctions, etc. which
lead to points that have a lower traffic average speed. For
example, even when traffic density is zero, a red traffic light
will result in zero traffic average speed. The simulated traffic
for Pylot as shows the inverse relationship, however Pylot was
simulated in more complex scenarios compared to OpenPilot,
the higher values of traffic average speed are missing.
The bottom row of Fig. 4 shows the scatter plots of traffic

flow VS traffic density for OpenPilot, Pylot, and from data
measured on a highway from literature [33]. The measured
data (human driving) shows that the traffic flow increases

TABLE 6. Parameters for XGBoost regressor model.

linearly and then decreases as the traffic density increases.
A similar trend is seen in the OpenPilot and Pylot plots.
Essentially, this is due the fact that when traffic density
is low, even if all the vehicles are going fast (high traffic
average speed), the traffic flow is low. The traffic density
reaches an optimum point where it doesn’t hinder the traffic
average speed and leads to the highest traffic flow. Beyond
this optimum traffic density, it hinders the flow of traffic and
eventually ends up in a ‘grid-lock’ at very high density.

Hence, from Fig. 4 it can be concluded that the simulated
traffic behaved in a manner to represent human-driven vehi-
cles interacting with the ADSs at the macroscopic level.

IV. RESULTS
In this section, we will discuss the classical machine
learning models that were trained on the aggregated data
(Section II-C). We have also implemented a deep learning
model on the same dataset but is beyond the scope of this
paper and will be discussed in a future publication.

The label (risk factor) that needed to be predicted by the
model was a continuous signal, hence, regression models
were explored. A grid search was performed to select the best
model structure and the hyper parameters. The results led us
to select a XGBoost Regressor model for both the ADSs, with
the parameters as shown in Table 6.
TheMSE Loss was used as a metric to compare the perfor-

mance of the models with respect to a Baseline model. The
Baseline model was the mean value of the risk factor (label)
from the train dataset of the respective ADS. The predictions
of the baseline models for the risk factor for OpenPilot and
Pylot resulted in MSE Loss of 0.0002562 and 0.0000866,
respectively on the test datasets. The XGBoost Regressor
models yielded improvements of 25.0% and 52.4%withMSE
Loss of 0.0001928 and 0.0000412 for OpenPilot and Pylot,
respectively.

The ranking power of the models was evaluated using the
lift curves. Figure 5 shows the lift curves for the two ADSs.
It can be seen that the model for the Pylot is closer to the
‘target lift’ (calculated using the test data) as compared to the
OpenPilot model. However, the OpenPilot model has a higher
lift value.

A. RISK FACTOR VS FEATURES
The MSE Loss and Lift curves provide a comparative under-
standing of the model performance. However, to get a more
complete picture of the model performance, the model’s
predictions were compared to the data by plotting the risk
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FIGURE 4. Simulator validation: The top row shows the relationship between traffic average speed and traffic density and the bottom row shows the
relationship between traffic flow and traffic density. The first two columns have the data for the two ADSs from our simulations and are compared to
the real-world measured data from literature [33] in the third column.

FIGURE 5. Lift curves: The dotted lines indicate the lift curve calculated
by using the (XGBoost Regressor) model predictions on the test dataset.
The solid line indicates the ‘target’ (ideal) lift curve, which is calculated
using the test dataset.

factor vs the features in Fig. 7. This, we think, provides a
more palatable way to understand the performance of the
model. For example, from Fig. 7 it can be seen that the
trends in the solid lines (green: train data, yellow: validation
data, and red: test data) are captured well by the dotted lines
of the XGBosst Regressor model predictions. Additionally,
we also observe the (univariate) relationship between the
different features and risk factor. For every plot the Mean
risk is plotted on the y axis, which is the mean of the risk
factor (label) for the interval in which the corresponding

feature (x axis) falls in. For continuous features pandas.
qcut was used to discretize the features into equal sized
buckets based on sample quantiles. For categorical features,
the Mean risk corresponding to each feature value is plotted.

1) MEAN RISK VS TRAFFIC DENSITY
From Fig. 7 (a)-(b), it can be seen that the mean risk ini-
tially increases with traffic density and then plateaus, beyond
50 vehicles/km. This trend is captured well by the model
predictions as well. This trend can be understood by the fact
that there is an increased interaction of the AV with sur-
rounding vehicles as the traffic density increases. Higher the
interaction, higher the probability of a risky event occurring.
But beyond a certain traffic density, this probability may not
change significantly.

It is also interesting to note that the magnitudes of mean
risk are similar for OpenPilot and Pylot. This maybe due to
the fact that, although they are very different ADSs, they were
simulated in their respective ODDs.

2) MEAN RISK VS TRAFFIC FLOW
From Fig. 7 (c)-(d), it can be seen that themean risk increases
with traffic flow for both the ADSs. This trend is similar to
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FIGURE 6. No. of accidents VS traffic flow: The data from literature [32]
with human driven vehicles shows the positive correlation between
number of accidents and traffic flow.

that found in literature [32] with human drivers, where the
accidents increase as the traffic flow increases.
Traffic flow being the product of traffic density and traffic

speed, combines the two ‘opposing’ features (high traffic
density leads to low traffic average speed). This combined
with the fact that it has a high correlation with the mean risk
makes it a valuable feature and is also reflected in the top 4 of
the feature importance plots (Fig. 7 (q)-(r)).

3) MEAN RISK VS WALKER DENSITY
From Fig. 7 (e)-(f), it can be seen that the mean risk
initially decreases with walker density increase; reaches a
minimum, and then increases, while plateauing at walker
densities>15 pedestrians/km. We expected the mean risk to
increase monotonously with walker density, however, the
‘dip’ seen in the data (and model predictions) is hypothesized
to be due to the other confounding features. For example, low
pedestrian densities are usually observed on highway sections
where the crashes are usually at higher speeds leading to
higher severity. Another point to be noted is that the values of
walker density may seem low (e.g., 50 pedestrians/km), but
pedestrians were usually concentrated at cross-walks and the
rest of the road was empty. The pedestrians in the simulator
were not allowed to jaywalk.

4) MEAN RISK VS ROAD CURVATURE
From Fig. 7 (g)-(h), it can be seen that the mean risk
initially decreases with road curvature increase; reaches a
minimum, and then increases, while plateauing at road cur-
vature>0.015 m−1. This is similar to the trend observed
for walker density. Again, we expected the mean risk to
increase monotonously with road curvature. The ‘dip’ is
(again) hypothesized to be due to confounding feature. For
example, straight roads (low road curvature) are generally
highways which tend to have high severity crashes.

5) MEAN RISK VS NUMBER OF LANES
From Fig. 7 (j), it can be seen that the mean risk increases
with no. of lanes for Pylot. However, for OpenPilot (Fig. 7 (i))
the mean risk ‘dips’ at number of lanes = 3 (a highway).
The feature importance plot for OpenPilot (Fig. 7 (q)) also
shows that no. of lanes feature is very important. In contrast,

for Pylot, the no. of lanes feature is not very important. This,
we think, is due to the fact that OpenPilot (Level 2/3 system)
which is mainly driven on highways and Pylot (Level 4
system) is mainly driven in urban areas.

6) MEAN RISK VS WEATHER
From Fig. 7 (k)-(l), it can be seen that the mean risk was
not affected by weather. This, we think, is a limitation of
our simulation data, since it is very evident from literature
[34], [35] that weather conditions are a significant factor in
the functioning of an AV.We hypothesize that our simulations
cold not capture the effect of weather due to limitations in
simulating the sensors (lidars, radars, etc.) and low noise in
the sensors (as compared to the ones used on real-world AVs).
Another possibility is that the affects of weather were not
strong enough. This will be investigated in a future paper.

7) MEAN RISK VS LIGHTING
From Fig. 7 (m)-(n), it can be seen that the mean risk was
not affected by lighting. Similar to weather, we think, is a
limitation of our simulation data, since it is very evident
from literature [34], [36] that lighting conditions are a signif-
icant factor in the safe operations of an AV. This (similar to
weather) is attributed to the limitations of our sensors which
may be providing the perception module ‘better’ data that
what be possible in the real world.

8) MEAN RISK VS IS JUNCTION
From Fig. 7 (o)-(p), it can be seen that the mean risk was
high in a junction compared to when the road section did
not include a junction. This is logical since the number of
interactions the AV has with traffic at a junction are consid-
erably higher than while driving on a straight road. The high
importance of the is junction feature is also reflected in the
feature importance plots for both, OpenPilot and Pylot.

9) FEATURE IMPORTANCE
Figures 7 (q)-(r) show the feature importance for OpenPilot
and Pylot, respectively. Is junction is the most important
feature for both ADSs and is logical since, larger the number
interactions, higher the risk for an AV. The second most
important feature for OpenPilot is the no. of lanes and is
probably because OpenPilot is mainly meant to drive on
highways. Pylot on the other hand has traffic flow as its
second most important feature. These features are followed
by the remaining continuous features of traffic density, road
curvature, and walker density. The categorical features of
weather and lighting do not seem to have much affect on the
predictions of the model.

In summary, it can be said that the trends shown by the
data are captured well by the XGBosst Regressor models, for
both OpenPilot and Pylot. The trends inmean risk vs features
agree with traditional knowledge for human driven vehicles.
However, weather and lighting parameters do not seem to

38394 VOLUME 11, 2023



J. Anih et al.: Deriving Environmental Risk Profiles for Autonomous Vehicles From Simulated Trips

FIGURE 7. Mean risk VS features: The figure contains 9 groups of 2 subplots each. The 9 groups are from the 8 features and the 1 feature importance
plot. The Mean risk on the y axis is the mean of the risk factor (label) for the corresponding interval in which the feature (x axis) falls in. For
continuous features pandas.qcut was used to discretize the features into equal sized buckets based on sample quantiles. For categorical features,
the Mean risk corresponding to each feature value is plotted.
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affect the behaviour of the AV, which is due to the limitations
of our simulation.

V. DISCUSSION
The aim of this paper was to answer two questions:

• How risky a road section is for an AV to drive?
• How does the risk profile vary with different (SAE
levels) of ADSs?

To answer these questions, we developed a simulation
pipeline as discussed in Section II-A and simulated 2 ADSs,
namely: OpenPilot (a Level 2/3 system) and Pylot (a Level
4 system). Each simulation was 150 seconds long with differ-
ent (CARLA) Towns and starting points defining the different
scenes. Relevant signals and metrics were derived from the
recorded raw data (position, speed, acceleration). Signals
such as traffic density, traffic flow, road curvature, weather
etc. were deived and used as features due to their relevance
in affecting human driven vehicles and availability via traffic
and weather APIs (in terms of practical application).

A risk factor metric was formulated from inverse Time to
Collision (iTTC), inverse Time Headway (iTHW), and the
harsh accelerations from the AV. This metric would not only
allow us to capture crashes and high accelerations events,
but also time critical events that do not reflect as harsh
accelerations.

The data was then cleaned and prepared for training sep-
arate models for the two ADSs. Since the label (risk factor)
is a continuous variable, a Regressor (XGBoost) was chosen
for the model structure. The results (Fig. 7) show that the
models were able to capture the trends in relation between
the mean risk and the different features. Additionally, the
trends could be explained using the data observed in human
driven vehicles. Thesemodel predictions provided us with the
answer to the first question i.e., How risky a road section is
for an AV to drive?

The second question ofHow does the risk profile vary with
different (SAE levels) of ADSs? is most suitably answered by
the feature importance plots (Fig. 7 (q)-(r)). Junctions being
an ‘interaction’ hot-spot have the highest importance for both
the ADSs. However, after this the differences can be seen.
OpenPilot being a Level 2/3 system, which is mainly intended
to be driven on highways, has no. of lanes as the second most
important feature. Whereas, for Pylot being a Level 4 system,
which can be driven on highways and urban areas, has traffic
flow as the secondmost important feature. It is also interesting
to see that the importance for Is junction and no. of lanes
are closer as compared to the importance for Is junction and
traffic flow for Pylot. Pylot has a higher sensitivity to junc-
tions compared to OpenPilot. Such differences are valuable
for understanding ‘risk potential’ of different road features
depending on the type of the ADS.

As mentioned earlier, one of the limitations of the sim-
ulation data was that it was unable to capture the effect of
weather and lighting. This is hypothesized to be either due to
the weather and lighting not being simulated effectively or the
sensors being ‘unrealistically’ perfect. This raises the need for

methods and metrics by which the sensors in the simulation
can be calibrated tomatch the sensors used on the real vehicle.
Metrics that can assess the performance and quality of sensors
can be a valuable tool for such calibration [37]. This will be
investigated in an upcoming paper. Another possible reason
for the insensitivity of the risk factor to weather and lighting
could be the non-dependence of traffic agents’ behaviour on
these factors. For example, the probability of a tail-gator rear
ending an AV is higher on a wet road compared to a dry
road. In future iterations, these effects will be enabled and
tested for.

Despite these limitations, the simulation data and models
provide valuable insights for a macroscopic model of risk for
AVs from an insurers perspective. With more digitization and
the concept of digital clones picking up momentum, more
relevant features will be available in the future, that could help
improve the predictive qualities of risk models.

VI. CONCLUSION
The work in this paper assesses the affect of the environment
on an AV in a simulated environment. The results, with
their coherence with trends found in literature lead us to
conclude that parameterizing the environment using features
(traffic density, traffic flow, weather, etc.) provides a compu-
tationally tractable way for simulating Autonomous Vehicles.
In terms of the first question: How risky a road section is for
an AV to drive? we can conclude that a road section with a
junction and high traffic flow, high traffic and walker density
are risky for an AV. These results are similar to the results
found in literature for human drivers. When answering the
second question:How does the risk profile vary with different
(SAE levels) of ADSs?, we conclude that level 2/3 and level 4
ADSs show similarities in terms of the result that for both
ADSs junctions are a risk hot-spot. However, the differences
appear when we look at the feature importance, where a level
2/3 ADS is more sensitive to no. of lanes in comparison
to a level 4 ADS. These results and conclusions provide a
strong base to developmore complexmodels in the future that
include other factors such as takeover requests, cyber security,
and connected car technology.
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